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Abstract—Data generated from sources such as wearable1

sensors, medical imaging, personal health records, pathology2

records, and public health organizations have resulted in a3

massive information increase in the medical sciences over the4

last decade. Advances in computational hardware, such as cloud5

computing, Graphical Processing Units (GPUs), and Tensor6

Processing Units (TPUs), provide the means to utilize these data.7

Consequently, many Artificial Intelligence (AI)-based methods8

have been developed to infer from large healthcare data. Here,9

we present an overview of recent progress in artificial intelligence10

and biosensors in medical and life sciences. We discuss the role11

of machine learning in medical imaging, precision medicine,12

and biosensors for the Internet of Things (IoT). We review the13

most recent advancements in wearable biosensing technologies14

that use AI to assist in monitoring bodily electro-physiological15

and electro-chemical signals and disease diagnosis, demonstrating16

the trend towards personalized medicine with highly effective,17

inexpensive, and precise point-of-care treatment. Furthermore,18

an overview of the advances in computing technologies, such as19

accelerated artificial intelligence, edge computing, and federated20

learning for medical data, are also documented. Finally, we21

investigate challenges in data-driven AI approaches, the potential22

issues that biosensors and IoT-based healthcare generate, and the23

distribution shifts that occur among different data modalities,24

concluding with an overview of future prospects.25

Index Terms—Artificial Intelligence, Explainable AI, Medical26

Imaging, Domain Adaptation, Biosensors, Federated Learning27

I. INTRODUCTION28

About 10% of global gross domestic product (GDP) (1029

trillion USD) is spent on healthcare annually [1]. The re-30

cent advancements in technology, especially data-driven meth-31

ods and computational processing power can benefit, both32

the patients and the medical industry, as well as reduce33

the huge expenditures. Moreover, massive healthcare data34

is available from sources such as; electronic health records35
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(EHRs), genomics profiles, medical imaging, chemical, and 36

drug databases. Analytical methods, especially deep learning- 37

based Artificial Intelligence (AI) methods, can provide the 38

tools to design useful clinical and medical applications to 39

process these large datasets. Data-driven methods could offer 40

benefits in medical record digitization, clinical trials, diagnosis 41

assistance, prognosis evaluation, and the design of optimal pre- 42

vention and treatment strategies, as well as precision medicine, 43

drug discovery, and health policy. 44

Advances in computational infrastructure have provided 45

the capacity to generate, store, analyze and visualize large, 46

complex, and dynamic datasets typical of modern biomedi- 47

cal studies [2]. New treatment options are being developed 48

and tested in clinical trials [3]. In the last decade, artificial 49

intelligence has moved from theoretical studies to real-time 50

applications thanks to the rise in the computational capacity 51

of GPUs and TPUs. Methods like AutoML [4] and explainable 52

artificial intelligence (XAI) [5] are advancing, which have the 53

potential to transform the current medical practice. However, 54

there are still many bottlenecks to realizing the full potential 55

of analytical methods in the healthcare industry. Important 56

challenges for data science in medicine include data collection, 57

standardization of data formats, missing data values, devel- 58

oping large and efficient computational infrastructure, data 59

privacy and security, and others. 60

For example, to deal with the small sample size issue in 61

medical images, generative models can be used to generate 62

synthetic medical images of high quality. Generative Adver- 63

sarial Network (GAN), a type of neural network that can 64

generate synthetic data, can be used to generate synthetic 65

magnetic resonance imaging (MRI) scans or positron emission 66

tomography (PET)-scan images using computed tomography 67

(CT) scans. A subset of images, regardless of size, is a subset 68

of the universal set. Using that small subset, generative models 69

learn the probability distribution of the universal training set. 70

After extracting the representative features, the model can 71

generate high-quality synthetic images by sampling from the 72

probability distribution. These synthetic images can be used to 73

build generalized medical image analysis models for various 74

clinical applications. 75

The interrelated nature of biomedical data is one of its most 76

important properties. Such data can be represented in the form 77

of graphs. Graph machine learning allows for the modeling 78

of unstructured multimodal datasets. Graph machine learn- 79

ing can model more complex relationships between disease 80

and patients, understand tumor micro-environment, predict 81
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drug response, and re-purposing. Additionally, graph machine82

learning coupled with attention mechanism may provide more83

interpretable machine learning models than typical traditional84

black-box models.85

The recent breakthrough of the artificial intelligence (AI)86

system Alphafold2 [6] in predicting the three-dimensional87

structure of proteins solely from the amino acid sequence is88

a huge success. AlphaFold2 won the Critical Assessment of89

Structure Prediction (CASP) [7], the worldwide event for pro-90

tein structure prediction, since 1994. Meta AI also joined the91

race and developed an AI system to predict structures of about92

600 million proteins [8]. However, how to translate this into93

the in vivo situation is still an open question. AlphaFold2 can94

predict unbound protein structures; however, most practical95

applications require protein-drug complex predictions.96

There have also been significant advancements in processing97

power and biosensor technologies. For example, with the help98

of parallel processing methods and powerful GPU clusters,99

such as NVIDIA-DGX, we can now process massive complex100

multi-dimensional biomedical datasets [9]. Moreover, wear-101

able electronics, such as electronic tattoos (E-tattoos), epider-102

mal electronics systems (EES), and flexible electrochemical103

bioelectronics, coupled with machine learning algorithms can104

be used to monitor various biomarkers in real time [10].105

As the use of AI in healthcare has been a very active106

research area, several surveys were found covering this topic107

[11]–[13]. In [11], a discussion about the use of medical108

sensors with artificial intelligence is presented. In this respect,109

various sensing systems and the use of AI in medical decision-110

making are studied. The study in [12] provides coverage of the111

different wearable sensors for healthcare delivery, primarily112

from a hardware perspective, and briefly highlights the benefits113

and challenges of AI. More recent work [13] covers the114

use of AI in the internet of medical things and its different115

applications concerning various algorithms. AI methods for116

combating various medical diseases were also discussed. A117

survey about AutoML was presented in [14].118

Given the enormous progress in recent years for AI in119

healthcare, an updated review will benefit the community. In120

this article, we present an updated survey of the recent progress121

in data-driven methods for healthcare. We specifically discuss122

practical applications of artificial intelligence, biosensors, and123

computational infrastructure, concerning clinical relevance.124

The recent methods which have the potential to become125

a part of the healthcare industry, such as AutoML [15],126

explainableAI [16], and Federated learning [17] are evaluated.127

Moreover, existing clinical tools and emerging AI-based start-128

up companies are presented. We also highlight the existing129

challenges for AI in healthcare and present some potential130

solutions. The use of AI for drug discovery, nano-medicine,131

and medical robotics is out of the scope of this review.132

The survey is organized as follows; Section II highlights133

applications of machine learning in various healthcare sectors.134

AI-based clinical tools and start-up companies are presented135

in Section III. Sections IV and V discuss applications of big136

data analytics and biosensors, respectively. Computational ad-137

vances, federated learning, and edge computing are discussed138

in Section VI. The recent challenges in AI for healthcare with139

potential solutions are explored in Section VII, and Section 140

VIII concludes this review. 141

II. MACHINE LEARNING IN HEALTHCARE 142

Data science and machine learning have been successful in 143

many areas related to computer vision, such as self-driving 144

cars, recognizing actions, image classification, and intelligent 145

robots. These are well-posed tasks where the problem is 146

known, and the solution is verifiable. However, healthcare- 147

related tasks involve safety and security risks, leading to 148

privacy concerns. These problems are neither well-posed nor 149

well-defined, and their solutions can be hard to verify. Assess- 150

ing the risk of life-threatening disease in people infected with 151

the SARS-CoV-2 virus is a recent broad, complex, and urgent 152

problem where data science has been used to suggest prognos- 153

tic indicators from a wide variety of genetic and physiological 154

markers and the presentation of symptoms [18]. Figure 1 155

shows an ecosystem for machine learning in healthcare tasks. 156

Machine learning can produce actionable insights for clinical 157

practice, provide recommendations to governments for optimal 158

health policy, and help accelerate and optimize drug discovery 159

and design processes. More established use cases of different 160

machine learning applications in healthcare are presented in 161

Table I. 162

A. Explainable Artificial Intelligence 163

While machine learning models applied to biomedical data, 164

have the potential to produce clinically useful judgments, the 165

models, particularly deep learning, are frequently regarded as 166

black boxes that are difficult for humans to understand [5]. 167

This lack of transparency leads to a bottleneck in the clinical 168

implementation of machine learning-based findings, as any 169

decision will directly affect a patient’s health. One way to 170

increase the transparency in machine learning predictions is 171

to highlight the feature importance or to visualize features 172

at different layers. This way, we can analyze each feature’s 173

importance in the prediction model and better understand 174

the predictions. One such method is known as Grad-CAM 175

visualization [19], based on the target concept’s gradients, 176

which flow into the final convolutional layer to build a coarse 177

localization map highlighting significant locations or heat 178

maps in the image for concept prediction. Explainable models, 179

or explainable artificial intelligence, are needed to build the 180

trust of healthcare professionals. 181

Explainable AI methods are classified based on the com- 182

plexity and scope of their interpretability [20] and the level 183

of dependencies in the AI model. Explainability has different 184

levels of understanding, including interpretability, stability, 185

robustness, and confidence. A user can not only see but also 186

learn how inputs are mathematically transferred to outputs 187

in an interpretable system, whereas a stable system is not 188

misled by small perturbations or noise in the input data. The 189

possibility of an event occurring is measured by confidence. 190

The purpose is to quantify the level of confidence in the 191

decision [21]. 192

Complex deep learning models are generally less inter- 193

pretable, and there can be a trade-off between accuracy and 194
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Fig. 1. An ecosystem for machine learning in the healthcare industry. Clinical decision support systems, policy-makers, and pharmaceutical companies can
benefit from machine learning methods.

interpretability. Easy-to-interpret models could be designed,195

but they may compromise accuracy. Highly complex, un-196

interpretable models with high accuracy that require a separate197

set of algorithms for interpretation are more commonly used198

in XAI. Another way to explainability is to check whether199

the model is agnostic or model-specific. Agnostic methods200

are used for any machine learning algorithm, such as neural201

networks and support vector machines, while model-specific202

methods are limited to interpreting the specific model [22].203

It is also important to consider human factors when en-204

hancing the model interpretability, such as a medical expert,205

to guarantee the interpretability and explanations of the model.206

It is expected that Explainable AI will further advance research207

in machine learning for healthcare as it solves the critical208

challenges of healthcare, such as fairness, transparency, safety,209

security, privacy, and trust.210

1) Human and Machine Interpretable Visualizations: One211

important aspect of Explainable AI is the use of human212

interpretable visualizations that allow humans to understand213

the reasoning behind AI models easily. For example, deci-214

sion trees, rule lists, and other interpretable models can be215

visualized in a way that is easy for humans to understand.216

In addition to human-interpretable visualization techniques,217

machine-interpretable visualization techniques are also impor-218

tant in Explainable AI. These techniques enable AI models219

to explain their predictions or decisions in a way that is220

easily understandable by other AI systems. For example,221

SHAP (SHapley Additive exPlanations) [23] is a machine-222

interpretable visualization technique that can be used to ex-223

plain the output of complex machine learning models, such as224

deep neural networks.225

However, deep learning models work differently than hu-226

mans, and it is difficult to interpret a model with billions227

of parameters. For example, if we visualize the grad-cam228

heatmap for a dog, we can see that most of the heat is229

concentrated around the dog’s ears. Humans recognize dogs230

by the uniqueness of their shape. 231

2) Causal Inference: Health science-related tasks demand 232

more explanation than mere predictions. With the abundance 233

of data, many deep learning algorithms just only look for 234

correlations among variables and make predictions or clas- 235

sifications without explaining the actual cause. To be practical 236

and utilized in daily clinics, machine learning models must 237

have strong causal evidence. Several methods are developed 238

to convert the deep learning black box to a white box, for ex- 239

ample, feature visualization [24], gradcam visualization [25], 240

regularization via causal graph discovery [26], causal-aware 241

imputation via learning missing data mechanisms [27], domain 242

adaptation [28], tools such as Shared Interest [29] and learning 243

generalized policies [30]. 244

The causality can be defined in three stages. First is the 245

association, for example, between the training image and 246

its label. The second is intervention, which aims to predict 247

the outcome based on altering the system (treatment plan 248

or patients). The last one is counterfactual, which predicts 249

the output in a different condition and environment. Causal 250

machine learning models can guide us to make informative and 251

timely interventions and rethink different treatment regimens 252

and outcomes. 253

B. Machine learning for precision medicine 254

Traditional medical models have treated an average patient 255

with a ‘one size fits all approach’. Precision medicine, which 256

takes treatment approaches based on an individual patient’s 257

unique clinical, genetic, epigenetic, and environmental infor- 258

mation, is a growing field of healthcare, and it is becoming a 259

viable alternative due to the increase in the amount of medical 260

data [31]. In Figure 2, we show a conceptual diagram for 261

precision medicine by utilizing different data modalities. 262

Data, such as a patient’s age, weight, blood pressure, 263

medical history, and genomic sequences, can be used by 264

analysis algorithms to identify hidden patterns and identify 265
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Fig. 2. A conceptual diagram for precision medicine, where different data modalities are used to find patient-specific features and treatment plans.

correlations between patient profiles and disease phenotypes.266

A personalized drug response model developed for non-small267

cell lung cancer patients [32] used the binding free energy of a268

drug-mutant complex and personal features of the patient (age,269

sex, smoking history, medical history) to build a personalized270

drug prediction model. Extreme learning machines were used271

to predict the drug response into two classes with an overall272

accuracy of 95%, driven by the addition of personal features.273

Personalized medicine is used for complex diseases such as274

cancer, heart disease, and diabetes [33]. If it is used carefully,275

this technology could improve performance in healthcare and276

potentially reduce inequities (MIT-CSAIL).277

C. AI in remote patient monitoring278

The combination of edge artificial intelligence (machine279

learning on edge devices) and the IoTs has facilitated the280

deployment of remote healthcare systems. Such systems can281

monitor a patient’s vitals and other physiological parameters282

in real-time while the patient remains at home and push it283

to the cloud [34]. AI embedded in smart devices democratizes284

healthcare by putting AI-enabled health services (for example,285

AI-based clinical decision support) into patients’ homes or286

remote healthcare [35]. The centralized data gathered for the287

patients can be used for knowledge discovery to improve288

disease prognosis or by doctors to monitor the patient and289

make/update prescriptions.290

Several commercial wearable devices offer services mea-291

suring physiological parameters such as heart rate, ECG, and292

other variables through smartwatches and biosensors. There293

have been considerable targeted systems proposed as well for294

a variety of ailments, including but not limited to diabetes [36],295

where devices can also be used for the management of insulin296

as well [37], cardiac disease through ECG [38], sleep apnea297

monitoring [39] or as generic monitoring platforms such as298

smart-monitor [40] to provide ’a la carte’ system based on the299

patient health circumstances. Machine learning methods can300

then be applied to these physiological signals for predictive 301

health management. 302

III. CLINICAL AI TOOLS AND EMERGING AI 303

HEALTHCARE COMPANIES 304

The primary question is when AI tools will be used in 305

ordinary clinical practice to support real-time health chal- 306

lenges, such as improved diagnostic and clinical decision 307

support systems [41]. Despite the promise of AI in solving 308

key healthcare challenges, several issues about the usage of 309

AI must be addressed. In this Section, we discuss some of the 310

practical AI tools in the clinics, as well as AI-based emerging 311

healthcare companies. 312

A. AutoML 313

Machine learning models have aided the healthcare industry 314

by lowering costs and improving outcomes, but only a small 315

number of hospitals are currently using them [4]. Healthcare 316

professionals likely lack the expertise to build, deploy and 317

integrate these models in clinical workflows. To assist the 318

deployment of machine learning models in daily work with 319

reduced input required from a data scientist or machine 320

learning engineer, AutoML [42], which automates machine 321

learning processes, has been developed. AutoML automates 322

fundamental steps like feature selection, model selection, and 323

hyper-parameter optimization, making it easier for health 324

professionals to develop machine learning models for clinical 325

data. 326

Generally speaking, about 80% of a data scientist’s time 327

is spent on data preparation and feature engineering, which 328

also often requires domain knowledge experts [43]. The task 329

is to find the most discriminative features to provide insights 330

into the problem and to consider learning situations that 331

will be difficult for the classifiers. Several machine learning 332

frameworks have been developed to select, rank, and optimize 333

feature engineering processes [44]. 334

https://www.csail.mit.edu/news/seeing-future-personalized-cancer-screening-ai
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A popular approach is expand-reduce, which applies trans-335

formation functions to obtain optimal features, and has been336

implemented in [45]. Genetic programming, based on the337

concept of natural evolution and a survival function, has been338

used for feature construction and selection.339

Hyperparameters can also affect model performance, and340

optimizing them is an art that requires practical experience.341

Sometimes a brute force search is needed by a grid search342

with a manual specification of a subset of the hyper-parameter343

space. However, the dimensionality of the search space may344

make this impractical. Random searches, which sample hyper-345

parameter configurations from a user-defined subset, can be346

limited to a specific computational budget. Another approach347

is a guided search that iteratively generates new configu-348

rations of the hyper-parameters based on the prior perfor-349

mance. AutoML automates this feature engineering and hyper-350

parameter optimization and model selection process. Hence,351

non-technical professionals can use machine learning models352

to solve healthcare problems.353

Auto-weka [45], another machine learning platform based354

on Bayesian optimization methods, can be used to optimize355

hyper-parameters and model selection [46]. Other practical356

products used are Google’s cloud AutoML system, Amazon’s357

Comprehend, and Microsoft’s Azure AutoML. The perfor-358

mance of AutoML models largely depends on the quality359

of the datasets. Adopting AutoML models in the healthcare360

environment will also require overcoming their operation as a361

black box.362

B. AI Tools and companies for clinics363

The development and use of computer aided diagnosis or364

AI tools in clinical practice confront several hurdles despite365

the huge advancement in this new age of machine learning.366

For example, medical imaging is an essential diagnostic tool367

for various disorders. A variety of imaging modalities have368

been developed, with X-ray imaging, whole slide imaging,369

computed tomography (CT), ultrasound, magnetic resonance370

imaging (MRI), and positron emission tomography (PET)371

being some of the most widely utilized techniques. Moreover,372

several publicly available imaging and biological databases373

also offer excellent opportunities to build AI systems.374

For example, PathAI [47] uses AI methods to assist pathol-375

ogists in clinical diagnostics, clinical trials, and clinical trans-376

lational research. Similarly, Viz.ai [48] is an AI-powered com-377

puter application to accelerate care coordination by reducing378

the time delays in clinical workflows. It uses AI to generate379

alerts and send them to clinicians for timely intervention. Simi-380

larly, Freenome [49] uses AI for cancer screening, diagnostics,381

prevention, and better management of cancer. Table II lists382

the companies that are completely based on AI tools to equip383

medical professionals to save lives.384

1) SaMD: Software as a Medical device: SaMD [50] is385

meant to be used for one or more medical purposes and is not386

part of physical medical equipment. Since 1995, more than387

500 software packages/applications have been approved by the388

FDA to assist doctors in various healthcare problems [51].389

Most of these software packages are related to analyzing390

TABLE I
BROAD CATEGORIES AND APPLICATIONS OF AI IN HEALTHCARE

INDUSTRY

Category Specific Applications
Patient care Diagnosis and Prognosis

Real-time case prioritization
Personalized medication
Electronic health records, Smart health

Medical Imaging Tumor segmentation and Detection
Early diagnosis and Imaging Biomark-
ers
Treatment effect monitoring

Management Public Health Policy
Market research
Forecasting (Pandemics)

Biosensors Remote health care
Real-time health monitoring
Soft computing

Computational Biology Drug Discovery and efficacy analysis
Single-cell analysis
Multi-omics data analysis

radiology images. In many medical imaging tasks, AI algo- 391

rithms have outperformed humans, and innovative companies 392

have built AI-based systems to analyze radiology images 393

and digital pathology slides. For example, Chan et al. [52] 394

created a computer-aided diagnosis system to identify micro- 395

calcification on mammograms and carried out the first observer 396

performance research that showed how well the developed 397

tool improved breast radiologists’ ability to detect micro- 398

calcifications. Also see Table I. 399

AI researchers and developers must comprehend how clin- 400

icians desire to be assisted with different clinical works, con- 401

struct efficient AI solutions, and produce interpretable results 402

by considering the practical concerns in clinical settings. If 403

properly created, verified, and applied, effective data analytics 404

from AI technologies complement or support doctors’ intelli- 405

gence to increase accuracy, workflow, and, ultimately, patient 406

care. 407

IV. APPLICATIONS OF BIG DATA ANALYTICS IN 408

HEALTHCARE 409

The healthcare system consists of multiple stakeholders; 410

patients, doctors, hospitals, industry, and policymakers, which 411

are regulated by strict compliance. Healthcare systems gen- 412

erate a huge amount of data at a very high speed, which 413

makes it a perfect avenue for big data analytics. Using big 414

data analytics in healthcare may enable personalized medicine, 415

timely interventions, better health policy management, and 416

planning [64]. 417

Big data analysis systems aim to collect, clean, extract, 418

visualize, and analyze very large datasets and are associated 419

with three key concepts. These are volume (large datasets), 420

variety (highly dimensional/many attributes), and velocity (the 421

speed at which the data is generated, made accessible, and 422

analyzed). Healthcare datasets, usually large, complex, and 423

arising from various sources, offer valuable opportunities for 424

big data platforms [65]. For example, on average, a can- 425

cer patient generates 2GB of data annually in the form of 426

images and medical records. New experimental techniques, 427

such as immunotherapy, targeted therapy, omics research, high 428
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TABLE II
AI-BASED TOOLS AND COMPANIES IN THE FIELD OF MEDICAL SCIENCES.

Tool/Company Services
Viz.ai [48] It aims to reduce delays and make the healthcare team react faster with AI solutions regarding decision-making,

treatment plans, and prescription providers.

PathAI [47] It develops machine learning for pathologists to assist in diagnostics by reducing errors, specifically for cancer
patients and personal treatment.

Buoy Health [53] A chatbot attends to a patient and records the history, symptoms, and other health concerns; then guide the patient
to the appropriate health facility. It is developed by a team at Harvard Medical School to speed up and optimize
the treatment cycle.

Enlitic [54] Enlitic creates deep learning radiology technologies. The company’s deep learning engine analyses unstructured
medical data to provide clinicians with improved insight into a patient’s real-time demands.

Freenome [49] It employs AI algorithms for cancer screenings, diagnostics, and blood work to identify cancer early and suggest
innovative treatments.

Beth Israel Deaconess
Medical Center [55]

It employs AI to diagnose blood disorders early. The robots were taught to detect germs using 25,000 blood
sample photos. Machines learned to predict hazardous blood bacteria with 95% accuracy.

Iterative Scopes [56] It uses AI for gastrointestinal diagnosis and therapy. They have submitted the first clinical study of their AI-
powered SKOUT tool to the FDA for assessment.

VirtuSense [57] It employs AI sensors to monitor patients’ activities and alert them about accidents. VSTAlert can anticipate when
a patient plans to get up and inform hospital services.

Caption Health [58] It integrates AI and ultrasonography for illness detection. AI assists physicians through the scanning procedure
in real time to collect early diagnosis results.

BioXcel Therapeutics [59] It applies AI to develop immuno-oncology and neurological drugs. The company’s medication initiative uses AI
to uncover new uses for old pharmaceuticals.

BERG [60] BERG is a clinical-stage, AI-powered biotechnology company taking a bold ‘Back to Biology™’ approach to
healthcare.

Atomwise [61] Atomwise utilizes AI to accelerate small molecule drug discovery and explores new undruggable targets to make
them druggable.

XtalPi [62] XtalPi’s ID4 platform combines AI, the cloud, and quantum physics to anticipate small-molecule medicinal
characteristics.

Deep Genomics [63] Its AI platform finds neuromuscular and neurodegenerative medication possibilities. “Project Saturn” examines
69 billion cell molecules.

throughput screening, and parallel synthesis [66] may generate429

even larger amounts of data that require advanced data analytic430

methods.431

In Figure 3, we show how complex high dimensional data432

from wearable sensors (ECG, Electromyograms (EMG), Elec-433

troencephalograms (EEG)), imaging data (X-rays, CT-Scans,434

MRI), electronic health records, and multi-omics (genome,435

proteome, and microbiome) data are generally collected and436

stored at a central repository, where pre-processing and data437

cleaning are performed. Missing values imputation methods438

may be used for further processing using statistical and ma-439

chine learning methods. Centralized and mobile applications440

for patients, clinicians, hospitals, government agencies, and441

global health organizations can be developed. For example, the442

FDA has approved Ziopatch [67], which measures the heart443

rate and the ECG signal.444

Multi-variate statistical methods, such as principal compo-445

nent analysis and other clustering methods, can be used to find446

patterns in a big dataset that may identify different disease447

states, mortality rates, susceptible age groups, forecast future448

pandemics, and economic costs [68]. 449

A. Multi-modal Data Fusion: A trash or a goldmine 450

Many quantities in the universe vary co-currently. Biological 451

data is usually diverse, and a complete understanding of 452

a complex biological system may require an ensemble of 453

related data sets to extract hidden data dependencies [69]. 454

However, combining these multi-modal data may result in a 455

goldmine or trash. It requires domain knowledge and strong 456

data engineering skills for efficient feature representation and 457

any downstream analysis. For example, in [70] showed fusing 458

histopathological, radiological, and clinicogenomics informa- 459

tion improves risk stratification for cancer patients. 460

1) Heterogenous Data: The vast amounts of healthcare data 461

generated daily, such as medical images, sensor data, medi- 462

cal histories, and genomic data, are heterogeneous. Machine 463

learning is well suited to analyze multi-modal data and extract 464

valuable insights. 465

Three major areas where multi-modal data fusion can be 466

useful: 467
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Fig. 3. Big data analytics in healthcare. Learning from various data modalities in the big data environment may aid patients, clinicians, hospitals, governments,
and global health organizations. Different machine learning paradigms can be applied to analyze and visualize biomedical data.

• Diagnosis: Machine learning applied to health records468

and medical images can assist in the diagnosis of disease469

states.470

• Prognosis: Applying machine learning algorithms to the471

heterogenous data available on a patient can predict the472

expected development of a disease from its early stages.473

• Treatment: Optimal treatment plans can be generated474

by machine learning algorithms, especially reinforcement475

learning strategies, given the medical histories of patients476

and the number of treatment options available.477

Medical data often consists of different data modalities such478

as images, signals, text, and molecular structures that are479

likely to be related. New machine learning or deep learning480

models enable us to integrate these diverse data sources, in481

a data-harmonization attituede [71] to produce multi-modal482

insights [72]. The extracted multi-modal features can also483

be used to form a knowledge graph to provide support for484

clinical decisions or understanding the mechanism of a specific485

disease [73] or visualisation for orthopaedic surgery [74]. In486

Figure 3, we show how multi-modal data can be used for dif-487

ferent healthcare applications for patients, clinics, government488

and global healthcare organisation.489

The integration of multiple data types may also increase490

the trust of clinicians. Since different data-modalities provide491

complementary information in describing a treatment plan or492

a disease process. In Figure 2, we show how different data-493

modalities can be used for precision medicine. The main goal 494

of methods used to combine multimodal data is to combine the 495

data with values from various scales and distributions into a 496

global feature space, where the data may be represented more 497

consistently [75]. 498

It is also pertinent to mention that in many real-world cases, 499

fusing data from different data modalities may decrease the 500

performance. The healthcare data are produced by extremely 501

complex systems and instruments, including biological, envi- 502

ronmental, social, and psychological ones, among others [76]. 503

These systems are driven by a variety of underlying processes 504

that are dependent on a wide range of variables, that may be 505

not accessible in many cases [77]. In addition, the diversity 506

among different data types; a number of samples, scales, and 507

research questions further complicate the learning process. In 508

small clinical cohorts, it may also suffer from the curse of 509

dimensionality [78]. 510

B. Genomics Data Analysis 511

Genomic datasets, facilitated by next-generation sequenc- 512

ing, often contain vast amounts of raw data [79] and require 513

big data analysis and computational methods. Examples are 514

the encyclopedia of DNA elements (ENCODE) [80] gene 515

annotation and expression data, the Cancer Therapeutics Re- 516

sponse Portal (CTRP) [81], which can provide insights into 517

the action of small molecules leading to personalized drug 518
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discovery based on predictive biomarkers. The Cancer Cell519

Line Encyclopedia (CCLE) [82], and the Genomics of Drug520

Sensitivity in Cancer (GDSC) [83] database of large scale521

molecular screens on panels of hundreds of characterized522

cancer cell lines demonstrates the potential of modern machine523

learning algorithms to develop drug response predictors from524

molecular profiles.525

However, current data resources are inadequate for reliable526

prediction of drug resistance or response [84]. Analyses of527

independent cohorts may reach different conclusions, and528

inconsistency between datasets and missing clinical informa-529

tion can hinder predictions. Data imputation techniques may530

address missing values, and the high dimensionality of the data531

could be dealt with by feature filtering techniques or sparse532

principal component analysis [85].533

C. Medical Imaging534

Deep learning can rapidly construct magnetic resonance535

(MRI) images directly from sensor data of partially observed536

measurements. Task-oriented reconstruction allows the recon-537

struction of a specific part of the image with high quality538

and a confidence score. Super-resolution images (high-quality539

images or sequences built from low-resolution images) can540

be constructed by deep learning, such as single (no reference541

information) brain MR images built using convolutional neural542

networks (CNNs) or super-resolution using GANs [86]. In543

Figure 4, we show various applications of deep learning in544

medical imaging.545

For MRI images, image synthesis is a method to generate546

new parametric images or tissue contrasts from a collection of547

images acquired in the same session. Generative adversarial548

networks [87] could serve as a data augmentation tool as549

medical datasets tend to have limited numbers of samples,550

and they have been used to generate synthetic abnormal MRI551

images for a brain tumor based on pix2pix [88], [89].552

Image registration, transforming data from multiple pho-553

tographs, different sensors, views, or depths to a single coordi-554

nate system is used, through deep learning, for medical image555

registration to improve accuracy and speed. Examples are556

deformable image registration, model-to-image registration,557

and unsupervised end-to-end for deformable registration of 2D558

CT/MR images [90].559

V. WEARABLE BIOSENSORS560

Wearable biosensors measure electro-physiological and561

electro-chemical signals from the body. Electrical activities562

emanating from various biological processes in the body, such563

as human heart activity (ECG), muscle activity (EMG), and564

sweat gland activity (Electro-Dermal Activity (EDA)) can565

be extracted from diagnostic machines or wearable sensors566

and provide vital information about one’s health conditions.567

Analysis methods for these data, such as principal component568

analysis, discrete cosine transforms, auto-regressive methods,569

and wavelet transforms, can extract time and frequency domain570

features from the physiological signals [91]. Examples are a571

bidirectional deep long short-term memory (LSTM) network572

based on wavelet transform to classify ECG signals [92],573

which achieved 99.39% accuracy on the MIT-BIH arrhythmia 574

database [93] and a Fourier Transform and Wavelet-based 575

feature model to classify patients with Alzheimer’s Disease, 576

Mild Cognitive Impairment and Healthy subjects from EEG 577

signals [94]. 578

A. AI-assisted design of biosensors 579

In the real world, medical signal data can also be passively 580

gathered utilizing wearable sensors, such as smartphones or 581

smartwatches [99]. The traditional way of acquiring signals 582

has been through gel-electrodes that are placed on the body. 583

In addition to the use of traditional wearables such as smart- 584

watches and fitness trackers, recent advances in fabrication and 585

electronics have led to the integration of bio-sensing electrodes 586

in other devices such as eye-glasses [100], VR head-mounted 587

displays [101], and textiles [96]. 588

1) Epidermal devices: A new stream of computing devices 589

termed epidermal devices allow for non-invasive capture of 590

physiological signals through soft interactive tattoos [102], 591

[103] (Figure 5). These epidermal devices can measure electro- 592

physiological signals [96], [103] and electro-chemical signals 593

in the body [104]. Another factor that has contributed to the 594

widespread development of physiological sensing devices is 595

the availability of open-source prototyping kits. Prototyping 596

kits and platforms such as EMBody [105], Seeed1, OpenBCI2, 597

Olimex3, BITalino4 allow for rapid prototyping of custom 598

physiological sensing systems. In addition to all these de- 599

velopments, computational tools and AI-assisted approaches 600

are being actively explored to automate and customize the 601

design of biosensing wearables. For instance, Nittala et al. [97] 602

developed a computational design tool built with an inte- 603

grated predictive model to optimize the design of multi-modal 604

electro-physiological sensing devices. 605

Machine Learning and Optimization Techniques for pro- 606

cessing Physiological Signals 607

2) Machine learning techniques on physiological signals: 608

Employing machine learning and deep learning techniques on 609

physiological sensing is a commonly used approach. In the 610

field of human-computer interaction, machine learning tech- 611

niques have been commonly used for sensing gestures from 612

EMG signals [106], identifying mood from EDA, Electroocu- 613

lograms (EOG), EMG and ECG signals [101]. Deep learning 614

approaches are also commonly applied on ECG data for de- 615

noising data [107], for simulating signals and detecting heart- 616

related anomalies [108], [109], emotion recognition [110] or 617

to assess mental health by analyzing the EEG signals or to 618

detect psychiatric disorders [111]. Classen et al. [112] detected 619

brain activity using machine learning on the EEG recordings of 620

brain-injured individuals who were clinically non-responsive, 621

which is a predictor of eventual recovery. 622

VI. COMPUTATIONAL ADVANCES 623

Advances in computer hardware, and architectures are re- 624

quired to process highly complex scientific problems. The 625

1https://www.seeedstudio.com/grove-emg-detector-p-1737.html
2https://openbci.com/
3https://www.olimex.com/Products/EEG/
4https://www.pluxbiosignals.com/

https://www.seeedstudio.com/grove-emg-detector-p-1737.html
https://openbci.com/
https://www.olimex.com/Products/EEG/
https://www.pluxbiosignals.com/
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Fig. 4. Deep learning can be used to construct medical images at high speed, and facilitate the visualization and analysis of medical images.

a b c

d e

Fig. 5. Wearable Biosensors: (a) biosensors in a tattoo form factor that can sense electro-dermal activity (EDA) [95]. (b) multi-modal physiological sensing
tattoo that can sense ECG, EDA, and EMG signals on the forearm [96]. (c) integration of user-interface controls e.g., touch buttons in bio-sensing tattos [96].
(d) AI-assisted fabrication and optimization of multi-modal electro-physiological sensing devices [97]. (e) Ultra-thin and skin-conformable strain sensors on
a decal transfer substrate, employed to detect subtle human body movements [98].

growth in fast processors, multicore-chips, accelerators, mem-626

ory designs, interconnections, field programmable gate array627

(FPGA) based processors, and GPUs with hundreds of cores628

have made computationally intensive applications, such as629

real-time image and video processing in healthcare, possible.630

A. Accelerated Artificial Intelligence631

Deep learning systems are often trained on multiple core632

graphical processing units, which can optimize the highly633

parallel matrix operations that are essential components of634

deep neural networks. A recent example is the discovery635

of faster matrix multiplication using reinforcement learn-636

ing [113]. Google introduced a tensor processing unit (TPU)637

as an accelerated artificial intelligence processor, especially for638

its TensorFlow software [114].639

Training of a deep neural network can be expedited by640

either training more examples in parallel or training each641

example faster. Operations that cannot be accelerated by642

GPUs or TPUs, such as the earlier data processing stages or643

input-output between devices or disks, need to be improved644

in training. Data echoing [115], which reuses intermediate645

outputs from earlier pipeline stages to reclaim idle capacity,646

may be useful to ameliorate this.647

As the quest to become a leader in AI continues, the model648

sizes are increasing from millions of parameters to billions649

of parameters (Openai GPT models). Google reported the 650

GLaM model with more than 1 trillion parameters (GPT-3 651

model had 175 billion parameters) [116]. The direct challenges 652

associated with these models are the training cost and the 653

porting out to small devices. One potential solution to enable 654

small models to learn the behavior of bigger models is to 655

use neural network compression techniques such as knowledge 656

distillation [117] or structural sparsity [118]. An analogy for 657

this is the teacher-student relationship, where the smaller 658

model (student) learns from the bigger model (teacher). A 659

survey in [119] presents efficient hardware architectures for 660

accelerating deep convolutional neural networks. 661

B. Edge Computing 662

Although most healthcare datasets are complex and large 663

and require massive computational resources (often in remote 664

computer clusters), processing data locally at the end nodes of 665

a cluster in a real-time application is appropriate for privacy 666

reasons or to reduce processing time and latency. The training 667

of the model locally on end nodes is known as edge computing. 668

In edge computing, edge (local) devices or servers can provide 669

data storage and processing, potentially giving fast, secure, 670

and real-time health analytics that may allow timely medical 671

interventions. Thus, an edge computing-based AI model could 672

provide better healthcare for patients far from major population 673
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centers with limited connectivity and access. The localized674

processing power of edge computing may facilitate access to675

medical interventions by rapidly analyzing data from smart676

medical sensors.677

To make AI models portable and compatible with prototyp-678

ing, the implementation of AI models on low-power devices679

is important. For example, Owais et al., [120] recently showed680

the implementation of the U-Net segmentation model on the681

Intel Neural Compute Stick. The work demonstrated that682

inference could be obtained on the NCS with proper tuning683

and suitable modifications of the U-Net model. However, the684

implementation was achieved with a trade-off for performance.685

Nevertheless, experimental results on brain MRI images and686

heart MRI images showed promising performance in terms687

of the dice scores for the segmentation tasks. Hence, such688

inference-enabled devices can aid in the clinical transforma-689

tions of AI methods in real-time healthcare settings.690

C. Federated Learning691

Data privacy and protection are general requirements for692

medical data, and new frameworks for training models are693

required that do not expose the underlying data. One such694

approach is Federated or Collaborative Learning [121], which695

is a machine learning technique that trains an algorithm across696

multiple edge devices or servers without exchanging local697

data samples. Multiple parties, for example, several hospi-698

tals/research centers, actively collaborate to train algorithms699

without centralizing their datasets. In developing AI models700

for medical data from multiple locations, federated learning701

has recently been shown to be effective. For example, with702

the rapid spread of COVID-19 globally, researchers needed703

to come up with quick responses and rapid developments704

of mechanisms for the assessment of COVID-19 patients.705

Multiple institutes around the globe collaborated to expedite706

AI model development for disease clinical support systems.707

However, sharing COVID-19 patient data from different lo-708

cations had ethical and legal bottlenecks that complicated the709

process. Hence, the research community resorted to federated710

learning to make use of data from diverse sites without the711

need for data sharing. In [122], a federated learning model was712

developed to predict future oxygen requirements for COVID-713

19 patients making use of clinical and radiology (chest X-rays)714

data. The model referred to as the EXAM model facilitated the715

use of data from 20 different institutes from various countries.716

Federated Learning frameworks are implemented with dif-717

ferent topologies (also see Figure 6). To accomplish model718

training at multiple sites, the framework may execute model719

training at each site independently and then share the weights720

with other sites (a peer-peer topology), or the individual721

sites may share the weights with a centralized server node722

(client-server topology). According to the federated learning723

topology, the stochastic gradient descent (SGD) optimization724

of the model training is transformed into federated stochastic725

gradient descent (FedSGD) [123], [124].726

VII. THE RECENT CHALLENGES IN AI FOR HEALTHCARE 727

WITH POTENTIAL SOLUTIONS 728

AI has shown great promise to improve the healthcare indus- 729

try, and it is expanding as technology advances. However, there 730

are some limitations in this field that prevent AI from being 731

integrated into current healthcare systems. In this section, we 732

discuss some of the key challenges and provide suggestions 733

to overcome these to improve healthcare. 734

A. Data issues 735

Data availability and access are two critical success factors 736

for data science in healthcare. Moreover, the data quality, 737

sample size, labels, disparity among labels, privacy, and ethical 738

concerns, are the most prominent challenges that must be ad- 739

dressed to fully exploit the potential of AI in healthcare [125]. 740

The first principle to build robust data-driven healthcare sys- 741

tems is to capture clean, accurate, and properly formatted data 742

for use in multiple healthcare applications. A perspective about 743

sharing biomedical data for strengthening the role of AI is 744

presented in [126]. 745

Machine learning methods can also assist in automated la- 746

beling, anomaly detection, missing value imputation, and other 747

data cleaning processes [127]. For example, in [128], deep 748

learning is used to identify bleeding events from electronic 749

health records. Deep learning models are frequently used to 750

improve the quality of radiology or pathology scans [129] or 751

to identify anomalies in biosensors [130]. Some IT vendors 752

also provide automated scrubbing tools that use logic rules to 753

compare, contrast, and correct large datasets. 754

Another issue is the widespread perception in the com- 755

munity that larger datasets are required to make accurate 756

predictions. The data quality, proper annotations, and hypoth- 757

esis in consultation with healthcare experts are necessary to 758

build robust machine learning models. The data generated by 759

the push of technology, without appropriate hypothesis and 760

domain knowledge, will remain difficult to analyze. 761

Data security is another top priority for healthcare organi- 762

zations. Risks include high-profile data breaches, hacking, and 763

ransomware incidents [131]. Machine learning can be used to 764

make data and systems more secure. It allows security systems 765

to analyze and learn from patterns to help prevent similar 766

attacks and respond to changing behavior. 767

To deal with imbalanced, complex, unlabeled, and poorly 768

understood data, the type of learning paradigms and evaluation 769

metrics used is also important. To address these challenges and 770

generate hypotheses for understanding complex diseases and 771

signaling pathway patterns, unsupervised or semi-supervised 772

learning can be used [132]. 773

1) The challenges in distribution shifts and different data 774

modalities: Many real-world clinical AI systems suffer from 775

the training and testing distribution shifts in the data. To deal 776

with these distribution shifts, domain adaptation techniques 777

are adopted in machine learning. In domain adaptation, we 778

train a neural network on a source dataset X and achieve high 779

accuracy on a target dataset Y, where X and Y have different 780

data distributions. 781
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Fig. 6. Common topologies of federated learning. (a) Client-Server. (b) Client-Client. (c) Federation of sub-federation (mix topology).

Domain adaptation can be sliced down into three categories:782

supervised, semi-supervised, and unsupervised learning, de-783

pending on the type of data from the training dataset. In su-784

pervised fast-expanding target dataset is substantially smaller785

than the source dataset since the target domain’s data has been786

labeled. While unsupervised learning makes use of unlabelled787

data from the target domain, semi-supervised learning uses788

both labeled and unlabelled target domain data. As a result,789

deep domain adaptation was suggested to improve the model’s790

performance and overcome the issue of insufficient labeled791

data by utilizing deep network features. Discrepancy-based,792

reconstruction-based, and adversarial-based adaptation are the793

three main deep-domain adaptation strategies that have been794

established.795

In a discrepancy-based approach, the features that can be796

transferred come up with drawbacks due to its delicate co-797

adaptation and representation specificity. [133] has illustrated798

that fine-tuning can improve generalization ability. When the799

fine-tuning is conducted on the deep model, a base network800

is trained using source data, and the first ’n’ layers of the801

target network are then used directly. The target network’s802

remaining layers are randomly initialized and trained using a803

loss function based on the discrepancy. Finally, considering804

the size of the target dataset and how closely it resembles the805

source dataset, the initial layers can be fine-tuned or frozen806

during the training procedure. Another deep domain adapta-807

tion [134] technique, reconstruction-based domain adaptation,808

uses an autoencoder to reduce reconstruction error and learn809

transferable and domain-invariant representations to align the810

discrepancy between domains.811

Stacked Auto Encoders (SDAs) can be used to represent812

source and target domain data in a high-level representation813

manner [135]. However, because SDAs are computationally814

expensive, the marginalized SDA (mSDA), which does not815

require the use of stochastic gradient descent, was presented816

in [136] to overcome the computational cost. Transfer learning817

with deep autoencoders (TLDA) [137] used a softmax loss to 818

encode the source domain’s label information. In contrast, the 819

embedding encoding layer uses the KL divergence to minimize 820

the distance in distributions between domains. 821

Generative Adversarial Networks (GANs) obtain transfer- 822

able and domain-invariant characteristics by minimizing the 823

distribution discrepancy between domains. GANs are also used 824

in the adversarial domain adaptation techniques [138]. CoGAN 825

was suggested in [139], which generated synthetic target data 826

and linked it with synthetic source data. 827

An approach for simulated-unsupervised learning was es- 828

tablished in [140], in which adversarial and self-regularisation 829

loss were minimized, using unlabelled real data to enhance 830

the realism of synthetic images. 831

2) Challenges in Medical Imaging: Perhaps, medical imag- 832

ing is the most disruptive area where AI has made tremendous 833

progress. However, there are various challenges in medical 834

imaging as well [141]. Medical images are often three- 835

dimensional, and the three-dimensional convolutional neural 836

networks to process these 3D volumes require more memory 837

and computational time. Generally, researchers treat 3D CNNs 838

as stacks of 2D CNNs. However, adding a newer dimension 839

adds additional constraints. Most deep learning models are 840

built on anonymized public data, making privacy-related issues 841

less relevant. However, this does not offer a permanent solution 842

to handle privacy-related problems in medical imaging. One 843

conclusion is that when these datasets are made public, there 844

are always associated risks of leaking patient privacy [142]. 845

High diversity of clinical scenarios is another challenge in 846

medical imaging. This is because medical imaging can be used 847

in various clinical situations, such as disease detection, in- 848

cluding localization and classification and disease surveillance. 849

On the other hand, deep learning is also being used for data 850

quantification, such as pediatric bone age prediction [143]. As 851

a result, there are many different clinical activities from the 852

standpoint of medical imaging, and it is challenging for one 853
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Fig. 7. Domain adaptation in medical imaging

individual or model to manage all of these operations using854

present methodologies. Developing task-aware deep learning855

solutions is the way forward.856

Another significant challenge in medical imaging is the857

lack of transparency in algorithms and issues with validation858

and testing. AI-based applications differ in terms of data859

ingestion to output, and there is currently no established860

standard procedure. For example, algorithms with similar861

performance may use different strategies to solve the same862

problem, necessitating special pre-processing techniques be-863

fore inference. As a result, scalability, which is critical in864

commercial AI-based products, becomes difficult because each865

application may require its own server or virtual environment.866

The transferability of the algorithm presents another challenge867

due to the stringent medical regulations in different nations.868

However, there is no statistical method available to evaluate an869

algorithm’s transferability. One such initiative is the petabyte870

’medical-imagenet’ project of radiology and pathology images871

by Stanford University with genomics and electronic health872

record information for rapid creation of computer vision873

systems(Stanford-AIMI).874

The challenge of a lack of large datasets can be addressed by875

image synthesis and data augmentation. Models may be hard876

to generalize as the distribution of the training data, usually877

high-quality images, may differ from real-world clinical data,878

which may cause a deep learning model to produce unexpected879

results. Transfer learning, fine-tuning, or pre-training can ad-880

dress this [144]. Transfer learning leverages the weights of881

a network already trained on a similar task. More emphasis882

might be placed on unsupervised machine learning models883

to overcome sample size issues. In Figure 7, we show the884

applications of domain adaptation for image segmentation885

tasks.886

3) Biosensors and flexible bioelectronics: A way forward: 887

Despite increasing advancements in the last few years, there 888

are still numerous significant obstacles to overcome before 889

AI biosensors for Internet of Things-based applications are 890

commercially mature. For commercial applications, flexible 891

bioelectronic materials are a key component. The human body 892

and its internal organisms are naturally elastic and flexible. 893

In this instance, integrating electronics into platforms made 894

of flexible material is required. Current soft wearables on 895

the skin are dominantly reliant on capturing physiological 896

signals and transmitting those signals to an external computing 897

infrastructure (e.g. mobile, laptop, etc.). Flexible bioelectronics 898

is advantageous to match the human body and organs (such 899

as skin, eyes, and muscles) with low mechanical damage to 900

tissues and lessen adverse effects after long-term integration 901

because of its exceptionally flexible mechanical qualities. 902

Similarly, Medical AI biosensors will play a pivotal role in 903

developing key technologies in the future with the help of nan- 904

otechnology. They will continue to advance in miniaturization, 905

scalability, low power consumption, low cost, high sensitivity, 906

multifunction, safety, non-toxicity, and degradation [145]. 907

4) Adaptability: Another issue is that the majority of ML- 908

enhanced biosensors currently lack adaptive learning capa- 909

bilities. Biosensors can learn from their surroundings with 910

adaptive learning rather than only depending on manually 911

input training sets. An adaptable model continually improves 912

and optimizes itself by learning from the environment, un- 913

like a non-adaptive system. This might lessen the chance 914

of disastrous mistakes and erroneous results, which a single 915

fixed model can cause. On the other hand, while non-adaptive 916

ML models’ excellent local performance may be sacrificed in 917

the name of generalisability, particularly in clinical practice, 918

adaptive learning provides a solution to resolve this conflict. 919

5) Bigdata in smart sensors: Establishing a smart sensor 920

system that relies on enormous datasets and algorithms, is a 921

significant barrier regarding the platform for data processing 922

and storage. In recent years, cloud computing has been used to 923

process sensor signals since it offers superior computational 924

power and data storage. Cloud and biosensor integration is 925

nothing new, especially for monitoring applications where the 926

volume of data is continuously growing over time. The direct 927

connection of many sensors to the cloud is sometimes too 928

expensive and sluggish due to the exponential growth in the 929

number of sensors. Edge computing has so been introduced in 930

recent years. Instead of a single data centre, edge computing 931

enables data processing at scattered edge devices. It benefits 932

from great computational effectiveness, rapid network process- 933

ing, low cost, and more. Therefore, biosensors will likely use 934

this cutting-edge technology. 935

B. Opening the black box of deep learning 936

A big hurdle in AI implementation is the black-box nature of 937

the deep learning models; in critical healthcare scenarios, we 938

can not fully rely on model predictions. We need interpretable 939

and transparent models to make critical healthcare decisions. 940

As the input data propagates through the layers of the neural 941

network, it gets compressed and generates some predictors for 942

https://aimi.stanford.edu/medical-imagenet
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the target label. Moreover, we do max-pooling at each layer943

and drop out certain neurons in the final layers to avoid over-944

fitting. Given these compressed representations, it is difficult945

to explain the predictions at each level; however, we can have946

a high-level idea about the inner-working of the model. Since947

complex deep learning models consist of hundreds of millions948

of parameters and, in our opinion, are nearly impossible to949

interpret at every point.950

In Figure 8, we show various methods used to explain the951

working of the deep learning model. These methods can ex-952

plain the predictions to a certain level without losing accuracy.953

There is a trade-off between accuracy and explainable AI,954

which depends on the problem at hand.955

In a very intriguing study [146] proposed information956

bottleneck [147] to explain the working of deep neural net-957

works. The information bound is the theoretical limit proposed958

by [147], at which the model can do the best given the set959

of features; no further compression is possible. The paper960

suggests that most of the training epochs are spent on learning961

the efficient representations of the input; the representation962

compression begins when training error starts to decrease. The963

model starts to converge, layer by layer, and the last layer964

keeps only the most relevant features to predict the output965

label.966

1) Model fairness and accountability: One of the chal-967

lenges that the deployment of biosensors with AI will entail968

is the need to ensure no biases in the outcomes determined.969

Studies have shown [148], [149] that ML algorithms can970

sometimes provide unequal outcomes for different population971

groups, especially with populations already under-served in972

society. In this regard, several steps need to be taken and973

devised when working on ML applications using biosensors.974

These can include actions such as a conscious inclusion975

of diversity in the data collection process and developing976

robust policies governing post-application performance audits977

to quantify the impact on vulnerable communities. From a978

technical perspective, aspects to look for would be logging979

model performance to detect drift of performance in the980

model. Such processes included in deploying and monitoring981

biosensors utilizing AI applications would ensure healthcare982

professional and patient confidence in the services offered.983

C. Large Language Models for Healthcare984

While the development of Large Language Models (LLMs)985

has been the focus of researchers [150]–[152] for a while986

relating to application towards machine translation, text sum-987

marizing and paraphrasing and generation of text, the recent988

release of ChatGPT [153] from OpenAI has brought the989

potential use of chatbots into mainstream consumer use.990

LLMs are deep learning models trained on a large amount991

of textual data to cater to multiple tasks related to Natural992

Language Processing. LLMs make use of complex transformer993

architectures that enable it to capture longer dependencies994

than is possible with typical sequential models such as RNNs.995

LLMs also have the advantage of being able to be fine-tuned996

for specific tasks, thereby performing well in some desired997

niche or even work as the backbone for generic chatbots998

Scientific Insight
Input

A black box AI model

Output

Explanation

Explanation

Causal ML

Inference

Scientific Insight

Building trust 

in AI model

(a)

(b)

(c)

Fig. 8. AI- black-box model. Algorithms like Explainable AI, feature
visualization or causal inference can be used to interpret the predictions.
Gradcams visualization can highlight important regions that can build the
trust of healthcare professionals.

too with a fine tuned performance. Infact, Open AI’s GPT- 999

3 has been used as the back-end of several such offerings, 1000

including JasperChat (tailored for business use) and Poe by 1001

Quora, both of which are based on OpenAI’s base models. 1002

The multifaceted use of LLMs for special domains has also 1003

been true for the case of healthcare, medical data, as part of the 1004

used training data corpus enables chatbots powered by LLMs 1005

to be useful in assisting healthcare practitioners. One such way 1006

this was performed was suggested by Wang. et al. [154] who 1007

incorporate LLMs in to a CAD system for medical images 1008

called ChatCAD. They do this by generating prompts based 1009

on the output of different image based classifier/segmentor and 1010

report generator. These outputs are converted in to a prompt 1011

and are then passed on to the LLM so that its logical reasoning 1012

capabilities could be used to provide better and interactive care 1013

to patients. In order to provide a focused discussion on the 1014

potential use of LLM based chatbots for use in healthcare, we 1015

briefly discuss the current as well as potential uses of ChatGPT 1016

in this section. 1017

a) ChatGPT for healthcare: The OpenAI’s language 1018

chatbot ChatGPT [153] is an artificial intelligence language 1019

model that has been pre-trained on a large corpus of text data 1020

and is capable of generating human-like responses to natural 1021

language queries. Having passed successfully part of the US 1022

medical licensing exam, attesting to its capability to work with 1023

medical queries, ChatGPT has the potential to revolutionize 1024

clinical applications in many ways [155]. In Table III, we enlist 1025

several applications of ChatGPT. 1026

VIII. CONCLUSION AND FUTURE WORK 1027

The use of AI and biosensors has been gaining increasing 1028

traction in the healthcare industry for different purposes. AI- 1029

based methods are being embraced in the healthcare indus- 1030

try, where low-cost, intelligent, and adaptable methods are 1031

influencing fields such as clinical decision support, diagnos- 1032

tics, prevention, remote healthcare, public health policy, and 1033

clinical recommendation. More user-friendly machine learning 1034

technologies, such as AutoML, ClinicalAI, patient-centricAI, 1035

and explainable AI, are required to boost the confidence of 1036

healthcare stakeholders and to make machine learning an 1037
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TABLE III
CHATGPT APPLICATIONS IN HEALTHCARE

Application Description Advantages Disadvantages
Patient communica-
tion

ChatGPT can be used to communi-
cate with patients and provide them
with general medical advice. This can
help reduce the workload on healthcare
providers and improve patient satisfac-
tion.

Provides immediate medical ad-
vice, available 24/7, can handle
large volumes of inquiries simulta-
neously

May not be able to fully replace hu-
man interaction and empathy, may
not be able to handle complex or
critical cases, raises concerns about
patient privacy and confidentiality.

Telemedicine It can facilitate virtual consultations be-
tween patients and healthcare providers.
By providing patients with access to
medical advice and expertise, ChatGPT
can help improve healthcare access and
outcomes, particularly in rural or under-
served areas.

Improves access to healthcare, re-
duces travel costs and wait times,
increases patient engagement

May not be suitable for all types
of medical consultations, may not
be able to perform physical exams
or provide hands-on care, raises
concerns about patient privacy and
security.

Medical education Can be used as a tool for medi-
cal education, providing students and
healthcare professionals with access to
medical information and resources. By
analyzing medical data and answer-
ing questions, It can improve medical
knowledge and training.

Improves medical education acces-
sibility, personalizes learning expe-
rience, can be used for quick refer-
ence and knowledge consolidation

May not be able to provide hands-
on training, raises concerns about
patient privacy and confidentiality,
may perpetuate health disparities
for students or institutions who do
not have access to the technology
or resources

Medical research ChatGPT can be used in medical re-
search to analyze large amounts of
medical data and identify new patterns
and trends.

Enables faster and more efficient
analysis of large amounts of data,
can identify previously unknown
correlations and patterns

May require significant computing
resources and expertise, may not
be able to fully replace human re-
searchers and medical experts.

Diagnosis support It can assist healthcare providers in di-
agnosing diseases by analyzing patient
symptoms, medical history, and other
data.

Improves accuracy and consistency
of diagnoses, saves time and re-
duces errors, can support rare and
complex cases

May not be able to fully replace
human diagnostic skills and exper-
tise, and all clinical factors.

integral part of daily clinical practice. Combining biosensors1038

and imaging data, or other data modalities, may increase the1039

model performance, as well as the confidence of clinicians.1040

In this regard, this review provides researchers and health1041

practitioners with an overview of the state of technology1042

in this area, both from a technical and clinical perspective.1043

Various applications of AI towards diagnosis, prognosis, treat-1044

ment as well as monitoring have been discussed, along with1045

traits related to explainability and the tools useful in clinical1046

practice. Moreover, technologies that enable the usage and1047

development of biosensors for healthcare applications have1048

been presented. Lastly, open research issues and challenges1049

related to biosensor-based healthcare systems have been talked1050

about, which require further work.1051

AI has great potential to transform the healthcare systems1052

and improve the lives of patients and health professionals.1053

However, clinical AI implementation is currently on a smaller1054

scale due to trustworthiness, lack of coordination, data col-1055

lection and privacy issues, and patient reluctance. We need to1056

develop patient-centric AI systems and build the trust of health1057

professionals in this exciting technology. AI can only assist1058

health professionals and improve lives, and in no way can it1059

replace them, of-course nobody would like to be treated with1060

a robot. AI, in any sense, can not replace the human touch,1061

which is the essence of every field. AI and clinicians should1062

work in synergy to maximize the benefits for patients. In this1063

regard, this article will guide further research and development1064

in AI for healthcare. Given the enormous amount of data and1065

processing power available today, we expect an increasing role1066

of AI and biosensors in the clinics that will augment or help1067

healthcare professionals and reduce their workload.1068
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