This paper focuses on the three-dimensional(3D) incompressible anisotropic Boussinesq system while the velocity of fluid only involves horizontal dissipation and the temperature has a damping term. By utilizing the structure of the system, the energy methods and the means of bootstrapping argument, we prove the global stability property in the Sobolev space H k ( R 3 ) ( k ≥ 3 ) of perturbations near the hydrostatic equilibrium. Moreover, we take an effective approach to obtain the optimal decay rates for the global solution itself as well as its derivatives. In this paper, we aim to reveal the mechanism of how the temperature helps stabilize the fluid. Additionally, exploring the stability of perturbations near hydrostatic equilibrium may provide valuable insights into specific severe weather phenomena.