References
Amouric, A., Brochier-Armanet, C., Johnson, D. B., Bonnefoy, V., &
Hallberg, K. B. (2011). Phylogenetic and genetic variation among
Fe(II)-oxidizing acidithiobacilli supports the view that these comprise
multiple species with different ferrous iron oxidation pathways.Microbiology, 157 (1), 111-122. doi:10.1099/mic.0.044537-0
Aro, T., & Fatehi, P. (2017). Production and Application of
Lignosulfonates and Sulfonated Lignin. ChemSusChem, 10 (9),
1861-1877. doi:10.1002/cssc.201700082
Beck, J. V. (1960). A ferrous-ion-oxidizing bacterium. I. Isolation and
some general physiological characteristics. J Bacteriol, 79 (4),
502-509.
Bird, L. J., Bonnefoy, V., & Newman, D. K. (2011). Bioenergetic
challenges of microbial iron metabolisms. Trends Microbiol,
19 (7), 330-340. doi:10.1016/j.tim.2011.05.001
Brasseur, G., Levican, G., Bonnefoy, V., Holmes, D., Jedlicki, E., &
Lemesle-Meunier, D. (2004). Apparent redundancy of electron transfer
pathways via bc1 complexes and terminal oxidases in the extremophilic
chemolithoautotrophic Acidithiobacillus ferrooxidans. Biochimica
et Biophysica Acta (BBA) - Bioenergetics, 1656 (2), 114-126.
doi:10.1016/j.bbabio.2004.02.008
Bruscella, P., Appia-Ayme, C., Levican, G., Ratouchniak, J., Jedlicki,
E., Holmes, D. S., & Bonnefoy, V. (2007). Differential expression of
two bc1 complexes in the strict acidophilic chemolithoautotrophic
bacterium Acidithiobacillus ferrooxidans suggests a model for their
respective roles in iron or sulfur oxidation. Microbiology,
153 (Pt 1), 102-110. doi:10.1099/mic.0.2006/000067-0
Chao, J., Wang, W., Xiao, S., & Liu, X. (2008). Response of
Acidithiobacillus ferrooxidans ATCC 23270 gene expression to acid
stress. World Journal of Microbiology and Biotechnology, 24 (10),
2103-2109. doi:10.1007/s11274-008-9715-5
Chen, X.-k., Li, X.-y., Ha, Y.-f., Lin, J.-q., Liu, X.-m., Pang, X., . .
. Chen, L.-x. (2020). Ferric Uptake Regulator Provides a New Strategy
for Acidophile Adaptation to Acidic Ecosystems. Appl Environ
Microbiol, 86 (11), e00268-00220. doi:10.1128/AEM.00268-20
Chubukov, V., Gerosa, L., Kochanowski, K., & Sauer, U. (2014).
Coordination of microbial metabolism. Nature Reviews Microbiology,
12 (5), 327-340. doi:10.1038/nrmicro3238
DiSpirito, A. A., Dugan, P. R., & Tuovinen, O. H. (1983). Sorption of
Thiobacillus ferrooxidans to particulate material. Biotechnology
and Bioengineering, 25 (4), 1163-1168. doi:10.1002/bit.260250422
Eller, J. C., & Person, J. T. (1969). US Patent No. 3461080A. U. S. P.
a. T. Office.
Esparza, M., Jedlicki, E., González, C., Dopson, M., & Holmes, D. S.
(2019). Effect of CO2 Concentration on Uptake and Assimilation of
Inorganic Carbon in the Extreme Acidophile Acidithiobacillus
ferrooxidans. Frontiers in Microbiology, 10 (603).
doi:10.3389/fmicb.2019.00603
Espejo, R. T., Escobar, B., Jedlicki, E., Uribe, P., & Badilla-Ohlbaum,
R. (1988). Oxidation of Ferrous Iron and Elemental Sulfur by
Thiobacillus ferrooxidans. Appl Environ Microbiol, 54 (7),
1694-1699.
Espejo, R. T., & Romero, P. (1987). Growth of Thiobacillus ferrooxidans
on Elemental Sulfur. Appl Environ Microbiol, 53 (8), 1907-1912.
Falagán, C., & Johnson, D. B. (2016). Acidithiobacillus ferriphilus sp.
nov., a facultatively anaerobic iron- and sulfur-metabolizing extreme
acidophile. International Journal of Systematic and Evolutionary
Microbiology, 66 (1), 206-211. doi:10.1099/ijsem.0.000698
Frederick, L. R., Jones, G. E., & Starkey, R. L. (1956). Effects of
medium agitation and wetting agents on oxidation of sulphur by
Thiobacillus thiooxidans. J Gen Microbiol, 15 (2), 329-334.
doi:10.1099/00221287-15-2-329
Gehrke, T., Telegdi, J., Thierry, D., & Sand, W. (1998). Importance of
Extracellular Polymeric Substances from Thiobacillus ferrooxidansfor Bioleaching. Appl Environ Microbiol, 64 (7), 2743-2747.
doi:10.1128/AEM.64.7.2743-2747.1998
Ghosh, W., & Dam, B. (2009). Biochemistry and molecular biology of
lithotrophic sulfur oxidation by taxonomically and ecologically diverse
bacteria and archaea. FEMS Microbiol Rev, 33 (6), 999-1043.
doi:10.1111/j.1574-6976.2009.00187.x
Gumulya, Y., Boxall, N., Khaleque, H., Santala, V., Carlson, R., &
Kaksonen, A. (2018). In a quest for engineering acidophiles for
biomining applications: challenges and opportunities. Genes,
9 (2), 116.
Hallberg, K. B., González-Toril, E., & Johnson, D. B. (2010).
Acidithiobacillus ferrivorans, sp. nov.; facultatively anaerobic,
psychrotolerant iron-, and sulfur-oxidizing acidophiles isolated from
metal mine-impacted environments. Extremophiles, 14 (1), 9-19.
doi:10.1007/s00792-009-0282-y
He, H., Xia, J.-l., Huang, G.-h., Jiang, H.-C., Tao, X.-X., Zhao, Y.-D.,
& He, W. (2011). Analysis of the elemental sulfur bio-oxidation by
Acidithiobacillus ferrooxidans with sulfur K-edge XANES. World
Journal of Microbiology and Biotechnology, 27 (8), 1927-1931.
doi:10.1007/s11274-010-0629-7
Hedrich, S., & Johnson, D. B. (2013). Acidithiobacillus ferridurans sp.
nov., an acidophilic iron-, sulfur- and hydrogen-metabolizing
chemolithotrophic gammaproteobacterium. International Journal of
Systematic and Evolutionary Microbiology, 63 (Pt_11), 4018-4025.
doi:10.1099/ijs.0.049759-0
Inaba, Y., Banerjee, I., Kernan, T., & Banta, S. (2018).
Transposase-Mediated Chromosomal Integration of Exogenous Genes inAcidithiobacillus ferrooxidans . Appl Environ Microbiol,
84 (21), e01381-01318. doi:10.1128/aem.01381-18
Johnson, D. B., Hedrich, S., & Pakostova, E. (2017). Indirect Redox
Transformations of Iron, Copper, and Chromium Catalyzed by Extremely
Acidophilic Bacteria. Frontiers in Microbiology, 8 (211).
doi:10.3389/fmicb.2017.00211
Kawabe, Y., Inoue, C., Suto, K., & Chida, T. (2003). Inhibitory effect
of high concentrations of ferric ions on the activity of
Acidithiobacillus ferrooxidans. Journal of Bioscience and
Bioengineering, 96 (4), 375-379. doi:10.1016/S1389-1723(03)90140-X
Kelly, D. P., & Wood, A. P. (2000). Reclassification of some species of
Thiobacillus to the newly designated genera Acidithiobacillus gen. nov.,
Halothiobacillus gen. nov. and Thermithiobacillus gen. nov.International Journal of Systematic and Evolutionary Microbiology,
50 (2), 511-516. doi:10.1099/00207713-50-2-511
Kernan, T., Majumdar, S., Li, X., Guan, J., West, A. C., & Banta, S.
(2016). Engineering the iron-oxidizing chemolithoautotrophAcidithiobacillus ferrooxidans for biochemical production.Biotechnol Bioeng, 113 (1), 189-197. doi:10.1002/bit.25703
Knickerbocker, C., Nordstrom, D. K., & Southam, G. (2000). The role of
“blebbing” in overcoming the hydrophobic barrier during biooxidation
of elemental sulfur by Thiobacillus thiooxidans. Chemical Geology,
169 (3), 425-433. doi:10.1016/S0009-2541(00)00221-7
Konishi, Y., Takasaka, Y., & Asai, S. (1994). Kinetics of growth and
elemental sulfur oxidation in batch culture of thiobacillus
ferrooxidans. Biotechnology and Bioengineering, 44 (6), 667-673.
doi:10.1002/bit.260440602
Kucera, J., Bouchal, P., Lochman, J., Potesil, D., Janiczek, O.,
Zdrahal, Z., & Mandl, M. (2013). Ferrous iron oxidation by
sulfur-oxidizing Acidithiobacillus ferrooxidans and analysis of the
process at the levels of transcription and protein synthesis.Antonie van Leeuwenhoek, 103 (4), 905-919.
doi:10.1007/s10482-012-9872-2
Kucera, J., Lochman, J., Bouchal, P., Pakostova, E., Mikulasek, K.,
Hedrich, S., . . . Johnson, D. B. (2020). A Model of Aerobic and
Anaerobic Metabolism of Hydrogen in the Extremophile Acidithiobacillus
ferrooxidans. Frontiers in Microbiology, 11 (3003).
doi:10.3389/fmicb.2020.610836
Kucera, J., Pakostova, E., Lochman, J., Janiczek, O., & Mandl, M.
(2016). Are there multiple mechanisms of anaerobic sulfur oxidation with
ferric iron in Acidithiobacillus ferrooxidans? Research in
Microbiology, 167 (5), 357-366. doi:10.1016/j.resmic.2016.02.004
Kucera, J., Sedo, O., Potesil, D., Janiczek, O., Zdrahal, Z., & Mandl,
M. (2016). Comparative proteomic analysis of sulfur-oxidizing
Acidithiobacillus ferrooxidans CCM 4253 cultures having lost the ability
to couple anaerobic elemental sulfur oxidation with ferric iron
reduction. Research in Microbiology, 167 (7), 587-594.
doi:10.1016/j.resmic.2016.06.009
Li, X., West, A. C., & Banta, S. (2016). Enhancing isobutyric acid
production from engineered Acidithiobacillus ferrooxidans cells via
media optimization. Biotechnol Bioeng, 113 (4), 790-796.
doi:10.1002/bit.25837
Liu, Z., Borne, F., Ratouchniak, J., & Bonnefoy, V. (2001). Genetic
transfer of IncP, IncQ and IncW plasmids to four Thiobacillus
ferrooxidans strains by conjugation. Hydrometallurgy, 59 (2),
339-345. doi:10.1016/S0304-386X(00)00176-6
Monod, J. (1949). The Growth of Bacterial Cultures. Annual Review
of Microbiology, 3 (1), 371-394. doi:10.1146/annurev.mi.03.100149.002103
Narang, A., & Pilyugin, S. S. (2007). Bacterial gene regulation in
diauxic and non-diauxic growth. Journal of Theoretical Biology,
244 (2), 326-348. doi:10.1016/j.jtbi.2006.08.007
Norris, P. R., Falagán, C., Moya-Beltrán, A., Castro, M., Quatrini, R.,
& Johnson, D. B. (2020). Acidithiobacillus ferrianus sp. nov.: an
ancestral extremely acidophilic and facultatively anaerobic
chemolithoautotroph. Extremophiles, 24 (2), 329-337.
doi:10.1007/s00792-020-01157-1
Ohmura, N., Sasaki, K., Matsumoto, N., & Saiki, H. (2002). Anaerobic
Respiration Using Fe3+, S0, and H2 in the Chemolithoautotrophic
Bacterium Acidithiobacillus ferrooxidans. J Bacteriol, 184 (8),
2081. doi:10.1128/JB.184.8.2081-2087.2002
Okano, H., Hermsen, R., Kochanowski, K., & Hwa, T. (2020). Regulation
underlying hierarchical and simultaneous utilization of carbon
substrates by flux sensors in Escherichia coli. Nature
Microbiology, 5 (1), 206-215. doi:10.1038/s41564-019-0610-7
Osorio, H., Mangold, S., Denis, Y., Nancucheo, I., Esparza, M., Johnson,
D. B., . . . Holmes, D. S. (2013). Anaerobic sulfur metabolism coupled
to dissimilatory iron reduction in the extremophile Acidithiobacillus
ferrooxidans. Appl Environ Microbiol, 79 (7), 2172-2181.
doi:10.1128/AEM.03057-12
Peng, A.-a., Liu, H.-c., Nie, Z.-y., & Xia, J.-l. (2012). Effect of
surfactant Tween-80 on sulfur oxidation and expression of sulfur
metabolism relevant genes of Acidithiobacillus ferrooxidans.Transactions of Nonferrous Metals Society of China, 22 (12),
3147-3155. doi:10.1016/S1003-6326(12)61767-1
Peng, J.-B., Yan, W.-M., & Bao, X.-Z. (1994). Solid Medium for the
Genetic Manipulation of Thiobacillus ferrooxidans. The Journal of
General and Applied Microbiology, 40 (3), 243-253.
doi:10.2323/jgam.40.243
Ponce, J. S., Moinier, D., Byrne, D., Amouric, A., & Bonnefoy, V.
(2012). Acidithiobacillus ferrooxidans oxidizes ferrous iron before
sulfur likely through transcriptional regulation by the global redox
responding RegBA signal transducing system. Hydrometallurgy,
127-128 , 187-194. doi:10.1016/j.hydromet.2012.07.016
Pronk, J. T., de Bruyn, J. C., Bos, P., & Kuenen, J. G. (1992).
Anaerobic Growth of Thiobacillus ferrooxidans. Appl Environ
Microbiol, 58 (7), 2227-2230.
Qiu, X., Kong, Q., Zhou, M., & Yang, D. (2010). Aggregation Behavior of
Sodium Lignosulfonate in Water Solution. The Journal of Physical
Chemistry B, 114 (48), 15857-15861. doi:10.1021/jp107036m
Quatrini, R., Appia-Ayme, C., Denis, Y., Jedlicki, E., Holmes, D. S., &
Bonnefoy, V. (2009). Extending the models for iron and sulfur oxidation
in the extreme acidophile Acidithiobacillus ferrooxidans .BMC Genomics, 10 , 394. doi:10.1186/1471-2164-10-394
Ramirez, P., Guiliani, N., Valenzuela, L., Beard, S., & Jerez, C. A.
(2004). Differential protein expression during growth of
Acidithiobacillus ferrooxidans on ferrous iron, sulfur compounds, or
metal sulfides. Appl Environ Microbiol, 70 (8), 4491-4498.
doi:10.1128/aem.70.8.4491-4498.2004
Sand, W. (1989). Ferric Iron Reduction by Thiobacillus
ferrooxidans at Extremely Low pH-Values. Biogeochemistry, 7 (3),
195-201. doi:10.1007/BF00004217
Smith, S. L., & Johnson, D. B. (2018). Growth of Leptospirillum
ferriphilum in sulfur medium in co-culture with Acidithiobacillus
caldus. Extremophiles : life under extreme conditions, 22 (2),
327-333. doi:10.1007/s00792-018-1001-3
Suzuki, I., Takeuchi, T. L., Yuthasastrakosol, T. D., & Oh, J. K.
(1990). Ferrous Iron and Sulfur Oxidation and Ferric Iron Reduction
Activities of Thiobacillus ferrooxidans Are Affected by Growth on
Ferrous Iron, Sulfur, or a Sulfide Ore. Appl Environ Microbiol,
56 (6), 1620-1626.
Valdes, J., Pedroso, I., Quatrini, R., Dodson, R. J., Tettelin, H.,
Blake, R., 2nd, . . . Holmes, D. S. (2008). Acidithiobacillus
ferrooxidans metabolism: from genome sequence to industrial
applications. BMC Genomics, 9 , 597. doi:10.1186/1471-2164-9-597
Wang, H., Liu, X., Liu, S., Yu, Y., Lin, J., Lin, J., . . . Zhao, J.
(2012). Development of a markerless gene replacement system for
Acidithiobacillus ferrooxidans and construction of a pfkB mutant.Appl Environ Microbiol, 78 (6), 1826-1835.
doi:10.1128/AEM.07230-11
Wang, R., Lin, C., Lin, J., Pang, X., Liu, X., Zhang, C., . . . Chen, L.
(2017). Construction of novel pJRD215-derived plasmids using
chloramphenicol acetyltransferase (cat) gene as a selection marker for
Acidithiobacillus caldus. PLOS ONE, 12 (8), e0183307.
doi:10.1371/journal.pone.0183307
Wong, P., Gladney, S., & Keasling, J. D. (1997). Mathematical Model of
the lac Operon: Inducer Exclusion, Catabolite Repression, and Diauxic
Growth on Glucose and Lactose. Biotechnology Progress, 13 (2),
132-143. doi:10.1021/bp970003o
Wu, L., Yang, B., Wang, X., Wu, B., He, W., Gan, M., . . . Wang, J.
(2019). Effects of Single and Mixed Energy Sources on Intracellular
Nanoparticles Synthesized by Acidithiobacillus ferrooxidans.Minerals, 9 (3), 163.
Xia, L.-X., Shen, Z., Vargas, T., Sun, W.-J., Ruan, R.-M., Xie, Z.-D.,
& Qiu, G.-Z. (2013). Attachment of Acidithiobacillus ferrooxidans onto
different solid substrates and fitting through Langmuir and Freundlich
equations. Biotechnology Letters, 35 (12), 2129-2136.
doi:10.1007/s10529-013-1316-1
Yarzabal, A., Appia-Ayme, C., Ratouchniak, J., & Bonnefoy, V. (2004).
Regulation of the expression of the Acidithiobacillus
ferrooxidans rus operon encoding two cytochromes c, a cytochrome
oxidase and rusticyanin. Microbiology, 150 (Pt 7), 2113-2123.
doi:10.1099/mic.0.26966-0
Yu, Y., Liu, X., Wang, H., Li, X., & Lin, J. (2014). Construction and
characterization of tetH overexpression and knockout strains ofAcidithiobacillus ferrooxidans . J Bacteriol, 196 (12),
2255-2264. doi:10.1128/JB.01472-13
Zhang, Y., Yang, Y., Liu, J., & Qiu, G. (2013). Isolation and
characterization of Acidithiobacillus ferrooxidans strain QXS-1 capable
of unusual ferrous iron and sulfur utilization. Hydrometallurgy,
136 , 51-57. doi:10.1016/j.hydromet.2013.03.005