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Abstract

In this paper, we study the existence of global L2-constrained minimizers
related to the following Kirchhoff type equation:

−
(
a+ b

∫
RN

|∇u|2
)

∆u− f(u) = λu, x ∈ RN , λ ∈ R,

where N ≤ 3, a, b > 0 are constants, f(u) is a general L2-subcritical nonlin-
earity. By using the concentration compactness principle, we prove the sharp
existence and nonexistence of global L2-constraint minimizers.
Keywords: Constrained minimization; Subadditivity inequality; Global L2-
constraint minimizers; L2-subcritical general nonlinearity.
Mathematics Subject Classification(2010): 35J60, 35A15

1 Introduction and main result

In this paper, we study the existence and nonexistence of normalized solutions to the
following Kirchhoff type problem with L2-subcritical general nonlinearity:

−
(
a+ b

∫
RN

|∇u|2
)

∆u− f(u) = λu, x ∈ RN , λ ∈ R, (1.1)

where N ≤ 3, a, b > 0 are constants. We assume that the nonlinear term f ∈ C(R,R)
satisfies the following conditions:

(f1) lim
t→0

f(t)
t

= 0;

∗E-mail address: yyeehongyu@163.com
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(f2) lim
t→∞

f(t)

|t|1+
8
N

= 0;

(f3) There exists t0 > 0 such that F (t0) > 0, where F (t) =
∫ t

0
f(s)ds for t ∈ R.

Kirchhoff equation (1.1) is a nonlocal one as the appearance of the term
∫
RN |∇u|2

implies that (1.1) is not a pointwise identity. This causes some mathematical difficul-
ties and makes the study of (1.1) particularly interesting. Problem (1.1) arises in a
physical model presented by Kirchhoff in [7]. After Lions [13] introduced an abstract
framework to the problem, it received much attention and many existence results can
be found, see e.g. [1, 2, 3, 4, 5, 13, 15].

In the past years, a first line to study (1.1) is to consider the case where λ
is fixed and assigned, or even with an additional external and fixed potential, see
[6, 8, 9, 12, 16] and the references therein. In such direction, the critical point
theory and variational methods are mainly used to prove the existence of nontrivial
solutions, but nothing can be given a priori on the L2-norm of the solutions. Since
the physicists are interested in ”normalized solutions”, i.e. solutions with prescribed
L2-norm, it is interesting for us to study whether problem (1.1) has solutions with
prescribed L2-norm. By the critical point theory, solutions with prescribed L2-norm
are corresponding to critical points of the following C1 functional

I(u) =
a

2

∫
RN

|∇u|2 +
b

4

(∫
RN

|∇u|2
)2

−
∫
RN

F (u) (1.2)

constrained on the following L2-spheres in H1(RN):

Sc = {u ∈ H1(RN)|
(∫

RN

|u|2
) 1

2

= c > 0}.

For any fixed c > 0, we call (uc, λc) ∈ H1(RN)× R a couple of solution to (1.1) if uc
is a critical point of I|Sc and λc is the associated Lagrange multiplier.

For any c > 0, we define the following minimization problem

ic := inf
u∈Sc

I(u). (1.3)

It is standard that minimizers of ic are critical points of I(u) constrained on Sc.
This minimization problem was first studied in [19], where the nonlinearity is a pure
power nonlinear term, i.e. f(u) = |u|p−2u. By using the well-known Gagliardo-
Nirenberg inequality and L2-preserving scaling arguments, in [19] the author proved
that p = 2 + 8

N
is L2-critical exponent for problem (1.3), namely for all c > 0,

ic > −∞ if p ∈ (2, 2 + 8
N

) (L2-subcritical case) and ic = −∞ if p ∈ (2 + 8
N
, 2N
N−2

)

(L2-supcritical case), however, if p = 2 + 8
N

, there exists c0 > 0 such that ic > −∞
for c ∈ (0, c0] and ic = −∞ for c > c0. The author proved the existence, nonexistence
and uniqueness of minimizers for ic when p ∈ (2, 2+ 8

N
) and also proved the existence

of normalized solutions (local minimizers) when p ∈ [2 + 8
N
, 2N
N−2

), see [10, 19, 20].
For a L2-supcritical general nonlinearity f , by raising a series of assumptions on f ,
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it is proved in [11] that (1.1) has a normalized solution in H1
r (RN). However, there

seems few work about (1.1) with a L2-subcritical general nonlinearity. In this paper,
we try to do it.

Recall in [17] the Gagliardo-Nirenberg inequalitywith the best constant: Let p ∈
[2, 2N

N−2
) if N ≥ 3 and p ≥ 2 if N = 1, 2, then

∫
RN

|u|p ≤ p

2(
∫
RN |Qp|2)

p−2
2

(∫
RN

|∇u|2
)N(p−2)

4
(∫

RN

|u|2
) 2p−N(p−2)

4

, (1.4)

with equality only for u = Qp, where up to translations, Qp is the unique ground
state solution of

−N(p− 2)

4
∆Q+

(
1 +

p− 2

4
(2−N)

)
Q = |Q|p−2Q, x ∈ RN . (1.5)

Our main result is as follows:

Theorem 1.1. Assume that (f1)− (f3) hold. N ≤ 3. There exists c∗ ≥ 0 such that
ic = 0 for all 0 < c ≤ c∗ and ic < 0 for all c > c∗. Moreover,

(i) ic has a minimizer for each c > c∗.
(ii) If c∗ > 0, ic has no minimizer for each 0 < c < c∗.

It is still unknown when c∗ > 0 holds and whether ic∗ has a minimizer or not if

c∗ > 0. We found that it is dependent of the limit of the function F (t)

|t|1+
4
N

when t→ 0.

The answer is as follows.

Theorem 1.2. Assume that (f1)− (f3) hold. N ≤ 3.

(1) If lim
t→0

F (t)

|t|2+
4
N

= +∞, then c∗ = 0.

(2) If lim
t→0

F (t)

|t|2+
4
N
< +∞, then c∗ > 0.

(3) If lim
t→0

F (t)

|t|2+
4
N

= 0, then ic∗ has a minimizer.

Remark 1.3. Assume that lim
t→0

F (t)

|t|2+
4
N

= l > 0 hold, we can not deduce whether ic∗

has a minimizer or not.

For example, if f(t) = l(2 + 4
N

)|t|1+ 4
N t, it has been proved that c∗ =

(
a

l(2+ 4
N

)

)N
4

(
∫
RN |Q2+ 4

N
|2)

1
2 and ic∗ has no minimizer (see Theorem 1.1 in [19]); However, if

f(t) = l(2 + 4
N

)|t|1+ 4
N t + |t|q−2t, 2 + 4

N
< q < 2 + 8

N
, then we can prove that

0 < c∗ <
(

a
l(2+ 4

N
)

)N
4

(
∫
RN |Q2+ 4

N
|2)

1
2 and ic∗ has a minimizer (see details in Remark

3.1).

The conditions (f1)− (f3) are elementary for a L2-subcritical general nonlinearity
problem. Compared with the pure power nonlinearity case, the main difficulties to
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prove Theorems 1.1 and 1.2 are the L2-preserving scaling may fail to prove ic < 0
and the strict subadditivity condition as the nonlinearity term is general. We need
to look for other scaling techniques.

Our methods to prove Theorems 1.1 and 1.2 can be similarly used to prove the
existence of L2-constrained minimizers for Schrödinger equation with L2-subcritical
general nonlinearity, which was proved by Shibata in [14].

Throughout this paper, we use standard notations. For simplicity, we write
∫

Ω
h

to mean the Lebesgue integral of h(x) over a domain Ω ⊂ RN . Lp := Lp(RN) (1 ≤
p < +∞) is the usual Lebesgue space with the standard norm | · |p. We use “ → ”
and “ ⇀ ” to denote the strong and weak convergence in the related function space
respectively. C will denote a positive constant unless specified. We use “ := ” to
denote definitions. We denote a subsequence of a sequence {un} as {un} to simplify
the notation unless specified.

The paper is organized as follows. In § 2, we present some preliminary results for
Theorems 1.1 and 1.2. In § 3, we prove Theorems 1.1 and 1.2.

2 Preliminary Results for Theorems 1.1 and 1.2

In this section, we give some preliminary results.

Lemma 2.1. Assume that (f1)− (f3) hold and N ≤ 3. Then for any c > 0, I(u) is
bounded from below and coercive on Sc.

Proof. By (f1)− (f3), for any ε > 0, there exists a constant Cε > 0 such that

|f(t)| ≤ ε|t|1+ 8
N + Cε|t|, ∀ t ∈ R.

Then for any u ∈ H1(RN), there exists Cε > 0 such that∣∣∣∣∫
RN

F (u)

∣∣∣∣ ≤ ε

∫
RN

|u|2+ 8
N + Cε

∫
RN

|u|2.

So by the Gagliardo-Nirenberg inequality (1.4), we see that for any c > 0 and any
u ∈ Sc, there exists Cε > 0 such that

I(u) ≥ a

2

∫
RN

|∇u|2 +
b

4

(∫
RN

|∇u|2
)2

− ε N + 4

N |Q2+ 8
N
|
8
N
2

c
8
N
−2

(∫
RN

|∇u|2
)2

− Cεc2

By taking 0 < ε ≤
bN |Q

2+ 8
N
|
8
N
2

4(N+4)c
8
N

−2
small enough, then there exists C > 0 such that

I(u) ≥ a

2

∫
RN

|∇u|2 − Cc2 ≥ −Cc2,

which implies that I(u) is bounded from below and coercive on Sc for any c > 0.
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For any c > 0, set
ic := inf

u∈Sc

I(u),

then by Lemma 2.1, ic is well defined.

Lemma 2.2. Assume that (f1)− (f3) hold and N ≤ 3. Then for any c > 0, ic ≤ 0.

Proof. By (f1) and (f2), we see that F (t)
t2
→ 0 as t → 0. For any c > 0 and u ∈ Sc,

set ut(x) := t
N
2 u(tx) for any t > 0, then ut ∈ Sc and

ic ≤ I(ut) = t2
a

2

∫
RN

|∇u|2 + t4
b

4

(∫
RN

|∇u|2
)2

−
∫
RN

F (t
N
2 u)

|tN2 u|2
|u|2 → 0

as t→ 0+, hence ic ≤ 0 for all c > 0.

Lemma 2.3. Assume that (f1)− (f3) hold and N ≤ 3. Then the function c 7→ ic is
continuous on (0,+∞).

Proof. For any c > 0, it is enough to prove that icn → ic for any sequence {cn} ⊂
(0,+∞) satisfying that cn → c.

For any u ∈ Sc, let vn := cn
c
u. Then vn ∈ Scn . By (f1)− (f3) and the Dominated

Convergence Theorem, we see that
∫
RN F (vn)→

∫
RN F (u). Thus

icn ≤ I(vn) =
(cn
c

)2 a

2

∫
RN

|∇u|2 +
(cn
c

)4 b

4

(∫
RN

|∇u|2
)4

−
∫
RN

F (vn)

= I(u) + on(1),

where on(1)→ 0 as cn → c. By the arbitrary of u ∈ Sc, we see that lim
cn→c

icn ≤ ic.

On the other hand, we suppose that {un} ⊂ Scn is a sequence satisfying that
I(un) ≤ icn + 1

n
. By Lemmas 2.1 and 2.2, we see that {un} is uniformly bounded in

H1(RN). Let wn := c
cn
un ∈ Sc, then similarly we have

∫
RN F (wn) =

∫
RN F (un)+on(1).

Hence

ic ≤ I(wn) =

(
c

cn

)2
a

2

∫
RN

|∇un|2 +

(
c

cn

)4
b

4

(∫
RN

|∇un|2
)4

−
∫
RN

F (wn)

= I(un) + on(1)

≤ icn +
1

n
+ on(1),

which implies that ic ≤ limcn→cicn . So lim
cn→c

icn = ic. The lemma is proved.
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Lemma 2.4. Assume that (f1)− (f3) hold and N ≤ 3. Then there exists c∗ ≥ 0 such
that ic < 0 if c > c∗. Moreover, if c∗ > 0, then ic = 0 for all 0 < c ≤ c∗.

Proof. For any u ∈ S1, set uc(x) = u(c−
2
N x),∀ c > 0. Then uc ∈ Sc. Moreover,

ic ≤ I(uc) = c2− 4
N
a

2

∫
RN

|∇u|2 + c4− 8
N
b

4

(∫
RN

|∇u|2
)2

− c2

∫
RN

F (u).

Since 2 − 4
N
, 4 − 8

N
< 2, ic ≤ I(uc) → −∞ as c → +∞. Hence ic < 0 for all c > 0

large enough. So
{c ∈ (0,+∞)| ic < 0} 6= ∅.

Define
c∗ := inf{c > 0| ic < 0}, (2.1)

then c∗ ∈ [0,+∞) is well defined and ic < 0 if c > c∗.
If c∗ > 0, then we conclude from Lemma 2.2 that ic = 0 for all c < c∗. Moreover,

by the continuity of the function c 7→ ic, we see that ic∗ = 0.

Lemma 2.5. Assume that (f1) − (f3) hold and N ≤ 3. For each c > c∗, it holds
ic < iα + i√c2−α2 for any 0 < α < c.

Proof. Since c > c∗, by Lemma 2.4 we have ic < 0. Let {un} ⊂ Sc be a minimizing
sequence of ic, i.e. lim

n→∞
I(un) = ic, then I(un) = ic + on(1) ≤ 1 for n large enough,

where on(1)→ 0 as n→∞. By Lemma 2.1, we see that {un} is uniformly bounded
in H1(RN).

Hence there exist two positive constants C2 > C1 > 0 independent of n such that

C1 ≤
∫
RN

|∇un|2 ≤ C2. (2.2)

Indeed by contradiction, if
∫
RN |∇un|2 → 0 as n → ∞, then by (f1) − (f3) and the

Gagliardo-Nirenberg inequality (1.4), for any ε > 0, there exists Cε > 0 such that∫
RN

F (un) ≤ ε

∫
RN

|un|2 + Cε

∫
RN

|un|2+ 8
N ≤ εc2 + c

8
N
−2Cε

(∫
RN

|∇un|2
)2

,

which implies that
∫
RN F (un) ≤ εc2 as n → ∞. Then by the arbitrary of ε we have

lim
n→∞

∫
RN F (un) = 0. So I(un) → 0 as n → ∞, which contradicts to the definition of

{un}.
Set uθn := un(θ−

2
N x) with θ > 1. Then uθn ∈ Sθc and by (2.2) we see that

I(uθn) = θ2I(un) + θ2

[
(θ−

4
N − 1)

a

2

∫
RN

|∇un|2 + (θ2− 8
N − 1)

b

4

(∫
RN

|∇un|2
)2
]

≤ θ2I(un)− θ2
[
(1− θ− 4

N )aC1

2
+ (1− θ2− 8

N )
bC2

1

4

]
.

(2.3)
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Letting n → ∞ and notice that the second term of r.h.s. above is strictly negative
and independent of n, it follows that

iθc < θ2ic, ∀θ > 1. (2.4)

For any 0 < α < c, without loss of generality, we may assume that α ≥
√
c2 − α2.

We prove this lemma by discussing the following three cases.
If c∗ ≥ α ≥

√
c2 − α2, then iα = i√c2−α2 = 0, hence ic < 0 = iα + i√c2−α2 .

If α > c∗ ≥
√
c2 − α2, then iα < 0 and i√c2−α2 = 0. Hence by (2.4) we see that

ic <
c2

α2 iα < iα = iα + i√c2−α2 .

If α ≥
√
c2 − α2 > c∗, then by (2.4) we see that ic <

c2

α2 iα = iα + c2−α2

α2 iα ≤
iα + i√c2−α2 .

3 Proof of Theorems 1.1 and 1.2

Proof of Theorem 1.1

Proof. (i) For any c > c∗, ic < 0. Let {un} ⊂ Sc be a minimizing sequence of ic,
then by Lemma 2.1, {un} is uniformly bounded in H1(RN).

Let δ := lim
n→∞

sup
y∈RN

∫
B1(y)

|un|2. Then δ ≥ 0. If δ = 0, then by the vanishing lemma

(see e.g. [18]), un → 0 in Lp(RN), ∀2 < p ≤ 2 + 8
N

. By (f1) − (f3), for any ε > 0,
there exists Cε such that∫

RN

F (un) ≤ εc2 + Cε

∫
RN

|un|2+ 8
N .

Since ε is arbitrary,
∫
RN F (un)→ 0 as n→∞. Thus

ic = lim
n→∞

I(un) ≥ − lim
n→∞

∫
RN

F (un) = 0,

which is a contradiction. So δ > 0.
There exists a sequence {yn} ⊂ RN such that

∫
B1(yn)

|un|2 ≥ δ
2
. Set ũn(x) =

un(x+ yn), then ∫
RN

|ũn|2 ≥
δ

2
> 0. (3.1)

Moreover, by the translation invariance of RN , we see that I(ũn) → ic and {ũn} is
uniformly bounded in H1(RN). Then there exists ũ ∈ H1(RN) such that

ũn ⇀ ũ, in H1(RN),

ũn → ũ, in Lqloc(RN), q ∈ [1, 2 + 8
N

],
ũn(x)→ ũ(x), a.e. in RN ,

(3.2)
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as n→∞, which and (3.1) implies that ũ 6= 0.
Set α := |ũ|2, then α ∈ (0, c]. Next we try to prove that α = c. By contradiction,

we assume that α < c. By (3.2), we have

|ũn|22 = |ũn − ũ|22 + |ũ|22 + on(1),

where on(1) → 0 as n → ∞, i.e. lim
n→∞

|ũn − ũ|2 =
√
c2 − α2 > 0. By (3.2), the

Brezis-Lieb Lemma and Lemma 2.3, we see that

ic = lim
n→∞

I(ũn) ≥ I(ũ) + lim
n→∞

I(ũn − ũ) ≥ iα + lim
n→∞

i|ũn−ũ|2 = iα + i√c2−α2 ,

which contradicts Lemma 2.5. So |ũ|2 = c. Thenwe conclude from (3.2) and the
Fatou’s Lemma that ic ≤ I(ũ) ≤ lim

n→∞
I(ũn) = ic. So ũ ∈ Sc is a minimizer of ic and

then ũ is a critical point of I(u) constrained on Sc.
(ii) By contradiction, for some c0 ∈ (0, c∗), we suppose that there exists a uc0 ∈ Sc0

such that I(uc0) = ic0 = 0. Then

a

2

∫
RN

|∇uc0|2 +
b

4

(∫
RN

|∇uc0 |2
)2

=

∫
RN

F (uc0).

Set uc∗ := uc0((
c∗
c0

)−
2
N x). Then uc∗ ∈ Sc∗ and

ic∗ ≤ I(uc∗)

= (
c∗
c0

)2− 4
N
a

2

∫
RN

|∇uc0|2 + (
c∗
c0

)4− 8
N
b

4

(∫
RN

|∇uc0|2
)2

− (
c∗
c0

)2

∫
RN

F (uc0)

= (
c∗
c0

)2

[[
(
c∗
c0

)−
4
N − 1

]
a

2

∫
RN

|∇uc0 |2 +

[
(
c∗
c0

)2− 8
N − 1

]
b

4

(∫
RN

|∇uc0 |2
)2
]
< 0,

which is a contradiction with ic∗ = 0. So ic has no minimizer for all c ∈ (0, c∗).

Proof of Theorem 1.2

Proof. (1) For any u ∈ H1(RN)\{0}, by lim
t→0

F (t)

|t|1+
4
N

= +∞ and the Fatou’s Lemma we

have

lim
t→0

∫
RN

F (t
N
2 u)

|tN2 u|2+ 4
N

|u|2+ 4
N = +∞.

For any c > 0 and any u ∈ Sc, set ut(x) = t
N
2 u(tx) with t > 0, then ut ∈ Sc and

ic ≤ I(ut) = t2
a

2

∫
RN

|∇u|2 + t4
b

4

(∫
RN

|∇u|2
)2

− t2
∫
RN

F (t
N
2 u)

|tN2 u|2+ 4
N

|u|2+ 4
N ,
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hence ic
t2
→ −∞ as t→ 0+. So ic < 0 for all c > 0, which implies that c∗ = 0.

(2) By lim
t→0

F (t)

|t|1+
4
N
< +∞ and (f3), there exists a constant C > 0 such that

F (t) ≤ C|t|2+ 4
N + |t|2+ 8

N , ∀ t ∈ R.

For any c > 0 and any u ∈ Sc, by the Gagliardo-Nirenberg inequality (1.4), there
exist a constant C independent of u such that∣∣∣∣∫

RN

F (u)

∣∣∣∣ ≤ C

[
c

4
N

∫
RN

|∇u|2 + c
8
N
−2

(∫
RN

|∇u|2
)2
]
.

Then

I(u) ≥
(a

2
− Cc

4
N

)∫
RN

|∇u|2 +

(
b

4
− Cc

8
N
−2

)(∫
RN

|∇u|2
)2

,

By taking c > 0 sufficient small satisfying that 0 < c ≤ min{( b
4C

)
N
8
−2, ( a

4C
)
N
4 }, then

I(u) ≥ a

4

∫
RN

|∇u|2 ≥ 0,

which imply that ic ≥ 0 for c > 0 small. By Lemma 2.2 we see that ic = 0 for c small
enough. So c∗ > 0.

(3) Suppose that lim
t→0

F (t)

|t|2+
4
N

= 0, for any ε > 0 and any u ∈ H1(RN), by (f3) there

exists a constant Cε > 0 such that∣∣∣∣∫
RN

F (u)

∣∣∣∣ ≤ ε

∫
RN

|u|2+ 4
N + Cε

∫
RN

|u|2+ 8
N . (3.3)

Let {un} ⊂ Sc∗ be a minimizing sequence of ic∗ , then by Lemma 2.1, {un} is uniformly
bounded in H1(RN).

Set δ := lim
n→∞

sup
y∈RN

∫
B1(y)

|un|2 ≥ 0. If δ = 0, by the vanishing lemma and (3.3) we

have
∫
RN F (un) → 0 as n → ∞. By I(un) → ic∗ = 0 we see that

∫
RN |∇un|2 → 0

as n → ∞. By (3.3) and the Gagliardo-Nirenberg inequality (1.4), there exist two
constants C1, C2 > 0 independent of n such that

I(un) ≥
(a

2
− εC1c

4
N
∗

)∫
RN

|∇un|2 +

(
b

4
− CεC2c

8
N
−2

∗

)(∫
RN

|∇un|2
)2

.

By taking ε = a

4C1c
4
N
∗

there exists a positive constant C independent of n such that

I(un) ≥ a

4

∫
RN

|∇un|2 +

(
b

4
− Cc

8
N
−2

∗

)(∫
RN

|∇un|2
)2

> 0 (3.4)

for n large enough since lim
n→∞

∫
RN |∇un|2 = 0. This contradicts to the choice of {un}.

So δ > 0. There exists a sequence {yn} ⊂ RN such that
∫
B1(yn)

|un|2 ≥ δ
2
.

9



Set vn(x) := un(x + yn), then
∫
RN |vn|2 ≥ δ

2
> 0 and {vn} ⊂ Scn is a uniformly

bounded minimizing sequence of ic∗ . There exists v ∈ H1(RN)\{0} such that

vn ⇀ v in H1(RN), vn → v in Lqloc(R
N), q ∈ [1, 2+

8

N
], vn(x)→ v(x) a.e. in RN .

So 0 < |v|2 ≤ c∗ and

lim
n→∞

|vn − v|2 = lim
n→∞

√
c2
n − |v|22 =

√
(c∗)2 − |v|22 < c∗.

If |v|2 < c∗, then we conclude from lemma 2.3 that lim
n→∞

I(vn − v) ≥ lim
n→∞

i|vn−v|2 =

i√
(c∗)2−|v|22

= 0. By the Brezis-Lieb Lemma and Lemma 2.2, we see that

0 = lim
n→∞

I(vn) ≥ I(v) + lim
n→∞

I(vn − v) ≥ I(v) ≥ i|v|2 = 0

which implies that I(v) = i|v|2 with |v|2 < c∗. It contradicts to Theorem 1.1 (2).
Thus |v|2 = c∗. So v ∈ Sc∗ is a minimizer of ic∗ and then v is a critical point of I|Sc∗ .

Remark 3.1. When lim
t→0

F (t)

|t|2+
4
N

= l > 0, then c∗ > 0. For any u ∈ Sc∗, I(ut) ≥ 0,

where ut(x) = t
N
2 u(tx) with t > 0. By the Dominated Covergence Theorem, we see

that

lim
t→0+

I(ut)

t2
= lim

t→0+

[
a

2

∫
RN

|∇u|2 + t2
b

4

(∫
RN

|∇u|2
)2

−
∫
RN

F (t
N
2 u)

|tN2 u|2+ 4
N

|u|2+ 4
N

]
=
a

2

∫
RN

|∇u|2 − l
∫
RN

|u|2+ 4
N ,

which implies that Φ(u) := a
2

∫
RN |∇u|2 − l

∫
RN |u|2+ 4

N ≥ 0 for all u ∈ Sc∗. Then

c∗ ≤
( a

l(2 + 4
N

)

)N
4 |Q2+ 4

N
|2

(For each c > ( a
l(2+ 4

N
)
)
N
4 |Q2+ 4

N
|2, inf

u∈Sc

Φ(u) < 0 since we conclude from (1.4) that

Φ( c
|Q

2+ 4
N
|2Q2+ 4

N
) < 0 ).

If f(u) = l(2+ 4
N

)|u|1+ 4
N u+ |u|q−2u with 2+ 4

N
< q < 2+ 8

N
, then by the definition

of Q2+ 4
N
,

I((
a

l(2 + 4
N

)
)
N
4 (Q2+ 4

N
)t)

= t4
b

4

( a

l(2 + 4
N

)

)N (∫
RN

|∇Q2+ 4
N
|2
)2

− t
N(q−2)

2
1

q

( a

l(2 + 4
N

)

)Nq
4

∫
RN

|Q2+ 4
N
|q < 0
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for t > 0 small enough. Hence i
( a

l(2+ 4
N

)
)
N
4 |Q

2+ 4
N
|2
< 0, so c∗ <

(
a

l(2+ 4
N

)

)N
4 |Q2+ 4

N
|2.

For each minimizing sequence {un} of ic∗, by the Gagliardo-Nirenberg inequality
(1.4) there exists a constant C > 0 such that

I(un) ≥

a
2
−

l(2 + 4
N

)

2|Q2+ 4
N
|
4
N
2

c
N
4

∫
RN

|∇un|2+
b

4

(∫
RN

|∇un|2
)2

−C
(∫

RN

|∇un|2
)N(q−2)

4

,

where a
2
− l(2+ 4

N
)

2|Q
2+ 4

N
|
4
N
2

c
N
4 > 0. This may bring about the same contradiction as (3.4).

So similarly to the proof of Theorem 1.2 (3), we can proved ic∗ has a minimizer.
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their Applications, 24. Birkhäuser Boston, Inc., Boston, MA, 1996.

[19] H. Y. Ye, The sharp existence of constrained minimizers for a class of nonlinear
Kirchhoff equations, Math. Methods Appl. Sci.38 (2015) 2663-2679.

[20] H. Y. Ye, The existence of normalized solutions for L2-critical constrained prob-
lems related to Kirchhoff equations, Z. Angew. Math. Phys. 66 (2015) 1483-1497.

12


