Escalating concern regarding the impacts of reduced genetic diversity on the conservation of endangered species has spurred efforts to obtain chromosome-level genomes through consortia such as the Vertebrate Genomes Project. However, assembling reference genomes for many threatened species remains challenging due to difficulties obtaining optimal input samples (e.g., fresh tissue, cell lines) that can characterize long-term conservation collections. Here, we present a pipeline that leverages genome synteny to construct high-quality genomes for species of conservation concern despite less-than-optimal samples and/or sequencing data, demonstrating its use on Hector’s and Māui dolphins. These endemic New Zealand dolphins are threatened by human activities due to their coastal habitat and small population sizes. Hector’s dolphins are classified as endangered by the IUCN, while the Māui dolphin is among the most critically endangered marine mammals. To assemble reference genomes for these dolphins, we created a pipeline combining de novo assembly tools with reference-guided techniques, utilizing chromosome-level genomes of closely related species. The pipeline assembled highly contiguous chromosome-level genomes (scaffold N50: 110 MB, scaffold L50: 9, miniBUSCO completeness scores >96.35%), despite non-optimal input tissue samples. We demonstrate that these genomes can provide insights relevant for conservation, including historical demography revealing long-term small population sizes, with subspecies divergence occurring ~20 kya, potentially linked to the Last Glacial Maximum. Māui dolphin heterozygosity was 40% lower than Hector’s and comparable to other cetacean species noted for reduced genetic diversity. Through these exemplar genomes, we demonstrate that our pipeline can provide high-quality genomic resources to facilitate ongoing conservation genomics research.

Motia Ara

and 4 more

Landlocking of diadromous fish in freshwater systems can have significant genomic consequences. For instance, the loss of the migratory life stage can dramatically reduce gene flow across populations, leading to increased genetic structuring, and stronger effects of local adaptation. These genomic consequences have been well-studied in some mainland systems, but the evolutionary impacts of landlocking in island ecosystems are largely unknown. In this study, we used a genotyping-by-sequencing (GBS) approach to examine the evolutionary history of landlocking in common smelt (Retropinna retropinna) on Chatham Island, a small isolated oceanic island 650 km southeast of mainland New Zealand. We examined the relationship among the Chatham Island and mainland smelt, and used coalescent analyses to test the number and timing of landlocking events on Chatham Island. Our genomic analysis, based on 21,135 SNPs across 169 individuals, revealed that the Chatham Island smelt were genomically distinct from the mainland New Zealand fish, consistent with a single ancestral colonisation event of Chatham Island in the Pleistocene. Significant genetic structure was also evident within the Chatham Island smelt, with a diadromous Chatham Island smelt group, along with three geographically structured landlocked groups. Coalescent demographic analysis supported three independent landlocking events, with this loss of diadromy significantly pre-dating human colonisation. Our results illustrate how landlocking of diadromous fish can occur repeatedly across a narrow spatial scale, and highlight a unique system to study the genomic basis of repeated adaptation.
Landlocking is a process whereby a population of normally diadromous fish becomes limited to freshwater, potentially leading to behavioural, morphological, and genetic changes, and occasionally speciation. The study of recently landlocked populations can shed light on how populations adapt to environmental change, and how such life-history shifts affect population-genetic structure. Kōaro (Galaxias brevipinnis) is a facultatively diadromous Southern Hemisphere galaxiid fish that frequently becomes landlocked in inland lakes. This study compares seven landlocked kōaro populations to diadromous populations from main and offshore islands of New Zealand. Genotyping-by-sequencing was used to obtain genotypes at 18,813 single nucleotide polymorphism sites for each population. Analyses of population structure revealed that most landlocked populations were genetically highly distinct from one another, as well as from diadromous populations. A few particularly isolated island and lake populations were particularly strongly genetically differentiated. Landscape characteristics were measured to test whether lake elevation, size, or distance from the sea predicted genetic diversity or differentiation from diadromous kōaro. While there were no significant relationships indicating isolation-by-distance or isolation-by-environment, we detected a trend toward lower genetic diversity in lakes at higher elevations. Our findings illustrate the critical role that landlocking can play in the structure of intraspecific genetic diversity within and between populations.