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• Finer grid resolution allows the spontaneous development of convective self-aggregation13

when enough turbulent mixing is provided;14
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Abstract15

Spontaneous aggregation of deep convection is a common feature of idealized numeri-16

cal simulations of the tropical atmosphere in Radiative-Convective Equilibrium (RCE).17

However, at coarse grid resolution where deep convection is not fully resolved, the oc-18

currence of this phenomenon is extremely sensitive to subgrid-scale processes. This study19

focuses on the role played by mixing and entrainment, either provided by the turbulence20

model or the implicit numerical dissipation. We have analyzed the results of two differ-21

ent models, WRF and SAM, and compared different configurations by varying the tur-22

bulence models, the initial conditions and the horizontal spatial resolution. At coarse23

grid resolution (3 km), the removal of turbulent mixing prevents the occurrence of Con-24

vective Self-Aggregation (CSA) in models with low numerical diffusivity, while it is pre-25

served in models with high numerical diffusivity. When the horizontal grid resolution is26

refined to 1 km (thus reducing the implicit numerical dissipation), CSA is only achieved27

by increasing the explicit turbulent mixing. In this case, CSA was found to occur even28

with a small amount of shallow clouds. Therefore, this study suggests that the sensitiv-29

ity of CSA to horizontal grid resolution is not primarily due to the corresponding decrease30

in shallow clouds. Instead, it is found that turbulent mixing and dissipation at small scales31

regulate the amplitude of initial humidity perturbations introduced by convection in the32

free troposphere: the greater the dissipation at small scales, the greater the size and the33

strength of humidity perturbations in the free troposphere that can destabilize the RCE34

state.35

Plain Language Summary36

Convection acts to transport moisture from the surface to the free troposphere and37

to form clouds. When clouds develop in a dry environment, they can be diluted by tur-38

bulent mixing. On the contrary, mixing in a moist environment favors their deepening.39

Therefore, turbulent mixing will favor convection over moist regions making them moister,40

while the opposite is true for dry regions. This is called the moisture-convection feed-41

back (or moisture-entrainment-convection feedback). This feedback plays a relevant role42

in the creation of humidity perturbations in the free troposphere, by destabilizing the43

radiative-convective equilibrium state, where convection is homogeneously distributed,44

to a stable state where convection is clustered. This work analyzes this phenomenon, called45

Convective Self-Aggregation, and its sensitivity to turbulence models and implicit nu-46

merical dissipation, the main sources of mixing when using a grid resolution of O(1 km).47

In particular, it is found that large dissipation at small-scales, is necessary to develop48

large humidity fluctuations in the free-troposphere, which is a prerequisite for the cre-49

ation of large dry areas free of convection. Therefore a correct representation of sub-grid50

scale mixing processes is necessary to capture the convective self-aggregation phenomenon51

in high-resolution climate models.52

1 Introduction53

In the absence of lateral energy transport, the atmosphere would be in a statisti-54

cal Radiative Convective Equilibrium (RCE), where radiative cooling is balanced by con-55

vective heating. Despite large-scale dynamical forcings are ubiquitous in the real atmo-56

sphere, RCE can be observed in the tropics on a daily scale, when areas larger than 500057

km2 are considered (Jakob et al., 2019).58

Without heterogeneities in boundary conditions and forcing, idealized numerical59

simulations of RCE provide a simple framework to study the internal interactions be-60

tween moist convection, radiation and circulation. In these simulations, the atmosphere61

is destabilized by a combination of surface heating and tropospheric radiative cooling.62

The Weak Temperature Gradient (WTG) hypothesis applies to the free troposphere and63

heating anomalies directly generates large-scale circulation that moisten (dry) the at-64
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mosphere by large-scale water vapor convergence (divergence). Deep convection devel-65

ops uniformly throughout the domain, naturally reflecting the homogeneity of the ex-66

ternal forcing. However, typically after few days, many numerical studies both with dif-67

ferent Cloud-Resolving Models (CRMs) (Held et al., 1993; Tompkins, 2001; C. S. Brether-68

ton et al., 2005; C. J. Muller & Held, 2012; Wing & Emanuel, 2014; Yanase et al., 2020)69

and various General Circulation Models (GCMs) (Wing et al., 2020) have shown a tran-70

sition from the initial uniform state of convection to a state in which convection is clus-71

tered into a moist patch surrounded by a dry patch with suppressed convective activ-72

ity. This process has been called convective self-aggregation (CSA), because it is caused73

by internal feedback between moisture, convection and radiation. When CSA occurs, the74

atmosphere dries out, large-scale circulation develop and outgoing longwave radiation75

(OLR) increases. All of this has important implications for climate. Moreover, in the pres-76

ence of rotation, CSA becomes organized eddies and could be used as an idealized frame-77

work to study Tropical Cyclone Genesis (Nolan et al., 2007; Rappin et al., 2010; Wing78

et al., 2016; Ramı́rez Reyes & Yang, 2021; Carstens & Wing, 2022).79

In idealized numerical simulations several physical processes have been found to80

be relevant for the onset of CSA which are distinct from the mechanisms responsible for81

its maintenance. In the following, only a brief overview of such processes is given, with82

emphasis on the onset of CSA. The reader is referred to C. Muller et al. (2022) and Wing83

et al. (2017) for a comprehensive review. Radiative and surface flux feedback contributes84

positively to clustering in the early stages of aggregation. Tompkins and Craig (1998)85

and C. S. Bretherton et al. (2005) were among the first to show that homogenizing ra-86

diative heating rates or assuming wind-insensitive surface fluxes prevents clustering. C. J. Muller87

and Held (2012) emphasized the importance of low-level longwave cooling in dry regions88

both from clear-sky and shallow clouds. The differential radiative cooling between moist89

and dry regions drives a low-level upgradient Moist Static Energy (MSE) circulation which90

expands dry regions and maintains self-aggregation. As a consequence, C. J. Muller and91

Held (2012) proposed the decrease of low-level cloudiness with finer horizontal resolu-92

tions as a possible explanation for the disappearance of CSA in simulations with hor-93

izontal grid sizes less than 1 km. The relevance of radiative feedback and the low-level94

MSE circulation was later quantified by Wing and Emanuel (2014) trough the analysis95

of the different budget terms (longwave and shortwave radiation, surface fluxes and ad-96

vection) contributing to the increase of the column integral of Frozen Moist Static En-97

ergy (FMSE) variance. Based on these numerical results, Emanuel et al. (2014) devel-98

oped a radiative-convective instability theory. This theory demonstrates how, within a99

WTG framework, an anomalous radiative cooling in the free troposphere (correspond-100

ing to a dry perturbation) generates subsidence motions that dry the atmosphere and101

further increase radiative cooling there, creating a feedback loop.102

In addition to radiative and surface flux feedback, other studies have demonstrated103

the importance of boundary layer diabatic feedback. Jeevanjee and Romps (2013) found104

that inhibition of cold pools (by switching off rain evaporation) allow self aggregation105

to occur at all domain sizes. C. Muller and Bony (2015) found similar results even when106

radiative cooling rates were homogenized across the free troposphere. This ”moisture-107

memory aggregation” can be reproduced by the simple coarsening model of Craig and108

Mack (2013) and has recently been found to occur spontaneously in models with a nearly109

saturated sub-cloud layer (Cerlini et al., 2023). Finally, D. Yang (2018) demonstrated110

that CSA could occur also with minimal ingredients by homogenizing radiative cooling111

over the entire column, switching off rain evaporation over the boundary layer and with-112

out interactive surface fluxes. More recently, Ramı́rez Reyes and Yang (2021) shows that113

also tropical cyclones can also be generated without radiative and surface flux feedback.114

Thus, in this minimal configuration, two remaining physical processes could explain the115

onset of CSA: the moisture convection (MC) feedback and the Convective Heating Over-116

turning Circulation (CHOC) feedback.117

The MC feedback, or more specifically the moisture-entrainment-convection feed-118

back, involves high detrainment of moist air from deep convective cores locally moist-119
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ening the surrounding environment making it more prone to future convection than drier120

zones (Tompkins, 2001; Grabowski & Moncrieff, 2004). In numerical simulation with coarse121

horizontal resolution (order of 1 km) and explicit convection, mixing processes are largely122

controlled by the subgrid-scale (SGS) turbulence scheme. At such coarse grid resolution123

deep convection and turbulence motions inside clouds are not resolved and overturning124

circulations occur in a laminar mode (Bryan et al., 2003). Moreover at coarse grid res-125

olutions, dissipation processes in cold pools (Grant & van den Heever, 2016) and shal-126

low convection (Janssens et al., 2022), fundamental for the development of shallow cir-127

culations, may depend considerably on the choice of the model. Therefore the relevance128

of MC feedback in CSA could also be measured by its sensitivity to the SGS turbulence129

parametrization. While no sensitivity was found by C. J. Muller and Held (2012) with130

the SAM (the System for Atmospheric Modeling, M. F. Khairoutdinov & Randall, 2003)131

model, Tompkins and Semie (2017) found an opposite result with the WRF (the Weather132

Research and Forecasting Model, Skamarock et al., 2019) model. In particular, they found133

that a high mixing rate of water vapor (high eddy diffusivity) is a necessary condition134

for convective organization to occur. This result was also confirmed by the experiments135

of Shi and Fan (2021). Using Cloud Model 1 (CM1), they demonstrated that different136

turbulent parametrizations in the PBL can substantially affect the initiation of self-aggregation.137

The CHOC feedback is that deep convection releases latent heat, that amplifies the138

existing positive buoyancy and pressure perturbations and the associated overturning139

circulation and therefore convection. This effect was diagnosed by D. Yang (2018) look-140

ing at the Available Potential Energy (APE) budget. D. Yang (2019) showed that the141

CHOC feedback was able to produce CSA even in the absence of the MC feedback. There,142

the MC feedback was eliminated by nudging clear-sky water vapor to its horizontal mean143

every 3 hours during the simulation. However, CSA without the MC feedback shows a144

much smaller increase in the variance of precipitable water and two different clusters rather145

than a single moist patch.146

The above studies show contrasting results regarding the importance of Moisture-147

Convection Feedback for the onset of CSA. This paper supports the hypothesis of Tompkins148

and Semie (2017) that MC feedback and mixing processes are necessary for the onset149

of CSA and for the creation of large dry patches. It is demonstrated here that an effi-150

cient updraft dilution, either created by explicit or implicit mixing processes, encourages151

more large-scale variability of convection (Mapes & Neale, 2011) in the early stages and152

creates a large enough dry perturbation in the free troposphere to start the radiative feed-153

back loops. Thus, small-scale mixing processes and their representation becomes fun-154

damental to the establishment of free-tropospheric (FT) drying which is considered a pre-155

requisite for the onset of CSA by creating a strong boundary layer cooling in dry regions156

(B. Yang & Tan, 2020; Shamekh et al., 2020; Yanase et al., 2022).157

The fact that ”large enough fluctuation in the humidity content has to be present158

for self-aggregation to start” was hypothesized by Windmiller and Craig (2019) and fur-159

ther confirmed by the idealized model of Biagioli and Tompkins (2023), but here it is shown160

to work with different CRMs. We also show how such perturbation varies with differ-161

ent horizontal grid sizes and how it can explain the sensitivity of CSA to horizontal res-162

olution, independent of the amount of low-level cloud.163

The paper is organized as follows. First, in Section 2, SAM and WRF numerical164

models are described by focusing particularly on the numerics (Section 2.1.1) and the165

subgrid-scale turbulence models (Section 2.1.2). In Section 2.2 the simulations setup is166

detailed and all main and sensitivity experiments are described. The results are divided167

into four sections. Section 3.1 focuses on the general characteristics of the self-aggregation168

state and its impact on domain-average statistics. Section 3.2 shows the analysis of power169

spectra for kinetic energy, humidity and temperature to quantify the horizontal variabil-170

ity of convection in the different simulations. Section 3.3 studies the relevance of MC feed-171

back in the triggering of CSA, by introducing the effect of SGS mixing in the MSE bud-172

get analysis. Section 3.4 summarizes the hypothesized mechanism for triggering CSA and173

compares it with the radiative mechanisms as caused by the WTG hypothesis. The sen-174
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sitivity of the results to initial conditions, turbulent Pr number and horizontal resolu-175

tion, is examined in Section 4. All results of the present study are discussed in Section176

5 and concluding remarks are given in Section 6.177

2 Material and methods178

2.1 Numerical models179

The two cloud-resolving models chosen for this work are the System of Atmospheric180

Modeling (SAM version 6.10.5; M. F. Khairoutdinov & Randall, 2003) and the Weather181

Research and Forecasting Model (WRF version 4.2.2; Skamarock et al., 2019). Such mod-182

els offer a solid benchmark for studying the sensitivity of convective aggregation to tur-183

bulent and numerical diffusion because: 1) they are widely used across the scientific com-184

munity; 2) they have different mathematical formulations, different numerics and differ-185

ent physics; 3) the mechanisms behind convective self-aggregation have already been in-186

vestigated for both models (e.g., see Tompkins and Semie (2017); Colin et al. (2019); B. Yang187

and Tan (2020), for WRF and C. S. Bretherton et al. (2005); C. J. Muller and Held (2012);188

Wing and Emanuel (2014); D. Yang (2018); Patrizio and Randall (2019) for SAM); 4)189

both models participated to the RCEMIP project (Wing et al., 2020).190

The SAM model solves the anelastic continuity, momentum, and scalar conserva-191

tion equations. The prognostic thermodynamic variables are the total non precipitat-192

ing water (qT = qv + qc + qi = water vapor + cloud water + cloud ice), the total pre-193

cipitating water (qp = qr+qs+qg = rain + snow + graupel) and the liquid/ice static194

energy hL = cpT + gz−Lv(qc+ qr)−Ls(qi+ qs+ qg), where Lv and Ls are the latent195

heat of vaporization and sublimation, respectively. Given hL, qT and qp, the mixing ra-196

tio of the various hydrometeors (qc, qi, qr, qs, qg) is diagnosed by partitioning relation-197

ships that depend only on temperature.198

The WRF model has a different dynamical core since it solves the fully compress-199

ible conservation equations for mass, momentum, heat and water substance (water va-200

por, liquid, and ice). The thermodynamic prognostic variables are different from SAM201

since WRF conserves the moist potential temperature (θm ≈ θ(1+1.61qv)), the geopo-202

tential and the mixing ratio for the six water species (water vapor, qv, cloud water, qc,203

cloud ice, qi, rain, qr, snow, qs and hail,qh). As demonstrated by Kurowski et al. (2014),204

different model mathematical formulations (anelastic versus fully compressible models205

as considered in this study) have negligible impact on the simulation of moist deep con-206

vection. Therefore, we will assume that differences in model numerics and physical parametriza-207

tions will have a larger impact than those resulting from different mathematical frame-208

works. The differences in model numerics and subgrid-scale turbulence scheme are de-209

tailed on Section 2.1.1 and Section 2.1.2, respectively.210

The other physical parametrization (microphysics, radiation, and surface layer) have211

been fixed to those used by C. J. Muller and Held (2012) for the SAM model and by (Tompkins212

& Semie, 2017, , see their smag3dpbl simulation in Table 1) for the WRF model, to make213

our results directly comparable to their work. All parametrizations used are summarized214

in Table 1.215

2.1.1 Numerics216

Both models use a staggered Arakawa C-type grid with stretched vertical and uni-217

form horizontal grids. The main numerical schemes used for time integration, momen-218

tum, and scalar advection are described in Table 2. WRF integrates the compressible219

non-hydrostatic equation in conservative (flux) form by employing a split-explicit 3rd220

order RK scheme (Wicker & Skamarock, 2002). Such a scheme can be combined both221

with even-ordered (spatially centered) schemes or odd-ordered (upwind-biased) schemes222

to form a stable advection scheme. In our experiments, we use the WRF standard con-223

figuration by using an upwind-biased advection scheme with the 5th order in the hor-224

izontal and the 3rd order in the vertical, both for scalars and momentum. Then positive-225
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Table 1. Physics parametrizations adopted for the WRF and SAM model common to all

numerical experiments as listed in Table 3.

Parametrization SAM WRF

Radiation CAM3 (Collins et al., 2006) RRTMG (Iacono et al., 2008)
Microphysics SAM1MOM (M. F. Khairoutdinov

& Randall, 2003)
Purdue Lin (Chen & Sun, 2002)

Surface layer Monin-Obukhov similarity Revised MM5 similarity (Jiménez &
Dudhia, 2012)

Subgrid-scale
turbulence

3D Smagorinsky 3D Smagorinsky (Smagorinsky,
1963)

PBL None Yonsei University, YSU (Hong et
al., 2006)

definite and monotonic scalar flux renormalizations are applied on the final RK step as226

described in Skamarock and Weisman (2009); Wang et al. (2009). The adopted spatial227

discretization is equivalent to a centered scheme of the next higher order (e.g. 6th in the228

horizontal and 4th in the vertical) plus a diffusive term with a coefficient that is propor-229

tional to the advection speed. Therefore this implicit diffusion may be inadequate in light230

wind conditions as underlined by Knievel et al. (2007); Bryan (2005). Moreover, the at-231

mosphere in RCE idealized simulations is conditionally unstable, therefore spurious per-232

turbations introduced by the numerical scheme may grow further and affect deep con-233

vection.234

To smooth out grid-scale noise, WRF has an optional 6th order explicit horizon-235

tal spatial filter which can be applied with or without the imposition of monotonicity236

(Knievel et al., 2007). In our main experiments, this filter is included without monotonic-237

ity, to be as coherent as possible to the simulations by Tompkins and Semie (2017) and238

to damp noise more selectively. However, without enforcing monotonicity, new oscilla-239

tions could be introduced by the filter in the thermodynamic fields (Xue, 2000). The in-240

teraction between grid-scale numerical oscillations either introduced by oscillatory mo-241

mentum numerics (as finite differences) or by the explicit filters could interact with the242

SGS turbulence model and lead to excessively large values of eddy diffusivity (Pressel243

et al., 2017).244

Finally, all the experiments employ three other explicit filters which are included245

in the standard WRF configuration using the RK3 time integration scheme: the 3D di-246

vergence damping to damp acoustic waves and spurious noise associated with the time-247

split discretization; the external mode damping which is used to damp pressure oscil-248

lations which do not propagate in the vertical (also called external inertia-gravity wave);249

forward biasing of the vertically-implicit acoustic-time-step to damp instabilities asso-250

ciated with vertically-propagating sound waves. For a comprehensive review of all these251

types of filters and their application to General Circulation Models (GCMs) the reader252

is referred to Jablonowski and Williamson (2011).253

The SAM anelastic equations are integrated in time with an explicit 3rd order Adam-254

Bashfort scheme (AB3). Momentum advection is performed by using a 2nd ordered cen-255

tered differences (SOC) scheme in a flux form for kinetic energy conservation. In most256

studies of CSA (C. S. Bretherton et al., 2005; C. J. Muller & Held, 2012; Wing & Emanuel,257

2014, e.g.), the scalar advection is based on the 2nd order accurate monotonic MPDATA258

scheme (Smolarkiewicz & Grabowski, 1990). However, in this work, we need as small nu-259

merical diffusion as possible. Therefore, we use the 5th order monotonic ULTIMATE-260

MACHO scheme as developed by Yamaguchi et al. (2011). In that study, running SAM261

in a simulation of deep convective clouds with such a higher-order scheme showed sim-262

ilar results as running the same simulation with a low-order advection scheme and in-263
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creased horizontal resolution (Yamaguchi et al., 2011). No explicit filters are employed264

in SAM.265

Table 2. Numerical schemes adopted by the main experiments performed with the SAM and

the WRF models.

SAM WRF

Time Integration Explicit 3rd order Adam-Bashfort
scheme

Split-explicit 3rd order RK scheme
(Wicker & Skamarock, 2002)

Momentum Ad-
vection

2nd order centered finite differences 5th order upwind-biased horizontal;
3rd order upwind-biased vertical

Scalar Advection 5th order ULTIMATE-MACHO
scheme (Yamaguchi et al., 2011)

5th order upwind-biased horizontal;
3rd order upwind-biased vertical

Explicit mixing None 6th order numerical diffusion

2.1.2 Subgrid-scale turbulence266

All the experiments which have a parametrization for SGS turbulence adopt the267

Smagorinsky-Lilly (Smagorinsky, 1963; Lilly, 1962) eddy-viscosity model. This turbu-268

lence closure was chosen mainly because it has been used by most of the convective self-269

aggregation studies involving the SAM model (C. S. Bretherton et al., 2005; C. J. Muller270

& Held, 2012; Wing & Emanuel, 2014) and the WRF model (Tompkins & Semie, 2017;271

Colin et al., 2019; B. Yang & Tan, 2020). Furthermore, this is a popular choice also for272

CSA studies performed with other models (to cite some Yanase et al. (2020), SCALE-273

RM; Holloway and Woolnough (2016), Met Office UM; Hohenegger and Stevens (2016),274

UCLA-LES ).275

Eddy viscosity models do not allow any energy transfer from the SGS scales to the276

resolved scales. They are purely dissipative and model the turbulent fluxes of momen-277

tum (the Reynolds stress term, τij = u′
iu

′
j , where u′

i is the velocity at subgrid scales)278

and other scalar quantities, ϕ, in the following form:279

τij = −2Kh,vSij (1)

τϕj = −Kh,vPr−1 ∂ϕ
∂xj

(2)

where the overbar denotes resolved quantities, Sij = 1/2(∂ui/∂xj + ∂uj/∂xi) is280

the resolved strain rate tensor and Kh,v is the horizontal or vertical eddy viscosity, also281

called mixing coefficient and Pr is the turbulent Prandtl number. For both SAM and WRF282

we choose the anisotropic implementation of the Smagorinsky-Lilly closure, where two283

different mixing coefficients are specified for the horizontal and the vertical direction. The284

choice of an anisotropic rather than isotropic diffusion approach can have a large impact285

on the mesoscale organization. De Roode et al. (2022) simulated a clear convective bound-286

ary layer in the SAM model and compares the results of a well-resolved isotropic LES287

(∆x = 12.5 m) with that obtained by coarsening the grid up to 1.2 km either using isotropic288

or anisotropic diffusion approaches. In their study, the anisotropic diffusion approach289

was found to perform better than the isotropic for what concern the entrainment veloc-290

ity at the top of the boundary layer (a parameter which has a strong impact on the on-291

set of cloud formation, since more entrainment causes larger heating and drying rates292

of the boundary layer). However, while coarsening the horizontal grid, the simulations293
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with the anisotropic diffusion approach lead to a stronger dissipation of spectral ener-294

gies at the largest wavenumbers that eventually leads to larger mesoscale fluctuations295

and an associated shift in the spectral energies toward smaller wavenumbers. Since the296

occurrence of CSA in coarse CRM (grid spacing exceeding 1 km) can be associated with297

an increase of kinetic energy and variance on small wavenumbers (Yanase et al., 2022;298

Janssens et al., 2022), grid anisotropy can be a relevant factor.299

The definition of Kh,v is slightly different between WRF and SAM. In WRF, us-300

ing the notation by Simon and Chow (2021), it takes the following form:301

Kh = (Cslh)
2Sβ (3)

Kv = (Cslv)
2Sβ (4)

with Cs being constant with a default value of 0.25. The horizontal and vertical mix-302

ing length scales, lh and lv respectively, are related to the grid spacing (∆x,∆y,∆z) as:303

lh = (∆x∆y)
1/2 (5)

lv = ∆z (6)

Sβ in Eqs. 3 and 4 is the magnitude of the resolved strain rate tensor modified by a fac-304

tor based on the local Richardson number, to reduce mixing coefficient on very stable305

atmospheric condition:306

Sβ = max

[
0,

(
Sij

2 − N2

Pr

)]1/2
(7)

where N is the local moist Brunt-Väisäla frequency (following D. R. Durran and307

Klemp (1982)) and Pr is the turbulent Prandtl number, which is constant and equal to308

1/3 in WRF. Upper and lower limits to the mixing coefficient are imposed horizontally309

as:310

Kmin
h = amin(∆x∆y) (8)

Kmax
h = amax(∆x∆y∆

−1
t ) (9)

and in the vertical as:311

Kmin
v = amin(∆

2
z) (10)

Kmax
v = amax(∆

2
z∆

−1
t ) (11)

where amin = 10−6s−1 and amax = 0.1 are two constant factors and ∆t is the time312

step.313

Most of the time, when the horizontal grid spacing exceeds 100 m and boundary314

layer eddies are not well-resolved, the Smagorinsky-Lilly closure in WRF is used in con-315

junction with a Planetary Boundary Layer scheme (PBL). In such cases, the local stan-316

dard vertical diffusion is deactivated and will be substituted by a non-local mixing co-317

efficient over the whole mixed layer (whose height is diagnosed by the scheme itself). In318

our WRF configuration, we employ the YSU PBL (Hong et al., 2006), as done in other319

studies of CSA Tompkins and Semie (2017); B. Yang and Tan (2020); Colin et al. (2019).320

In such a model, the turbulent vertical diffusion formulation contains two additional term321

with respect to Eq. 2: a counter gradient term that allows the representation of fluxes322

due to non-local gradients and an explicit term for the entrainment at the PBL top, which323

is taken proportional to the surface buoyancy flux (Noh et al., 2003).324

In SAM, the Smagorinsky closure is applied as a stationary version of the 1.5-order325

closure model (with turbulent kinetic energy, TKE or e, as a prognostic variable), where326

the vertical mixing coefficient is defined as in Eq. 4 with Cs being flow dependent and327

varying from 0.15 in unstable regions to 0.2 in the stably stratified region. Sβ is eval-328

uated as in WRF by using Eq 7, but with Pr = 1. The vertical mixing length is eval-329

uated by using the Deardorff (1980) model:330
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lv = ∆z for N2 ≤ 0 (12)

lv = min
[
∆z, 0.76

e1/2

N

]
for N2 > 0 (13)

where e is the TKE and N is the local moist Brunt-Väisäla frequency (following331

M. F. Khairoutdinov and Randall (2003)). Since a prognostic equation for TKE is not332

activated in the Smagorinsky first order closure, the correction term for stable region in333

Eq. 13 is diagnosed from the mixing coefficient in the previous time step as (0.76e1/2/N) =334 √
0.76Kv/(CkN). Moreover, a minimum vertical mixing length is imposed as lmin

v =335

0.1 ∆z.336

Grid anisotropy in SAM is taken into account by applying a correction factor to337

Kv as:338

Kh = Kv

(
∆x

∆z

)2

(14)

Therefore, the ratio between the horizontal and vertical mixing coefficient will be equiv-339

alent both for WRF and SAM (Kh/Kv = (∆x/∆z)
2) and the differences between the340

two schemes rely on the calculation of lv, the values of Cs and the turbulent Pr num-341

ber. The latter parameter is a prescribed constant value and it is fundamental not only342

because it is used in the mixing length calculation, but also because scalar diffusivity co-343

efficients are simply obtained by dividing the momentum eddy viscosity coefficient by344

the Pr number. This is valid both for SAM and WRF models. Therefore, at similar val-345

ues of eddy viscosity, smaller Pr numbers will cause larger scalar diffusivity.346

SAM, instead of WRF, has no options for the enhancement of mixing in the PBL347

by non-local gradients. However, we decide to leave the PBL parametrization in WRF,348

since Tompkins and Semie (2017) demonstrated that convective organization is reached349

with or without the PBL parametrization when using the 3D Smagorinsky closure.350

2.2 Simulations setup351

All simulations are performed over a doubly periodic domain with a size of 768 x352

768 km2. The domain central latitude is set to zero. We set similar stretched vertical353

grids with 64 levels for both SAM and WRF: the first level is at about 25 m and grid354

spacing gradually increases from 50 m near the ground to 500 m above 5 km. Then it355

increases again from 500 m to 1 km above 20 km. A rigid lid is present at the top at about356

27 km. To prevent unphysical wave reflection on the upper boundary, both WRF and357

SAM simulations have a sponge layer with traditional Rayleigh damping starting at the358

upper third of model domain. At the bottom there is an oceanic surface with a constant359

surface temperature of 302 K and the surface pressure is set to 1015 hPa. There is no360

background wind and the Coriolis parameter is set to zero. All simulations are run with361

fully interactive radiation and a diurnal cycle. Output fields are stored each hour.362

SAM and WRF large domain simulations are initialized from the equilibrium sound-363

ing of a corresponding smaller domain RCE simulation (averaging over the last 20 days).364

The final RCE equilibrium reached by the small simulations presents some differences365

between SAM and WRF, even though they start from similar initial profiles. In partic-366

ular, the WRF profile is moister and warmer than that of SAM and there is a lower Con-367

vective Available Potential Energy (CAPE) is present (see supplementary Fig S1 and368

S2). Similar differences between SAM-CRM and WRF-CRM model were found in RCEMIP369

project (Wing et al., 2020, , see their Figures 7g and 8g). Different initial conditions may370

strongly influence the sub cloud layer properties and CSA as demonstrated by (Cerlini371

et al., 2023). Further details about smaller domain simulations can be found in Supple-372

mentary Text S1.373

Simulations are divided into three groups: main experiments, sensitivity experi-374

ments to initial conditions, sensitivity experiments to Pr number and sensitivity exper-375

iments to horizontal resolution. All experiments are listed in Table 3.376
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Table 3. List of experiments

Exp ∆x Turbulence / Initial conditions Days

Main

WRF 3 km Smag-default 100
SAM 3 km Smag-default 100
WRF0 3 km Smag-Cs=0 100
SAM0 3 km Smag-Cs=0 100

Sensitivity to initial conditions

WRFs 3 km Smag-default / inital RCE profile from SAM 25
WRF0s 3 km Smag-Cs=0 / inital RCE profile from SAM 25

Sensitivity to Pr number

WRFPr1 3 km Smag-default, Pr=1 100
SAMPr03 3 km Smag-default, Pr=1/3 100

Sensitivity to horizontal grid resolution

WRFh 1 km Smag-default 45
WRF3h 1 km 3*Smag-default 30
SAMh 1 km Smag-default 45
SAM3h 1 km 3*Smag-default, Pr=1/3 30

The main experiments are performed with a horizontal grid resolution of 3 km. They377

compare the standard version of the model (standard Smagorinsky and standard numer-378

ics) with the version of the model obtained by switching off the Smagorinsky turbulence379

model. This is obtained by imposing Cs = 0 in both SAM and WRF. While in SAM380

this corresponds to switching off completely the physical mixing (since a minimum co-381

efficient is set on the mixing length prior to the mixing coefficient calculation), in WRF382

a small constant background mixing is left (see Eq. 8 and 10). The main experiments383

are run for at least 100 days and output fields are stored every hour. In the following,384

the first three letters of the simulation name represent the model name (e.g SAM, WRF),385

while the number 0 is appended to simulations with Cs = 0 (e.g. SAM0, WRF0).386

Updraft entrainment and dilution is influenced not only by the mixing coefficient387

and the turbulence model but also by the properties of environmental (entrained) air.388

Therefore we perform an initial conditions sensitivity experiment, by initializing WRF389

and WRF0 simulations from the same initial conditions of SAM. Such simulation will390

be named WRFs and WRF0s. This is to prove the robustness of our results with respect391

to initial conditions.392

One way to reduce the numerical mixing inherent to discretization schemes is to393

use a finer grid resolution. Therefore, the grid resolution sensitivity experiments are de-394

signed to investigate the impact of a finer horizontal resolution (1 km) on physical and395

numerical mixing. Two different high-resolution simulations of WRF are run: WRFh,396

which is the same as WRF, but with a resolution of 1 km; WRF3h, which is as WRFh,397

but the Smagorinsky constant is increased by three times. The same experiments are re-398

peated for the SAM model: SAMh, which is the same as SAM, but with a resolution of399

1 km; and SAM3h, where the resolution is 1 km, the Smagorinsky constant is increased400

by a factor of 3 and the Pr is reduced to 1/3 as the WRF value. To obtain a stable so-401

lution for the SAM3h experiment, we had to decrease the time step from 10 s to 5 s. In402

the following, simulations with 1 km resolution have a small ”h” in the simulation name403
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(WRFh, WRF3h, SAMh, SAM3h). High-resolution simulations are run for at least 30404

days and output fields are stored every hour.405

3 Results406

3.1 Convective aggregation state407

Figure 1 shows the 2D snapshots of Outgoing Longwave Radiation (OLR) for the408

main experiments after 100 days. Convective self-aggregation occurs in WRF, SAM and409

SAM0: a small circular moist patch with deep convective activity (OLR < 120 W m−2)410

of diameter around 200 km is surrounded by a larger and very dry region with suppressed411

convective activity (OLR > 280 W m−2). In WRF0, on the other hand, convective ac-412

tivity is homogeneously distributed across the domain without the formation of extremely413

dry regions (Fig 1c).414
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Figure 1. OLR instantaneous snapshots at midnight after 100 days for a) WRF, b) SAM, c)

WRF0 and d) SAM0.

The aggregated simulations with active SGS mixing, SAM and WRF, show a sim-415

ilar temporal evolution of domain-average OLR, which increases by almost 50 W m−2
416

from the beginning of the simulation, reaching a stable value after 40 days. SAM0 shows417

the same increase but with a slower rate and a stable average OLR is reached after 60418

days. WRF0 shows the same initial value of domain-average OLR throughout the sim-419

ulation period.420
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Figure 2. Domain averaged OLR time evolution for the main experiments.

Therefore, the reduction of horizontal diffusion in WRF is found to prevent CSA,421

as demonstrated by Tompkins and Semie (2017). The same cannot be said for SAM, con-422

firming the previous results of C. J. Muller and Held (2012). SAM0 simulation demon-423

strates that the removal of turbulent mixing in SAM model, slows down the aggregation424

process, without preventing it. It is important to note that to characterize the effective425

slow down of aggregation caused by mixing, we should have run an ensemble of RCE sim-426

ulations to take account for the stochastic variability of convective self-aggregation. There-427

fore, our interpretation of the role of mixing will focus on the triggering phase of CSA428

(the first 10 days) and only on whether a model exhibits or not a final aggregated state,429

rather than focusing on its degree of organization or its temporal evolution.430

Figure 3 shows the initial (0-5 days, black lines) and final (last 10 days, red lines)431

profiles of temperature and relative humidity in the main experiments. Initially SAM432

has a lower temperature throughout the troposphere. However, after aggregation, the433

temperature profile reaches values comparable to WRF. SAM0 is not shown in Figure434

3a since as no differences are found with respect to SAM. The increase in temperature435

in WRF with aggregation is smaller relatively to that of SAM, but it is still evident. WRF0436

shows no changes with respect to the initial profile in WRF and is therefore not shown437

in Figure 3a. In the initial phase, the lower troposphere (below 6 km) is moister in WRF438

than in SAM and SAM0. No significant difference in relative humidity is found between439

SAM and SAM0, while the opposite is true for WRF and WRF0. Over the lower tro-440

posphere, WRF0 shows a very moist and well mixed profile with respect to WRF. This441

profile remain stable throughout the simulation period. The upper troposphere (above442

6 km) of aggregated simulation (WRF, SAM, SAM0) is drier with respect to WRF0 in443

the initial stages and shows similar values even comparing different models. After ag-444

gregation, the domain dries out and similar profiles of RH are observed in WRF, SAM445

and SAM0.446

The dryness of the upper free troposphere is the only factor common to the aggre-447

gated simulations with both models. This factor is already present in the early stages448

of the simulation as shown in Figure 3b even if the different models starts with differ-449

ent temperature and different lower tropospheric relative humidity profiles. The initial450

drying of the free troposphere is essential for CSA (B. Yang & Tan, 2020; Shamekh et451

al., 2020; Yanase et al., 2022), since it allows a more efficient radiative cooling of the bound-452

ary layer in the dry regions and the onset of a shallow circulation that transports MSE453

from dry to moist regions (upgradient), contributing positively to CSA. This drying has454

to be caused by a relatively fast and efficient process which is acting on the triggering455

phase of CSA, which is considered here to occur during the first 5 days. In order to bet-456

ter characterize this dry perturbation we will analyze the horizontal variability of con-457

–12–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

200 225 250 275 300

T [K]

2

4

6

8

10

12

14

z
[k

m
]

0 25 50 75 100

RH [%]

WRF

SAM

WRF0

SAM0

a) b)

Figure 3. Vertical profiles of a) absolute temperature and b) relative humidity for the main

experiments. Black lines show the average on the first 5 days, while red lines show the average

over the last 10 days. WRF0 and SAM0 temperature profiles are not reported in a), since in the

initial stage they are identical to WRF and SAM profiles, respectively. In the final stages, WRF0

does not show any change, while SAM0 has the same profile as SAM.

vection through the energy spectra (Section 3.2) and then focus on the physical processes458

responsible for creating such a perturbation (Section 3.3).459

We obtain contrasting results between SAM and WRF models by switching off the460

SGS turbulence model. We hypothesize that this difference rely on the different implicit461

numerical mixing between the two models. This hypothesis will be demonstrated later462

by the sensitivity experiments performed on finer horizontal resolution.463

3.2 Energy spectra and horizontal variability of convection464

Energy spectra of quantities such as kinetic energy (KE) and vertical velocity can465

be used as a measure of the model’s ability to reproduce the correct energy statistics (Skamarock,466

2004) and to verify the model dynamics against the observations as reported by Nastrom467

and Gage (1985) and Lindborg (1999). This is especially true in Convective Self-Aggregation468

studies, where the horizontal variability of water vapor and atmospheric motion play a469

fundamental role. For example, Yanase et al. (2022) analyzed horizontal spectra of spe-470

cific humidity, horizontal and vertical velocity at 2.5 km height, as obtained by idealized471

RCE simulations performed at various domain sizes with the SCALE-RM model (Nishizawa472

et al., 2015). They found that the larger the domain size, the larger the power of spe-473

cific humidity (especially in the lower FT) that can be stored at longer wavelengths and,474

therefore, the larger its horizontal variance. Moreover, they also observed that the oc-475

currence of aggregation corresponds to a transition from a state in which energy is pri-476

marily transported by small vertical motions to a state in which energy from large-scale477

horizontal motion dominates. This result highlights the importance of studying how small478

vertical motions (convective updrafts) are represented by different models as they are479

very sensitive to mixing processes (Tompkins & Semie, 2017). Also Janssens et al. (2022)480

underlined the importance of studying the interaction between numerical and modeling481

errors (generated by discretization schemes and SGS models) with the resolved large-482

scale dynamics of RCE in the CRM. In a preliminary analysis of the Power Spectral Den-483

sity (PSD) of Total Water Path (TWP) and the vertical velocity at 500 hPa of 5 RCEMIP484

models, they showed that at grid spacing coarser than 1 km, very different energy was485
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contained at shorter wavelengths among different models. In particular, models with more486

energetic small-scale vertical motions contains more variance in water vapor at larger487

scales.488

We compute energy spectra for horizontal Kinetic Energy (KE), vertical velocity489

(w), and virtual potential temperature perturbation (θ
′

v where θv = θ(1 + 0.608qv))490

both in the free troposphere (averaging from 3 km to 10 km) and in the boundary layer491

(averaging up to 2 km). Then we also compute energy spectra for the Total Water Path492

(TWP, calculated as the sum of all water species), integrating either over the whole col-493

umn or over the boundary layer (from 0 to 2 km). While KE and w variables are im-494

portant to understand the horizontal variability of atmospheric motions, θ
′

v and TWP495

give us a measure of buoyancy and humidity fluctuations. The results for the free tro-496

posphere (and the whole column TWP) are shown in Figure 4, while the boundary layer497

calculation is reported in Supplementary Figure S3. The horizontal one-dimensional PSD498

of each variable is obtained following the procedure of D. Durran et al. (2017). The PSD499

is then multiplied by the corresponding wavenumber in order to have a direct correspon-500

dence between the variance of the variables and the areas underneath the reported spec-501

trum curves. All the spectrum figures contain two reference lines (dashed gray lines): the502

vertical line indicates wavelengths equal to 12 km which is taken as an indication of the503

effective resolution of the model (4∆x, D. R. Durran, 2010); the oblique line shows the504

k−5/3 power law which is commonly observed where there is a turbulent energy cascade.505

Lai and Waite (2023) found that RCE simulations with the WRF model at 4 km hor-506

izontal resolution can show the -5/3 power low in the KE spectrum in the upper tropo-507

sphere. However, from their spectral budget analysis, they found that this spectrum to508

be generated by a balance between forcing by buoyancy flux and removal by vertical en-509

ergy flux, instead of a turbulent cascade (where nonlinear advective transfer is the main510

contribution to the budget analysis).511

There are two main differences between the kinetic energy distribution of SAM and512

WRF as shown in Figure 4a and 4b: 1) SAM atmospheric motions, both in the verti-513

cal and in the horizontal, contain more energy across all scales; 2) the difference between514

kinetic energy spectra increases at smaller scales where WRF is found to damp small fluc-515

tuations (wavelengths less than 4∆x), whereas in SAM small horizontal and vertical mo-516

tions shows a large small-scale variance in the total kinetic energy. These two diverg-517

ing behavior of kinetic energy reflect different modeling approaches at short wavelengths:518

WRF uses explicit filters to add scale-selective dissipation and damp the shortest wave-519

lengths which are not well resolved by the model grid, while SAM does not apply any520

explicit scale-selective filter allowing a larger energy input at the smallest resolvable scales.521

One interesting aspect is that the decrease of turbulent mixing in SAM0 did not522

significantly alter the kinetic energy spectrum both in the horizontal and in the verti-523

cal. This may be an indication that in SAM, at grid resolution larger than 1 km, the en-524

ergy dissipation is controlled mainly by the numerical discretization.525

The development of CSA in WRF and SAM simulations causes similar changes to526

the distribution of energy in both WRF and SAM. With CSA, the spectrum of horizon-527

tal KE and vertical velocity becomes more dominated by large-scale motions rather than528

small-scale motions as found in the non-aggregated case ( Figure 4a and 4b). Such an529

increase of large-scale variance is not observed in the WRF0 simulation, whose spectrum530

remains constant throughout the simulation. In particular, WRF0 is characterized by531

smaller and less energetic horizontal and vertical motions already from the beginning of532

the simulation. Indeed an increase of energy at the smallest resolvable scales is evident533

in 4a.534

The diverging behavior at small scales between SAM and WRF is also visible in535

the spectra of TWP and θ
′

v as shown in Figures 4c and 4d. Larger humidity and buoy-536

ancy fluctuations are present in SAM at small scales. This was evident also by the large537

presence of small cloud structures in SAM simulations as shown by the OLR snapshots538

(e.g. Figure 1a and 1b). The energy peak of TWP for WRF is found at wavelengths around539

20 km. For SAM, this peak is lower and it is found at slightly larger wavelengths (about540
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Figure 4. Power spectral densities of a) horizontal Kinetic Energy (KE), (b) vertical veloc-

ity (w), (c) perturbation virtual potential temperature (θ
′
v), averaged over the free troposphere

(between 3 and 10 km) and d) total water path (TWP) averaged over the whole column. The

reported values are time-averaged in the initial 5 days of simulation (black lines) and the last

10 days (red lines). The PSD is multiplied by the corresponding wavenumber to have a direct

correspondence between the variance of the variables and the areas underneath the curves. The

oblique gray dashed line represents the k−5/3 power law, while the vertical gray dashed line

marks the effective resolution of the model, taken as 4∆x.
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30 km). However, the TWP spectrum is quite flat from wavelength smaller than 30 km,541

indicating that strong updrafts and cloud structures in SAM can be found at very dif-542

ferent scales. Instead, in WRF, as shown also in Figure 1a, small deep convective cores543

and clouds are rare.544

When CSA occurs (red lines in Figures 4c and 4d), there is an increase in humid-545

ity and virtual potential temperature variance at large scales. Such increase is very large546

for TWP. The same production of mesoscale humidity variance was observed by Yanase547

et al. (2022) andJanssens et al. (2022) in the aggregation of deep convection in several548

models and by C. Bretherton and Blossey (2017) in the mesoscale aggregation of shal-549

low cumulus (see their Figure 16). The most prominent change of SAM and WRF with550

the reduction of turbulent mixing is evident in the initial stages in the variability of TWP,551

as shown in Figure 4d. Lower horizontal turbulent mixing in SAM0 and WRF0 causes552

a smaller variance of TWP across all scales. In this way, smaller perturbations of humid-553

ity will delay the onset of aggregation (as in SAM0), or prevent it (as in WRF0). The554

reduction of humidity variance in WRF is greater than in SAM.555

The reduction in free tropospheric moisture variance with decreased horizontal mix-556

ing is well correlated with a more active boundary layer in both SAM and WRF as seen557

in the vertical velocity spectrum in Fig. S3b.558

3.3 FMSE variance budget559

The time evolution of CSA is characterized by an increase in the Frozen Moist Static560

Energy (FMSE) variance, where FMSE is defined as:561

h = cpT + gz + Lvqv − Lfqi (15)

where cP is the specific heat of dry air, T is the air temperature, g is gravitational562

acceleration, z is the height above the surface, Lv is the latent heat of vaporization, qv563

is the specific humidity with respect to water vapor, Lf is the latent heat of fusion, and564

qi is the specific humidity with respect to ice condensates. The evolution of its horizon-565

tal spatial variance, ĥ′2, is shown in Figure 5a for the main experiments. (For each quan-566

tity x, we denote “x̂” as its density-weighted vertical integral
∫ ztop
0

xρdz. The horizon-567

tal domain mean of x is instead denoted as {x} and the anomaly as x’.). WRF and SAM568

exhibit a similar exponential growth of variance and they reach a stable equilibrium state569

after 40 days. The final variance values are also very similar between the two models.570

In order to study the feedback that cause the increase of the FMSE variance, we per-571

form the budget analysis according to the evolution equation of ĥ′2 by Wing and Emanuel572

(2014):573

1

2

∂ĥ′2

∂t
= SEF ′ĥ′ +NetSW ′ĥ′ +NetLW ′ĥ′ − ĥ′∇h · −̂→u h (16)

where SEF are the total surface enthalpy fluxes (the sum of the latent and the sen-574

sible heat flux), NetSW and NetLW are the column shortwave and longwave radiative575

flux convergence, and ∇h ·−̂→u h is the horizontal divergence of the vertically integrated576

flux of h, which is evaluated as a residual of the remaining terms.577

Figure 5b, 5c, 5d and 5e show the contribution of longwave radiation, shortwave578

radiation, surface fluxes and advection processes to the increase in FMSE variance in the579

main experiments.580

Radiative processes have very similar magnitude and evolution between SAM and581

WRF: they contribute positively to self-aggregation throughout the simulation time. In582

particular, longwave feedback are the drivers of CSA in the first stages up to 10 days,583

with WRF having higher correlations than SAM. After 10-20 days, longwave and short-584

wave feedback have similar magnitudes and remain almost constant, indicating that they585
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Figure 5. The budget of FMSE variance for all 100 simulations including: a) time evolu-

tion of the domain mean spatial variance of the vertical-integrated Frozen Moist Static Energy

(FMSE) (J2/m4) for the main experiments; b), c) and d) and e) shows the contributions to the

FMSE budget by longwave, shortwave, surface flux and advection (evaluated as a residual term),

respectively. Each contribution is averaged daily and a 5-day running average is applied to the

horizontal convergence term.
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are responsible for maintaining CSA. Surface enthalpy flux contributions are positive up586

to 20 days for both SAM and WRF. However, in SAM they exert stronger positive feed-587

back than in WRF, especially in the early stages where their magnitude is comparable588

with that of longwave radiative processes. After 20 days, the contribution of surface fluxes589

becomes negative, thereby opposing self-aggregation. Then, in SAM they return to bee-590

ing slightly positive, while in WRF they remain slightly negative. This is one of the few591

differences between WRF and SAM simulations, regarding this budget analysis. Advec-592

tive contributions are counter to CSA in the early stages, but they become slightly pos-593

itive in a time window of 10 days, which corresponds to the time when the convection594

starts to organize into a single cluster. This time window starts earlier in SAM than in595

WRF and overlaps with the time when the surface fluxes feedback becomes slightly neg-596

ative. After the convective cluster has formed, the advective processes return to be neg-597

ative, counteracting the CSA and the radiative feedback that sustain it.598

From the above FMSE analysis, convective self-aggregation is primarily triggered599

by radiative and surface fluxes feedback. However the contribution of SGS turbulent mix-600

ing is not taken into account in Equation 16. By using Eq. 2 for modeling turbulent dif-601

fusion of FMSE, one can add the SGS mixing contribution to the FMSE variance bud-602

get as follow:603

1

2

∂ĥ′2

∂t
= SEF ′ĥ′ +NetSW ′ĥ′ +NetLW ′ĥ′ − ĥ′∇h · −̂→u h+ ĥ′∇h ·

̂
(−Kh∇h

Pr
) (17)

Figure 6 offer a zoom of Figure 5 during the first 10 days, including also the effect604

of SGS mixing. The increase in the FMSE variance in Figure 6a is quite similar between605

WRF and SAM, while it is slower in SAM0 and absent in WRF0. This correlates with606

the total diabatic feedback, as they show similar increase in magnitude for SAM and WRF,607

while a slower increase in SAM0 and no increase at all for WRF0. Surprisingly, the SGS608

mixing term shows much larger positive correlations than the total diabatic feedback in609

the very early stages for SAM and WRF, implying that it strongly favors CSA and it610

cannot be neglected at such horizontal resolution. Looking only at SAM and WRF sim-611

ulation, this result implies that a strong cooperation between SGS mixing and diabatic612

feedback is necessary to start the diabatic feedback loop which is then responsible for613

the expansion and maintenance of dry patches.614

However, switching off such feedback in SAM0 does not prevent a constant increase615

in the magnitude of diabatic feedback, while it does in WRF0 where the amplitude of616

diabatic feedback remain constant. We hypothesized that this behavior is related to the617

implicit numerical entrainment which is present in SAM, when used at coarse resolutions.618

We will test this hypothesis by looking at the FMSE budget at finer resolution with dif-619

ferent explicit and implicit mixing.620

3.4 Triggering mechanism of CSA621

From the analysis of the horizontal variability of convection and the FMSE bud-622

get, it is clear that mixing processes are fundamental for triggering CSA. In particular,623

we argue that the radiative feedback loop which is responsible for the initial formation624

and the expansion of dry patches in the very initial stages, is initiated by an indirect path625

through the environment for convection instead of the direct path trough the WTG ve-626

locity. This is consistent with previous findings by Yanase et al. (2022). Following the627

work by Tompkins and Semie (2017), we suggest that the free-tropospheric drying and628

the associated radiative subsidence are strictly dependent on lateral mixing and updraft629

dilution. Models with an efficient mixing, either numerical or explicit, will allow for greater630

large-scale variability of convection and therefore greater dry perturbations over the free631

troposphere. Only when a sufficiently strong dry perturbation is established by updraft632

dilution and reduced convective heating and moistening, then a strong boundary layer633

radiative cooling in dry region is able to start the upgradient MSE shallow circulation634
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Figure 6. The budget of FMSE variance for the first 10 days including: a) time evolution of

the domain mean spatial variance of the vertical-integrated Frozen Moist Static Energy (FMSE)

(J2/m4) for the main experiments; b), c) and d) and e) shows the contributions to the FMSE

budget by SGS mixing, diabatic feedback (longwave, shortwave and surface flux) and advection

(evaluated as a residual term), respectively. Each contribution has an hourly time-step and a

6-hour running average is applied to the horizontal convergence term.
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and expand dry patches, as also found by Shamekh et al. (2020). Figure 7 shows respec-635

tively radiative cooling, static stability, cloud fraction, radiative velocity (calculated as636

the ratio between radiative cooling and static stability following Bony et al. (2016)) and637

the actual velocity in the driest regions (the lowest quartile of block-averaged Column638

Relative Humidity, CRH) averaged over the first 5 days. The strongest differences in the639

radiative cooling profiles are evident in the boundary layer below 2 km (see Figure 7a).640

Simulations with convective self-aggregation shows an average cooling of -1.5 K/day over641

the boundary layer with a peak at 1 km corresponding to the maximum low-level cloud642

amount (see Figure 7c). However, this cooling is not present in WRF0. The reason be-643

hind the absence of such cooling cannot be traced back to the decrease of radiative sub-644

sidence, since Figure 7d shows that between 2 and 10 km the radiative velocity between645

WRF and WRF0 is quite similar. Instead this difference has to be related to the high646

amount of the mid-level clouds (Figure 7c) and the positive low-level actual velocity (Fig-647

ure 7e) in the driest region, which implies that convection is able to penetrate into the648

free troposphere of dry regions and destroy any nascent dry perturbation.649

Although the WTG path, radiative velocity and clear-sky convergence may be use-650

ful for explaining different anvil cloud fraction, cloud top and temperature, Figure 7 shows651

that they cannot explain the different sensitivity of CSA in SAM and WRF to mixing652

processes. In fact, despite the different radiative cooling in the upper troposphere and653

the different static stability (Figures 7a and 7b), the WTG velocity, as diagnosed from654

the radiative cooling, is quite similar between SAM and WRF between 2 and 8 km. This655

is because the warmer atmosphere in WRF cause a larger radiative cooling which com-656

pensates for the greater static stability with respect to SAM. A similar effect was found657

also by Shamekh et al. (2020) by varying SST.658

4 Sensitivity studies659

4.1 Sensitivity to initial conditions660

Entrainment and updraft dilution depend also on the ambient temperature and rel-661

ative humidity. A drier atmosphere, especially in the lower troposphere such as that of662

SAM, would amplify the dilution effect. On the other hand, in warmer atmospheres, such663

as that of WRF, entrainment is more effective in reducing updraft buoyancy (Singh &664

O’Gorman, 2013). Different mixing efficiency due to different environment could lead665

to different thermal stratification (static stability). Through the Weak Temperature Gra-666

dient hypothesis this would directly impact the radiatively driven subsidence (and all667

the deep convective circulation in general), the clear-sky convergence and also the anvil668

cloud fraction (Bony et al., 2016) with possible consequences for convective self-aggregation.669

However, based on our previous results, we have shown that the free-tropospheric dry-670

ing necessary to start the radiative feedback loop, is not directly caused by the WTG671

path, but by the initial dry perturbations set by mixing processes. Therefore we do not672

expect self-aggregation in WRF0 even if we start the model with a colder atmosphere673

and a drier lower troposphere.674

Figure 8 further confirm our findings. Even by starting WRF and WRF0 by us-675

ing SAM initial RCE profiles (respectively WRFs and WRF0s), the relative occurrence676

of convective-self aggregation in the two simulations is not changed. Indeed after 10 days,677

Figure 9 shows that the temperature and humidity profiles of WRFs and WRF0s are very678

close to their corresponding simulation initialized with warmer and moister atmospheres679

(WRF and WRF0). A small free tropospheric drying is evident in WRF0s (see Figure680

9b), but this is not sufficient to start the radiative feedback loop.681

The WRF model seems to be very efficient in moistening the lower troposphere with682

respect to SAM, even with a very small amount of mixing, as in WRF0s. This is mainly683

due to the convectively-induced moistening which is favored by a reduced updraft dilu-684

tion, as denoted by the difference between WRFs and WRF0s in Figure 9b. Morevoer,685

it could also be related to the fact that SAM does not have a planetary boundary layer686
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Figure 7. Vertical profiles of (a) radiative cooling, (b) static stability, (c) cloud fraction, (d)

radiative velocity (obtained as the ratio between radiative cooling and static stability), (e) actual

velocity. All quantities are averaged over the first 5 days and over the driest regions. Following

the approach by C. S. Bretherton et al. (2005), all quantities are sorted into four quartiles by the

block-averaged Column Relative Humidity (CRH), computed by dividing the simulations domain

into blocks with area of 96 km2. Driest regions correspond to the lowest quartile.
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Figure 8. OLR instantaneous snapshots at midnight after 20 days for a) WRFs and b)

WRF0s.
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Figure 9. Vertical profiles of a) absolute temperature and b) relative humidity for the sim-

ulation WRF, SAM, WRFs and WRF0s. Black lines show the average on the first 6 hours in

order to show the corresponding initial conditions between SAM, WRFs and WRF0s and their

difference with respect to WRF. Red lines show the profiles averaged over day 10. After 10 days

the profile of temperature and relative humidity of WRFs and WRF0s are very close to that of

the respective simulations WRF and WRF0, indicating a small influence of initial conditions on

the occurence of self-aggregation.

–22–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

scheme, while WRF does. However, the impact of the planetary boundary layer scheme687

in WRF has already investigated by Tompkins and Semie (2017), and they found that688

including vertical mixing with a PBL scheme favors CSA. Therefore the results obtained689

for WRF0s should be conservative with respect to the choice of the PBL scheme.690

Figure 10 shows the correspondent increase in diabatic feedback and SGS mixing691

feedback for WRFs with respect to WRF. Another difference is the strong peak observed692

in WRFs in the FMSE variance at 12 hours with respect to that of WRF. This peak is693

the consequence of a larger effective updraft dilution in dry regions in WRFs with re-694

spect to WRF. The reduction in the number of deep convective cores is reported in Sup-695

plementary Figure S4.696

We conclude that the free-tropospheric drying caused by updraft dilution in WRF697

depends mainly on the SGS mixing and that a drier environment is not sufficient to al-698

low convective self-aggregation to develop in the absence of lateral mixing. This neces-699

sary condition for CSA triggering is again shown in Figure 11a, where we highlight the700

difference in large-scale horizontal variability of convection between WRFs and WRF0s701

during the first 5 days.702

Figure 12a shows the resulting differences in cloud fraction profiles. The most sig-703

nificant difference between WRF and WRFs is an increase in the height at which low-704

level cloud form and a decrease of the height of anvil clouds. WRF0s and WRFs gen-705

erally show a larger anvil but they have same distribution of WRF and WRF0 in the lower706

troposphere. The decrease in anvil cloud height and their increase in coverage can be707

traced back to the colder atmosphere of WRFs and WRF0s in agreement with the study708

of Stauffer and Wing (2022), and it also partly explain the difference between SAM and709

WRF simulations. However, the large differences in upper tropospheric and low-level cloud710

cover profile between SAM and WRFs depend mainly on the microphysics scheme.711

4.2 Sensitivity to Pr number712

By default, the WRF and SAM models use different Pr numbers, equal to 1/3 for713

WRF and 1 for SAM. The Pr number is a fundamental constant in the calculation of714

the eddy viscosity and eddy diffusivity. First, it appears in the calculation of the resolved715

strain tensor (Equation 7) as a weighting factor in the reduction of mixing in very sta-716

ble atmospheric conditions. Therefore, holding the resolved strain tensor and the buoy-717

ancy frequency constant (hence a constant Richardson number), the smaller the Pr num-718

ber, the greater the reduction of mixing in a stable stratified state. Secondly, the eddy719

diffusivity is derived by dividing the eddy viscosity by the turbulent Pr number. There-720

fore a larger Pr number implies a smaller eddy diffusivity, at constant eddy viscosity.721

Due to its influence in scalar mixing processes, we expect a large sensitivity of CSA722

to the Pr number. In particular, given Eq 16, the smaller the Pr number, the larger the723

contribution of SGS mixing in the increase of FMSE variance and the larger the moisture-724

convection feedback that allows free tropospheric drying.725

Figure 13 shows the OLR field after 20 days. The onset of CSA is clearly visible726

in SAMPr03, while WRFPr1 shows no sign of CSA. Therefore, increasing the Pr num-727

ber to 1 in WRF is enough to prevent CSA, as also found by Shi and Fan (2021) for the728

CM1 model. After 100 days, WRFPr1 exhibits always random convection like WRF0729

and WRF0s, while SAMPr03 aggregated state is very similar to SAM and SAM0 sim-730

ulations.731

As expected, decreasing the Pr number in SAM increases the strength of SGS mix-732

ing and diabatic feedback as shown in Figure 10b and Figure 10c. This corresponds to733

a faster increase in the FMSE variance (Figure 10a).734

The variability of the Total Water Path in SAMPr03 decreases at all scales (Fig-735

ure 11b). However the large-scale variability remains always bigger than WRF0 and of736

the order of magnitude of that of SAM and WRF. The same cannot be said for WRFPr1737

which instead exhibits a smaller large scale variability very similar to that of WRF0. The738
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Figure 10. The budget of FMSE variance for the first 5 days including: a) time evolution of

the domain mean spatial variance of the vertical-integrated Frozen Moist Static Energy (FMSE)

(J2/m4) for the initial sensitivity experiments; b), c) and d) and e) shows the contributions to

the FMSE budget by SGS mixing, diabatic feedback (longwave, shortwave and surface flux) and

advection (evaluated as a residual term), respectively. Each contribution has an hourly time-step

and a 6-hour running average is applied to the horizontal convergence term.
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Figure 11. Power spectral densities of total water path (TWP) averaged over the whole col-

umn and over the first 5 days for a) sensitivity experiments on initial conditions, b) sensitivity

experiments to Pr number. The PSD is multiplied by the corresponding wavenumber to have a

direct correspondence between the variance of the variables and the areas underneath the curves.

The oblique gray dashed line represents the k−5/3 power law, while the vertical gray dashed line

marks the effective resolution of the model, taken as 4∆x.
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Figure 12. Vertical profiles of domain-mean cloud fraction avaraged over the first 5 days for

a) sensitivity experiments on initial conditions, b) sensitivity experiments to Pr number.
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Figure 13. OLR instantaneous snapshots at midnight after 20 days for a) WRFPr1, b)

SAMPr03.

similarity between WRF0 and WRFPr1, SAM and SAMPr03 can be seen also by look-739

ing at the relative humidity vertical profiles shown in Supplementary Figure S6.740

Decreasing the Pr number in SAMPr03 doubles the average low-level cloud frac-741

tion, reaching values and depths more similar to that of WRF (see Figure 12b). The same742

increase is found also in the driest regions (not shown).743

4.3 Sensitivity to horizontal resolution744

In order to demonstrate that the SAM model has a large numerical mixing that745

makes CSA insensitive to SGS mixing at coarse resolution of 3 km, we run the main ex-746

periments WRF and SAM at finer resolution. We than reintroduce mixing explicitly, trough747

the SGS turbulence model, in order to obtain CSA with both models even at higher res-748

olution. This demonstrates that the total amount of mixing, either implicit or explicit,749

regulates the large scale variability of convection and therefore the free-troposphere dry-750

ing necessary to trigger CSA. A correct rescaling of mixing coefficient is needed if we want751

to maintain a constant large-scale variability.752

Figure 15 shows the OLR snapshot for finer resolution simulations after 30 days.753

WRFh and SAMh simulations show no sign of CSA, although a larger scale variability754

of convection is evident in SAMh compare to WRFh (Figures 15a and b). Therefore re-755

ducing the mixing length by a factor 1/3 and reducing the numerical mixing is enough756

to prevent CSA for both models. CSA is restored by reintroducing explicit mixing in WRF3h757

(simply increasing by a factor 3 the Smagorinsky constant) and in SAM3h (by decreas-758

ing Pr number by a factor 3 and increasing the Smagorinsky constant by a factor 3, to759

have similar constant to WRF3h). We have not tried other combinations of Pr and Cs760

coefficient, so we cannot establish an absolute threshold for the onset of CSA.761

WRF3h exhibits the strongest increase in FMSE variance, while SAM3h exhibits762

similar increase to those of SAM and WRF (Figure 16a). The effect of SGS mixing is763

larger in WRF3h compared to that of SAM3h, which is quite similar to that of all other764

simulations, except for SAMh, which has a very low correlation for this term. This is an-765

other signal of the larger contribution of numerical mixing in the SAM model. Indeed,766

at the same resolution and with same Pr numbers, WRF needs a much larger explicit767

mixing to trigger CSA.768
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Figure 14. The budget of FMSE variance for the first 5 days including: a) time evolution of

the domain mean spatial variance of the vertical-integrated Frozen Moist Static Energy (FMSE)

(J2/m4) for the sensitivity to Pr number experiments; b), c) and d) and e) shows the contribu-

tions to the FMSE budget by SGS mixing, diabatic feedback (longwave, shortwave and surface

flux) and advection (evaluated as a residual term), respectively. Each contribution has an hourly

time-step and a 6-hour running average is applied to the horizontal convergence term.
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Figure 15. OLR instantaneous snapshots at midnight after 30 days for a) WRFh, b) SAMh,

c) WRF3h, d) SAM3h
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Figure 16. The budget of FMSE variance for the first 5 days including: a) time evolution of

the domain mean spatial variance of the vertical-integrated Frozen Moist Static Energy (FMSE)

(J2/m4) for the horizontal resolution sensitivity experiments; b), c) and d) and e) shows the

contributions to the FMSE budget by SGS mixing, diabatic feedback (longwave, shortwave and

surface flux) and advection (evaluated as a residual term), respectively. Each contribution has an

hourly time-step and a 6-hour running average is applied to the horizontal convergence term.
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In literature, the dependence of the occurrence of CSA with the horizontal grid res-769

olution is commonly associated to the low-level cloud amount: the finer the resolution,770

the smaller the low-level cloud amount and the associated low-level radiative cooling which771

is necessary to start the shallow MSE upgradient circulation (C. J. Muller & Held, 2012;772

Yanase et al., 2020). Figure 17a shows that this dependence is found for the WRF model,773

since WRF and WRF3h have larger amount of low-level cloud fraction than WRFh. How-774

ever, we recall that the main difference between WRF and WRF0 was not in the low-775

level cloud amount, but on the mid- and upper-level cloud amount in the driest regions776

(see Figure 7c). On the other hand, Figure 17a shows that the two simulations SAMh777

and SAM3h have similar low-level cloud fractions on average, demonstrating that we can778

obtain CSA even with a small amount of low-level clouds. From this analysis we con-779

clude that the average amount of low-level clouds does not affecting the triggering phase780

of CSA, while it may be fundamental for its intensification and development.781
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Figure 17. Sensitivity experiments to horizontal resolution: a) Vertical profiles of domain-

mean cloud fraction avaraged over the first 5 days; b) Power spectral densities of total water

path (TWP) averaged over the whole column and over the first 5 days. The PSD is multiplied

by the corresponding wavenumber to have a direct correspondence between the variance of the

variables and the areas underneath the curves. The oblique gray dashed line represents the k−5/3

power law. The rightmost vertical gray dashed lines marks the effective resolution of the finer

grid resolution model (4 km = 4∆x). The leftmost vertical gray dashed lines marks the effective

resolution of the coarser grid resolution model (12 km = 4∆x).

The most important factor that binds all the aggregated simulations together in782

the very early stages of the simulation is the large-scale variability of the convection. This783

is shown in Figure 17b, where the difference in large-scale variance of TWP between the784

non-aggregated and aggregated cases is highlighted. It is interesting to note the larger785

large-scale variance of SAMh with respect to WRFh. This difference may be associated786

to the larger numerical mixing of SAM model with respect to the WRF model. This also787
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reflects the differences found in the horizontal variability of OLR between WRFh and788

SAMh (Figures 15a and 15b): WRFh has a more random and uniform convection, with789

smaller dry areas, while SAMh exhibit larger clusters of deep convective cores with larger790

dry areas.791

Therefore, as found by Biagioli and Tompkins (2023) in its idealized model, by in-792

creasing the Smagorinsky constant, we enlarge the area of influence of each deep con-793

vective core and we increase their average size, by increasing also the mean distance be-794

tween different cores and therefore the amplitude of dry perturbation introduced in the795

free troposphere. This allows to maintain the original updraft width even at a finer grid796

resolution and to restore CSA.797

Such sensitivity experiments therefore confirm the hypothesis formulated by Windmiller798

and Craig (2019) that ”large enough fluctuation in the humidity content has to be present799

for self-aggregation to start”. We conclude that coarse resolutions will increase this ini-800

tial fluctuation either through larger SGS mixing or numerical mixing.801

5 Discussion802

This study shows the relevant role of mixing and entrainment on the self-aggregation803

phenomenon. The level of mixing and entrainment reproduced by numerical simulation804

is provided by both the explicit turbulence model and the numerical dissipation. Accord-805

ingly, we have shown a strong sensitivity of CSA to the different turbulence models and806

spatial resolutions adopted in SAM and WRF atmospheric models. We try capture the807

essential aspects here.808

On one hand, in the SAM model, a lower turbulent mixing coefficient, hence a weaker809

moisture-convection feedback or moisture-entrainment-convection feedback (Tompkins810

& Semie, 2017), does not affect the onset of CSA. Therefore, looking only at this model,811

modifying the sensitivity of convection to water vapor cannot by itself destabilize the812

RCE equilibrium, as suggested by Emanuel et al. (2014). On the other hand, in the WRF813

model, turbulent mixing appears to be a necessary condition for CSA to occur. This re-814

sult is consistent with previous work by Tompkins and Semie (2017). Apparently, dif-815

ferent results coming from different numerical experiments support two different roles816

of the moisture-convection feedback in CSA.817

The two contrasting results can be reconciled by considering all scalar mixing pro-818

cesses either explicit (turbulence, hyperviscosity, or other explicit numerical filters) or819

implicit (diffusion generated by the advection schemes). Implicit numerical diffusion can820

provide a large contribution to the total mixing, especially at coarse grid resolution (such821

as those used in our simulations), and can cause numerical entrainment (Yamaguchi et822

al., 2011). Therefore it is possible that the SAM model at coarse resolutions is charac-823

terized by a large numerical diffusion which represents a substantial part of the total mix-824

ing of the model. As a matter of fact, the SAM solution is found to be substantially un-825

altered by switching off the explicit turbulence model. This approach resembles the one826

used in Implicit Large Eddy Simulations (ILES). In contrast, in the WRF model, which827

is built with higher-order numerics for running at coarse resolution, most part of the mix-828

ing is provided by the turbulent subgrid-scale parametrization. Accordingly, a substan-829

tial change of the WRF solution is observed by switching off the turbulence model.830

We have shown that reducing the numerical and turbulent diffusion in SAMh (by831

refining horizontal resolution) is sufficient to prevent the onset of CSA. A finer resolu-832

tion and lower diffusion is found to decrease also the amount of shallow clouds in dri-833

est regions and this may be interpreted as the main cause behind the absence of CSA834

at finer resolutions (C. J. Muller & Held, 2012). However, the reintroduction of a large835

explicit mixing in SAM3h, allows the onset of CSA at finer resolution, even with a small836

amount of shallow clouds. Therefore shallow clouds and their effect on radiative cool-837

ing, do not seem to play a significant role in the triggering of CSA. Instead they may be838

considered fundamental at later stages for its development and intensification. It is not839

trivial to find out which part of SAM numerics is providing the largest contribution to840
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numerical diffusion when using such model at coarse resolution. This may be the large841

integration time step in the AB3 scheme, the SOC momentum advection scheme, or the842

scalar advection scheme (although this work adopted the highest-order available Yamaguchi843

et al. (2011)).844

The key ingredient common to all numerical simulations showing the onset of CSA845

is the initial large-scale horizontal variability of convection. This is examined by look-846

ing at the horizontal energy spectra of Total Water Path. It is shown that a larger hor-847

izontal variability at large-scales is necessary to introduce large dry perturbations in the848

free troposphere and to cause the initial free-tropospheric drying. Such an initial large-849

scale variability is found since the first days of the simulation. Therefore it cannot be850

created trough a slow process such as the radiative subsidence, as calculated by the Weak851

Temperature Gradient hypothesis, but must be traced back to a fast and efficient pro-852

cess linked to the environment for convection, such as lateral mixing. An efficient lat-853

eral mixing will dilute updraft in dry regions, reducing the convectively-induced moist-854

ening of the free-troposphere and enhancing the large-scale variability of convection. Once855

such pre-condition of free tropospheric drying is verified, then a strong deep circulation856

between moist and dry regions can develop, intruding dry air into the boundary layer857

and creating a high surface pressure anomaly which is recognized to be fundamental for858

the development of CSA (B. Yang & Tan, 2020; Shamekh et al., 2020).859

The necessity of an initial large scale variability in moisture and convection to trig-860

ger CSA was hypothesized by Windmiller and Craig (2019) and it is consistent with re-861

cent results by Yanase et al. (2022) and Biagioli and Tompkins (2023). In particular, Yanase862

et al. (2022) demonstrated with the SCALE model that the radiative mechanism is not863

caused directly by the WTG velocity, but by the indirect path trough the environment864

for convection. Biagioli and Tompkins (2023) offer a reinterpretation of results by Tompkins865

and Semie (2017) attributing the sensitivity of CSA to diffusion to the mean upraft size866

instead of the effect of humidity entrainment into updrafts. Here we add a further step,867

by demonstrating that in CRM models, the initial large-scale variability of convection868

(free-tropospheric dry perturbation and mean updraft size) is set by small-scale mixing869

processes. The importance of energy dissipation in convective permitting models at coarse870

resolution was also found to be critical for shallow convective self-aggregation by Janssens871

et al. (2022). Interestingly, the appearence of larger and more energetic structures by872

damping small-scale structures (imposing larger values of the Smagorinsky constant) is873

also a common feature in Large Eddy Simulations of turbulent channel flows (Hwang &874

Cossu, 2010).875

In this paper the moisture-convection feedback was found to be fundamental for876

the triggering of CSA. Our results appear to contrast with those of D. Yang (2019), who877

show that CSA can be observed even by removing the MC feedback (homogenizing the878

water vapor field each 3 hours). However D. Yang (2019) uses the SAM model at 2 km879

horizontal resolution, which we have shown to be strongly affected by numerical mix-880

ing processes. Moreover, the homogenization time scale (3 hours) of the water vapor could881

be too large to effectively turn off the moisture-convection feedback, as also estimated882

by Ramirez Reyes (2023). Therefore the final aggregated state obtained by D. Yang (2019),883

which exhibit a very small variance of precipitable water with respect to what is usu-884

ally observed in CSA studies, could be model dependent. Further work is needed to repli-885

cate the experiments of D. Yang (2019) in other CRMs.886

This pre-condition on initial large-scale variability of convection for the triggering887

of CSA, can also explain three different properties that characterize self-aggregation in888

numerical simulations: 1) the sensitivity to horizontal grid resolution; 2) the sensitiv-889

ity to domain size, 3) the hysteresis of self-aggregation. The finer the resolution, the smaller890

the numerical and explicit entrainment, the smaller the updraft dilution, the smaller the891

large-scale variability and the smaller the free tropospheric drying. Therefore at finer892

resolutions, unless we do not keep fixed the mean updraft size and entrainment, CSA will893

not occur. At the same time, the larger the domain size, the larger the maximum allowed894

horizontal variability of water vapor and the larger the possibility to trigger CSA. These895
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two arguments can explain why the regime diagram of CSA (the sensitivity of CSA to896

horizontal resolution and domain size) is different in different models. Using the SCALE897

model, Yanase et al. (2020) found CSA to occur even at 500 m, while for the SAM model898

no self-aggregation was found below 2 km (C. J. Muller & Held, 2012). Regarding the899

hysteresis of self-aggregation, starting the simulation from an already aggregated con-900

dition, sets the initial large-scale variability to a fixed large value and we expect no sen-901

sitivity to horizontal resolution (C. J. Muller & Held, 2012) or turbulent mixing (Tompkins902

& Semie, 2017).903

Many studies investigate the role of other important factors other than subgrid-904

scale mixing in the triggering of CSA, such as vertical resolution (Jenney et al., 2023),905

grid anisotropy (De Roode et al., 2022), microphysics (Shi & Fan, 2021), rotation (Carstens906

& Wing, 2022) and SST (Wing & Emanuel, 2014; Coppin & Bony, 2015; M. Khairout-907

dinov & Emanuel, 2013). Future work is needed to investigate whether the hypothesized908

pre-condition on large-scale horizontal variability in convection for trigger of CSA would909

be valid for different values of the above cited factors.910

6 Conclusions911

The representation of mixing at small scales remains a substantial problem for many912

large-scale geophysical flows (Mapes & Neale, 2011). In particular, mixing processes af-913

fect the amount of cloud condensate (Jeevanjee & Zhou, 2022), the free-tropospheric rel-914

ative humidity in the tropics (Grabowski & Moncrieff, 2004), and the organization of con-915

vection (Takemi & Rotunno, 2003; Tompkins & Semie, 2017). Therefore small-scale mix-916

ing processes may have important implications for climate.917

This work focuses on convective self-aggregation, which spontaneously occurs in918

idealized simulations of Radiative-Convective Equilibrium. It is shown that this phenomenon919

exhibits a strong sensitivity to mixing and entrainment processes, as represented by both920

the explicit turbulence model and the numerical dissipation. In particular mixing is re-921

sponsible for setting the initial large-scale variability of free tropospheric moisture and922

therefore allowing the development of different radiative cooling rates between dry and923

moist regions. When refining horizontal grid resolution and decreasing numerical dis-924

sipation, enough turbulent mixing is necessary for the spontaneous development of con-925

vective aggregation. In such condition, convective self-aggregation is found to develop926

also with relatively small amount of shallow clouds. Therefore, turbulent mixing and dis-927

sipation at small scales regulate the amplitude of humidity perturbations introduced by928

convection in the free troposphere: the larger the dissipation at small scales, the larger929

the size and the strength of humidity perturbations in the free troposphere, which can930

destabilize the RCE state. A large initial horizontal variability of convection is found to931

be necessary for drying the free troposphere and trigger the occurrence of CSA.932

Until horizontal grid resolution down to the inertial range for deep convection is933

achieved (100 m, Bryan et al., 2003), non-homogeneous entrainment processes will not934

be resolved and the response of deep convection to moisture perturbation will be tightly935

linked to the numerics and the SGS turbulence parametrization adopted by the mod-936

els. Less idealized Global Cloud Resolving Models (GCRM) should take into account such937

dependence of mesoscale organization both on numerical and SGS mixing. TWP energy938

spectra have been shown to be a useful diagnostic tool for assessing the initial large scale939

variability of convection and its influence on mesoscale organization. In particular, such940

large-scale variability should not vary with the coarsening/refinement of horizontal res-941

olution and should be comparable to observations. A correct representation of large-scale942

horizontal variability of convection will also affect the reproduction of MJO events, as943

demonstrated by Holloway et al. (2013).944

In pursuit of these results, new families of turbulence models should be adopted945

for anisotropic and coarse resolution grids (Honnert et al., 2021; Cimarelli et al., 2019)946

and the idealized RCE simulations could provide a useful setting for studying their im-947

pact on deep convection.948
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