References
Alexander, F., Eggert, S., & Wiest, J. (2018). A novel lab-on-a-chip platform for spheroid metabolism monitoring. Cytotechnology ,70 (1), 375–386. https://doi.org/10.1007/s10616-017-0152-x
Bahcecioglu, G., Hasirci, N., & Hasirci, V. (2019). Cell behavior on the alginate-coated PLLA/PLGA scaffolds. International Journal of Biological Macromolecules , 124 , 444–450. https://doi.org/10.1016/J.IJBIOMAC.2018.11.169
Baker, B. M., & Chen, C. S. (2012). Deconstructing the third dimension-how 3D culture microenvironments alter cellular cues.Journal of Cell Science , 125 , 3015–3024. https://doi.org/10.1242/jcs.079509
Bavli, D., Prill, S., Ezra, E., Levy, G., Cohen, M., Vinken, M., … Nahmias, Y. (2016). Real-time monitoring of metabolic function in liver-on-chip microdevices tracks the dynamics of mitochondrial dysfunction. Proceedings of the National Academy of Sciences of the United States of America , 113 (16), E2231-40. https://doi.org/10.1073/pnas.1522556113
Benson, K., Cramer, S., & Galla, H.-J. (2013). Impedance-based cell monitoring: barrier properties and beyond. Fluids and Barriers of the CNS , 10 (1), 5. https://doi.org/10.1186/2045-8118-10-5
Brajša, K., Trzun, M., Zlatar, I., & Jelić, D. (2016). Three-dimensional cell cultures as a new tool in drug discovery.Periodicum Biologorum , 118 (1), 59–65. https://doi.org/10.18054/pb.2016.118.1.3940
Bü, S. C., Diener, L., Frey, O., Kim, J.-Y., & Hierlemann, A. (2016). Automated, Multiplexed Electrical Impedance Spectroscopy Platform for Continuous Monitoring of Microtissue Spheroids. https://doi.org/10.1021/acs.analchem.6b01410
Caliari, S. R., & Burdick, J. A. (2016). A Practical Guide to Hydrogels for Cell Culture Introduction: why hydrogels for cell culture? Nat Methods , 13 (5), 405–414. https://doi.org/10.1038/nmeth.3839
Canali, C., Heiskanen, A., Martinsen, Ø. G., Mohanty, S., Dufva, M., Wolff, A., & Emnéus, J. (2016). Impedance-Based Monitoring for Tissue Engineering Applications. IFMBE Proceedings ,54 (September), 48–51. https://doi.org/10.1007/978-981-287-928-8
Carlson, M. W., Alt-Holland, A., Egles, C., & Garlick, J. A. (2008). Three-Dimensional Tissue Models of Normal and Diseased Skin.Current Protocols in Cell Biology , 41 (1), 19.9.1-19.9.17. https://doi.org/10.1002/0471143030.cb1909s41
Chen, S., Einspanier, R., & Schoen, J. (2015). Transepithelial electrical resistance (TEER): a functional parameter to monitor the quality of oviduct epithelial cells cultured on filter supports.Histochemistry and Cell Biology , 144 (5), 509–515. https://doi.org/10.1007/s00418-015-1351-1
Chitturi, V., & Nagi, F. (2017). Spatial resolution in electrical impedance tomography: A topical review. Journal of Electrical Bioimpedance , 8 (1), 66. https://doi.org/10.5617/jeb.3350
Curto, V. F., Ferro, M. P., Mariani, F., Scavetta, E., & Owens, R. M. (2018). A planar impedance sensor for 3D spheroids. Lab on a Chip , 18 (6), 933–943. https://doi.org/10.1039/c8lc00067k
Curto, Vincenzo F., Marchiori, B., Hama, A., Pappa, A.-M., Ferro, M. P., Braendlein, M., … Owens, R. M. (2017). Organic transistor platform with integrated microfluidics for in-line multi-parametric in vitro cell monitoring. Microsystems & Nanoengineering , 3 , 17028. https://doi.org/10.1038/micronano.2017.28
Dantism, S., Takenaga, S., Wagner, P., Wagner, T., & Schöning, M. J. (2015). Light-addressable Potentiometric Sensor (LAPS) Combined with Multi-chamber Structures to Investigate the Metabolic Activity of Cells.Procedia Engineering , 120 , 384–387. https://doi.org/10.1016/J.PROENG.2015.08.647
Del Agua, I., Marina, S., Pitsalidis, C., Mantione, D., Ferro, M., Iandolo, D., … Mecerreyes, D. (2018). Conducting Polymer Scaffolds Based on Poly(3,4-ethylenedioxythiophene) and Xanthan Gum for Live-Cell Monitoring. https://doi.org/10.1021/acsomega.8b00458
Dmitriev, R. I. (2017). Multi-Parametric Live Cell Microscopy of 3D Tissue Models (Vol. 1035). https://doi.org/10.1007/978-3-319-67358-5
Duval, K., Grover, H., Han, L.-H., Mou, Y., Pegoraro, A. F., Fredberg, J., … Han, L.-H. (2017). Modeling Physiological Events in 2D vs. 3D Cell Culture. https://doi.org/10.1152/physiol.00036.2016
Edmondson, R., Broglie, J. J., Adcock, A. F., & Yang, L. (2014). Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay and Drug Development Technologies , 12 (4), 207–218. https://doi.org/10.1089/adt.2014.573
Elbrecht, D. H., Long, C. J., & Hickman, J. J. (2018). Transepithelial/endothelial Electrical Resistance (TEER) theory and applications for microfluidic body-on-a-chip devices. Journal of Rare Diseases Research & Treatment , 1 (3), 46–52. https://doi.org/10.29245/2572-9411/2016/3.1026
Esch, M. B., Ueno, H., Applegate, D. R., & Shuler, M. L. (2016). Modular, pumpless body-on-a-chip platform for the co-culture of GI tract epithelium and 3D primary liver tissue. Lab on a Chip ,16 (14), 2719–2729. https://doi.org/10.1039/c6lc00461j
Fernandez-Corazza, M., Turovets, S., Luu, P., Price, N., Muravchik, C. H., & Tucker, D. (2018). Skull modeling effects in conductivity estimates using parametric electrical impedance tomography. IEEE Transactions on Biomedical Engineering , 65 (8), 1785–1797. https://doi.org/10.1109/TBME.2017.2777143
Goers, L., Freemont, P., & Polizzi, K. M. (2014). Co-culture systems and technologies: taking synthetic biology to the next level.Journal of the Royal Society, Interface , 11 (96). https://doi.org/10.1098/rsif.2014.0065
Groeber, F., Engelhardt, L., Egger, S., Werthmann, H., Monaghan, M., Walles, H., & Hansmann, J. (2015). Impedance Spectroscopy for the Non-Destructive Evaluation of in Vitro Epidermal Models.Pharmaceutical Research . https://doi.org/10.1007/s11095-014-1580-3
Hossein Mahfouzi, S., Amoabediny, G., Doryab, A., Hamid Safiabadi-Tali, S., & Ghanei, M. (2018). Noninvasive Real-Time Assessment of Cell Viability in a Three-Dimensional Tissue. Termis. Tissue Engineering & Regenerative Medicine Internal Society , 24 (4). https://doi.org/10.1089/ten.tec.2017.0371
Inal, S., Hama, A., Ferro, M., Pitsalidis, C., Oziat, J., Iandolo, D., … Owens, R. M. (2017). Conducting Polymer Scaffolds for Hosting and Monitoring 3D Cell Culture. Advanced Biosystems , 1 (6), 1700052. https://doi.org/10.1002/adbi.201700052
Jamil, N., Smith, S., Yang, Y., Jia, J., Bagnaninchi, P., & Gonzalez-Fernandez, E. (2016). Design and fabrication of microelectrodes for electrical impedance tomography of cell spheroids. In 2016 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES)(pp. 426–431). IEEE. https://doi.org/10.1109/IECBES.2016.7843486
Jenkins, J., Dmitriev, R. I., Morten, K., McDermott, K. W., & Papkovsky, D. B. (2015). Oxygen-sensing scaffolds for 3-dimensional cell and tissue culture. Acta Biomaterialia , 16 , 126–135. https://doi.org/10.1016/J.ACTBIO.2015.01.032
Khan, M., Cantù, E., Tonello, S., Serpelloni, M., Lopomo, N., & Sardini, E. (2019). A Review on Biomaterials for 3D Conductive Scaffolds for Stimulating and Monitoring Cellular Activities. Applied Sciences , 9 (5), 961. https://doi.org/10.3390/app9050961
Lee, E. J., Wi, H., McEwan, A. L., Farooq, A., Sohal, H., Woo, E. J., … Oh, T. I. (2014). Design of a microscopic electrical impedance tomography system for 3D continuous non-destructive monitoring of tissue culture. BioMedical Engineering OnLine , 13 . https://doi.org/10.1186/1475-925X-13-142
Lee, S.-M., Han, N., Lee, R., Choi, I.-H., Park, Y.-B., Shin, J.-S., & Yoo, K.-H. (2016). Real-time monitoring of 3D cell culture using a 3D capacitance biosensor. Biosensors and Bioelectronics , 77 , 56–61. https://doi.org/10.1016/j.bios.2015.09.005
Lee, V., Singh, G., Trasatti, J. P., Bjornsson, C., Xu, X., Tran, T. N., … Karande, P. (2014). Design and fabrication of human skin by three-dimensional bioprinting. Tissue Engineering. Part C, Methods , 20 (6), 473–484. https://doi.org/10.1089/ten.TEC.2013.0335
Lei, K. F., Lin, B.-Y., & Tsang, N.-M. (2017). Real-time and label-free impedimetric analysis of the formation and drug testing of tumor spheroids formed via the liquid overlay technique. RSC Adv. ,7 (23), 13939–13946. https://doi.org/10.1039/C7RA00209B
Lei, K. F., Liu, T. K., & Tsang, N. M. (2018b). Towards a high throughput impedimetric screening of chemosensitivity of cancer cells suspended in hydrogel and cultured in a paper substrate.Biosensors and Bioelectronics , 100 (259), 355–360. https://doi.org/10.1016/j.bios.2017.09.029
Lotz, C., Schmid, F. F., Oechsle, E., Monaghan, M. G., Walles, H., & Groeber-Becker, F. (2017). Cross-linked Collagen Hydrogel Matrix Resisting Contraction to Facilitate Full-Thickness Skin Equivalents.ACS Applied Materials and Interfaces , 9 (24), 20417–20425. https://doi.org/10.1021/acsami.7b04017
Mehta, G., Hsiao, A. Y., Ingram, M., Luker, G. D., & Takayama, S. (2012). Opportunities and challenges for use of tumor spheroids as models to test drug delivery and efficacy. Journal of Controlled Release : Official Journal of the Controlled Release Society ,164 (2), 192–204. https://doi.org/10.1016/j.jconrel.2012.04.045
Misun, P. M., Hierlemann, A., & Frey, O. (2018). Miniature Fluidic Microtissue Culturing Device for Rapid Biological Detection (pp. 207–225). Springer, Cham. https://doi.org/10.1007/978-3-319-64747-0_8
Modena, M. M., Chawla, K., Misun, P. M., & Hierlemann, A. (2018). Smart Cell-Culture Systems: Integration of Sensors and Actuators into Microphysiological Systems. ACS Chemical Biology , acschembio.7b01029. https://doi.org/10.1021/acschembio.7b01029
Oliver, N. S., Toumazou, C., Cass, A. E. G., & Johnston, D. G. (2009). Glucose sensors: a review of current and emerging technology.Diabetic Medicine , 26 (3), 197–210. https://doi.org/10.1111/j.1464-5491.2008.02642.x
Pan, Y., Hu, N., Wei, X., Gong, L., Zhang, B., Wan, H., & Wang, P. (2019). 3D cell-based biosensor for cell viability and drug assessment by 3D electric cell/matrigel-substrate impedance sensing.Biosensors and Bioelectronics , 130 , 344–351. https://doi.org/10.1016/j.bios.2018.09.046
Poghossian, A., Ingebrandt, S., Offenhäusser, A., & Schöning, M. J. (2009). Field-effect devices for detecting cellular signals.Seminars in Cell & Developmental Biology , 20 (1), 41–48. https://doi.org/10.1016/J.SEMCDB.2009.01.014
Schmitz, T., Schweinlin, M., Kollhoff, R. T., Engelhardt, L., Lotz, C., Groeber-Becker, F., … Hansmann, J. (2018). Nanostructured TiN-Coated Electrodes for High-Sensitivity Noninvasive Characterization of in Vitro Tissue Models. ACS Applied Nano Materials ,1 (5), 2284–2293. https://doi.org/10.1021/acsanm.8b00345
Schwartz, B. L., Chauhan, M., & Sadleir, R. J. (2018). Analytic modeling of conductively anisotropic neural tissue. Journal of Applied Physics , 124 (6), 064701. https://doi.org/10.1063/1.5036659
Shaibani, P. M., Etayash, H., Naicker, S., Kaur, K., & Thundat, T. (2016). Metabolic Study of Cancer Cells Using a pH Sensitive Hydrogel Nanofiber Light Addressable Potentiometric Sensor. https://doi.org/10.1021/acssensors.6b00632
Sridharan, R., Ryan, E. J., Kearney, C. J., Kelly, D. J., & O’Brien, F. J. (2019). Macrophage Polarization in Response to Collagen Scaffold Stiffness Is Dependent on Cross-Linking Agent Used To Modulate the Stiffness. ACS Biomaterials Science & Engineering , 5 (2), 544–552. https://doi.org/10.1021/acsbiomaterials.8b00910
Srinivasan, B., Kolli, A. R., Esch, M. B., Abaci, H. E., Shuler, M. L., & Hickman, J. J. (2015). TEER measurement techniques for in vitro barrier model systems. Journal of Laboratory Automation ,20 (2), 107–126. https://doi.org/10.1177/2211068214561025
Sriram, G., Alberti, M., Dancik, Y., Wu, B., Wu, R., Feng, Z., … Wang, Z. (2018). Full-thickness human skin-on-chip with enhanced epidermal morphogenesis and barrier function. Materials Today ,21 (4), 326–340. https://doi.org/10.1016/J.MATTOD.2017.11.002
Sun, B., Yue, S., Hao, Z., Cui, Z., & Wang, H. (2019). An Improved Tikhonov Regularization Method for Lung Cancer Monitoring Using Electrical Impedance Tomography. IEEE Sensors Journal , 1–1. https://doi.org/10.1109/JSEN.2019.2892179
Verjans, E.-T., Doijen, J., Luyten, W., Landuyt, B., & Schoofs, L. (2017). Three-dimensional cell culture models for anticancer drug screening: Worth the effort? Journal of Cellular Physiology ,233 (4), 2993–3003. https://doi.org/10.1002/jcp.26052
Walker-Daniels, J. (2012). Live Cell Imaging Methods Review.Materials and Methods , 2 . https://doi.org/10.13070/mm.en.2.124
Weltin, A., Slotwinski, K., Kieninger, J., Moser, I., Jobst, G., Wego, M., … Urban, G. A. (2014). Cell culture monitoring for drug screening and cancer research: a transparent, microfluidic, multi-sensor microsystem. Lab Chip , 14 (1), 138–146. https://doi.org/10.1039/C3LC50759A
Weyand, B., Nöhre, M., Schmälzlin, E., Stolz, M., Israelowitz, M., Gille, C., … Vogt, P. M. (2015). Noninvasive Oxygen Monitoring in Three-Dimensional Tissue Cultures Under Static and Dynamic Culture Conditions. BioResearch Open Access , 4 (1), 266–277. https://doi.org/10.1089/biores.2015.0004
Wu, H., Yang, Y., Bagnaninchi, P. O., & Jia, J. (2017). Imaging cell-drug response in 3D bioscaffolds by electrical impedance tomography. In 2017 IEEE International Conference on Imaging Systems and Techniques (IST) (pp. 1–5). IEEE. https://doi.org/10.1109/IST.2017.8261511
Wu, H., Yang, Y., Bagnaninchi, P. O., & Jia, J. (2018). Electrical impedance tomography for real-time and label-free cellular viability assays of 3D tumour spheroids. The Analyst , 143 (17), 4189–4198. https://doi.org/10.1039/C8AN00729B
Wu, H., Zhou, W., Yang, Y., Jia, J., & Bagnaninchi, P. (2018). Exploring the potential of electrical impedance tomography for tissue engineering applications. Materials , 11 (6), 1–11. https://doi.org/10.3390/ma11060930
Xu, Y., Xie, X., Duan, Y., Wang, L., Cheng, Z., & Cheng, J. (2015). A review of impedance measurements of whole cells. Biosensors and Bioelectronics , 77 , 824–836. https://doi.org/10.1016/J.BIOS.2015.10.027
Xu, Z., Yao, J., Wang, Z., Liu, Y., Wang, H., Chen, B., & Wu, H. (2018). Development of a Portable Electrical Impedance Tomography System for Biomedical Applications. IEEE Sensors Journal , 18 (19), 8117–8124. https://doi.org/10.1109/JSEN.2018.2864539
Yang, Y., Jia, J., Smith, S., Jamil, N., Gamal, W., & Bagnaninchi, P. O. (2017). A miniature electrical impedance tomography sensor and 3-D Image Reconstruction for Cell Imaging. IEEE Sensors Journal ,17 (2), 514–523. https://doi.org/10.1109/JSEN.2016.2631263
Yin, X., Wu, H., Jia, J., & Yang, Y. (2018). A Micro EIT Sensor for Real-Time and Non-Destructive 3-D Cultivated Cell Imaging. IEEE Sensors Journal , 18 (13), 5402–5412. https://doi.org/10.1109/JSEN.2018.2834509
Yin, X., Yang, Y., Jia, J., & Tan, C. (2017). 3D image reconstruction on a miniature planar EIT sensor using sparsity with median filter. In2017 IEEE SENSORS (pp. 1–3). IEEE. https://doi.org/10.1109/ICSENS.2017.8234213
Zhang, Y. S., Aleman, J., Shin, S. R., Kilic, T., Kim, D., Mousavi Shaegh, S. A., … Khademhosseini, A. (2017). Multisensor-integrated organs-on-chips platform for automated and continual in situ monitoring of organoid behaviors. Proceedings of the National Academy of Sciences of the United States of America ,114 (12), E2293–E2302. https://doi.org/10.1073/pnas.1612906114