Romina Nikoukar

and 7 more

We present a statistical study of energetic heavy ion acceleration in the near-Earth magnetotail using observations from the Energetic Ion Spectrometer (EIS) onboard the Magnetospheric Multiscale (MMS) spacecraft. Although the EIS instrument does not measure ion charge state directly, we have inferred the dominant charge state of the suprathermal heavy ions (i.e., ~60-1000 keV He and C-N-O), using a previously-developed correlation analysis of the time-dependent flux response between different energy channels of different ion species. For specific events we have also distinguished adiabatic (charge-dependent) energization from non-adiabatic (mass-dependent) energization. This work uses observations from the MMS “Bursty Bulk Flows (BBF) Campaign” in August 2016, when high-energy-resolution “burst”-mode data are more frequently available, to examine the relative occurrence of adiabatic energization versus preferential energization of heavy ions. The results of this study demonstrate the utility and limitations of the cross-correlation technique that was applied. We find that the technique is consistently able to discern coarse charge states for heavy ions such as O+/6+, He+/++ (i.e., ionospheric versus solar wind sources), but that the more subtle job of uniquely determining adiabatic versus non-adiabatic behaviors for the ionospheric component (O+) is only sometimes achievable. The dynamics of Earth’s magnetotail are apparently too complex and variable to consistently accommodate our simple assumption for adiabatic behavior of energy/charge-ordered transport from a common source of particles.

Katariina Nykyri

and 19 more

Understanding the physical mechanisms responsible for the cross-scale energy transport and plasma heating from solar wind into the Earth’s magnetosphere is of fundamental importance for magnetospheric physics and for understanding these processes in other places in the universe with comparable plasma parameter ranges. This paper presents observations from Magnetosphere Multi-Scale (MMS) mission at the dawn-side high-latitude dayside boundary layer on 25th of February, 2016 between 18:55-20:05 UT. During this interval MMS encountered both inner and outer boundary layer with quasi-periodic low frequency fluctuations in all plasma and field parameters. The frequency analysis and growth rate calculations are consistent with the Kelvin-Helmholtz Instability (KHI). The intervals within low frequency wave structures contained several counter-streaming, low- (0-200 eV) and mid-energy (200 eV-2 keV) electrons in the loss cone and trapped energetic (70-600 keV) electrons in alternate intervals. Wave intervals also showed high energy populations of O+ ions, likely of ionospheric or ring current origin. The counter-streaming electron intervals were associated with a large-magnitude field-aligned Poynting fluxes. Burst mode data at the large Alfven velocity gradient revealed a strong correlation between counter streaming electrons, enhanced parallel electron temperatures, strong anti-field aligned wave Poynting fluxes, and wave activity from sub-proton cyclotron frequencies extending to electron cyclotron frequency. Waves were identified as Kinetic Alfven waves but their contribution to parallel electron heating was not sufficient to explain the > 100 eV electrons, and rapid non-adiabatic heating of the boundary layer as determined by the characteristic heating frequency, derived here for the first time.