References
1. Cosgrove DJ. Microbial Expansins. Annu Rev Microbiol .
2017;71(1):479-497. doi:10.1146/annurev-micro-090816-093315
2. Georgelis N, Nikolaidis N, Cosgrove DJ. Bacterial expansins and
related proteins from the world of microbes. Appl Microbiol
Biotechnol . 2015;99(9):3807-3823. doi:10.1007/s00253-015-6534-0
3. Cosgrove DJ. Plant expansins: Diversity and interactions with plant
cell walls. Curr Opin Plant Biol . 2015;25.
doi:10.1016/j.pbi.2015.05.014
4. Cosgrove DJ. Catalysts of plant cell wall loosening.F1000Research . 2016;5:119. doi:10.12688/f1000research.7180.1
5. Tovar-Herrera OE, Rodríguez M, Olarte-Lozano M, et al. Analysis of
the Binding of Expansin Exl1, from Pectobacterium carotovorum, to Plant
Xylem and Comparison to EXLX1 from Bacillus subtilis. ACS Omega .
2018;3(6):7008-7018. doi:10.1021/acsomega.8b00406
6. McQueen-Mason S, Durachko DM, Cosgrove DJ. Two endogenous proteins
that induce cell wall extension in plants. Plant Cell .
1992;4:1425-1433. doi:10.2307/3869513
7. Nikolaidis N, Doran N, Cosgrove DJ. Plant Expansins in Bacteria and
Fungi: Evolution by Horizontal Gene Transfer and Independent Domain
Fusion. Mol Biol Evol . 2014;31(2):376-386.
doi:10.1093/molbev/mst206
8. Chase WR, Zhaxybayeva O, Rocha
J, Cosgrove DJ, Shapiro LR. Global cellulose biomass, horizontal gene
transfers and domain fusions drive microbial expansin evolution.New Phytol . 2020. doi:10.1111/nph.16428
9. Cosgrove DJ. New genes and new
biological roles for expansins. Curr Opin Plant Biol .
2000;3:73-78. doi:10.1016/S1369-5266(99)00039-4
10. Georgelis N, Tabuchi A, Nikolaidis N, Cosgrove DJ.
Structure-function analysis of the bacterial expansin EXLX1. J
Biol Chem . 2011;286:16814-16823. doi:10.1074/jbc.M111.225037
11. Georgelis N, Yennawar NH, Cosgrove DJ. Structural basis for
entropy-driven cellulose binding by a type-A cellulose-binding module
(CBM) and bacterial expansin. Proc Natl Acad Sci . 2012.
doi:10.1073/pnas.1213200109
12. Wang T, Chen Y, Tabuchi A, Cosgrove DJ, Hong M. The target of
β-expansin EXPB1 in maize cell walls from binding and solid-state NMR
studies. Plant Physiol . 2016;172:2107-2119.
doi:10.1104/pp.16.01311
13. Kerff F, Amoroso A, Herman R, et al. Crystal structure and activity
of Bacillus subtilis YoaJ (EXLX1), a bacterial expansin that promotes
root colonization. Proc Natl Acad Sci . 2008;105:16876-16881.
doi:10.1073/pnas.0809382105
14. Yennawar NH, Li AC, Dudzinski DM, Tabuchi A, Cosgrove DJ. Crystal
structure and activities of EXPB1 (Zea m 1), a β-expansin and group-1
pollen allergen from maize. Proc Natl Acad Sci U S A .
2006;103:14664-14671. doi:10.1073/pnas.0605979103
15. Gaete-Eastman C, Morales-Quintana L, Herrera R, Moya-León MA.
In-silico analysis of the structure and binding site features of an
α-expansin protein from mountain papaya fruit (VpEXPA2), through
molecular modeling, docking, and dynamics simulation studies. J
Mol Model . 2015;21(5):115. doi:10.1007/s00894-015-2656-7
16. Tovar-Herrera OE, Batista-García RA, Sánchez-Carbente MDR,
Iracheta-Cárdenas MM, Arévalo-Niño K, Folch-Mallol JL. A novel expansin
protein from the white-rot fungus Schizophyllum commune. PLoS
One . 2015;10(3):1-17. doi:10.1371/journal.pone.0122296
17. Castillo RM, Mizuguchi K, Dhanaraj V, Albert A, Blundell TL, Murzin
AG. A six-stranded double-psi β barrel is shared by several protein
superfamilies. Structure . 1999;7:227-236.
doi:10.1016/S0969-2126(99)80028-8
18. Nomura T, Iwase H, Saka N, Takahashi N, Mikami B, Mizutani K.
High-resolution crystal structures of the glycoside hydrolase family 45
endoglucanase EG27II from the snail Ampullaria crossean . Acta
Crystallogr Sect D Struct Biol . 2019;75(4):426-436.
doi:10.1107/s2059798319003000
19. Davies GJ, Dodson GG, Hubbard RE, et al. Structure and function of
endoglucanase V. Nature . 1993;365:362-364. doi:10.1038/365362a0
20. Suzuki H, Vuong T V., Gong Y, et al. Sequence diversity and gene
expression analyses of expansin-related proteins in the white-rot
basidiomycete, Phanerochaete carnosa. Fungal Genet Biol .
2014;72:115-123. doi:10.1016/j.fgb.2014.05.008
21. Baccelli I, Luti S, Bernardi R, Scala A, Pazzagli L. Cerato-platanin
shows expansin-like activity on cellulosic materials. Appl
Microbiol Biotechnol . 2014;98:175-184. doi:10.1007/s00253-013-4822-0
22. Gourlay K, Hu J, Arantes V, Penttilä M, Saddler JN. The use of
carbohydrate binding modules (CBMs) to monitor changes in fragmentation
and cellulose fiber surface morphology during cellulase- And
swollenin-induced deconstruction of lignocellulosic substrates. J
Biol Chem . 2015;290(5):2938-2945. doi:10.1074/jbc.M114.627604
23. Tomme P, Van Tilbeurgh H, Pettersson G, et al. Studies of the
cellulolytic system of Trichoderma reesei QM 9414: Analysis of domain
function in two cellobiohydrolases by limited proteolysis. Eur J
Biochem . 1988;170(3):575-581. doi:10.1111/j.1432-1033.1988.tb13736.x
24. Gilkes NR, Warren RA, Miller RC, Kilburn DG. Precise excision of the
cellulose binding domains from two Cellulomonas fimi cellulases by a
homologous protease and the effect on catalysis. J Biol Chem .
1988;263(21):10401-10407.
25. Buchholz PCF, Vogel C, Reusch W, et al. BioCatNet: A Database System
for the Integration of Enzyme Sequences and Biocatalytic Experiments.ChemBioChem . 2016;17:2093-2098. doi:10.1002/cbic.201600462
26. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local
alignment search tool. J Mol Biol . 1990;215(3):403-410.
doi:10.1016/S0022-2836(05)80360-2
27. Benson DA, Cavanaugh M, Clark K, et al. GenBank. Nucleic Acids
Res . 2013;41:D36-D42. doi:10.1093/nar/gks1195
28. Federhen S. The NCBI Taxonomy database. Nucleic Acids Res .
2012;40:D136-D143. doi:10.1093/nar/gkr1178
29. Berman HM, Kleywegt GJ, Nakamura H, Markley JL. The Protein Data
Bank archive as an open data resource. J Comput Aided Mol Des .
2014;28:1009-1014. doi:10.1007/s10822-014-9770-y
30. Edgar RC. Search and clustering orders of magnitude faster than
BLAST. Bioinformatics . 2010;26:2460-2461.
doi:10.1093/bioinformatics/btq461
31. Eddy SR. HMMER: Profile hidden Markov models for biological sequence
analysis. HMMER User’s Guid . 2001. doi:10.1109/TIA.2013.2279901
32. Needleman SB, Wunsch CD. A general method applicable to the search
for similarities in the amino acid sequence of two proteins. J Mol
Biol . 1970;48:443-453. doi:10.1016/0022-2836(70)90057-4
33. Rice P, Longden L, Bleasby A. EMBOSS: The European Molecular Biology
Open Software Suite. Trends Genet . 2000;16:276-277.
doi:10.1016/S0168-9525(00)02024-2
34. Sievers F, Higgins DG. Clustal Omega. Curr Protoc Bioinforma .
2014;48. doi:10.1002/0471250953.bi0313s48
35. Russell RB, Barton GJ. Multiple protein sequence alignment from
tertiary structure comparison: Assignment of global and residue
confidence levels. Proteins Struct Funct Bioinforma .
1992;14:309-323. doi:10.1002/prot.340140216
36. DeLano W. Pymol: An
open-source molecular graphics tool. CCP4 Newsl Protein
Crystallogr . 2002:44-53.
37. Bateman A, Birney E, Durbin R, Eddy SR, Finn RD, Sonnhammer ELL.
Pfam 3.1: 1313 multiple alignments and profile HMMs match the majority
of proteins. Nucleic Acids Res . 1999;27:260-262.
doi:10.1093/nar/27.1.260
38. Vogel C, Widmann M, Pohl M, Pleiss J. A standard numbering scheme
for thiamine diphosphate-dependent decarboxylases. BMC Biochem .
2012;13. doi:10.1186/1471-2091-13-24
39. Betts MJ, Russell RB.
Amino-Acid Properties and Consequences of Substitutions. In:Bioinformatics for Geneticists: A Bioinformatics Primer for the
Analysis of Genetic Data: Second Edition . 2007.
doi:10.1002/9780470059180.ch13
40. Volkenstein M V. Coding of polar and non-polar amino-acids.Nature . 1965;207:294-295. doi:10.1038/207294a0
41. Hagberg AA, Schult DA, Swart PJ. Exploring network structure,
dynamics, and function using NetworkX. 7th Python Sci Conf (SciPy
2008) . 2008:11-15.
42. Shannon P, Markiel A, Owen Ozier 2, et al. Cytoscape: a software
environment for integrated models of biomolecular interaction networks.Genome Res . 2003;(13):2498-2504.
doi:10.1101/gr.1239303.metabolite
43. Fu L, Niu B, Zhu Z, et al. CD-HIT: Accelerated for clustering the
next-generation sequencing data. Bioinformatics .
2014;23:1312-1313. doi:10.1093/bioinformatics/bts565
44. Li W, Godzik A. Cd-hit: A fast program for clustering and comparing
large sets of protein or nucleotide sequences. Bioinformatics .
2006;22:1658-1659. doi:10.1093/bioinformatics/btl158
45. Finn RD, Mistry J, Tate J, et al. The Pfam protein families
database. Nucleic Acids Res . 2009;38:D211-D222.
doi:10.1093/nar/gkp985
46. Cantarel BI, Coutinho PM, Rancurel C, Bernard T, Lombard V,
Henrissat B. The Carbohydrate-Active EnZymes database (CAZy): An expert
resource for glycogenomics. Nucleic Acids Res . 2009;37:D233-238.
doi:10.1093/nar/gkn663
47. Saloheimo M, Paloheimo M, Hakola S, et al. Swollenin, a Trichoderma
reesei protein with sequence similarity to the plant expansins, exhibits
disruption activity on cellulosic materials. Eur J Biochem .
2002;269(17):4202-4211. doi:10.1046/j.1432-1033.2002.03095.x
48. Quiroz-Castañeda RE, Martínez-Anaya C, Cuervo-Soto LI, Segovia L,
Folch-Mallol JL. Loosenin, a novel protein with cellulose-disrupting
activity from Bjerkandera adusta. Microb Cell Fact . 2011;10:8.
doi:10.1186/1475-2859-10-8
49. Chang Y, Desirò A, Na H, et al. Phylogenomics of Endogonaceae and
evolution of mycorrhizas within Mucoromycota. New Phytol . 2019.
doi:10.1111/nph.15613
50. Varga T, Krizsán K, Földi C, et al. Megaphylogeny resolves global
patterns of mushroom evolution. Nat Ecol Evol . 2019;222.
doi:10.1038/s41559-019-0834-1
51. Zhang YD, Kong XC, Huang WK, et al. Identification and functional
analysis of two expansin genes Hg-exp-1 and Hg-exp-2 from the soybean
cyst nematode (Heterodera glycines). Sci Agric Sin . 2018.
doi:10.3864/j.issn.0578-1752.2018.17.006
52. Pazzagli L, Cappugi G, Manao G, Camici G, Santini A, Scala A.
Purification, characterization, and amino acid sequence of cerato-
platanin, a new phytotoxic protein from Ceratocystis fimbriata f. sp.
platani. J Biol Chem . 1999;274(35):24959-24964.
doi:10.1074/jbc.274.35.24959
53. Coil D, Jospin G, Darling AE. A5-miseq: An updated pipeline to
assemble microbial genomes from Illumina MiSeq data.Bioinformatics . 2015;31:587-589.
doi:10.1093/bioinformatics/btu661
54. Rice P, Longden I, Bleasby A. EMBOSS: the European molecular biology
open software suite. Trends Genet . 2000;16(6):276-277.
doi:10.1016/S0168-9525(00)02024-2
55. Sampedro J, Cosgrove DJ. The
expansin superfamily. Protein family review. Genome Biol .
2005;6(12):242. doi:10.1186/gb-2005-6-12-242
56. Kende H, Bradford KJ, Brummell DA, et al. Nomenclature for members
of the expansin superfamily of genes and proteins. Plant Mol
Biol . 2004;55:311-314. doi:10.1007/s11103-004-0158-6
57. Krieger F, Möglich A, Kiefhaber T. Effect of proline and glycine
residues on dynamics and barriers of loop formation in polypeptide
chains. J Am Chem Soc . 2005;127:3346-3352. doi:10.1021/ja042798i
58. Serrano L, Neira JL, Sancho J, Fersht AR. Effect of alanine versus
glycine in α-helices on protein stability. Nature .
1992;356:453-455. doi:10.1038/356453a0
59. Gräff M, Buchholz PCF, Stockinger P, Bommarius B, Bommarius AS,
Pleiss J. The Short-chain Dehydrogenase/Reductase Engineering Database
(SDRED): A classification and analysis system for a highly diverse
enzyme family. Proteins Struct Funct Bioinforma .
2019;87(6):443-451. doi:10.1002/prot.25666
60. Vogel C, Pleiss J. The modular structure of ThDP-dependent enzymes.Proteins-Structure Funct Bioinforma . 2014;82(10):2523-2537.
doi:10.1002/prot.24615