References
Anderson-Teixeira, K.J., Davies, S.J., Bennett, A.C., Gonzalez-Akre,
E.B., Muller-Landau, H.C., Joseph Wright, S., et al. (2015).
CTFS-ForestGEO: A worldwide network monitoring forests in an era of
global change. Glob. Chang. Biol. , 21, 528–549.
Averill, C. & Hawkes, C. (2016). Ectomycorrhizal fungi slow soil carbon
cycling. Ecol. Lett. , 19, 937–947.
Bradford, M.A., Keiser, A.D., Davies, C.A., Mersmann, C.A. &
Strickland, M.S. (2013). Empirical evidence that soil carbon formation
from plant inputs is positively related to microbial growth Author ’ s
personal copy. Biogeochemistry .
Brzostek, E.R., Dragoni, D., Brown, Z.A. & Phillips, R.P. (2015).
Mycorrhizal type determines the magnitude and direction of root-induced
changes in decomposition in a temperate forest. New Phytol. , 206,
1274–1282.
Cambardella, C.A. & Elliott, E.T. (1992). Particulate Soil
Organic-Matter Changes across a Grassland Cultivation Sequence.Soil Sci. Soc. Am. J. , 56, 777.
Cheeke, T.E., Phillips, R.P., Brzostek, E.R., Rosling, A., Bever, J.D.
& Fransson, P. (2017). Dominant mycorrhizal association of trees alters
carbon and nutrient cycling by selecting for microbial groups with
distinct enzyme function. New Phytol. , 214, 1–11.
Chen, W., Koide, R.T., Adams, T.S., DeForest, J.L., Cheng, L. &
Eissenstat, D.M. (2016). Root morphology and mycorrhizal symbioses
together shape nutrient foraging strategies of temperate trees.Proc. Natl. Acad. Sci. U. S. A. , 113, 8741–8746.
Cheng, L., Chen, W., Adams, T.S., Wei, X., Li, L., McCormack, M.L.,et al. (2016). Mycorrhizal fungi and roots are complementary in
foraging within nutrient patches. Ecology , 97, 2815–2823.
Cheng, W. & Kuzyakov, Y. (2005). Root effects on soil organic matter
decomposition. In: Roots and Soil Management: Interactions between
Roots and the Soil . American Society of Agronomy, Crop Science Society
of America, Soil Science Society of America, Madison, WI.
Clemmensen, K.E., Bahr, A., Ovaskainen, O., Dahlberg, A., Ekblad, A.,
Wallander, H., et al. (2013). Roots and associated fungi drive
long-term carbon sequestration in boreal forest. Science (80-.
). , 339, 1615–1618.
Cotrufo, M.F., Alberti, G., Inglima, I. & Marjanovi, H. (2011).
Decreased summer drought affects plant productivity and soil carbon
dynamics in a Mediterranean woodland. Biogeosciences , 2729–2739.
Cotrufo, M.F., Lugato, E., Ranalli, M.G., Haddix, M.L. & Six, J.
(2019). Soil carbon storage informed by particulate and
mineral-associated organic matter, 12.
Cotrufo, M.F., Wallenstein, M.D., Boot, C.M., Denef, K. & Paul, E.
(2013). The Microbial Efficiency-Matrix Stabilization (MEMS) framework
integrates plant litter decomposition with soil organic matter
stabilization: do labile plant inputs form stable soil organic matter?Glob. Chang. Biol. , 19, 988–95.
Craig, M.E., Turner, B.L., Liang, C., Clay, K., Johnson, D.J. &
Phillips, R.P. (2018). Tree mycorrhizal type predicts within-site
variability in the storage and distribution of soil carbon and nitrogen.Glob. Chang. Biol. , 24, 3317–3330.
Fahey, T.J., Bledsoe, C.., Day, F.P., Ruess, R. & Smucker, A.J..
(1999). Fine Root Production and Demography. In: Standard Soil
Methods for Long Term Ecological Research (eds. Robertson, G.P.,
Coleman, D.C., Bledsoe, C.. & Sollins, P.). pp. 437–455.
Fahey, T.J., Siccama, T.G., Driscoll, C.T. & Likens, G.E. (2005). The
biogeochemistry of carbon at Hubbard Brook. Biogeochemistry , 75,
109–176.
Gill, A.L. & Finzi, A.C. (2016). Belowground carbon flux links
biogeochemical cycles and resource-use efficiency at the global scale.Ecol. Lett. , 1419–1428.
Godbold, D.L., Hoosbeek, M.R., Lukac, M., Cotrufo, M.F., Janssens, I.A.,
Ceulemans, R., et al. (2006). Mycorrhizal hyphal turnover as a
dominant process for carbon input into soil organic matter. Plant
Soil , 15–24.
Gonzalez-Akre, E.B., Meakem, V., Eng, C.-Y., Tepley, A.J., Bourg, N.A.,
McShea, W.J., et al. (2016). Patterns of tree mortality in a
temperate deciduous forest derived from a large forest dynamics plot.Ecosphere , 7.
Grandy, A.S. & Neff, J.C. (2008). Molecular C dynamics downstream :
The biochemical decomposition sequence and its impact on soil organic
matter structure and function. Sci. Total Environ. , 4.
Hendricks, J.J., Hendrick, R.L., Wilson, C.A., Mitchell, R.J., Pecot,
S.D. & Guo, D. (2006). Assessing the patterns and controls of fine root
dynamics : an empirical test and methodological review. J.
Ecol. , 94, 40–57.
Hoosbeek, M.R., Lukac, M., Dam, D. Van, Godbold, D.L., Velthorst, E.J.,
Biondi, F.A., et al. (2004). More new carbon in the mineral soil
of a poplar plantation under Free Air Carbon Enrichment ( POPFACE ):
Cause of increased priming effect ? Global Biogeochem. Cycles ,
18, 1–7.
Iversen, C.M., Mccormack, M.L., Powell, A.S., Blackwood, C.B., Freschet,
G.T., Kattge, J., et al. (2017). A global Fine-Root Ecology
Database to address below-ground challenges in plant ecology. New
Phytol.
Jackson, R.B., Lajtha, K., Crow, S.E., Hugelius, G., Kramer, M.G. &
Piñeiro, G. (2017). The Ecology of Soil Carbon: Pools, Vulnerabilities,
and Biotic and Abiotic Controls. Annu. Rev. Ecol. Evol. Syst. ,
48, annurev-ecolsys-112414-054234.
Jilling, A., Keiluweit, M., Contosta, A.R., Frey, S., Smith, R.G.,
Tiemann, L., et al. (2018). Minerals in the rhizosphere :
overlooked mediators of soil nitrogen availability to plants and
microbes. Biogeochemistry , 103–122.
Jo, I., Fei, S., Oswalt, C.M., Domke, G.M. & Phillips, R.P. (2019).
Shifts in dominant tree mycorrhizal associations in response to
anthropogenic impacts. Sci. Adv. , 5, 1–8.
Kallenbach, C.M., Grandy, A. & Frey, S.D. (2016). Direct evidence for
microbial-derived soil organic matter formation and its ecophysiological
controls. Nat. Commun. , 1–10.
Keller, A.B. & Phillips, R.P. (2019a). Leaf litter decay rates differ
between mycorrhizal groups in temperate, but not tropical, forests.New Phytol. , 222, 556–564.
Keller, A.B. & Phillips, R.P. (2019b). Relationship Between Belowground
Carbon Allocation and Nitrogen Uptake in Saplings Varies by Plant
Mycorrhizal Type. Front. For. Glob. Chang. , 2, 1–10.
Martinez, C., Alberti, G., Cotrufo, M.F., Magnani, F., Zanotelli, D.,
Camin, F., et al. (2016). Belowground carbon allocation patterns
as determined by the in-growth soil core 13 C technique across different
ecosystem types. Geoderma , 263, 140–150.
McCormack, M.L., Crisfield, E., Raczka, B., Schnekenburger, F.,
Eissenstat, D.M. & Smithwick, E.A.H. (2015). Sensitivity of four
ecological models to adjustments in fine root turnover rate. Ecol.
Modell. , 297, 107–117.
Panzacchi, P., Gioacchini, P., Sauer, T.J. & Tonon, G. (2016). New dual
in-growth core isotopic technique to assess the root litter carbon input
to the soil. Geoderma , 278, 32–39.
Pausch, J., Tian, J. & Riederer, M. (2013). Estimation of
rhizodeposition at field scale : upscaling of a 14 C labeling study.Plant Soil , 364, 273–285.
Phillips, R.P., Brzostek, E. & Midgley, M.G. (2013). The
mycorrhizal-associated nutrient economy : a new framework for
predicting carbon – nutrient couplings in temperate forests. New
Phytol. , 199, 41–51.
Phillips, R.P., Erlitz, Y., Bier, R. & Bernhardt, E.S. (2008). New
approach for capturing soluable root exudates in forest soils.Funct. Ecol. , 22, 990–999.
R Core Team (2019). R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria. URL
https://www.R-project.org/. (n.d.). .
Rasse, D.P., Rumpel, C. & Dignac, M.F. (2005). Is soil carbon mostly
root carbon? Mechanisms for a specific stabilisation. Plant Soil ,
269, 341–356.
Rillig, M.C. (2004). Arbuscular mycorrhizae, glomalin, and soil
aggregation. Can. J. Soil Sci. , 84, 355–363.
Schmidt, M.W.I., Torn, M.S., Abiven, S., Dittmar, T., Guggenberger, G.,
Janssens, I. a., et al. (2011). Persistence of soil organic
matter as an ecosystem property. Nature , 478, 49–56.
See, C.R., Mccormack, M.L. & Hobbie, S.E. (2019). Global patterns in
fine root decomposition : climate , chemistry , mycorrhizal association
and woodiness. Ecol. Lett. , 22, 946–953.
Shah, F., Nicolas, C., Bentzer, J., Ellstr, M., Floudas, D., Carleer,
R., et al. (2016). Ectomycorrhizal fungi decompose soil organic
matter using oxidative mechanisms adapted from saprotrophic ancestors.New Phytol. , 209, 1705–1719.
Sokol, N.W. & Bradford, M.A. (2019). Microbial formation of stable
carbon is more efficient from belowground than aboveground input.Nat. Geosci. , 12.
Staddon, P.L., Ramsey, C.B., Ostle, N., Ineson, P. & Fitter, A.H.
(2003). Rapid turnover of hyphae of mycorrhizal fungi determined by AMS
microanalysis of 14C. Science , 300, 1138–1140.
Sulman, B.N., Brzostek, E.R., Medici, C., Shevliakova, E., Menge, D.N.L.
& Phillips, R.P. (2017). Feedbacks between plant N demand and
rhizosphere priming depend on type of mycorrhizal association.Ecol. Lett. , 20, 1043–1053.
Tedersoo, L. & Bahram, M. (2019). Mycorrhizal types differ in
ecophysiology and alter plant nutrition and soil processes. Biol.
Rev. , 1868, 1857–1880.
Valverde-Barrantes, O.J., Smemo, K. a., Feinstein, L.M., Kershner, M.W.
& Blackwood, C.B. (2013). The distribution of below-ground traits is
explained by intrinsic species differences and intraspecific plasticity
in response to root neighbours. J. Ecol. , 101, 933–942.
Wurzburger, N. & Brookshire, E.N.J. (2017). Experimental evidence that
mycorrhizal nitrogen strategies affect soil carbon. Ecology , 98,
1491–1497.
Yin, H., Wheeler, E. & Phillips, R.P. (2014). Root-induced changes in
nutrient cycling in forests depend on exudation rates. Soil Biol.
Biochem. , 78, 1–9.
Zhu, K., Mccormack, M.L., Lankau, R.A., Egan, J.F. & Wurzburger, N.
(2018). Association of ectomycorrhizal trees with high
carbon-to-nitrogen ratio soils across temperate forests is driven by
smaller nitrogen not larger carbon stocks. J. Ecol. , 524–535.