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Abstract18

Geoscience applications have been using sophisticated machine learning methods to model19

complex phenomena. These models are described as black boxes since it is unclear what20

relationships are learned. Models may exploit spurious associations that exist in the data.21

The lack of transparency may limit user’s trust, causing them to avoid high performance22

models since they cannot verify that it has learned realistic strategies. EXplainable Ar-23

tificial Intelligence (XAI) is a developing research area for investigating how models make24

their decisions. However, XAI methods are sensitive to feature correlations. This makes25

XAI challenging for high-dimensional models whose input rasters may have extensive spatial-26

temporal autocorrelation. Since many geospatial applications rely on complex models27

for target performance, a recommendation is to combine raster elements into semanti-28

cally meaningful feature groups. However, it is challenging to determine how best to com-29

bine raster elements. Here, we explore the explanation sensitivity to grouping scheme.30

Experiments are performed on FogNet, a complex deep learning model that uses 3D Con-31

volutional Neural Networks (CNN) for coastal fog prediction. We demonstrate that ex-32

planations can be combined with domain knowledge to generate hypotheses about the33

model. Meteorological analysis of the XAI output reveal FogNet’s use of channels that34

capture relationships related to fog development, contributing to good overall model per-35

formance. However, analyses also reveal several deficiencies, including the reliance on chan-36

nels and channel spatial patterns that correlate to the predominate fog type in the dataset,37

to make predictions of all fog types. Strategies to improve FogNet performance and trust-38

worthiness are presented.39

Plain Language Summary40

Geoscience applications have been using sophisticated machine learning methods41

to model complex phenomena. These models are described as black boxes as it is un-42

clear what relationships are learned. Users might not trust the models since they can-43

not determine how inputs influence model decisions. EXplainable Artificial Intelligence44

(XAI) is a growing research area investigating how models make their predictions. How-45

ever, XAI methods are sensitive to how the inputs to the models interact. This makes46

XAI challenging to interpret models with a large number of predictors. Since many geospa-47

tial applications rely on complexity for high performance, a recommendation is group-48

ing features so that the groups have less correlation with each other. Partitioning the49

input into a small number of distinct features may improve explanations, but might be50

too coarse for model insights. Here, we explore how grouping the inputs impacts XAI51

explanations. Experiments are performed on FogNet, a deep learning model for coastal52

fog prediction. Meteorological analyses of XAI output reveal the ability of FogNet to pre-53

dict fog with skill, by accounting for physical processes related to fog development. How-54

ever, there exists deficiencies in how FogNet makes predictions, which lower trustwor-55

thiness. Strategies to improve FogNet performance and trustworthiness are presented.56
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1 Introduction57

Artificial Intelligence (AI) is increasingly used to develop high performance mod-58

els that capture highly nonlinear spatial or spatial-temporal relationships. Their success59

often relies on complex Machine Learning (ML) architectures such as Deep Learning (DL).60

DL has been applied to geoscience tasks such as predicting soil temperature (Yu et al.,61

2021), typhoon paths (Xu et al., 2022), tropical cyclones (Lagerquist, 2020), sea surface62

temperature (SST) (Fei et al., 2022), traffic (Kreil et al., 2020)), and classification us-63

ing multi-spectral (Helber et al., 2019) and synthetic aperture radar (Zakhvatkina et al.,64

2019)) imagery.65

Complex ML models can be considered black boxes since their complexity obfus-66

cates how they work. They learn a function based on associations between inputs and67

targets, but it is hard for humans to investigate how the data influences model output.68

However, we are using complex models mainly to capture nonlinear relationships. Hence,69

the interpretation is inherently more complex than for linear models. A global explana-70

tion of model behaviour based on, for example, the coefficients of multiple linear regres-71

sion may not capture the richness of how the system behaves from case to case. Here,72

the challenge of model interpretability is not just due to their black box nature, but also73

to the challenges associated with understanding nonlinear relationships where global ex-74

planations may not provide the full understanding of how the system works. This may75

limit their use, since users cannot verify realistic decision-making. Researchers have demon-76

strated that at times models with seemingly high performance were using spurious re-77

lationships that would cause the model to fail in real-world use (Lapuschkin et al., 2019).78

The lack of transparency in complex ML models has motivated the rapid development79

of the field of eXplainable Artificial Intelligence (XAI) that includes various approaches80

to enhancing the ability to understand the model’s decision-making strategies (Murdoch81

et al., 2019).82

A major XAI approach is designing interpretable models that are more easily un-83

derstood (Murdoch et al., 2019). However, this is typically at the cost of performance84

compared to more complex ML techniques. The simplest techniques, such as linear re-85

gression with a small number of features, may be trivial to explain, but without learn-86

ing the nonlinear relationships needed for a particular application (Molnar et al., 2020).87

Here, we are interested in XAI techniques that provide insight into trained complex mod-88

els to take advantage of their high performance for highly nonlinear phenomena. This89

class of methods is called post-hoc XAI techniques, and are used to generate various forms90

of explanations of the learned data associations.91

Many post-hoc XAI techniques have been proposed. Typically, these work by eval-92

uating the influence of each input feature towards model output. That is, how did a given93

feature influence the decision? Two major types of explanations are feature importance94

and feature effect. Feature importance methods evaluate a feature’s influence by how much95

it impacts the model’s performance. These methods are typically global; they are com-96

puted over a large number of examples to determine which features are important in gen-97

eral rather than for a specific case (local). A widely-used feature importance method is98

Permutation Feature Importance (PFI) (McGovern et al., 2019). Feature effect meth-99

ods instead evaluate the contribution of each feature toward a particular model output.100

That is, for a given prediction, how much did the features push (or pull) the decision to-101

ward (or away from) that value.102

Despite extensive research effort in developing novel XAI methods, none are guar-103

anteed to produce an accurate explanation (McGovern et al., 2019). Techniques largely104

differ in how they probe the model; modifying the input in some way to assess the change105

in output. For example, PFI permutes a feature with other dataset values to break up106

the input data relationship but maintain the data distribution. If permuting this fea-107

ture changes the model performance more than other features, then it is said to have higher108
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importance. It is challenging to select the appropriate XAI technique and rarely possi-109

ble to quantitatively measure explanation accuracy since the true explanation is unknown.110

XAI techniques are known to be sensitive to feature correlations and interactions, de-111

spite efforts made to take these into account. A recommended approach is to run mul-112

tiple methods and triangulate the results: consistencies suggest meaningful descriptions113

of model characteristics (McGovern et al., 2019).114

Geoscience models often use high-dimensional inputs with substantial feature cor-115

relation and interaction. Consider a raster data input that represents a 3D wind field116

where channels are 2D spatial vector components at subsequent altitudes. Spatial au-117

tocorrelation exists within and across channels. Temporal autocorrelation could be in-118

troduced by including channels that represent the values at several time steps. A com-119

plex raster could be composed of multiple multi-channel features such as wind, turbu-120

lence kinetic energy, etc.121

In this research, FogNet, a DL model for predicting coastal fog in the South Texas122

Coastal Bend (Kamangir et al., 2021), is used to analyze the impact of partitioning the123

raster elements into features for XAI. We describe some of the challenges in using XAI124

techniques to explain models that rely on high-dimensional spatio-temporal raster pre-125

dictors. These include sensitivity to the choice of XAI method and grouping scheme, com-126

putational limitations using a high number of features, and modifying XAI software pack-127

ages to support multi-channel explanations. After generating a large number of XAI out-128

puts, we demonstrate using forecaster domain knowledge to generate hypotheses that129

will direct the next stages toward model improvement. This research extends prelimi-130

nary XAI results we presented alongside an ablation study of the FogNet architecture131

(Kamangir et al., 2022).132

1.1 Related Works133

There are many geoscience modelling studies where complex models substantially134

outperformed simpler models. In the following three examples, models use DL architec-135

tures with gridded spatio-temporal predictors. In each study, comparisons with simpler136

alternative models highlighted high performance gains using the more complex architec-137

ture.138

Yu et al. (2021) used spatio-temporal rasters to predict soil temperature. Each in-139

put raster is a sequence of 10 days of soil temperature estimates obtained from the ERA5140

dataset, and each day is represented with a 20×20 spatial grid. The signal processing141

technique Ensemble Empirical Model Decomposition (EEMD) is used to characterize each142

of the 10 channels into 10 different time scales. This yields input raster predictors of size143

(10, 20, 20, 10). A DL architecture was developed with 3D convolution to learn spatio-144

temporal features. This was compared to simpler architectures (2D convolution) and lower-145

dimensional inputs (without EEMD), demonstrating significant performance gains us-146

ing the most complex model.147

Xu et al. (2022) developed a DL model for typhoon path prediction. The spatio-148

temporal input is created from the EAR-Interim 3D typhoon dataset. The predictors149

include 31×31 spatial grids at 4 isobaric planes at 4 time steps, yielding rasters of size150

(4, 4, 31, 31). Comparing several ML techniques and DL configurations, the best was151

a fusion of DL with 3D convolution and a Generalized Linear Model. Again, the more152

complex configurations outperformed simpler alternatives.153

Fei et al. (2022) developed a hybrid model for bias correcting SST from a numer-154

ical model. The input raster has 3 time steps of 4 variables from the Hybrid Coordinate155

Ocean Model. With a spatial grid size of 48×48, the input data size is (3, 4, 48, 48). 3D156

features were learned for each time step using 3D convolution and attention blocks. Their157

outputs were fed into a convolutional Long Short-Term Memory (LSTM) model to learn158
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temporal patterns. An ablation study showed that the performance increased as addi-159

tional modules were added to the DL architecture.160

McGovern et al. (2019) reviewed XAI for meteorological ML which regularly use161

high-dimensional spatio-temporal rasters. Several techniques were used to explain a tor-162

nado prediction CNN whose input rasters are 12 channels of 32×32 spatial grids. Saliency163

Maps were used to highlight salient elements in each channel. Backward Optimization164

(BWO) was used to optimize synthetic rasters that maximize neuron activation. This165

is used to show what features would look like to create either optimal tornadic or non-166

tornadic storms, which can be used to verify that the model has a realistic understand-167

ing of these classes. Class Activation Maps (CAMs) were also used to generate heatmaps168

of influential elements, but do not explain individual channels: the output is a single 2D169

heatmap explaining a 3D raster. Many XAI techniques were made with simple RGB im-170

age models in mind, and do not separately operate on the channels. The study showed171

that XAI techniques can be used to gain a variety of model insights, but could not quan-172

titatively rank explanations since the ground truth explanation is unknown. The authors173

warn against the potential for bias confirmation: the explanation that looks like what174

the modelers expected might not be the most accurate. Instead, the recommended strat-175

egy is to apply multiple XAI methods; consistencies provide evidence of the true expla-176

nation.177

Gagne II et al. (2019) used a CNN to predict severe hail occurring during a storm.178

Given a storm-centered raster, the model predicts if the hail size will exceed 25mm. In-179

put rasters of size (32, 32, 15) were generated from the NCAR convection-allowing NWP:180

5 atmospheric variables of 32×32 gridded data, each at 3 pressure levels. PFI and BWO181

were used to rank important features and visualize influential variable relationships, re-182

spectively. Instead of individual raster elements, PFI ranked entire channels grouped into183

features such as Geopotential height at 500 hPa. BWO optimizes the raster such that184

the explanations have the same dimensionality as the input. Based on the explanations,185

the authors found evidence of the model learning physical relationships associated with186

hail.187

Using storm-centered MYRORSS radar imagery and proximity soundings as pre-188

dictors, Lagerquist (2020) developed a CNN to predict next-hour tornado occurrence.189

The input raster includes 14 feature maps, each a 128×128 spatial grid. This (128, 128,190

14)-size raster goes through a number of convolution layers before combining with 4864191

soundings. The combined data is passed through a dense layer to produce the tornadic192

probability. Several XAI methods were used to analyze how the model works. Like Gagne II193

et al. (2019)), PFI was used to rank the importance of channels and BWO used to show194

maximizing inputs. Feature effect methods Saliency Maps and CAMs were applied to195

generate explanation heatmaps. Since it is difficult to verify explanation accuracy, ad-196

ditional verification was performed to increase confidence in the explanations. Adebayo197

et al. (2018) observed that XAI-based heatmaps are sometimes overly influenced by dis-198

continuities in the input raster. XAI methods could be operating more like edge detec-199

tors than model explainers. Adebayo et al. (2018) developed sanity checks that compute200

the likeliness that the XAI output could have been generated by a simple edge detec-201

tion algorithm. Lagerquist (2020) applied these sanity checks, which suggested that the202

explanations are in fact based on model behavior. Saliency maps and CAMs output an203

explanation for each instance, making it challenging to get a global perspective of influ-204

ential features. Lagerquist (2020) aggregated the explanations to examine general dif-205

ferences between explanations of 4 extreme cases: best hits, best correct nulls, worst misses,206

and worst false alarms. This was possible because the storm-centered images have a spa-207

tial consistency that allows meaningful aggregation of multiple inputs. For each class,208

100 explanations were generated and combined into an explanation of that class using209

probability-matched means.210
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Hilburn et al. (2021) used Geostationary Operational Environmental Satellite (GOES)211

imagery to train a U-Net architecture to estimate the spatial distribution of composite212

reflectivity. The input is composed of 4 GOES bands, each a 256×256 image, and the213

output is a 256×256 spatial grid. Layer-wise Relevance Propagation (LRP) identifies in-214

fluential raster elements using a backwards pass through the neural network. Influence215

is based on the flow of contribution from the neurons, tracing back to find which input216

features were most influential in activating the neurons that contributed to the predic-217

tion. LRP is computed for each output pixel. In the GLM channel of the input raster,218

LRP results suggest that the network focuses on lightning regions. The authors then cre-219

ated modified inputs, removing the lighting in the GLM channel to observe model out-220

put. The results indicated that the lightning did in fact contribute significantly. Here,221

an existing XAI technique was used, but with additional steps taken to increase confi-222

dence.223

Beucher et al. (2022) used a CNN for probability of potential acid sulfate soil oc-224

currence. The data is 14 gridded variables (topography, soil, and climate) over a wet-225

lands region in Jutland, Denmark. The model outputs probabilities for a single grid cell,226

given that cell’s 14-channel input raster of 5×5 covariate matrices. Feature effect method227

SHapley Additive exPlanations (SHAP) was applied with entire channels as features. Since228

each input is associated with a spatial location, the authors extended the SHAP anal-229

ysis to the spatial region to visualize the spatial distribution of each feature’s influence.230

These works demonstrate XAI methods used to interpret complex models for geo-231

science applications that used multi-channel rasters with spatial or spatio-temporal in-232

formation. Since the true explanation is unknown, none can provide a quantitative mea-233

sure of explanation accuracy. Efforts to increase trust in the explanations included san-234

ity checks (Lagerquist, 2020) and testing hand-crafted synthetic data (Hilburn et al., 2021).235

Au et al. (2021) discuss XAI on grouped features based on 3 main motivations. First,236

it may be infeasible to generate explanations for a large dataset of high-dimensional in-237

puts. Second, correlations and interactions may yield misleading explanations. Third,238

groups of related features may facilitate human interpretation of explanations. We are239

less interested in the third motivation. For many geoscience applications, we expect that240

expert users will be interested in the most granular explanations of the spatio-temporal241

variables influencing the model. However, the first two motivations are of major concern242

for high-dimensional geoscience ML. Au et al. (2021) discuss 3 feature importance meth-243

ods on grouped features: PFI, refitting (retraining the model with the group removed),244

and LossSHAP.245

1.2 Contributions246

Our work provides the following contributions:247

1. An analysis of the sensitivity of XAI methods to the granularity of the feature group-248

ing scheme. That is, we investigate how the choice of grouping raster elements for249

aggregated XAI influences the output explanations.250

2. Methods for aggregating local explanations into global model insights. By taking251

advantage of spatial consistency across all input cases, we combine cases into global252

explanations for each fog type and classification outcome.253

3. A case study using aggregation of features and of explanations to investigate a 3D254

CNN for coastal fog prediction. Our XAI visualizations are produced based on feed-255

back from a NWS meteorologist who then uses the explanations to generate hy-256

potheses on the model’s learned strategies.257

4. Channel-wise PartitionShap (CwPS), a modification of the XAI software Parti-258

tionShap (Lundberg & Lee, 2017) to add support for hierarchical, recursive SHAP-259

based explanations on each raster channel. We introduced CwPS briefly in our FogNet260
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ablation study (Kamangir et al., 2022), but describe and apply it more extensively261

here.262

5. Meteorological interpretations of XAI output were conducted in order to access263

the trustworthiness of FogNet to operational meteorologists with respect to fog264

prediction, as evidenced by the mechanisms and the ambient environmental con-265

ditions associated with coastal fog that are captured by FogNet, and the ability266

of FogNet to learn the unique processes associated with different fog types.267

2 Methods268

FogNet (Kamangir et al., 2021) is a DL architecture for predicting coastal fog. Mod-269

els were trained to predict visibility at 3 thresholds (less than 1600m, 3200m, 6400m)270

and 3 lead times (6, 12, and 24-hours). A specific FogNet model instance is trained for271

a visibility threshold and lead time. FogNet models were trained for the South Texas Gulf272

Coast. Most input features were derived from the North American Mesoscale Forecast273

System (NAM), a deterministic numerical weather prediction (NWP) modeling system.274

An additional feature is observed SST from the NASA Multiscale Ultra-high Resolution275

(MUR) satellite dataset. The target visibility data is observations at Mustang Beach Air-276

port in Port Aransas, Texas (KRAS). FogNet acts as AI-based Model Output Statistics277

(MOS) correcting the NWP output based on observations at the target region.278

Each predictor is a raster of metocean variables. Each channel is a 32×32 grid with279

a spacing of 12 km. Thus, the domain is a 384 km2 region along the Texas Gulf Coast,280

containing both coast and offshore. The target is a binary class representing whether or281

not there is visibility at the specific threshold.282

Variables were selected to capture 3D spatial and temporal relationships related283

to fog. Most variables are included at multiple altitudes, forecasts, and time steps, for284

example, vertical velocity at 750 mb, 0 hours and at 900 mb, 12 hours. The number of285

channels used depends on the lead time. For 6 and 12-hour lead times, there are 288 chan-286

nels so that the input raster size is (32, 32, 288). For 24-hour lead time predictions, an287

additional set of channels are included with a raster size of (32, 32, 384).288

The FogNet architecture, based on 3D convolutions, was designed to capture re-289

lationships across both the spatial grids and the spatial-temporal channels as is often needed290

for geoscience applications (Kamangir et al., 2021). Dilated 3D convolution is used so291

that the model is not limited to convolution over adjacent elements. Instead, skip val-292

ues are learned that define which pixels are involved in the convolution. This allows flex-293

ible learning of 3D features. Since the pattern of channels is that each variable is repeated294

at four time steps, it can be challenging for the model to separate spatial and tempo-295

ral features. So, the FogNet architecture first separately learns the spatial and tempo-296

ral features. They are then combined to allow the model to exploit any useful spatio-297

temporal relationships. Other mechanisms are the Dense Blocks that reduce the num-298

ber of learnable parameters and mitigates the vanishing gradient problem, and Atten-299

tion Mechanism that suppress the influence of less discriminative features.300

FogNet outperforms the operational High-Resolution Ensemble Forecast (HREF)301

across several performance metrics (Kamangir et al., 2021). Here, we focus on FogNet302

trained for visibility < 1600m at 24-hour lead time. This longer lead time uses additional303

channels as compared to the shorter lead times, making it a better (that is, more chal-304

lenging) case study for XAI on high-dimensional geoscience models. The trained weights305

used are those from the highest performing model in a set of experiments previously re-306

ported (Kamangir et al., 2021).307
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Figure 1: The FogNet input data (a) is a raster with 32 rows × 32 columns. The number
of channels depends on the lead time — 288 for 6 and 12 hours, and 384 for 24 hours.
The channels are divided into 5 groups based on their physical characteristics (b). G1 is
wind, G2 is turbulence kinetic energy and humidity, G3 is lower atmosphere thermody-
namic profile, G4 is surface atmospheric moisture and microphysics, and G5 is sea surface
temperature.

2.1 Physics-Based Channel Groups308

The features originating from the NAM NWP modeling system, described in more309

detail in the FogNet paper (Kamangir et al., 2021), were divided into four groups (G1,310

G2, G3, G4). A fifth group, G5, combines the satellite sea surface temperature with out-311

puts from the NAM NWP model. Each of the groupings combine features with a sim-312

ilar relationship to fog development. G1 features capture the relationship between wind313

and fog, and include u, v wind component profiles below 700 mb (10-meter height; iso-314

baric levels from 975 mb to 700 mb at 25 mb increments), and the frictional velocity at315

the surface. Surface (10-meter) wind speed magnitudes ≥2.5 m/s, and surface (3-meter)316

frictional velocity magnitudes ≥0.3 m/s, can dissipate, or preclude the development of,317

radiation fog (Tardif & Rasmussen, 2007; Liu et al., 2011). However, wind speeds ≥2.5318

m/s are essential for the development of advection fog (Koračin et al., 2014). Friction319

velocity is related to the turbulent component of the wind. In particular, friction veloc-320

ity is equal to the square root of the Reynolds stress divided by air density; the Reynolds321

stress refers to the mean force per unit area imposed by turbulent motion on the mean322

flow (Glickman, 2000).323

The G2 features are the turbulence kinetic energy (TKE) and specific humidity (Q)324

profiles below 700 mb (TKE and Q from 975 mb to 700 mb, at 25-meter increments),325

and captures the scenario whereby the combination of turbulence and a decrease in Q326

with height can dissipate or preclude fog (Toth et al., 2010). Further, radiation fog gen-327

erally requires an increase in Q with height in the lower levels (Petterssen, 1940; Baker328

et al., 2002). In addition, TKE at 975 mb may capture near surface mechanical turbu-329

lence that contributes to advection fog formation (Huang et al., 2011).330

The G3 features approximate the thermodynamic profile below 700 mb by includ-331

ing relative humidity (RH) and temperatures (TMP) at the 2-meter height, and at iso-332

baric levels from 975 mb to 700 mb at 25 mb increments. Radiation fog occurrence is333

correlated with a thermodynamic profile characterized by a thin moist/saturated layer334

near the surface, followed by much drier air aloft. Yet, advection and stratus-lowering335

fogs are associated with deeper moist layers (Croft et al., 1997; Dupont et al., 2016). Both336

radiaton and advection fogs are associated with a near surface temperature inversion (in-337

crease in TMP with height) (Koračin et al., 2014; Mohan et al., 2020).338
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The features of G4 account for surface moisture and level of air saturation (2-meter339

q and dew point depression, respectively), and microphysical processes responsible for340

fog development. Microphysics features include the NAM surface visibility, which mea-341

sures the empirical relationship between visibility reduction (owing to fog) and cloud liq-342

uid water (from the NAM microphysics parameterization scheme), and temperature at343

the lifted condensation level (TLCL) (inversely related to the activation of cloud con-344

densation nuclei or CCN). Vertical velocity (VVEL) below 700 mb was included in G4345

given its relationship to CCN activation (Gultepe et al., 2017). However, VVEL also re-346

lates to G1 wind features and to larger scale environmental conditions that relate to fog.347

For example, radiation fog occurs when VVEL magnitudes are weak (Gultepe et al., 2017).348

Further, advection fog tends to occur within an environment characterized by synoptic349

scale subsidence (negative VVEL values) below 500-mb (Huang et al., 2011; Yang et al.,350

2017; Mohan et al., 2020). In addition, radiation fog tends to occur during weak local351

subsidence below 220 meters (Liu et al., 2011; Dupont et al., 2016), and also above 220352

meters (Mohan et al., 2020).353

The G5 features describe sea surface temperature (SST), difference between SST354

and temperature (TMP-SST), and the difference between dew point temperature and355

SST (DPT-SST). They capture the conditions consistent with the development of ma-356

rine advection fog that occurs at the KRAS target primarily during the Winter months.357

Further, T-SST modulates radiation fog. When T-SST<0, near surface upward directed358

sensible heat flux can counteract radiational cooling and thus either delay the onset of,359

or prevent, radiation fog (Liu et al., 2011). Marine advection fog tends to occur within360

a specific range of SST values (P. Li et al., 2016), and occurs when DPT-SST≥0 or TMP-361

SST≥0 (Koračin et al., 2014).362

Although the foregoing groups contain features that relate to a particular fog gen-363

erating or dissipating mechanism, or possess a statistical correlation to fog occurrence,364

there exists correlations across the groups. For example, Groups 1, 2, and 3 are corre-365

lated; a temperature inversion (temperature increase with height) in the lower levels (G3),366

which typically occurs during fog events, will result in an atmospheric condition known367

as positive static stability (Wallace & Hobbs, 1977) which will suppress vertical mixing368

of air which in turn affects surface wind velocity (G1). Furthermore, a thermal inver-369

sion can suppress turbulence (G2) (Stull, 1988). Groups 3 and 5 are related since G3 con-370

tains surface RH, which is inversely proportional to the G5 feature dew point depres-371

sion. Since wind has a turbulence component, there exists a relationship between G1 wind372

and G2 TKE. In addition, G1 and G4 are related since surface wind divergence (con-373

vergence) results in downward (upward) VVEL immediately aloft.374

2.2 Explainable Artificial Intelligence375

In this research, FogNet is used as a case study to investigate using XAI on fea-376

tures grouped by multiple levels of granularity to aid interpretation. We apply the 3 fea-377

ture importance methods discussed by Au et al. (2021), as well as the feature effect method378

PartitionSHAP. The goal is to analyze FogNet with relatively granular feature groups.379

Since larger groups of correlated features are expected to produce more accurate expla-380

nations, we will use consistency among grouping schemes to guide confidence in the XAI381

outputs. That is, when the more granular outputs align with coarser outputs, we have382

more trust that we can use the detailed output for model insights. When they disagree,383

we assume that the feature correlations and interactions impede accurate explanations384

at the finer-grained level. Section 2.1 discusses geometric feature grouping schemes. Sec-385

tions 2.3 and 2.4 briefly describe the feature effect and importance methods used, respec-386

tively.387
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2.2.1 XAI with Grouped Features388

The features for the XAI algorithms are not necessarily the atomic components of389

the input data, but are defined by the grouping scheme used. Thus, a feature could be390

the entire G1 from the FogNet raster, or a single channel in G1 or even an 8×8 superpixel391

inside that channel.392

(a) raster (b) pixels (c) superpixels (d) channels (e) channel groups (f) CwSPs 

Figure 2: Various geometric partition schemes for grouping 3D raster elements. The most
granular is the (a) raster itself where no grouping is applied: the features are individual
(row, column, channel) elements. Each spatial element can be grouped into a (b) pixel
that contains all channels at that (row, column) location. Adjacent pixels may be com-
bined into coarser (c) superpixels. Similarly, adjacent (d) channels may be aggregated
into (e) channel groups. Within each channel, the elements may be aggregated into (f)
channel-wise superpixels (CwSPs).

Figure 2 shows several possible geometric partition schemes. This is far from ex-393

haustive, and the schemes can be arbitrarily complex. For example, a superpixel could394

include a subset of the channels (e.g. two adjacent channels) instead of either all (su-395

perpixels) or one (channel-wise superpixels). The groups do not have to be uniform in396

size. For example, we could choose to group each channel individually, except to explic-397

itly group channels of wind horizontal and vertical components together.398

The most granular is to apply no grouping, using each raster element as a feature.399

While fine-grained explanations are ideal, there are practical limitations from the com-400

putational requirements and the sensitivity to feature correlations and interactions.401

XAI software packages are often developed with RGB images in mind, treating pix-402

els as features to generate 2D explanation heatmaps. For geoscience applications, includ-403

ing FogNet, the pixels often represent discrete spatial locations across a number of vari-404

able channels. So a pixel-level grouping of FogNet would only highlight influential re-405

gions, but not which of the 384 variables were influential at that location.406

Pixels may be grouped into superpixels for faster computation on a smaller num-407

ber of features. Groups of adjacent elements may contain sufficient information to trig-408

ger a change in model output even if single pixels couldn’t with so little information in-409

dividually. A drawback is that evenly dividing the space creates arbitrary superpixels410

with possible discontinuities, i.e. containing both land and water along the shoreline.411

Entire channels can be treated as features to reveal influential variables, and is very412

practical for geoscience applications where channels are each a distinct spatial variable413

map. However, the explanations do not reveal where on the earth surface the variable414

is most influential. Both Gagne II et al. (2019) and Lagerquist (2020) applied PFI to chan-415

nels. Channel groups are a collection of adjacent channels. When adjacency is meaning-416

ful (i.e. altitude/time), then the channel groups may capture autocorrelation to improve417

XAI accuracy. For example, the vertical structure/profile of the FogNet feature/channel418

air temperature (TMP) is more important to operational meteorologists when forecast-419

ing fog and thunderstorms, than the TMP at a particular level. Such adjacent channels420

can be aggregated into a single XAI feature.421
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Channel-wise superpixels are simply superpixels but within each channel. These422

features allows for explanations of what variable and where, i.e. u-component of the wind,423

approximately 40-km east of the target KRAS, at the 700-mb pressure level.424

Here, FogNet features are grouped at 3 schemes. At the least granular, based on425

the 5 physics-based channel groups already defined (Section 2.1). We expect the groups426

to be semantically meaningful and to produce the most accurate explanations. Our ab-427

lation study (Kamangir et al., 2022) confirmed that each group contributes to FogNet’s428

high performance. So we expect that each group should be assigned significant impor-429

tance. The drawback is that we learn relatively little. If we discover that G1 (wind) is430

a high-ranking feature, we still don’t know which of the 108 wind-related channels are431

influential and at what geographic locations.432

Next, each of the 384 channels are used as features. Ideally, this reveals more in-433

sight into the model’s decision making: which variables, at what altitudes and time steps.434

However, there is already a risk of highly-correlated channels diluting the detection of435

each channel’s true influence. To assess sensitivity, we sum the channel-wise XAI val-436

ues to see if the summations achieve the same group ranking as the channel groups XAI.437

To achieve spatio-temporal explanations, the lowest level of granularity is channel-438

wise superpixels. We will assess sensitivity by aggregating the superpixels in each chan-439

nel for comparison with channel-wise XAI, and further aggregated into groups to com-440

pare to group-based XAI.441

2.3 Feature Effect Methods442

Feature effect methods are intended to quantify the extent that a given feature in-443

fluences a specific model output, that is, each feature’s contribution to the prediction.444

Unlike feature importance methods, feature effect reveals features being used by the model445

even when they have very little impact on the overall performance. Or, when the fea-446

ture is used frequently for both correct and incorrect outputs. The positive and nega-447

tive impact on performance may cancel out such that a very influential feature is not de-448

tected by a feature importance method.449

Feature effect methods are called local methods because the explanation is for a450

specific model output. This is in contrast with global methods that explain how the fea-451

tures are used by the model across a set of instances. Thus, feature effect methods present452

more detailed information. It is possible to find incorrect learned strategies that occur453

only occasionally. A global method can average out the information across a set of ex-454

amples, so these rarer feature contributions might not be detected. But they may be the455

the most interesting if they are most influential during extreme events like storms where456

the model’s decisions are most critical.457

However, it is challenging to obtain global model insights from a large set of high-458

dimensional local explanations. Each explanation is a raster of values with the same di-459

mensions as the number of features. Thus, it is common to aggregate the local expla-460

nations into a smaller number of global explanations. Instead of a single global expla-461

nation, they can be aggregated by category. For example, Lagerquist (2020) combined462

XAI results by extreme cases: best hits, worst misses, etc. This aids interpretation of463

the set of explanations by the differences: does the model rely on different features for464

fog vs non-fog cases, and do these differences match forecaster knowledge?465

In our case, the FogNet input rasters have consistent grid cell geography. That is,466

each has identical geographic extent and resolution such that (row, col) coordinates al-467

ways align spatially across samples. We take advantage of this to aggregate explanations468

by summing values at each coordinate across a set of samples as shown in Section 2.3.469

At the risk of losing fine-grained information from case-by-case model behavior, this con-470
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verts the set of local explanations into a much smaller set of figures that can be analyzed471

more easily.472

2.3.1 SHapley Additive ExPlanations473

Game-theoretic Shapley values are the fairly distributed credit to players in a co-474

operative game Lundberg & Lee (2017). That is, each player should be payed by how475

much they contributed to the outcome. In the XAI setting, the features can be consid-476

ered players in a game to generate the model output. Thus, a feature that influenced the477

model to a greater extent is a player that should receive more payout for their contri-478

bution.479

Shapley values are a feature’s average marginal contribution to the output. Cal-480

culating Shapley values directly has combinatorial complexity with the number of fea-481

tures. Since it is infeasible for high-dimensional data, Lundberg & Lee (2017) developed482

a sampling-based approximation called SHapley Additive exPlanations (SHAP). Mol-483

nar et al. (2020) gives a detailed explanation of Shapley values and SHAP, including a484

discussion of advantages and disadvantages.485

A single contribution is the difference between the model output with and with-486

out a feature x. However, models usually expect a fixed input, and do not support leav-487

ing out a feature. Feature removal has to be simulated somehow, and a variety of meth-488

ods have been proposed. In canonical SHAP, the value of the removed feature x is re-489

placed with the value from x in other dataset examples. By replacing x with many such490

values and averaging the result, SHAP evaluates the average difference in output between491

the true value of x and output without that value.492

The key to Shapley values (and SHAP) is that many additional output compar-493

isons are performed to take into account feature dependencies and interactions. In the494

context of a cooperative game, consider a team that has 2 high-performing players x and495

y. The remaining players on the team have no skill. With x and y playing, the team wins496

despite no help from the others. The goal is to fairly assign payout to the players based497

on their contribution to the game’s outcome. Suppose x is removed from play and y is498

still able to win the game. Comparing the two games, one could conclude that x did not499

contribute to the win. Instead, if y were removed and x wins the game then it appears500

that y does not contribute. However, removing both x and y causes the team to lose the501

game. Thus, the change in game outcome from player x depends on player y.502

The combinatorial complexity of Shapley values is because it takes the above de-503

pendency issue into account. To evaluate the contribution of x, it does more than just504

compare model outputs with and without x present. It repeats the comparison, but con-505

sidering all possible combinations of other players being present or absent from the game.506

A feature’s Shapley value is a weighted average of the contribution over all the possible507

combinations of players. SHAP approximates the Shapley values over a set of samples508

for performance, but still potentially requires a very large number of evaluations to con-509

verge to a close approximation. Thus, computing Shapley or SHAP values may be in-510

feasible for more granular feature grouping schemes.511

2.3.2 PartitionSHAP512

In the case of FogNet, it is impractical to use SHAP for channels or channel-wise513

superpixels because of the large number of features. Lundberg & Lee (2017) provide an514

alternative called PartitionSHAP that uses a hierarchical grouping to recursively approx-515

imate Shapley values for superpixels with a significantly reduced number of calculations.516

The computational complexity of PartitionSHAP is quadratic with the number of raster517

elements instead of SHAP’s exponential complexity.518
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Given a partition tree that defines a hierarchy of feature groups, PartitionSHAP519

recursively traverses the tree to calculate Owen values. Owen values are equivalent to520

Shapley values for a linear model, but otherwise have their own game-theoretic proper-521

ties that are useful for dealing with correlated features. Unlike Shapley values, the re-522

cursive Owen values are able to correctly assign to feature groups credit even if the cor-523

related features are broken while perturbing those features. However, this is only true524

if the partition tree groups correlated features.525

For tabular data, PartitionSHAP uses a clustering algorithm to define the parti-526

tion tree in a data-driven fashion. For rasters, PartitionSHAP partitions by recursively527

dividing the data into 2 equal-size superpixels. Figure 3a shows the first 4 levels of a par-528

tition tree constructed for a single-channel raster. The root is the largest group, the en-529

tire image. Each node’s children represent splitting it into 2 superpixels. PartitionSHAP’s530

image partitioning algorithm is illustrated in Figure 4.531

Figure 3b illustrates how the Owen values are calculated based on the recursively532

defined feature hierarchy. First, consider calculating the Owen value of the root node’s533

left child. This is the superpixel representing the bottom half raster elements. The Owen534

value is the weighted sum of multiple model evaluations that represent the change in out-535

put with and without the superpixel present. The left-hand operation is the difference536

in model output with no information (all values removed) and with the superpixel’s val-537

ues added. The right-hand operation is the difference between the model output with538

all values present and with the superpixel’s values removed. Together, these describe the539

contribution of the superpixel. Below is the calculation for the bottom-right quadrant540

superpixel. This example more clearly shows how the hierarchy reduces the number of541

required computations compared to SHAP. There are four comparisons. First, the dif-542

ference in output when only the superpixel is present. Then, the output when the group543

is present but the superpixel is removed. Next, the group is absent, except for the su-544

perpixel (and the parent’s sibling is present). Finally, the group is present (sibling ab-545

sent), and the superpixel removed. All four evaluations are with respect to the super-546

pixel being evaluated and its parent group. With SHAP, evaluating this bottom-right547

superpixel would have required evaluating the model with all other quadrants being present548

or absent. Here, there is no evaluation of the top-left and top-right quadrants since they549

are not part of the bottom-right’s feature hierarchy. Since the image-based partitioning550

is performed by arbitrarily splitting the raster elements by the image size, there is no551

guarantee that the partition hierarchy captures correlated feature groups. Thus, Owen552

value’s game-theoretic guarantees are violated. Regardless, Hamilton et al. (2021) ap-553

plied PartitionSHAP and described the explanations as high quality and outperforming554

several other XAI methods including Integrated Gradients and LIME. Even without par-555

titioning the raster into optimally correlated clusters, the superpixels contain spatially-556

correlated elements and might cause an appreciable change in the model output com-557

pared to a single raster element.558

Our main motivation to use PartitionSHAP is efficiency. Shapley-based channel-559

wise superpixel explanations are feasible because of 2 properties. First, the recursive scheme560

that lowers the number of required evaluations already described. Second, PartitionSHAP561

selectively explores the tree to calculate more granular superpixel values based on the562

magnitude of the Owen values: a superpixel with higher Owen values is prioritized such563

that its children superpixels will be evaluated before those with lower magnitude values.564

Given a maximum number of evaluations, PartitionSHAP generates explanations with565

more influential raster elements at increased granularity.566

PartitionSHAP divides by rows and columns, and only by channels when at a sin-567

gle (row, col) pixel. Here, we are interested in superpixels inside each of the channels.568

These represent windows of spatial regions within a single feature map. We added an569

additional partition scheme option to Lundberg & Lee (2017)’s SHAP software. This par-570
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(a) Partition Tree

(b) Owen value calculation

Figure 3: The hierarchy is defined by the partition tree that is generated by recursively
splitting the raster. An example partition tree for a single channel, shown to a depth of
4, is given in (a). The white elements indicate the superpixel at that node. The tree con-
tinues until the leaf nodes are single (row, col) elements. Owen values (b) are calculated
recursively, where each superpixel is evaluated based on comparisons with the elements
in its larger group either present or absent. The number of comparisons required to cal-
culate Owen values doubles at each level, starting with 1 at the root. The computational
speedup compared to conventional SHAP is that the evaluations are limited to within a
branch of the tree. That is, to evaluate the Owen value of the lower-right quadrant, it
does not evaluate the situations where only the upper-left quadrant is present or absent.
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(a) initial (a) row split (a) column split 

Figure 4: PartitionSHAP’s default scheme for dividing raster elements into a parti-
tion tree. Given an input raster (a), the rows and columns are alternatively halved. (b)
demonstrates a row split that divides vertically into two groups. This is followed by a
column split (c) further dividing each horizontally. This process continues, recursively
building tree where each group is a node whose children are the two groups formed by
splitting it.

tition scheme, illustrated in Figure 5, splits along the channels first, then into superpix-571

els within each channel.572

(a) initial (a) channel split (a) row split 

Figure 5: An alternative partition scheme used to define feature groups as Channel-wise
Superpixels (CwSP). The input raster (a) is initially divided along the channels. (b)
shows the result of a single channel split, dividing the raster into two halves. When the
partitioning reaches a single-channel group, it begins recursively diving along the rows
and channels as before. (c) shows the result of row splits performed on all three channels.
We call this scheme Channel-wise PartitionSHAP (CwPS).

2.4 Feature Importance Methods573

Feature importance methods are intended to quantify the extent that a given fea-574

ture influences model performance. These are called global XAI methods since they de-575

scribe the feature’s influence based on a set of instances. With a large and representa-576

tive set of examples, perhaps the entire test dataset, the explanation is expected to re-577

flect overall model characteristics. Here we report the change in the Peirce Skill Score578

(PSS) to determine a features importance, however other performance metrics were used,579

including the Heidke Skill Score (HSS) and the Clayton Skill Score (CSS) for separate580

FogNet feature importance experiments. Since fog events are rare compared to non-fog,581

it is trivial to achieve high accuracy yet with limited forecasting skill. However, the HSS,582
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PSS, and CSS performance metrics measure skill. Furthermore, PSS and CSS measure583

economic value. Thus, it is non-trivial to achieve high skill when using these 3 metrics.584

Feature importance methods differ mainly in how feature removal is simulated. Again,585

the fixed-length model input prevents actually removing the feature. A trivial example586

is to replace the feature’s value with a random value, breaking the pattern originally present.587

A potential issue is that random values could create unrealistic input samples well out-588

side the domain of the training data. The model’s output may reflect the use of unre-589

alistic data rather than properly simulating the removal of that feature (Molnar et al.,590

2020). Alternatively, the replacement value could be randomly selected from that fea-591

ture’s value in other dataset samples to ensure realistic values. However, the combina-592

tion with other features could still be unrealistic, again risking model evaluation with593

out-of-sample inputs. Molnar et al. (2020) describes the problem of feature replacement594

in detail. Given the lack of a completely satisfying solution, it is (again) recommended595

to run multiple techniques to find consistent explanations.596

2.4.1 Refitting Methods597

Instead of simulating feature removal, an alternative is to retrain the model with598

a resized input that does not include that feature (Au et al., 2021). Feature importance599

is the difference in model performance trained with and without that feature. The new600

model has to learn data associations without that feature available, so it may be a very601

revealing assessment of that feature’s influence.602

Training the model from scratch for each feature requires substantial computing603

resources. Refitting methods are infeasible for explaining models with high-dimensional604

inputs. Requiring >2 hours to train, it would take >786432 hours to explain each ele-605

ment of FogNet’s (32, 32, 384)-size raster. Because of stochasticity in training, each should606

really be done multiple times to compute an average. However, refitting may be applied607

to coarser groups such as the 5 physics-based channel groups. Here, we refer to the re-608

fitting method as Group-Hold-Out (GHO) and use is to explain the 5 channel groups.609

While refitting methods avoid the problem of out-of-sample feature replacement,610

they do not entirely mitigate feature correlation concerns discussed in Section 2.3.1. If611

features x and y provide strong discriminative information, but are highly correlated with612

another, then retraining with only x or y removed might have negligible impact on model613

performance. One could imagine retraining the model with each group of features re-614

moved, like SHAP, but with combinatorial model retraining.615

Another issue is that the explanation is technically not for the model originally to616

be explained, since each refitting generates a new model. If the model behavior is nar-617

rowly constrained, then the explanation should be valid. But if each model is learning618

unique strategies (i.e. many equally valid data associations can predict the target), then619

it may be misleading to rely on this as an explanation of the specific model.620

2.4.2 Permutation Feature Importance621

PFI simulates feature removal with permutation to replace the values of the fea-622

ture of interest (Breiman, 2001). This is done over a set of samples to produce a global623

explanation. The following is a brief summary of the PFI algorithm used to calculate624

the importance of a single feature xi ∈ X where X is the set of all features. This is re-625

peated for each feature. Without feature grouping, every (row, col, channel) is a distinct626

feature.627

First, for every sample in a set of samples, permute the value of feature xi and com-628

pute the model output with the modified input. This yields a set of model outputs. Then,629

compute the model performance using a chosen metric (e.g. the loss function). Next, cal-630
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culate the difference between the model’s original (base) performance and that of the631

modified input data. The mean difference is the importance score. If the model perfor-632

mance drops significantly, then xi is considered an important feature. If there is min-633

imal performance change, then xi is either unimportant or has information that is re-634

dundant with other features (McGovern et al., 2019). Alternatively, the performance could635

actually increase which indicates that the feature was in fact hurting performance (neg-636

ative importance).637

There are 2 main ways to perform the permutation with grouped features. One is638

a joint permutation where all the values of the feature being permuted move together639

into another instance. The goal is to maintain a valid relationship to avoid replacing the640

feature with out-of-sample values. Another approach is a completely random permuta-641

tion where each value could be any other value from the permuted features. Since many642

of the FogNet data samples are similar to each other, we chose the latter to avoid replac-643

ing a feature with very similar values to what it originally had.644

2.4.3 LossSHAP645

LossSHAP is a SHAP variant for global feature importance (Covert et al., 2020).646

Au et al. (2021) provide a complete description of using Shapley-based XAI algorithms647

for grouped feature importance. LossSHAP can be described as a hybrid of SHAP and648

PFI. Instead of calculating the average marginal contribution (change in output) like SHAP,649

LossSHAP calculates the average marginal importance (change in performance).650

Like PFI, the importance is based on the difference in performance with and with-651

out the feature across a set of samples. Like SHAP, the importance is the weighted av-652

erage of this performance difference, considering all possible combinations of other fea-653

tures being present or absent.654

3 Results655

The XAI methods described were applied to explain FogNet. Feature importance656

methods were applied to the entire test dataset of 2229 cases. PFI was applied to three657

feature grouping schemes: channel groups, channels, and channel-wise super pixels (CwSPs).658

Because of their substantial computational requirements, LossSHAP and GHO were ap-659

plied only to the 5 channel groups.660

Feature effect methods were applied to 293 cases taken from both the test and val-661

idation datasets. This includes all 67 hits, 64 misses, and 78 false alarms, as well as 84662

randomly selected correct rejections. The hits and misses are further broken down by663

fog type. Here, we are most interested in advection fog (A) and the combined category664

radiation and advection-radiation fog (R/A-R). To clarify, unless the phrase radiation665

and advection radiation fog is used, whenever radiation fog appears alone in this paper,666

it refers to both radiation and advection-radiation fogs. Both radiation and advection-667

radiation fogs are grouped together because the same mechanism is responsible for the668

formation of both: radiational cooling. The mechanism governing advection fog is fun-669

damentally different. Advection fog is the majority fog case in the data set, where FogNet670

was shown to perform well. Radiation and advecton-radiation fogs are highly underrep-671

resented in the data. For advection fog, there are 50 hits and 34 misses. For radiation672

and advection-radiation fog, there is only 1 hit and 10 misses. The environmental con-673

ditions that contribute to radiation fog are more difficult to predict via numerical weather674

prediction (NWP) models than those governing advection fog (Stull, 1988; Gultepe et675

al., 2007). Thus, the rarity of radiation and advection-radiation fog, combined with the676

difficulty of forecasting this fog type, represents a major challenge. The other fog types677

include precipitation, frontal and cloud base lowering (CBL) fog. Frontal fog can be di-678

vided into frontal passage, warm front pre-frontal, and cold front post-frontal fog types.679
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Table 1: Summary of XAI methods applied to explain FogNeta

Explanation Type Technique Channel Groups Channels Super Pixels

Feature importance PFI

GHO × ×
LS × ×

Feature effect SHAP × ×
CwPS × ×

aTo analyze the sensitivity to the choice of grouping scheme, methods

are applied to Channel groups, channels, and Channel-wise Superpixels.

Because of computational limitations, not all methods are applied to all schemes.

Table 1 summarizes which XAI methods were applied to each grouping scheme and680

for each type of explanation.681

3.1 Feature Effect682

The two methods used to study feature effect were SHAP and Channel-wise Par-683

tition Shap (CwPS) and they were applied to the entire dataset. SHAP could not be ap-684

plied to the 384 channels directly due to its complexity, however we did apply it to the685

5 channel groups. Here, SHAP values are determined by the contribution to each group686

towards FogNet’s output fog predictions, and when a group is not used, the values for687

all features within the group are set to zero. The result is a SHAP value for every case688

in the test dataset. Figure 6a shows the distribution of the group SHAP values for all689

2228 test cases. The most common case (96%) is no fog and although we use a thresh-690

old value of .8, the mean value is .048. Thus, the SHAP values overall tend to be quite691

small for most cases in the test dataset, and Figure 6a shows that the groups all have692

a very similar impact, since their SHAP value distributions are similar. However, Fig-693

ure 6b shows the distributions of the SHAP values broken out by outcome (hit: 37, miss:694

30, correct-reject: 2126, false-alarm: 35). Here we see a different story. Group four plays695

a bigger role in moving the decision of FogNet towards one of fog. The other four groups696

also contribute to a decision of fog, but their distributions are very close to each other697

showing a a somewhat similar contribution for when the model predicts fog.698

CwPS was used to determine SHAP values for super pixels. CwPS creates a local699

explanation and needs to be performed on each case individually. Since it is quite slow,700

we use only 293 FogNet cases (a sample of the correct rejects, plus all the hits, false alarms,701

and misses) from the validation and test datasets to get use the local explanations to get702

a sense of a global explanation. The validation data contains fog and non-fog cases from703

2009-2012, and the test data from 2018-2020. While Molnar (2022) generally recommends704

performing XAI on the test data, we combined it with validation because of the highly705

imbalanced dataset having very few fog cases.706

The hits and misses are further broken down by fog type. Here, we focus on 2 cat-707

egories: (1) advection fog and (2) combined radiation & advection-radiation fog. The708

latter are grouped because they are driven by the same process: radiational cooling. Fore-709

casters rely on distinctly different conditions to predict these fog categories, so it is of710

interest to compare their XAI outputs. Does the model learn different strategies to pre-711

dict broad fog types? Based on our previous FogNet analysis (Kamangir et al., 2021),712

we have found that FogNet performs poorly for radiation & advection-radiation fog. We713
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Figure 6: SHAP feature effect results for the 5 groups. SHAP values for each group are
calculated for each of the 2228 cases and the violin plots represent the distribution of the
SHAP value for those cases. (a) lists all 2228 cases, while (b) aggregates based on the
outcome.

hypothesize that FogNet is mainly learning to predict the dominant fog type, advection714

fog. But, without XAI, we do not know if FogNet is simply applying advection fog strate-715

gies to all fog types, or if it is learning different strategies ineffectively.716

CwPS yields a high-volume output: 293 explanations, each a (32, 32, 384)-size SHAP717

value raster. It is challenging to manually inspect these for a general understanding of718

model behavior. Here, we are interested in broadly characterizing the model’s strategies719

for the outcome categories. That is, we chose CwPS because it calculates feature effect720

values not because it produces local explanations. So, we aggregate local explanations721

for each outcome category. We used three aggregation schemes to analyze the results in722

terms of spatial-channel, spatial, and channel SHAP values.723

The spatial-channel aggregations are the summation of the CwPS outputs within724

each outcome category: 8 aggregate explanations of size (32, 32, 384). While there is some725

risk of positive and negative SHAP values cancelling out, this highlights the dominant726

sign of the SHAP values. This enables seeing which CwSPs are consistently influential727

toward or away from the category’s prediction. A cursory manual inspection showed that728

the relatively high-magnitude SHAP values are confined to a small number of channels.729

So, we ranked the channels by their maximum absolute superpixel SHAP value to fo-730

cus on the more influential subset. The ranked spatial-channel-wise aggregation results731

are shown in Figure 7. This figure only shows the top ranked channels that correspond732

to timestep t3 which are the 24-hour lead time NAM outputs. The decision to highlight733

t3 channels is because they support a meteorological analysis of the XAI results. Specif-734

ically, to examine if the t3 features that are detected as being important based on XAI735

techniques correspond to a forecaster’s knowledge of fog conditions which here are pre-736

dicted for a 24-hour lead time. The meteorological interpretation of these figures is in-737

cluded in Section 4.2. However, all XAI outputs are available online (see Section 6).738

To highlight influential spatial regions, the SHAP values of each channel were summed739

at each (row, col) location. This procedure converted the 8 spatial-channel aggregates740

into the 8 (32, 32)-size rasters shown in Figure 8. An interpretation of this figure from741

a meteorological perspective is provided in Section 4.2.742

Finally, CwPS outputs were aggregated into 384 channel explanations for each of743

the 8 categories to highlight influential spatial-temporal metocean variables, i.e. Verti-744

cal velocity at 950mb, t1. The straightforward approach is to simply sum or average the745
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Figure 7: CwPS spatial aggregates for T3. Shown are the top ranked channels (top to
bottom) based on the absolute maximum SHAP value in the superpixels, organized by
FogNet prediction outcome. Red means the feature influenced the model toward the
outcome while blue indicates away from. R/A-R (A) refer to radiation and advection-
radiation (advection) fog cases

superpixels within each channel. By performing XAI at the superpixel level, we expect746

that some influential features will not be detected as such because of the correlation is-747

sues discussed. Thus, we want to draw out even low-magnitude values to compare the748

relative channel influence to channel-wise feature important results (Figures 10b, 10c).749

This motivated a counting-based aggregation, instead of summation. First, the channels750

were ordered by the maximum absolute value of their superpixels. Then, for each chan-751

nel we counted the number of times that it appeared in the top N channels. Intuitively,752

if a channel frequently occurs in the top N then it suggests that the channel is overall753

influential. We also counted the number of occurrences of each channel in the bottom N754
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channels, which would suggest relatively less influence. The results of counting the oc-755

currences of each channel in the top and bottom 50 channels are given in Figure 9. Note756

that Figure 9a shows that all G4 and G5 features are amongst the most influential with757

respect to radiation and advection-radiation fog for cases where FogNet successfully pre-758

dicts fog or mist with 1600 meter or less visibility. The G4 features include the NAM759

visibility and vertical velocities 700 mb and below. Negative vertical velocities tend to760

occur below the 220 meter height level during radiation and advection-radiation fog (Dupont761

et al., 2016; Liu et al., 2011). The G5 features include TMP-DPT, which must be less762

than 2 degrees Celsius to facilitate saturation necessary for radiation fog, and TMP-SST763

which modulates fog development, as mentioned earlier; if TMP-SST is negative, an upward-764

directed sensible heat flux will counteract radiational cooling and either delay fog on-765

set, or prevent fog.766

Figure 8: Spatial aggregates of CwPS results based on classification outcome and fog
type. To convert a set of local explanations to global, the set of (32, 32, 384)-sized raster
explanations have been aggregated into 6 (32, 32)-size explanations. To highlight influ-
ential spatial regions, the spatial-channel aggregates are summed along the channels to
yield a single 2D spatial explanation. The dotted curve represents the shoreline, with land
to the left and water to the right. The star indicates the location of airport KRAS, the
source of the fog observations. Red means the feature influenced the model toward the
outcome while blue indicates away from.

3.2 Feature Importance767

Three feature importance methods were applied to three feature grouping schemes.768

Because of the computational complexity, only PFI was applied to more granular channel-769

wise and CwSP schemes. For detailed model insights, granular explanations are preferred.770

But because of the correlation issues discussed, coarser explanations are expected to be771
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(a) Hit,  R/A-R (b) Hit,  A (c) Correct reject

(d) Miss,  R/A-R (e) Miss,  A (e) False alarm

Figure 9: CwPS channel rankings based on classification outcome and fog type. When
summing the superpixel SHAP values, the disproportionate influence of G4 and G5 chan-
nels causes channels in other groups to virtually disappear. We instead ranked channels
based on the number of times that a channel appears within the top 50 channels.

more accurate. However, when granular explanations agree with the coarser explanations,772

there is increased confidence in the accuracy of the more granular explanations. Some773

groups may be more sensitive to the feature grouping scheme than others. It is possi-774

ble that the sensitivity comparison will suggest that we can use the coarser explanations775

for a subset of groups that show greater consistency. However, it is not straightforward776

to directly compare the importance values at different groups; at each level of feature777

grouping granularity, we sum PFI values into the coarser groups for a comparison of the778

rankings.779

Another sensitivity check is that of the different XAI methods. Since we are only780

applying XAI methods to the coarser grouping schemes with PFI, we cannot compare781

them to other XAI methods directly. However, we can check PFI’s consistency with GHO782

and LS. The latter methods are much more complex and expected to be more robust to783

issues of correlation and out-of-sample inputs. So if PFI performed on channel groups784

reaches similar relative feature importance rankings to the others, then we have addi-785

tional confidence in using the (consistent) more granular PFI explanations.786

Figure 10 gives all feature importance results, aligned in a table to assist compar-787

ison. Each column corresponds to the grouping scheme used to generate importance val-788

ues. Column 1 is CwSPs, column 2 is channels, and column 3 is channel groups. Rows789

correspond to the aggregation level. The top of each column is without any aggregation.790
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The second row is for channels, and third for channel groups. This figure is discussed791

in detail in Section 4792
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Figure 10: Feature importance XAI methods at three levels of granularity. To com-
pare consistency across grouping schemes, the more granular grouping scheme’s expla-
nations are aggregated into coarser ones. a) Each column corresponds to the grouping
feature used for the XAI method, and each row corresponds to an aggregation granularity.
a) shows the top 15 channels based on PFI performed on CwSP (left-to-right, top-to-
bottom). b) and c) show individual features. d) and e) show the prior row aggregated by
group, and e shows methods used on the five groups.

4 Discussion793

We will use Figure 10 to analyze the sensitivity of explanations to the choice of fea-794

ture aggregation granularity. Results from PSS-based PFI are shown, but computations795

were made based on HSS and CSS as well.796

Figure 10a shows the results of PFI applied to CwSP features. To assess the con-797

sistency of CwSP explanations to channel-wise, Figure 10b shows the summations of ab-798

solute PFI values in each channel. This can then be directly compared to Figure 10c,799

the PFI values computed when PFI is applied directly to channel-wise features. When800

considering super pixels at the channel level (Figure 10b), the most important channels801

tend to be within G4 and G5. The top channel occurs in G4: Vertical velocity at 950mb,802

t1. Sparse G1 and G2 channels have some importance, with practically no importance803

for G3. When considering individual channels using PFI, Figure 10c, we observe con-804

siderable influence from G4 and G5 as we did with the CwSP-based results in Figure 10b.805

Again, Vertical velocity at 950mb, t1 in G4 has the highest importance. But, otherwise,806

the exact rank order does differ between CwSP and channel-wise explanations.807

Two differences stand out between Figure 10b and Figure 10c. In the channel-wise808

results (Figure 10c), two G4 and G5 channels have such high importance that others are809

relatively suppressed. This does not occur in the CwSP results (Figure 10b), where some810

channels in G1 and G2 are shown to be comparable to G4 and G5 channels. Another811
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Table 2: Top 15 t3 channels ranked with channel-wise (Cw) and CwSP schemes

Cw (PSS) CwSP (PSS) Cw (HSS) CwSP (HSS) Cw (CSS) CwSP (CSS)

G5 TMP-DPT G4 VVel 850mb G5 TMP-DPT G4 VVel 850mb G5 SST G4 VVel 825mb

G4 VVel 925mb G4 VVel 825mb G5 SST G4 VVel 925mb G4 VVel 825mb G4 VVel 850mb

G4 VVel 775mb G4 VVel 925mb G4 VVel 925mb G4 VVel 900mb G5 TMP-SST G4 VVel 800mb

G4 VVel 900mb G4 VVel 950mb G1 UGD 875mb G4 VVel 825mb G1 UGRD 950mb G4 VVel 925mb

G4 VVel 800mb G4 VVel 900mb G1 VGD 875mb G5 SST G1 VGRD 775mb G4 VVel 975mb

G4 VVel 875mb G4 VVel 800mb G4 VVel 900mb G4 VVel 950mb G4 VVel 850mb G4 VVel 900mb

G1 VGRD 875mb G4 VVel 700mb G2 Q 875mb G4 VVel 725mb G1 VGRD 10m G5 TMP-DPT

G4 VVel 850mb G4 VVel 975mb G1 UGD 750mb G4 VVel 775mb G4 VVel 775mb G4 VVel 950mb

G4 VVel 975mb G5 TMP-SST G1 VGRD 10 meter G4 VVel 800mb G5 TMP-DPT G4 VVel 700mb

G4 VVel 700mb G4 Q surface G4 VVel 700mb G4 Surface vis G1 UGRD 875mb G4 VVel 725mb

G1 UGRD 825mb G5 TMP-DPT G4 VVel 800mb G1 UGD 875mb G1 VGRD 800mb G5 TMP-SST

G4 VVel 725mb G4 VVel 725mb G4 VVel 725mb G1 UGD 850mb G4 VVel 950mb G2 Q 950mb

G2 TKE 900mb G4 VVel 750mb G5 TMP-SST G4 LCLT G3 TMP 800mb G1 VGRD 925mb

G1 VGRD 900mb G4 VVel 775mb G1 VGD 775mb G3 RH 850mb G3 RH 2m G4 VVel 750mb

G2 TKE 850mb G4 VVel 875mb G1 UGD 900mb G4 VVel 975mb G3 DPT 2 G4 Q surface

difference is that in the CwSP results (Figure 10b), G3 channels are considered to have812

practically no importance while in channel-wise results (Figure 10c), G1-G3 are approx-813

imately uniform in average importance. At the superpixel level, importance scores mean814

that the specific superpixel (a spatial region within a variable) had influence on the model.815

At the channel level, importance scores mean that at least some spatial region within816

the variable had influence. When a channel is important according to Figure 10c but not817

in Figure 10b, it may suggest that the model is learning a large-scale feature in that chan-818

nel such that no individual superpixels are important in isolation. By comparing Fig-819

ure 10b and Figure 10c, we get some insight into the scale of the features learned by the820

model.821

It is also possible that the difference is due simply to randomness in the permu-822

tations. However, there is evidence that suggests that, at least to some extent, the dif-823

ference between Figure 10b and Figure 10c reflects the scale of the learned features. In824

general, the importance scores are smaller when summing superpixels which suggests that825

the importance becomes diluted at the smaller scale. Also, the dilution is prominent in826

G1 - G3 which are vertical profiles where it is expected that granular features will have827

minimal information about fog in isolation.828

The difference between CwSP and channel-wise PFI is further emphasized when829

summing both to the group level as shown in Figures 10d and 10e. Comparing G4 and830

G5 across the 2 figures, we observe that their relative importance is consistent. However,831

we observe G1-G3 importance drop considerably from the transition to the more gran-832

ular CwSPs. Figure 10f shows PFI, along with LS and GHO, applied directly to the chan-833

nel groups. Using this grouping scheme, the importance of the groups is more uniform.834

G4 is now the least important group, instead of the most as it is in Figures 10d and 10e.835

The manner in which G1-G3 drop in importance as the granularity of the partitions in-836

creases suggests that the model is learning large-scale patterns for those groups. G4 and837

G5, however, are less influenced by the change in granularity which suggests that the im-838

portant learned information is generally smaller scale so that granular perturbations of839

the model still influence model performance.840
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Based on how PFI works and the dilution of some groups across granularities, there841

is evidence that the differences are due at least in part to the scale of the learned fea-842

tures. It is actually encouraging that XAI provides evidence that the model is able to843

learn large scale features that take advantage of spatio-temporal relationships across the844

channels of the high-dimensional input. We argue that our PFI interpretation relies heav-845

ily on having performed XAI on three different feature groups. If we were to compare846

CwSPs to channel groups (skipping channels), we would have less confidence in the in-847

terpretation that the discrepancy between them reflects characteristics of the learned pat-848

terns. Since we would have only the 2 examples, we would be less confident that the dif-849

ference is not merely due to randomness or inherent inaccuracy due to correlations. But850

by including the channel-wise output, we observe G1-G3 reduce in importance in rela-851

tion to the increase in granularity, which increases our confidence that the explanations852

reflect reality.853

However, the explanation is not entirely satisfying. For example, we can see that854

G1 is important but we do not really know which parts of the raster compose its learned855

features. Even if we get the sense that, broadly, across-channel relationships are involved,856

we don’t know if these are spatial, temporal or spatio-temporal. Are there very impor-857

tant channel sequences? With the present computational efficiencies, it would be too com-858

putationally complex to perform PFI on all combinations of channels, much less all pos-859

sible voxels within the raster.860

Another concern is the overall accuracy of PFI itself. In addition to PFI, Figure 10f861

includes group results using 2 other XAI methods: GHO and LS. While we are minimally862

concerned about the differences in exact magnitudes between the three methods, we are863

concerned with their disagreement in the group rankings amongst themselves and the864

aggregation of the CWSP and channel-wise PFI results.865

In the case of GHO, some degree of disagreement is expected. As discussed, each866

feature’s importance is based on refitting the model so that the explanation is based on867

a set of models. This means that the model is given the chance to learn other relation-868

ships within the data in the absence of the removed group. This is quite different from869

the other two XAI methods that are based on models that had access to the removed870

group during training. Even if a particular model placed high emphasis on particular fea-871

tures, that does not mean that other features could not be used instead to achieve sim-872

ilar performance. Compared with the PFI and LS, the GHO results show relative uni-873

formity in the importance of the groups. This suggests that the model is still able to learn874

fog prediction strategies by using different feature relationships. The FogNet ablation875

study (Kamangir et al., 2022) has already shown that the best performance occurs when876

all groups are present.877

The comparisons lead to concerns about the substantial disagreement between PFI878

and LS. This means that if we were able to use LS for the more granular groups, we might879

have a very different interpretation of the model. This is concerning because there is ev-880

idence that LS results would more accurately reflect how the model works. First, the game881

theoretic guarantees suggest that SHAP-based methods might have greater reliability.882

Second, by averaging over the marginal distribution, LS importance scores are based on883

several comparisons of perturbed features instead of one. Finally, we observed that CwSP884

PFI results are unreliable: the spatial maps change dramatically from run to run. This885

is discussed in Section 4.1. On the other hand, the CwPS results are very stable across886

repetitions.887

4.1 Unreliable Spatial Distribution of PFI CwSP Output888

By repeating the PFI computations multiple times, very high variance is observed889

in the output for CwSP results. This was not the case for channel-wise PFI. The out-890

put of each CwSP PFI repetition does not significantly alter the ranking of the chan-891
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nels, when summing the importance scores. But the distribution of those scores among892

the superpixels is inconsistent. Each complete repetition of CwSP PFI requires 80 hours893

of computation, so we are unable to run extensive repetitions with present computational894

capabilities. But among three runs, we observe little similarity among the spatial maps.895

Since their summed channel-wise rankings are relatively consistent, we choose to ana-896

lyze the top channels as determined by CwSP PFI to that of channel-wise PFI. But, un-897

like the CwPS output that produces stable explanations across repetition, we choose to898

not analyze the spatial distribution of the importance scores.899

While feature effect and feature importance methods measure different aspects of900

the model, is it of interest to compare the PFI values from Figure 10 to the top chan-901

nels based on CwPS shown in Figure 9. Across all cases, the overall shape of the chan-902

nel rankings is not unlike that in Figure 10c. Expect that every G5 channel is consis-903

tently of very high influence according to CwPS. There is an explanation that makes it904

consistent with the PFI measures. Recall that feature effect includes when the model905

uses a feature for incorrect decisions. Comparing Advection fog hits to misses, G5 fea-906

tures have very high influence in both. This means that G5 channels are being used both907

for decisions that improve and decrease performance. The net effect could be a lowered908

importance compared to G4. Comparing hits to misses, G4 values have more influence909

on the hits than misses which would increase G4 importance.910

4.2 Meteorological Interpretation911

The following meteorological interpretation will involve the following analyses: 1)912

A description of high-ranking feature effect FogNet features (Figure 7), and an assess-913

ment of the physical processes responsible for, and the environmental conditions asso-914

ciated with, fog that are accounted for based on these features. 2) An assessment of the915

usefulness of features by comparing feature effect contribution to FogNet prediction, a916

type of analysis similar to that performed by (Clare et al., 2022). 3) A spatial analysis917

of feature effect output over the FogNet model domain (Figure 7), including an evalu-918

ation of the spatial orientation/distribution of the features that correspond to FogNet919

performance outcome (Hit, Miss, False Alarm, Correct Rejection in Figure 7), similar920

to the analysis performed by (Lagerquist, 2020). 4) An evaluation of the feature impor-921

tance XAI output (Table 2, Figure 10) from a meteorological perspective. 5) A mete-922

orological interpretation of aggregate feature effect output over the FogNet model do-923

main in Figure 8 (influential spatial regions.) Finally, 6) A summary of the results in this924

section and suggestions on how to improve FogNet performance based on XAI results.925

In this section, the terms feature and channel will be used interchangeably.926

4.2.1 Physical Mechanisms and Environmental Conditions Related to927

High-Ranking Features Based on Feature Effect928

The following is a description of FogNet features considered high-ranking, based929

on feature effect XAI output of FogNet predictions, and an assessment of the physical930

mechanisms and environmental conditions associated with fog that are accounted for by931

these features.932

This paragraph describes the features depicted in Figure 7, which details the 6 highest-933

ranking sets of features associated with FogNet prediction outcome (Hits and Misses for934

advection and radiation fog, and False Alarms and Correct Rejections for all fog predic-935

tions). These featuers are TMP-SST, DPT-SST, TMP-DPT, Visibility, UGRD 875-mb, Q 900-mb,936

TKE 925-mb, and VVEL (various levels within the 975-750 mb layer). FogNet fea-937

ture SST is the temperature of the earth’s surface, defined more specifically as follows:938

Over water surfaces, a satellite-derived estimate of the temperature of the sea surface.939

Over land surfaces, the NAM skin (radiometric) temperature, which is a satellite-derived940

land surface temperature of the top few millimeters (Z.-L. Li et al., 2013). (See section941
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2.4.7 of Kamangir et al. (2021)). TMP-SST is the difference between the 2-meter air tem-942

perature and the temperature of the earth’s surface. This difference (TMP-SST̸=0) results943

in a transfer of heat (sensible heat flux) (Taylor, 2015). The feature DPT-SST is the dif-944

ference between 2-meter dew point temperature and the temperature of the underlying945

surface. Feature TMP-DPT is the NAM 2-meter dew point depression (difference between946

the 2-meter air temperature and the 2-meter dew point temperature.) The FogNet fea-947

ture Visibility is the diagnosis of visibility which accounts for the extinction of light948

by hydrometeors generated by the NAM microphysics scheme (details in the FogNet pa-949

per by (Kamangir et al., 2021)). Feature UGRD 875-mb represent the U wind component950

at the 875-mb pressure level. Feature Q 900-mb is the specific humidity (mass of atmo-951

spheric water vapor to the total mass of air) at the 900-mb pressure level. TKE 925-mb952

is turbulence kinetic energy at the 925-mb level. Finally, feature VVelX is the vertical953

velocity at the X pressure level.954

Table 3 is a reorganization of Figure 7 to reflect the relationship between high-ranking955

FogNet features (based on superpixel absolute maximum SHAP values), and correspond-956

ing FogNet prediction and feature effect output, organized by advection fog, radiation957

fog, and no-fog cases. The specific FogNet predictions analyzed are the 24 hour binary958

predictions of whether the visibility (in mist or fog) is ≤1600 meters. Although the 24959

hour FogNet predictions are based on 0, 6, 12, and 24 hour NAM predictions (Kaman-960

gir et al., 2021), the feature maps in Figure 7 depict the composite of 24 hour NAM pre-961

dictions only (T3), which time matches the FogNet prediction/corresponding visibility962

observation.963

FogNet features in Table 3 contribute greatly to FogNet predictions, regardless of964

FogNet performance (feature effect). An assessment of the physical mechanism and/or965

environmental conditions associated with fog that are inferred from these features are966

explained as follows: The feature Visibility is used by FogNet when making fog pre-967

dictions that include radiation fog, advection fog, and no fog (Figures 7ak, t, and u, re-968

spectively.) The use of this feature suggest that FogNet recognizes a relationship between969

fog and microphysical processes. The feature TMP-SST has high feature effect with re-970

spect to radiation, advection, and no-fog FogNet predictions (Figures 7a-f). The con-971

dition TMP-SST>0 implies a downward-directed near surface sensible heat flux to the sea,972

which results in a corresponding heat loss or cooling of the near surface air temperature973

to the dew point temperature (TMP-DPT=0) resulting in saturation and subsequent fog974

development (subject to a cloud drop-size distribution that favors the extinction of light975

and subsequent visibility reduction). Thus, the condition TMP-SST≥0 directly contributes976

to marine fog development. However, with respect to radiation fog, radiation (not downward-977

directed sensible heat flux) directly contributes to the cooling of air to saturation and978

TMP-SST modulates fog development (has a secondary or indirect effect). The feature TMP-DPT979

has high feature effect with respect to radiation fog (Figures 7m,v) and no fog (Figure980

7r), yet not with advection fog. A possible explanation for why TMP-DPT does not ap-981

pear with respect to advection fog is as follows: The direct influence of TMP-SST to ma-982

rine advection fog development and the more indirect effect of this feature to radiation983

(as discussed above), suggests that TMP-SST may have obscured the effect of TMP-DPT984

for advection fog cases, yet not for radiation fog cases. As mentioned earlier, additional985

features with high feature effect include DPT-SST, UGRD 875mb, TKE 925mb, and Q 900mb.986

The likelihood of sea fog increases as DPT-SST increases positively (Cho et al., 2000). In987

fact, the condition DPT-SST≥0 is used operationally at the U.S. National Weather Ser-988

vice Weather Forecast Office in Corpus Christi Texas, which oversees the study area, to989

predict marine advection fog along the Middle Texas coast during the cool season. Wind990

directly influences fog development and thus it is not surprising that UGRD 875-mb is in-991

fluencial for radiation, advection and no-fog cases (Figures 7ab,7ac, and 7ag).) Feature992

UGRD 875mb likely has high feature effect given the preference for lighter winds aloft dur-993

ing radiation fog events and significant onshore wind associated with advection fog at994

KRAS (Koračin et al., 2014; Mohan et al., 2020). Note that TKE 925mb appears only for995
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advection fog cases, which may reflect the enhanced thermal (mechanical) turbulence above996

(below) the thermal turbulence interface (TTI) associated with marine advection fog (Huang997

et al., 2011, 2015). In particular, mechanical turbulence below the TTI (caused by ver-998

tical wind shear within the near surface temperature inversion) transports warm and moist/saturated999

air toward the cooler surface, contributing to fog development (Huang et al., 2011). It1000

must be emphasized that the role of turbulence to fog is complex. Some turbulent mix-1001

ing is essential for the vertical extension of the fog layer (Stull, 1988; Dupont et al., 2016;1002

Price, 2019). However, high turbulence within an environment where Q decreases with1003

height can dissipate fog (Toth et al., 2010; Price, 2019). Note that feature Q 900mb is1004

listed in both the radiation and no fog cases. A review of the SkewT-logP profiles at the1005

Corpus Christi International Airport in Corpus Christi Texas (USA), located approx-1006

imately 41 km west of the target KRAS, corresponding to the time of radiation and ad-1007

vection fog events at KRAS in the 2018-2020 period (not shown), revealed that the mean1008

moist layer (based on the dew point depression or RH) associated with advection (ra-1009

diation) fog extended from the surface to around 875mb (990mb). These results are con-1010

sistent with previous research which indicates that SkewT-LogP diagrams associated with1011

radiation fog are characterized by a thin near surface moist layer, followed by much drier1012

air aloft, and that the moist layer is typically deeper during advection fog events (Croft1013

et al., 1997; Mohan et al., 2020). It is possible that the difference between Q 900-mb mag-1014

nitudes when comparing advection and no-fog cases is not significant enough to gener-1015

ate a high feataure effect. Finally, Table 3 indicates that vertical velocities (VVEL) within1016

the 975-750mb layer have high feature effect for both fog and non-fog cases. Both ra-1017

diation and advection fogs are typically associated with synoptic scale subsidence (neg-1018

ative vertical velocities) below the 500mb level (Huang et al., 2011; Yang et al., 2017;1019

Mohan et al., 2020). Thus, XAI results suggest that FogNet (when making predictions)1020

used features that appear to account for microphysical processes, the possible contribu-1021

tion of the TTI to marine advection fog, the near saturated condition at the surface as-1022

sociated with fog, the effect of near surface sensible heat flux to fog development, and1023

synoptic scale air motions during fog development, consistent with domain knowledge.1024

Thus, with respect to coastal marine fog prediction, it is logical to assume that the trust1025

in FogNet by operational meteorologists would be significant.1026

4.2.2 Assessment of the Utility of Feature Effect Contributions to FogNet1027

Predictions1028

As mentioned earlier, each row in Figure 7 depicts a set of FogNet features (and1029

corresponding feature map equal to the size of the FogNet domain), organized as a func-1030

tion of the corresponding FogNet prediction outcome (Hit, Miss, False Alarm, Correct1031

Rejection), and fog type (radiation versus advection fog). Each feature map contains the1032

composite isolines of either the raw values of the feature (TMP-SST, DPT-SST, VVelX, UGRD,1033

VGRD) or the standardized values (all other features). The features chosen are determined1034

based on the CwPS feature effect method and thus these are features used by FogNet1035

when making predictions, regardless of effect on FogNet performance. The regions cov-1036

ered by red (blue) colors are regions where the feature contributed toward (away from)1037

the FogNet prediction outcome (Hit, Mass, False Alarm, Correct Rejection). For exam-1038

ple, the red color in Figure 7g means that the feature (DPT-SST) pushes FogNet toward1039

the Hit outcome and thus toward the prediction of fog occurrence. However, the blue1040

color in Figure 7r means that the feature (TMP-DPT) pulls FogNet away from the Cor-1041

rect Rejection outcome and thus away from a prediction of fog non-occurrence, or toward1042

a prediction of fog occurrence. The 7 rows are ranked (top to bottom) based on the ab-1043

solute maximum of superpixel SHAP values.1044

Table 3 also includes a comparison between the feature effect output and the FogNet1045

prediction, for the 42 feature maps in Figure 7. In accordance with the type of XAI anal-1046

ysis performed by Clare et al. (2022), if a given feature pushes FogNet toward a posi-1047

tive fog prediction and FogNet actually predicted fog, or if the feature pulls FogNet away1048
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from a positive fog prediction and FogNet predicted no-fog, then that feature was help-1049

ful to FogNet (possess utility). For the vast majority (≈83%) of the 42 feature maps in1050

Figure 7, the feature was helpful to FogNet. It is unclear what insight can be derived1051

from the minority of unhelpful cases since these corresponding features were helpful at1052

other times, and span across the advection fog, radiation fog, and no fog cases.1053

Organized by1054

4.2.3 Feature Spatial Analysis and Corresponding Feature Effect with1055

Respect to Radiation and Advection Fogs1056

The following is an analysis of the Figure 7 feature map patterns of the same fea-1057

ture, coincident with the corresponding feature effect output, as a function of FogNet1058

fog prediction outcome (Hits, False Alarms, Misses, Correct Rejection) similar to the anal-1059

ysis performed by (Lagerquist, 2020) with respect to the XAI analysis of a tornado pre-1060

diction model. However, the only Figure 7 features that appear in all columns (Hits, False1061

Alarms, Misses, and Correct Rejections) on the same row (constant absolute maximum1062

SHAP value), for both radiation and advection fog, are TMP-SST and DPT-SST, correspond-1063

ing to the 2 highest-ranked rows (based on the absolute maximum SHAP value). Thus,1064

the following Lagerquist (2020) style analysis is restricted to these 2 rows.1065

With respect to the highest ranked row (Figures 7a-f), note that for the radiation1066

fog cases, TMP-SST<0 at KRAS in Figure 7a corresponds to an upward-directed sensi-1067

ble heat flux, which can delay the onset of radiation fog. Since fog occurred (Hit col-1068

umn), it is likely that either the heat flux was insufficient to delay or prevent fog, or TMP-SST1069

was inaccurate (recall that the feature maps in Figure 7 are 24-hour NAM predictions.)1070

However, note the region in the northwest corner of Figure 7a, where TMP-SST transi-1071

tions to positive values (supportive of radiation fog) coincident with TMP-SST pushing1072

FogNet toward a fog prediction (red color), as expected via domain knowledge. The pat-1073

tern of the TMP-SST feature for the corresponding Miss (Figure 7d) differs somewhat,1074

yet the values over KRAS are also negative and the red-color over KRAS means this TMP-SST1075

pushes FogNet toward a no-fog prediction, thus away from a fog prediction, which is plau-1076

sible since TMP-SST<0 is detrimental to fog development. With respect to advection fog1077

corresponding to Figures 7b and 7e, note that the TMP-SST values at KRAS are slightly1078

negative, which can delay the onset of advection fog. However, the region of TMP-SST≥01079

along the nearshore waters (within 20 nautical miles offshore) in both figures; this pat-1080

tern is typical of advection fog events (as discussed in Section 4.2.1). Note that the nearshore1081

waters and KRAS are coincident with the region where TMP-SST pushes FogNet toward1082

prediction of fog (red colored CwPS output.) Although the False Alarms and Correct1083

Rejections for this first row (Figures 7c,f) should be interpreted with respect to all fog1084

types, the patterns of these 2 feature maps can easily be understood in the context of1085

advection fog (the predominate fog type in the dataset of this study.) Note that for the1086

False Alarms, the TMP-SST pattern is similar to that from the corresponding Hit feature1087

map in that the weakly positive values over the nearshore waters are retained. Since the1088

vast majority of fog cases were of the advection fog type, we speculate that FogNet learned1089

that such a pattern is consistent with advection fog, hence the prediction of fog, even1090

for cases when conditions were otherwise not conducive to fog (hence the False Alarms.)1091

Extending this logic of the propensity for FogNet to predict advection fog, rather than1092

fog of any type, to Correct Rejection, it is clear that FogNet did not predict fog since1093

the TMP-SST advection fog pattern (TMP-SST≥0 over the nearshore waters) does not ex-1094

ist in Figure 7f. This apparent overreliance of the advection fog strategy to predict all1095

fog types erodes trust in the use of FogNet to predict fog regardless of fog type.1096

Regarding the second highest ranked row (Figures 7g-l), note that in all columns,1097

the DPT-SST values are slightly negative over KRAS, yet should be positive for the ad-1098

vection fog Hit prediction outcome (Figure 7h). DPT-SST>0 is essential for advection fog1099
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Table 3: Forty-two of the highest ranking FogNet features based on feature effecta

Figure 7 suffix Feature Toward/Away from fog prediction at KRAS (CwPS) Did FogNet predict fog at KRAS?

RADIATION FOG CASES

a TMP-SST Toward Yes

d TMP-SST Away No

g DPT-SST Toward Yes

j DPT-SST Away No

m TMP-DPT Away Yes

p VVel 775mb Away No

s VVel 775mb Toward Yes

v TMP-DPT Toward No

y VVel 900mb Toward Yes

ab UGRD 875mb Away No

ae VVel 925mb Toward Yes

ah VVel 750mb Away No

ak Visibility Toward Yes

an Q 900mb Away No

ADVECTION FOG CASES

b TMP-SST Toward Yes

e TMP-SST Away No

h DPT-SST Toward Yes

k DPT-SST Toward No

n VVel 775mb Toward Yes

q VVel 775mb Away No

t Visibility Toward Yes

w TKE 925mb Away No

z VVel 950mb Away Yes

ac UGRD 875mb Away No

af VVel 900mb Toward Yes

ai VVel 750mb Away No

al VVel 750mb Toward Yes

ao VGRD 775mb Away No

NO FOG

c TMP-SST Toward Yes

f TMP-SST Away No

i DPT-SST Toward Yes

l DPT-SST Toward No

o VVel 775mb Toward Yes

r TMP-DPT Toward No

u Visibility Toward Yes

x VVel 775mb Away No

aa VVel 750mb Toward Yes

ad VVel 975mb Toward No

ag UGRD 875mb Toward Yes

aj Q 900mb Away No

am VVel 925mb Toward Yes

ap URGD 875mb Away No

aFeature effect explanations generated using the CwPS partition scheme (Figure 7) organized by CwPS contribution,
the corresponding FogNet prediction, fog type (radiation and advection) and fog occurrence. Radiation fog cases include
both radiation and advection-radiation fog cases since they are caused by a common mechanism: radiational cooling
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(Cho et al., 2000). These NAM-12 24 hour DPT-SST values may be inaccurate when con-1100

sidering the possibility that TMP-SST in Figure 7a is inaccurate, as mentioned before. Yet1101

despite the inconsistency between the sign of DPT-SST and what would be expected based1102

on domain knowledge, there is consistency between the CwPS output and the FogNet1103

predictions (Figure 7h). If we again assume that FogNet has a tendency to predict ad-1104

vection fog rather than fog of any type, the False Alarm feature map (Figure 7i) is eas-1105

ily explainable since the DPT-SST feature map pattern is very similar to the correspond-1106

ing Hit feature map (Figure 7h).1107

Additional insights beyond the type of provided by Lagerquist (2020) can be ex-1108

tracted from the spatial feature effect XAI output. Recall that for radiation fog cases1109

(Figure 7a), the TMP-SST feature pushes FogNet toward a prediction of fog over a small1110

region in the northwest corner of the domain. This suggests that the influence of sen-1111

sible heat flux to radiation fog is local. With respect to advection fog, the strongest in-1112

fluence of sensible heat flux (the darkest red color shading in Figure 7b) is approximately1113

local, with a secondary influence over the nearshore waters (weaker red-color shading in1114

Figure 7b). This is reasonable since advection fog can be local (warm, moist air mov-1115

ing over a cooler surface and resulting in fog development locally) or fog can form over1116

the nearshore waters (TMP-SST>0 in Figure 7b) and advect onshore (and lower the vis-1117

ibility at KRAS). Also, note that the influence of TKE is local (Figure 7w) which is rea-1118

sonable since TKE is not a conservative quantity and thus cannot be advected from an-1119

other location. Another insight is provided by the VVEL CwPS feature effect output. Note1120

that the VVEL channel CwPS patterns for fog occurrence (all Hit and Miss cases) indi-1121

cate that the influence of the feature is uniform (same color) and of similar strength (ap-1122

proximately the same shading) across the domain. This feature effect output likely re-1123

flects the fact that advection and radiation fogs generally occur in environments char-1124

acterized by synoptic scale subsidence of air; since the synoptic scale is much larger than1125

the FogNet model domain, the influence of VVEL would be somewhat uniform across the1126

domain.1127

4.2.4 Evaluation of Feature Importance XAI Results1128

In this section, we assess features that strongly contribute to FogNet model per-1129

formance (feature importance) and the associated physical relationships captured. Thus,1130

we are focused here on features that contribute to FogNet performance. Table 2 depicts1131

the top 15 PFI features ranked separately by the channel-wise (Cw) and CwSP meth-1132

ods, as a function of the following 3 separate performance metrics: Peirce Skill Score (PSS),1133

Heidke Skill Score (HSS), and the Clayton Skill Score (CSS). Note that the list of the1134

top 15 features vary as a function of both PFI method and performance metric. With1135

respect to performance metrics, Murphy (1993) identifies the following 3 types of fore-1136

cast goodness, when attempting to answer the question, ”What is a good forecast?”: con-1137

sistency (correspondence between forecasts and judgments), quality (correspondence be-1138

tween forecasts and observations), and value (incremental benefits to users of the fore-1139

casts). Murphy (1993) defines judgments as those ”recorded only in the forecasters mind”,1140

thus less applicable to FogNet (a non-human). HSS, PSS, and CSS measure quality (all1141

three measure skill, which is an aspect of quality). PSS and CSS also measure value. In1142

particular, the PSS represents the maximum potential economic value realized from fore-1143

casts, but only for users with cost/loss ratios that equal the base-rate. The CSS repre-1144

sents the range of cost/loss ratios for which users gain economic value from the forecasts.1145

Thus, by using performance metrics that assess both forecast quality and value, we broaden1146

the list of features that possess high feature importance, thus allowing for the discov-1147

ery of a more comprehensive/exhaustive list of the features most responsible for FogNet’s1148

performance. This feature list may provide value to operational meteorologists.1149

From a meteorological perspective, the PFI channel-wise and CwSPs strategies in1150

Table 2 appear to capture several mechanisms and environmental conditions associated1151
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with fog development. Note that amongst the highest ranked PFI features with respect1152

to all 3 performance metrics, and for the Cw and/or CwPS PFI strategies, features dew1153

point depression (TMP-DPT), TMP-SST, and various vertical velocities (VVEL) below 700mb1154

appear. These features also possess high feature effect (Figure 7) and are physically re-1155

lated to fog development (Section 4.2.1). Although, VVEL appears in the microphysics1156

group (G4), it is likely that the PFI strategies captured subsidence in the ambient en-1157

vironment associated with advection and radiation fogs (Huang et al., 2011; Yang et al.,1158

2017; Mohan et al., 2020). In other words, the kinematic effect of VVEL to fog is likely1159

greater than the microphysical effect. Note that the U and V wind components (UGRD1160

and VGRD) and specific humidity (Q) at the 875mb level are amongst the highest rank-1161

ing features, yet for only the HSS performance metric and Cw PFI strategy. Given that1162

Q is a conservative quantity, it is likely that the combination of the these features reflect1163

moist advection associated with advection fog (the vast majority of the fog types rep-1164

resented in the FogNet data set.) The advection of warm moist air maintains the flow1165

of water vapor and the near surface thermal inversion which helps to maintain advec-1166

tion fog (Koračin et al., 2014; Huang et al., 2011, 2015). When examining the results1167

from the CwSP PFI method under HSS only, the microphysical based features Visibility1168

and LCLT appear. The physical relationship between the NAM visibility to fog was dis-1169

cussed in Section 4.2.1. From a microphysical perspective, the activation of CNN is a1170

necessary condition for fog formation. The likelihood of CCN activation is inversely re-1171

lated to the temperature at the lifted condensation level (TLCL). Advection fog tends to1172

be associated with a narrow range of SST values (P. Li et al., 2016), which may explain1173

the importance of SST magnitude to FogNet performance (HSS and CSS; Cw and/or1174

CwPS). Lastly, for both the PSS and CSS (CwPS PFI method only), the specific humid-1175

ity at the 2 meter level (Qsfc) appears, which appears to capture the importance of suf-1176

ficient moisture content to fog formation. Thus, the combination of channel-wise and CwSP1177

PFI methods to determine the features important to FogNet performance (based on HSS,1178

PSS, and CSS) reveal features that account for both mesoscale and synoptic scale en-1179

vironmental conditions conducive to fog, surface heat fluxes that influence fog develop-1180

ment, and microphysical contributions to fog, all in alignment with domain knowledge.1181

Note from Figure 10 that the relative importance of a feature/channel or group is1182

a function of granularity. A comparison between the coarse channel grouping methods1183

(Figure 10f) to the more granular CwSP scheme (Figure 10b), reveals a major difference1184

in feature importance with respect to G3, which contains channels TMP and RH at 2-meters,1185

and from 975-mb to 700-mb (at 25-mb increments.) Note the near zero importance of1186

individual G3 features yet the significant importance of G3 as a whole. This disparity1187

is reasonable from a meteorological perspective. Each TMP channel has no significant re-1188

lationship to fog development, however the increase in TMP with height (temperature in-1189

version) is critical to fog development (Price, 2019; Koračin et al., 2014; Huang et al.,1190

2015). Except for the 2-meter RH, individual RH channels from 975-mb to 700-mb are less1191

important to fog. Yet, if RH=100% at the 2-meter level, with a much smaller magnitude1192

at 975-mb (e.g. RH=20%) and above, the surface to 700-mb RH vertical structure/profile1193

(the group of RH channels) would be conducive to radiation fog (Mohan et al., 2020; Koračin1194

et al., 2014; Huang et al., 2015) Hence, the negligible feature importance of G3 channels1195

in Figure 10b and the much stronger feature importance of the G3 group in Figure 10f.1196

These results are consistent with those found in Kamangir et al. (2022), where XAI out-1197

put revealed the collective importance of the channels in G3. Extending this reasoning1198

to the other channels and groups, G4 channels VIS, TMP-DPT, Qsfc, and to a lesser ex-1199

tent, VVEL, are individually important to fog development (as discussed earlier), which1200

explains the strong granular importance, and logically a strong group importance. Sim-1201

ilarily, each of the channels TMP-SST, DPT-SST, and TMP-DPT in G5 are very important1202

to radiation and/or advection fog formation, and hence a significant granular importance.1203

As a group, G5 is extremely influential, since TMP-SST>0, DPT-SST>0, and TMP-DPT→01204

are essential for fog development. The importance of wind channels (G1) to FogNet per-1205

formance is significant, both individually and in groups. With respect to the importance1206
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of individual wind velocities, such velocities near the surface are important to fog (ra-1207

diation fog requires light wind magnitudes near the surface; advection fog at KRAS tends1208

to require stronger onshore flow). With respect to the influence of the vertical wind profile,1209

the vertical wind shear (change in wind velocity with height) contributes to turbulence1210

which strongly relates to fog; some turbulence is essential for shallow fog to increase in1211

vertical dimension, yet high turbulence can preclude fog by forcing water droplets to col-1212

lect at the surface in the form of dew, or allow for drier air aloft to mix downward re-1213

sulting in unsaturated near surface conditions (Toth et al., 2010; Price, 2019). With re-1214

spect to G2, the feature TKE 975-mb is individually important since it may capture ther-1215

mal and/or mechanical turbulence associated with marine advection fog (as discussed1216

earlier). In addition, TKE 975-mb can individually modulate stratus-lowering fog devel-1217

opment. However, TKE values above 975-mb are less likely to contribute individually to1218

fog. Also, each Q channel in the 975 to 700-mb layer is not likely to successfully predict1219

fog, suggestive of limited importance on a granular scale. However, the profile of TKE and1220

Q are very important to fog development (Baker et al., 2002; Toth et al., 2010).1221

4.2.5 Feature Effect of Influential Spatial Regions1222

Based on the output depicted in Figure 8, an assessment of the regions of influence1223

within the domain is provided, for all features used by FogNet to make the 24 hour pre-1224

dictions. Note that when FogNet correctly predicts both radiation and advection fog (Fig-1225

ures 8a,b), the strongest influencial region is near the target KRAS. This suggests that1226

mechanism(s) most responsible for FogNet’s prediction performance of both fog types1227

is (are) primarily local. In principle, mechanisms responsible for each fog type can be1228

local and/or non-local. For example, radiation fog can occur in response to nighttime1229

radiational cooling of local near surface moisture to saturation. However, advection-radiation1230

fog initially involves the non-local process of moisture advecting from a maritime source1231

during the daytime, followed by local nighttime radiational cooling (recall that both ra-1232

diation and advection-radiation fog are caused by the same mechanism: radiational cool-1233

ing). Advection fog can occur as warm moist air is advected over a cooler surface result-1234

ing in saturation and subsequent condensation/fog formation over the cooler surface (lo-1235

cal), or the developing fog can be transported from one location to another (non-local).1236

Note that for the advection fog cases (Figure 8b), the nearshore coastal waters serve as1237

secondary region of influence (lighter red color shading over the nearshore waters). Based1238

on the spatial analyses of feature patterns and feature effect contributions from Section1239

4.2.3, it is speculated that this secondary region refers to the region of cooler SST val-1240

ues over the nearshore waters that facilitates advection fog formation that subsequently1241

moves onshore and lowers the visibility at KRAS. Further, since the advection fog type1242

is the predominate type in the dataset, we argue that FogNet essentially learned advec-1243

tion fog at the expense of other fog types. In addition, note the comparison between the1244

advection fog Hits to the False Alarms (Figures 8b,f). Since the vast majority of fog cases1245

are of the advection type, the False Alarm can be interpreted as associated with advec-1246

tion fog. The pattern associated with False Alarms is nearly identical to the advection1247

fog pattern for Hits. This suggests that during False Alarms, FogNet had a tendency to1248

predict Fog when the influential spatial pattern was similar to that of successful advec-1249

tion fog predictions, even when atmospheric conditions were not conducive to fog devel-1250

opment. Note also from Figure 8e that FogNet tends to miss advection fog cases when1251

the influence pattern is local (similar to radiation). We speculate that since FogNet cor-1252

relates an advection fog pattern (Figure 8b) with a fog prediction, FogNet would thus1253

miss cases where such pattern does not exist (Figure 8e.)1254

The overreliance of the advection fog strategy to predict all fog types provides ad-1255

ditional evidence that FogNet is less trustworthy with respect to the prediction of fog1256

types other than advection fog. This is because each fog type is associated with a unique1257

mechanism. Radiational cooing is the primary mechanism responsible for radiation and1258

advection-radiation fog (Gultepe et al., 2007); advection fog occurs when air advects over1259
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a warmer or cooler surface, resulting in near surface vertical exchanges of heat and mois-1260

ture that result in the saturation of near surface air (Koračin et al., 2014); stratus-lowering1261

fog involves a pre-existing stratus or stratocumulus cloud ≤ 1-km in height that steadily1262

lowers to the surface, initiated by vertical mixing of radiation-cooled air at cloud top (Dupont1263

et al., 2016); frontal passage fog occurs owing to the mixture of air masses of different1264

temperature within the frontal zone (Glickman, 2000); both cold front post-frontal fog,1265

and warm front pre-frontal fog occurs when rain falls into the cold, unsaturated, and sta-1266

ble sub-cloud layer, evaporates and moistens the near surface layer to saturation (Glick-1267

man, 2000). It is expected that a fog model that adequately accounts for these unique1268

processes is more likely to skillfully predict fog regardless of fog type, and thus benefi-1269

cial to operational meteorologists.1270

4.2.6 Summary and Suggestions for Improving FogNet Based on XAI1271

In summary, the highest ranking FogNet features demonstrating high feature ef-1272

fect and feature importance appear to capture critical mechanisms responsible for, and1273

environmental conditions associated with, advection and radiation fog at the target. Based1274

on comparisons between feature effect output and corresponding FogNet predictions, it1275

was revealed that in ≈83% of the top 42 SHAP-based feature maps evaluated, the fea-1276

ture effect output was helpful to FogNet with respect to fog prediction. Furthermore,1277

an analysis of the spatial patterns of feature maps as a function of FogNet prediction out-1278

come suggests that FogNet predicts fog occurrence based on a TMP-SST feature map pat-1279

tern consistent with advection fog development (Figure 7b), and that FogNet appears1280

to predict fog whenever this pattern appears (likely because FogNet was trained on a data1281

set where advection fog was the predominate fog type), at the expense of other fog types1282

(associated with different fog-generating mechanisms), thus contributing to False Alarms1283

(similarity in TMP-SST spatial patterns in Figures 7b,c). Further, spatial analysis of the1284

strongest feature effect in Figures 7a,b illustrates the local effect of near surface sensi-1285

ble heat flux (using TMP-SST as a proxy) to fog development. Additional credence for1286

this lcoal influence is provided by an assessment of the spatial pattern of the aggregate1287

of the influence of all FogNet features (Figure 8), which reveals that the strongest fea-1288

ture effect occurs in a much smaller subsection of the FogNet model domain that sur-1289

rounds the target (KRAS), suggesting that the primary mechanisms responsible for fog1290

development are local in nature. This pattern analysis also adds credence to the spatial1291

pattern analysis in Figure 7 by illustrating that FogNet tends to predict fog based on1292

whether or not an advection fog spatial pattern exists in the model domain. The reliance1293

on an advection fog pattern to predict all fog types reflects a lower trustworthiness in1294

the use of FogNet by operational meteorologists to predict fog of types other than ad-1295

vection fog, good overall performance notwithstanding. An additional insight is provided.1296

In Section 3.1 (feature effect) of this paper, we suggest that XAI output might explain1297

whether FogNet is applying the strategy to predict advection fog to all fog types, or whether1298

FogNet is learning unique strategies to predict each fog type inefficiently. We argue that1299

both may be occurring. As previously mentioned, results from this study and from (Ka-1300

mangir et al., 2022) suggest that FogNet is essentially predicting fog based primarily on1301

the patterns it learned from advection fog cases. Also, the coarse resolution or lack of1302

sufficient detail in the surface to 975mb layer renders FogNet less efficient in identify-1303

ing the patterns of features below 975mb that relate to both radiation and advection fog.1304

For example, having a temperature value at the surface (2-meters), 80-meters, 1000-mb,1305

and at 975-mb will allow for a more accurate assessment of the existence and strength1306

of the low-level temperature inversion than if only the surface and 975mb temperature1307

were available (the current FogNet). A proper assessment of the height and strength of1308

the lower level temperature inversion is critical to the accurate prediction of advection1309

and radiation fog. Finally, the difference in the coarse and more granular feature impor-1310

tance methods with respect to groups reveal the greater importance of the group of chan-1311

nels (the vertical structure of G1-G3 features, and the collection of G4-G5 features) over1312

–34–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

individual importance with respect to certain meteorological channels, consistent with1313

domain knowledge and previous research (Kamangir et al., 2022).1314

The accurate/skillful prediction of radiation fog is extremely difficult; small errors1315

in the representation of the complex radiative and turbulence processes responsible for1316

fog development can result in large prediction errors (Stull, 1988; Gultepe et al., 2007).1317

Conversely, it is relatively simple to predict marine advection fog since it generally re-1318

quires knowledge of the less complex larger scale dynamics (Gultepe et al., 2007) or wind1319

and sea surface temperature (Stull, 1988). Nevertheless, we argue that the following two1320

(2) actions will improve FogNet’s fog prediction performance, regardless of fog type.1321

First, make adjustments to the features used, and feature grouping, to optimize the1322

benefit of both. Adjustments to the features could involve the addition of some of the1323

same features currently used in FogNet (TMP, Q, TKE, RH, UGRD, VRGRD, and VVel), yet1324

at the 1000 mb pressure level, to better capture processes that occur below ≈250 me-1325

ters that directly influence radiation fog development (Liu et al., 2011; Dupont et al.,1326

2016; Price, 2019) and thus improve FogNet performance (FogNet features did not in-1327

clude NAM output at the 1000 mb level.) Additional features such as the Richardson1328

Number, which measures the ratio of the turbulence suppressing effect of atmospheric1329

stability to the turbulence generating effect of vertical shear (Glickman, 2000), modu-1330

lates radiation fog (Baker et al., 2002). The mean sea level pressure (MSLP) could be added1331

since radiation fog tends to occur in the vicinity of a synoptic scale anticyclone (high-1332

pressure system) (Meyer & Lala, 1990). In addition, the surface equivalent potential tem-1333

perature (theta-E) could be added, which in combination with MSLP, can identify fronts1334

associated with frontal fog (another less frequent fog type that affects KRAS.) Further,1335

an expansion of the groups may be warranted to optimize FogNet performance. For ex-1336

ample, the new features MSLP and theta-E could serve as a separate group to account1337

for the synoptic scale pattern, the transfer of the VVel features from the current G4 to1338

G1 given the strong correlation between horizontal and vertical air motion per the con-1339

tinuity relationship, and the transfer of Qsfc from G4 to G2 to account for moisture gra-1340

dients in the surface to 1000mb and 1000mb to 975mb layers. Essentially, the current1341

FogNet feature set is suboptimal. In other words, the FogNet features capture a criti-1342

cal near surface process (near surface sensible heat flux) that influence fog development,1343

some of the microphysical processes associated with fog (e.g NAM visibility algorithm),1344

and general environmental conditions that influence fog development (3D air motions1345

and temperature/moisture profiles). However, critical processes that occur in the surface-1346

1000mb and 1000-975mb layers are not fully accounted for, such as a significant portion1347

of mechanical turbulence that contributes to marine advection fog (Huang et al., 2011,1348

2015). Further, environmental conditions below 975mb are not fully accounted for, such1349

as a better approximation of the vertical dimension and strength of the lower-level tem-1350

perature inversion, and of the vertical distribution of moisture, which are critical to the1351

accurate/skillful prediction of both radiation and advection fog (Huang et al., 2016; Price,1352

2019; Mohan et al., 2020). Finally, the greater resolution of TKE, Q, and RH should im-1353

prove FogNet’s ability to predict stratus-lowering fog (Dupont et al., 2016). Incorpora-1354

tion of these additional features should improve FogNet both performance and trustwor-1355

thiness by operational meteorologists.1356

Second, increase the number of radiation fog cases by generating synthetic cases1357

or including additional coastal sites to increase the number of real cases (additional sites1358

should be in close proximity to KRAS to justify using a single domain to train a CNN.)1359

There is evidence from this study (Figures 7 and 8), and from Kamangir et al. (2022),1360

that FogNet - due to the preponderance of fog cases of the advection type - is primar-1361

ily learning to predict advection fog at the expense of other fog types. By adding more1362

radiation fog cases, we argue that FogNet will better recognize the mechanisms unique1363

to radiation fog, especially when combined with the foregoing first actions.1364
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5 Conclusions & future work1365

As geoscience continue to adapt complex ML models, there is a need to explain how1366

the models work. XAI has the potential to provide insight into models, both for debug-1367

ging and to extract novel scientific knowledge from what the model has learned. How-1368

ever, XAI methods are imperfect and may mislead the user. One option is to avoid XAI1369

altogether so as to not be misled, but losing out any potential insights. In this research,1370

we proposed applying XAI when grouping features at multiple levels of granularity and1371

comparing the explanations to guide interpretation.1372

We performed XAI on channel groups, channels, and CwSPs. We observe some in-1373

consistency among the three partition schemes (Figure 10). Based on channel groups,1374

G3 is a very important channel group. However, CwPS results suggest that it has prac-1375

tically no influence on the model. We argue that each partition schemes asks a differ-1376

ent question to the model, and comparing these explanations reveals insights about how1377

the model has learned that would not be possible with a single explanation. G3 is the1378

lower atmospheric moisture and temperature information. This is a 3D vector field that1379

was included in the inputs because of profile characteristics that are correlated with fog.1380

The PFI results demonstrate that the importance of G3 data rapidly decrease as we in-1381

crease the granularity of the feature groups. This suggests that the model is learning large-1382

scale features in G3, which was the goal. Groups G4 and G5, however, are important1383

even at the most granular level. This allows us to study which regions (e.g. onshore or1384

offshore) are used to make predictions in those groups. Without the multi-scale feature1385

group experiments, we could be misled into thinking that G1 - G3 are not important be-1386

cause their CwSP-based explanations show very little importance or effect.1387

This research demonstrates a novel methodology for explaining models that use high-1388

dimensional raster predictors. Domain knowledge was applied to interpret the XAI out-1389

puts (Section 4.2). Insights regarding the meteorological interpretation of XAI output1390

include: Features with the greatest feature effect/importance captures several mecha-1391

nisms and environmental conditions associated with coastal fog, based on domain knowl-1392

edge; the CNN model tends to predict coastal fog based primarily on the strategy used1393

to predict the predominate fog type in the dataset, at the expense of the other types,1394

thus contributing to false alarms given the unique mechanisms/environmental conditions1395

associated with differing fog types; the region influencing CNN output the greatest sug-1396

gests that the mechanisms responsible for fog at the target were primarily local in na-1397

ture; feature importance varied with granularity, such that the qualitative difference in1398

feature importance between individual channels and their corresponding group member-1399

ship could be explained using meteorological reasoning.1400

5.1 Future Work1401

We demonstrated that models relying on complex rasters may be highly sensitive1402

to the choice of grouping scheme. However, an issue is the lack of a ground truth attri-1403

bution. We assume that larger groups will produce more accurate explanations. We also1404

assume that PFI’s consistency with GHO and LossSHAP’s ranking order indicates ac-1405

curate relative feature importance from PFI. But this cannot be confirmed without know-1406

ing the true attribution. Recently, there has been some research in developing XAI bench-1407

marks: models with ground truth explanations to allow quantitatively ranking XAI meth-1408

ods. Mamalakis et al. (2021) developed a technique for building models where the at-1409

tribution of each feature toward the output can be directly calculated. This research tar-1410

gets geoscience applications, developing a model whose input is a 2D raster with spa-1411

tial correlation. They compare several popular XAI methods to determine which is most1412

accurate for explaining that model. This benchmark model could be extended to a multi-1413

channel model where multiple correlation coefficients could be used to make groups of1414
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correlated channels that are combined into a single raster, like FogNet. This multi-channel1415

benchmark could be used to quantitatively compare grouping scheme sensitivity.1416

We applied several grouping schemes based on geometric partitioning of the raster1417

elements: channels and arbitrary 8×8 superpixels were treated as features. The chan-1418

nel groups were at least defined using forecaster domain knowledge, but not by math-1419

ematically analyzing the correlations. The only data-driven definition was performed by1420

CwPS, choosing to recursively divide superpixels when doing so changes the distribu-1421

tion of SHAP values within. Instead, it would be desirable to partition based directly1422

on the characteristics of the data. Spatial statistics could be used to cluster the raster1423

elements into semantically meaningful groups. With complex feature interactions, the1424

ideal groups are not necessarily adjacent elements. Arbitrarily complex volumes could1425

be defined to optimize the accuracy of the XAI results. Given that there are a multitude1426

of methods for clustering (DBSCAN, K-means, Self-Organizing Maps, etc), it remains1427

to determine which data-driven partition best increases explanation accuracy. This is1428

another opportunity to use the XAI benchmarks for a quantitative assessment.1429

6 Open Research1430

The FogNet input predictors include NAM NWP model output and the MUR SST1431

analysis product, both of which are in the public domain. FogNet data combines the 12-1432

km NAM output that is archived in grib2 format at https://www.nco.ncep.noaa.gov/1433

pmb/products/nam (NOAA, 2006-present) with the Analyzed SST available as a netCDF1434

archive at https://coastwatch.pfeg.noaa.gov/erddap/griddap/jplMURSST41.html1435

(NOAA, 2020). The FogHat software repository, https://github.com/conrad-blucher1436

-institute/foghat, contains utilities to download the NAM and MUR data and gen-1437

erate the FogNet input rasters (Krell et al., 2022a). The predictors and targets used in1438

this study are archived at the FogNet data share server: https://gridftp.tamucc.edu/1439

fognet/datashare/archive/datasets/ (Krell et al., 2022b).1440

The FogNet model is available as a software package at https://github.com/conrad1441

-blucher-institute/FogNet (Krell et al., 2023). It includes all XAI methods and anal-1442

ysis except for CwPS which is instead implemented as a modification to the SHAP Python1443

package by Lundberg & Lee (2017) and has been made available as a fork of the SHAP1444

repository: https://github.com/conrad-blucher-institute/shap (Krell et al., 2022c).1445

In addition, a companion software repository called partitionshap-multiband-demo1446

has been made available with several Jupyter notebooks that demonstrate using CwPS1447

to explain a variety of raster-based models at https://github.com/conrad-blucher1448

-institute/partitionshap-multiband-demo (Krell et al., 2022d). xai-raster-vis-tools,1449

available at https://github.com/conrad-blucher-institute/xai-raster-vis-tools,1450

is another software repository used in this research that contains several scripts for ag-1451

gregating and visualizing a set of raster XAI outputs (Krell et al., 2022e).1452

All the software repositories developed as part of the FogNet project (FogHat, FogNet,1453

xai-raster-vis-tools, and partitionshap-multiband-demo) as well as the data and1454

scripts archived on the FogNet data share server (Krell et al., 2022b) are released un-1455

der a Creative Commons 0 1.0 Universal licence. The only exception is the SHAP fork con-1456

taining CwPS since it retains the MIT license used by the original SHAP repository.1457
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