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Motivation

o Tropical cyclones (TCs) may impact ocean heat
transport (cf. Mei et al., 2013; Li and Sriver, 2018).

* Studies using observation or conventional, realistic
climate modeling at TC-permitting resolutions (Fig.
1, left column) are limited by large uncertainties.

 Can simplified, or idealized, climate models help us
learn more?

Result:
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Fig. 3. Ocean climatology (Year 380-400) of CESM Ridge: (a) Equatorial SST (°C); (b) SST
pattern (°C); (c) Zonal wind stress along the equator; (d) Equatorial transect of potential
temperature (°C). The figures are aligned in longtitude, with the ridge continent on the
0° meridian.
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Fig. 4. Zonal mean climatology: (a) Atmospheric moisture (shaded), moist (K, solid) and
dry (K, dashed) potential temperature; (b) Ocean potential temperature; (c) Atmospheric
meridional overturning streamfunction (shaded) and zonal wind (contour lines); (d)
Ocean meridional residual overturning streamfunction (Sv).
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Fig. A1l. CESM Aqua climatology (Year 380-400): (a) SST (°C, cf. Fig. 3b); (b) Atmospheric
meridional overturning streamfunction (cf. Fig. 4c); (c) Zonal mean ocean potential
temperature (cf. Fig. 4b).
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Data and Method
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Fig. 1. Proof-of-concept for the simplified modeling framework. Top row: snapshots of
simulated TCs, as seen in total precipitable water (kg/m?), using conventional (left) and
idealized (right) models at 0.25° horizontal resolution; bottom row: the corresponding sea
surface temperature (SST, °C) forcing, from observation (left) and the idealized,
dynamical ocean component (right).

* A fully coupled climate model is configured with simplified
land geometry. Known as the Ridge configuration in Enderton
and Marshall (2009), an ocean basin is bounded by a single strip
of pole-to-pole continent (Fig. 1, right column).

. Using the Community Earth System Model (CESM), the
atmospheric component (CAM4) is at 1° horizontal resolution,
and the ocean component (MOMS®6) is at nominal 2° horizontal
resolution with equatorial refinement, and ocean maximum
depth of 4000 m. The preliminary simulation is run for 400
years.

Result: Tropical Cyclone Genesis
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Fig. 5. TC tracks and intensity from: Left, three years of observation from the the
International Best Track Archive for Climate Stewardship (IBTrACS, Knapp et al., 2010);
Right, one year of atmosphere-only simulation at 0.25° horizontal resolution, forced by
climatological SST from CESM Ridge (Fig. 3b).

Appendix: CESM Coupled Aguaplanet

e With a fully dynamical ocean, the coupled
aquaplanet (Marshall et al.,, 2007, Farneti and
Vallis, 2009) shows a drastically different
climate from those of the atmosphere-only

Aquaplanet Experiments (see Neale and
Hoskins, 2001).

e Why is there a global cold "belt" of equatorial
upwelling in the ocean?
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Result: Top-of-Atmosphere Balance
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Fig. 2. Comparison between observed top-of-atmosphere fluxes (CERES EBAF-TOA
2005-2015 climatology, left) and CESM Ridge simulation, Year 380-400 (right). The CESM
Ridge simulation is still equilibrating with a net imbalance of -0.25 W/m”.

Discussion

o Simplified configurations, such as the Ridge, are promising
tools for investigating the global ocean. The simplified
configuration of the coupled model is planned to be released to
the CESM community, potentially with other types of land
geometries (see Appendix for Aqua).

* Understanding the SST pattern that affects TC genesis: What
controls the location and intensity of the western warm pool?

e Next: Isolating the impact of TCs on ocean heat uptake and
transport (Fig. 6).
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Fig. 6. Meridional heat transport by the atmosphere and the ocean. Left: Observation from Trenberth and Caron
(2001); Right: CESM Ridge, where the equatorward heat transport by the atmosphere in the deep tropics is due to
the equatorial upwelling that results in extensive cold surface waters (Fig. 3b).
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Fig. A2. CESM Aqua simulation (Year 380-400). Left: Top-of-atmosphere fluxes,
equilibrating with a net imbalance of 0.20 W/m?* Right: Meridional heat transport. Note
the equatorward heat transport by the atmosphere in the deep tropics, and the
compensating increase in ocean heat transport compared to CESM Ridge (see Fig. 6, right).
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