Plant and microbial nitrogen (N) dynamics and nitrogen availability regulate the photosynthetic capacity and capture, allocation, turnover of carbon (C) in terrestrial ecosystem. It is important to adequately represent plant N processes in land surface models. In this study, a plant C-N framework was developed by coupling a biophysical and dynamic land surface processes model, SSiB4/TRIFFID, with a soil organic matter cycling model, DayCent-SOM, to fully incorporate N regulations to investigate the impact of N on plant growth and C cycling. To incorporate the N limitation in the coupled system, the parameterization for dynamic C/N ratios for each plant functional type (PFT) was developed first. Then, after accounting for plant/soil N-cycling, when available N is less than demand, N would restrict the plant growth, reducing the net primary productivity (NPP), but also impact plant respiration rates and phenology. The improvements of the newly-developed model, the SSiB5/TRIFFID/DayCent-SOM, was preliminary verified at three flux tower sites with different PFTs. Furthermore, several offline global simulations were conducted from 1948 to 2007 to predict the long-term mean vegetation distribution and terrestrial C cycling, and the results are evaluated with satellite-derived observational data. The sensitivity of the terrestrial C cycle to N processes is also assessed. In general, new model can better reproduce observed emergent properties, including gross primary productivity (GPP), leaf area index (LAI), and respiration. The main improvements occur in tropical Africa and boreal regions, accompanied by a decrease of the bias in global GPP and LAI by 16.3% and 27.1%, respectively.