DATA AVAILABILITY STATEMENT
Used data is freely available in:https://zenodo.org/record/2549310#.XErjW5VYZaQ
REFERENCES
Beaumont, R.T. & Work, R.A. (1963). Snow sampling results from three
samplers. Hydrological Sciences Journal , 8(4), 74-78. doi
10.1080/02626666309493359
Beaumont, R.T. (1967). Field Accuracy of Volumetric Snow Samplers at Mt.
Hood, Oregon. Physic of Snow and Ice Proceedings, 1(2),
1007-1013.
Berezovskaya, S. & Kane, D.L. (2007). Strategies for measuring snow
water equivalent for hydrological applications: Part 1,accuracy of
measurements. Proceedings of 16th Northern Research Basin
Symposium , Petrozavodsk, Russia, 22–35.
Bindon, H.H. (1964). The design of snow samplers for Canadian snow
surveys. In Proceedings of the 21st Annual Meeting of the Eastern Snow
Conference, Utica, New York, 23–28.
Boon S., Davis R., Bladon K. & Wagner M. (2009). Comparison of Field
Techniques for Measuring Snow Density at a Point. Watershed
Management Bulletin, 12 (2), 7-12.
Bühler, Y., Adams, M. S., Bösch, R., & Stoffel, A. (2016). Mapping snow
depth in alpine terrain with unmanned aerial systems (UASs): potential
and limitations. The Cryosphere , 10, 1075-1088,
doi.org/10.5194/tc-10-1075-2016.
Church, J. E. (1933), Snow surveying: Its principles and possibilities.Geogr. Rev., 23(4), 529–563, doi:10.2307/209242.
Dixon, D.& Boon S. (2012). Comparison of the SnowHydro snow sampler
with existing snow tube designs. Hydrol. Process. , 26, 2555-2562,
10.1002/hyp.9317
Deems, J.S., Painter T.H.& Finnegan D.C. (2013). Lidar measurement of
snow depth: a review. Journal of Glaciology , 59 (215), 467-479.
Doesken, N.J.& Judson, A. (1996). A guide to the science, climatology,
and measurement of snow in the United States. Ed. Colorado State
University- Fort Collins (US), 87 pp.
Dong, C. (2018). Remote sensing, hydrological modeling and in situ
observations in snow cover research: A review. Journal of
Hydrology , 561, 573-583.
Farnes, P.F., Goodison, B.E., Peterson, N.R.& Richards, R.P. (1982).
Metrication of Manual Snow Sampling Equipment. Final Report Western Snow
Conference, Spokane, Washington 106 p.
Fassnacht, S.R., Heun, C.M., López-Moreno J.I.& Latron, J. (2010).
Variability of Snow Density Measurements in the Rio Esera Valley,
Pyrenees Mountains, Spain. Cuadernos de Investigación Geográfica
(Journal of Geographical Research) , 36(1), 59-72.
Fassnacht, S.R., Brown, K.S.J., Blumberg, E.J., López-Moreno, J.I.,
Covino, T.P., Kappas, M., Huang, Y., Leone, V., & Kashipazha A.H.
(2018). Distribution of snow depth variability. Frontiers of Earth
Science , 12(4), 10 pages [doi: 10.1007/s11707-018-0714-z].
Fernandes, R., Prevost, C., Canisius, F., Leblanc, S. G., Maloley, M.,
Oakes, S., Holman, K., & Knudby, A. (2018). Monitoring snow depth
change across a range of landscapes with ephemeral snowpacks using
structure from motion applied to lightweight unmanned aerial vehicle
videos, The Cryosphere , 12, 3535-3550.
https://doi.org/10.5194/tc-12-3535-2018.
Fierz, C., Armstrong, R. L., Durand, Y., Etchevers, P., Greene, E.,
McClung, D. M., Nishimura, K., Satyawali, P. K. and Sokratov, S. A.
(2009). The International Classification for Seasonal Snow on the
Ground, UNESCO-IHP, Paris, France. [online]
Available from:http://www.cryosphericsciences.org/outcomes/snowClassification/snowclass_2009-11-23-tagged-highres.pdf
Freeman, T.G. (1965). Snow survey samplers and their accuracy. InProceedings of the 22nd Annual Meeting of the Eastern Snow
Conference , Hanover, New Hampshire, 1–10.
Goodison B.E., Glynn J.E., Harvey K.D. & Slater J.E. (1987) Snow
Surveying in Canada: A Perspective. Canadian Water Resources
Journal , 12, 27-42, DOI: 10.4296/cwrj1202027.
Haberkorn, A., Helmert, J., Leppänen, L., López-Moreno, J.I., Pirazzini,
R. (2019). European Snow Booklet, Haberkorn, A. (Ed.), 363 pp.
doi:10.169904/envidat.59.
Helmert, J.; Şensoy Şorman, A.; Alvarado Montero, R.; De Michele, C.; de
Rosnay, P.; Dumont, M.; Finger, D.C.; Lange, M.; Picard, G.; Potopová,
V.; Pullen, S.; Vikhamar-Schuler, D.; Arslan, A.N. Review of Snow Data
Assimilation Methods for Hydrological, Land Surface, Meteorological and
Climate Models: Results from a COST HarmoSnow Survey. Geosciences 2018,
8, 489.
INTERACT Station Catalogue (2015). Eds.: Elger, K., Opel, T.,
Topp-Jørgensen, E., Hansen, J., Tairova, Z. and Rasch, M. DCE - Danish
Centre for Environment and Energy, Aarhus University, Denmark. 305 p.
(p. 72-75)
Jonas T., Marty C. & Magnusson, J. (2009). Estimating the snow water
equivalent from snow depth measurements in the Swiss Alps. J.
Hydrol. , 378, 161-167.
Kinar N. J. & Pomeroy J.W. (2015). Measurement of the physical
properties of the snowpack, Rev. Geophys. , 53, 481-544.
doi:10.1002/2015RG000481.
Komarov A.Y., Seliverstov Y.G., Grebennikov P.B. & Sokratov S.A.
(2019). Spatial variability of snow water equivalent – the case study
from the research site in Khibiny Mountains, Russia. J. Hydrol.
Hydromech ., 67 (1), 110–112. doi: 10.2478/johh-2018-0016
Leppänen, L., Kontu, A. & Pulliainen, J. (2018) Automated Measurements
of Snow on the Ground in Sodankylä. Geophysica 53(1), 43-62.
Libois, Q., Picard, G., Arnaud, L., Morin, S., & Brun, E. (2014),
Modeling the impact of snow drift on the decameter-scale variability of
snow properties on the Antarctic Plateau. J. Geophys. Res.
Atmos. , 119 (11),662–11,681, doi:10.1002/2014JD022361.
López Moreno, J.I., Fassnacht, S.R., Beguería, S. & Latron, J. (2011).
Variability of snow depth at the plot scale: implications for mean depth
estimation and sampling strategies. The Cryosphere, 5, 617-629.
López-Moreno, J.I., Fassnacht, S., Latron, J., Musselman, K.,
Morán-Tejeda, E. & Jonas, T. (2013). Small scale spatial variability of
snow density and depth over complex alpine terrain: implications for
estimating snow water equivalent. Advances in Water Research, 55,
40-52.
Kronholm, K., Schneebeli, M. and Schweizer, J. (2004). Spatial
variability of micropenetration resistance in snow layers on a small
slope. Annals of Glaciology , 38(1), 202–208.
doi:10.3189/172756404781815257,
2004.
Marr, J. C. (1940). Snow Surveying. Soil Conservation Service, United
States Department of Agriculture, Miscellaneous Publication No. 380,
Washington D.C.
Marty, C. (2018). Recent Evidence of Large-Scale Receding Snow Water
Equivalents in the European Alps. Journal of Hydrometeorology, 18,
1021-1031.
McCreight JL & Small E.E. (2014). Modeling bulk density and snow water
equivalent using daily snow depth observations. The Cryosphere,8, 521-536. doi.org/10.5194/tc-8-521-2014, 2014.
Nitu R., Roulet Y.-A., Wolff M., Earle M., Reverdin A., Smith C.,
Kochendorfer J., Morin S., Rasmussen R., Wong K., Alastrué J., Arnold
L., Baker B., Buisán S., Collado J. L., Colli M., Collins B., Gaydos A.,
Hannula H.-R., Hoover J., Joe P., Kontu A., Laine T., Lanza L.,
Lanzinger E., Lee G.W., Lejeune Y., Leppänen L., Mekis E,. Panel J.-M.,
Poikonen A., Ryu S., Sabatini F., Theriault J., Yang D., Genthon C., van
den Heuvel F., Hirasawa N., Konishi H., Nishimura K., Senese A. (2018).
Solid Precipitation Intercomparison Experiment 2012-2015, WMO
Instruments and Observing Methods Report No. 131.
Pirazzini, R., Leppänen, L., Picard, G., Lopez-Moreno, J.I., Marty, C.,
Macelloni, G., Kontu, G., von Lerber, A., Melih-Tanis, C., Schneebeli,
M., de Rosnay, P. & Arslan, A.N. (2018) European in-situ snow
measurements: Practices and purposes. Sensors, 18, 7.
Peterson, N.R. & Brown, A.J. (1975). Accuracy of snow measurements.Proceedings of the Western Snow Conference 577-586 .
Picard, G., Arnaud, L., Panel, J.M. & Morin, S. (2016). Design of a
scanning laser meter for monitoring the spatio-temporal evolution of
snow depth and its application in the Alps and in Antarctica, The
Cryosphere , 10, 1495-1511. doi.org/10.5194/tc-10-1495-2016, 2016
Proksch, M., Löwe, H., & Schneebeli, M. (2015). Density, specific
surface area, and correlation length of snow measured by high-resolution
penetrometry, Journal of Geophysical Research: Earth Surface ,
120(2), 346–362. doi.org/10.1002/2014JF003266.
Proksch, M., Rutter, N., Fierz, C., & Schneebeli, M. (2016).
Intercomparison of snow density measurements: bias, precision, and
vertical resolution, The Cryosphere , 10, 371-384.
doi.org/10.5194/tc-10-371-2016.
Revuelto, J., López-Moreno, J.I., Azorin-Molina, C. & Vicente-Serrano,
S.M. (2014). Topographic control on snowpack distribution in a small
catchment in the central Pyrenees: intra- and inter-annual persistence.The Cryosphere, 8 (5), 1889-2006.
Schneebeli, M., & Johnson, J. B. (1998). A constant-speed penetrometer
for high resolution snow stratigraphy. Ann. Glaciol . 26,
107–111.
Stähli, M., Stacheder, M., Gustafsson, D., Schlaeger, S. & Schneebeli,
M. 2004. A new in situ sensor for large-scale snow-cover monitoring.Ann. Glaciol 38: 273–278.
Stuefer S., Kane D.L. & Liston G.L. (2013). In situ snow water
equivalent observations in the US Arctic. Hydrology Research , 44
(1), 21-34.
Sturm M., Taras B., Liston G.E., Derksen C., Jonas T. & Lea J. (2010).
Estimating snow water equivalent using snow depth data and climate
classes. J. Hydrometeorol ., 11 (6), 1380-1394.
Takala, M., Luojus, K., Pulliainen, J., Derksen, C., Lemmetyinen, J.,
Kärnä, J.P., Koskinen, J., & Bojkov, B. (2011) Estimating northern
hemisphere snow water equivalent for climate research through
assimilation of space-borne radiometer data and ground-based
measurements. Remote Sens. Environ ., 115 (12), 3517–3529.
http://dx.doi.org/10.1016/j.rse. 2011.08.014.
Wilcoxon F. (1945). Individual Comparisons by Ranking Methods.Biometrics , 1, 80-83.
Work R.A., Stockwell H, Homer J., Freeman T.G. & Beaumont R.T. (1965).
Accuracy of field snow surveys Western United States, including Alaska.CRREL Report, 163, 43 pp.
FIGURE CAPTIONS
Figure 1. Schematic representation of the sampling strategy
applied during the two field campaigns. The scheme F1 was applied in
Blafjöll (Iceland) and the scheme F2 in Sodankylä (Finland). In
Sodankylä, the scheme for Bog and Forest plots was applied also in the
Antenna plot, but in one subplot measurements were taken in transects
(10 measurements per transect). In Bog and Forest opening sites (F2) the
four subplots were measured in the same way. Letters N, O and I inform
of the uncertainties contained at each measured spatial scale: Natural,
induced by Observer and Instrumental bias respectively. The letter size
makes reference to H high, M medium and L low relative influence of each
uncertainty source at each site.
Figure 2. Instruments used in the campaigns, snow core samplers
from left to right (see Table 1): Korhonen-Melander, Dolfi, VS-43, U.S.
Federal, IG PAS, SnowHydro, Custom EV2, Enel-Valtecne EV2 and ETH. In
addition, the SnowMicroPen is shown on the far right.
Figure 3. Boxplots showing the distribution of measured snow depth
(upper panels), bulk snow density (middle panels), and SWE (lower
panels) measured with different snow core samplers along two snow
trenches in Iceland. Boxes stand for the 25th and 75th percentiles,
vertical bars indicate the 10th and 90th percentiles and the horizontal
central line is the median. Triangles at the bottom of some boxes inform
about distribution skewness. Numbers above each box is the CV for
repeated measurements. Dashed and dotted lines are the average and
median, respectively, over all measurements on each plot.
Figure 4. Variability of the bulk snow density for the three plots as
obtained from SMP measurements using the Proksch et al. (2015)
parameterization (see text). The number above each box is the CV for all
measurements on that plot. Boxes inform of the 25th and 75th
percentiles, vertical bars indicate the 10th and 90th percentiles and
the horizontal central line is the median. Dashed and dotted lines are
the average and median over all measurements, respectively.
Figure 5. Variability of the 20 measurements (15 in Antenna plot) of
snow depth, bulk snow density and SWE taken at the three plots (composed
of 4 subplots each) conducted with different devices. The number above
each box is the coefficient of variation among repeated measurements.
Boxes inform of the 25th and 75th percentiles, bars indicate the 10th
and 90th percentile and central line is the median. Triangles at the
bottom of some boxes inform about high skewness of distribution. Dots
are outliers. Dashed and dotted lines are the average and median
respectively.
Figure 6. Bulk snow density difference of each sampler with respect to
the total average of all samplers (in percentage) measured at each
subplot for each of the three plots.
Figure 7. Bulk snow density measurements for each sampler when used by
experienced observers and untrained observers on Bog and Forest plot.
Six measurements were conducted with each sampler. Letters indicate the
only pairs with statistically significant differences.
Figure 8. Measurements of snow depth (bottom panel) and bulk snow
density (upper panel) along 10 m long transects at the Antenna plot.
Table 1. Summary of all the snow core samplers used during the
campaigns and their main characteristics.