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Abstract

To facilitate the quantification of the stratospheric aerosol radiative effect, this study generates a set of aerosol direct radiative

effect (ADRE) kernels based on MERRA-2 reanalysis data. These radiative kernels measure the sensitivities of ADRE to

perturbations in scattering and absorbing aerosol optical depth (AOD), respectively. Both broadband and band-by-band

radiative kernels are developed to account for the wavelength dependency of ADRE. The broadband kernels are then emulated

by a multivariate regression model, which predicts the kernel values from a handful of predictors, including the top-of-atmosphere

(TOA) insolation, TOA reflectance, and stratospheric AOD. These kernels offer an efficient and versatile way to assess the ADRE

of stratospheric aerosols. The ADREs of the 2022 Hunga volcano eruption and the 2020 Australia wildfire are estimated from

the kernels and validated against radiative transfer model-calculated results. The Hunga eruption induced a global mean cooling

forcing of -0.46 W/m² throughout 2022, while the Australia wildfire caused a warming forcing of +0.28 W/m² from January to

August. The kernel estimation can capture over 90% of the ADRE variance with relative error within 10%, in these assessments.

The results demonstrate the spectral dependencies of stratospheric ADRE and highlight the distinct radiative sensitivity of

stratospheric aerosols, which differs significantly from that of tropospheric aerosols.
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Key Points: 8 

 A global dataset of radiative sensitivity kernels is developed to quantify stratospheric 9 

aerosol direct radiative effect (ADRE).  10 

 An analytical model is developed to emulate the kernel values from a handful of predictor 11 

variables. 12 

 The stratospheric aerosol kernels capture the spatiotemporally varying ADRE values of 13 

volcanic eruptions and wildfire events well. 14 

  15 
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Abstract 16 

To facilitate the quantification of the stratospheric aerosol radiative effect, this study generates a 17 

set of aerosol direct radiative effect (ADRE) kernels based on MERRA-2 reanalysis data. These 18 

radiative kernels measure the sensitivities of ADRE to perturbations in scattering and absorbing 19 

aerosol optical depth (AOD), respectively. Both broadband and band-by-band radiative kernels 20 

are developed to account for the wavelength dependency of ADRE. The broadband kernels are 21 

then emulated by a multivariate regression model, which predicts the kernel values from a 22 

handful of predictors, including the top-of-atmosphere (TOA) insolation, TOA reflectance, and 23 

stratospheric AOD. These kernels offer an efficient and versatile way to assess the ADRE of 24 

stratospheric aerosols. The ADREs of the 2022 Hunga volcano eruption and the 2020 Australia 25 

wildfire are estimated from the kernels and validated against radiative transfer model-calculated 26 

results. The Hunga eruption induced a global mean cooling forcing of -0.46 W/m² throughout 27 

2022, while the Australia wildfire caused a warming forcing of +0.28 W/m² from January to 28 

August. The kernel estimation can capture over 90% of the ADRE variance with relative error 29 

within 10%, in these assessments. The results demonstrate the spectral dependencies of 30 

stratospheric ADRE and highlight the distinct radiative sensitivity of stratospheric aerosols, 31 

which differs significantly from that of tropospheric aerosols. 32 

Plain Language Summary 33 

Stratospheric aerosols influence the Earth's energy balance by scattering and absorbing solar 34 

radiation, making it crucial to accurately measure their radiative impact. However, quantifying 35 

the aerosol radiative impact is computationally expensive if using radiative transfer models. In 36 

this work, we develop a set of aerosol radiative kernels, which can provide a flexible and 37 

efficient means for calculating the radiative effects of stratospheric aerosols. The kernels have 38 

been demonstrated to effectively quantify the radiative impacts of stratospheric aerosols resulting 39 

from wildfire and volcanic eruption events. 40 

 41 

1 Introduction 42 

Stratospheric aerosols influence the Earth’s radiative energy budget and have profound 43 

climate impacts (Kremser et al., 2016). The largest contributor to stratospheric aerosols is 44 

volcanic eruptions, which can inject a mixture of sulfur dioxide, sulfuric acid, and water directly 45 

into the stratosphere, where they transform into stratospheric aerosols (Martinsson et al., 2019). 46 

By increasing the reflection of solar radiation, those volcanic aerosols exert a negative radiative 47 

forcing at the top-of-the-atmosphere (TOA), which can lead to pronounced surface cooling and 48 

changes in atmospheric circulation and water cycle (Robock, 2000; Grinsted et al., 2007; Wu et 49 

al., 2023; Günther et al., 2024). Apart from volcanic eruptions, wildfires-induced 50 

pyrocumulonimbus (PyroCb) events can also transport a significant amount of carbonaceous 51 

aerosols into the lower stratosphere (Fromm et al., 2010; Ohneiser et al., 2020; Liu et al., 2022; 52 

Damany-Pearce et al., 2022). Observation and model studies suggest that the absorptivity of 53 

biomass-burning aerosols can warm the stratosphere, deplete the stratospheric ozone, and modify 54 

vertical dynamics and horizontal dispersion (Damany-Pearce et al., 2022; Ohneiser et al., 2020, 55 

2023).  56 

Although the importance of stratospheric aerosols is well recognized, the quantification 57 

of their radiative effect has not been an easy task, as it requires the consideration of multiple 58 

factors, including aerosol types, height and size distributions, as well as the environmental 59 

factors at their locations (Weisenstein et al., 2015; MacMartin et al., 2017; Q.-R. Yu et al., 2019; 60 

Visioni et al., 2020; P. Yu et al., 2023; Q. Yu et al., 2024). The straightforward and most 61 
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accurate way to quantify the aerosol direct radiative effect (ADRE) is the Partial Radiative 62 

Perturbation (PRP) method, which requires running a radiative transfer model and differencing 63 

the modeled radiative fluxes with and without aerosol perturbations, although this quantification 64 

method is computationally expensive. Many studies used alternative approaches to estimate 65 

ADRE, for example, by using an analytical relationship between the aerosol optical depth (AOD) 66 

and the radiative effect. Hansen et al. (2005) estimated a radiative sensitivity of -22 W/m
2
 per 67 

unit AOD change, based on the simulation of the Pinatubo eruption case using a global climate 68 

model. P. Yu et al. (2023) reported a similar scaling relation for stratospheric aerosols also based 69 

on modeling experiments. (Schoeberl et al., 2023, 2024a) applied the radiative sensitivity kernels 70 

of Q. Yu & Huang (2023b) to evaluate the climate impacts of the 2022 Hunga volcano eruption. 71 

However, these kernels were derived based on the aerosol perturbations in the whole 72 

atmospheric column, which is dominated by tropospheric, as opposed to stratospheric aerosols.  73 

To the best of our knowledge, a global dataset of radiative sensitivity kernels specifically 74 

developed for assessing the ADRE of stratospheric aerosols is still lacking. The existing global 75 

aerosol kernels, including those of Q. Yu & Huang, (2023b) and Thorsen et al. (2020), were 76 

developed with a focus on tropospheric aerosols, whose radiative sensitivity, as shown later in 77 

this paper, differ markedly from stratospheric aerosols. A recent study by Gao et al. (2023) tested 78 

the kernel quantification of the ADRE of tropopause aerosols, although the development was 79 

limited to the East Asia region. A global kernel dataset, which can facilitate an efficient yet 80 

accurate quantification of the spatiotemporally varying radiative impacts of stratospheric 81 

aerosols, is expected to have a broad spectrum of applications. This is especially relevant given 82 

the frequent occurrence of wildfires (Damany-Pearce et al., 2022), recent volcanic eruptions 83 

(Taha et al., 2022), and the increasing discussions about stratospheric aerosol geoengineering 84 

(Visioni et al., 2020). 85 

It is well recognized that the aerosol optical properties, radiative transfer, and the 86 

resulting aerosol radiative effects, all have a strong spectral dependence. For example, the 87 

spectral dependence of AOD is often approximated using the Angstrom relationship (Ångström, 88 

1929), although the Angstrom exponent (AE) may vary with wavelength (Schuster et al., 2006) 89 

and height (Chen et al., 2020). Incorporating spectrally measured aerosol optical properties can 90 

reduce uncertainty in the ADRE quantification (Chauvigné et al., 2021). Thorsen et al. (2020) 91 

found that distinguishing column-integrated aerosol optical properties in the mid-visible and 92 

near-infrared wavelengths can help constrain ADRE, pointing to the potential benefits of 93 

developing band-by-band kernels. In addition, spectral kernels may take advantage of the 94 

spectral AOD information, which is available from many state-of-the-art climate models as well 95 

as satellite and ground-based measurements. Therefore, in addition to a set of broadband 96 

stratospheric aerosol kernels, we also aim to produce an accompanying set of spectrally 97 

decomposed, band-by-band kernels, to facilitate the use of spectral information in the ADRE 98 

quantification. 99 

Observational and modeling studies have shown that ADRE sensitivity is strongly 100 

influenced by environmental conditions such as clouds, relative humidity, and surface albedo 101 

(McComiskey et al., 2008; Loeb et al., 2019; Schoeberl et al., 2023; Q. Yu & Huang, 2023a, 102 

2023b). However, the primary environmental factors affecting stratospheric ADRE sensitivity 103 

and their underlying physics remain to be elucidated. Another objective of our study is to 104 

investigate this environmental dependence. Integrating a physical model with statistical analyses, 105 

we experiment with sorting the global aerosol kernels, which are conventionally computed on 106 

geographic grids (latitude, longitude, and calendar month), based on the geophysical variables 107 
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that govern the kernel values according to radiative transfer physics. We aim to establish an 108 

analytical equation to capture the spatiotemporal variations of the kernel values. Such an 109 

analytical relation can be considered a physical (as opposed to geographical) kernel dataset and 110 

can be used for the ADRE quantification under arbitrary situations regardless of the geographic 111 

location, which potentially makes the kernels suitable for broader applications. 112 

In summary, in this study, we aim to develop a set of radiative sensitivity kernels that are 113 

specifically designed for quantifying the stratospheric ADRE. The kernels developed here 114 

include both broadband and spectral band-by-band TOA flux kernels provided on conventional 115 

latitude-longitude-month grids, as well as physically sorted broadband kernels whose values are 116 

determined from analytical equations. The structure of this paper is as follows. Section 2 details 117 

the methods used to calculate both broadband and band-by-band kernels. Section 3 describes the 118 

development of physically sorted kernels. These aerosol kernels constitute a versatile means to 119 

quantify the stratospheric ADRE. We demonstrate the use and performance of these kernels by 120 

applying them to two cases: the 2022 Hunga volcanic eruption (Bourassa et al., 2023; Kloss et al., 121 

2022; Taha et al., 2022) and the 2020 Australia wildfire (Ohneiser et al., 2020; Damany-Pearce 122 

et al., 2022; Sellitto et al., 2022) in Section 4. A summary is provided in Section 5. 123 

2 Data and Methods 124 

2.1 Stratospheric Aerosol Direct Radiative Effect 125 

The stratospheric ADRE is calculated as the difference in net radiative fluxes at TOA 126 

with and without stratospheric aerosols: 127 

 Stratos ADRE =  𝐹𝑛𝑒𝑡(𝑎𝑙𝑙 𝑎𝑒𝑟𝑜𝑠𝑜𝑙𝑠) − 𝐹𝑛𝑒𝑡(𝑛𝑜 𝑠𝑡𝑟𝑎𝑡𝑜𝑠 𝑎𝑒𝑟𝑜𝑠𝑜𝑙𝑠) (1) 128 

where 𝐹𝑛𝑒𝑡 = 𝐹↓ − 𝐹↑, with the downward flux 𝐹↓ being positive. 129 

In this study, we focus on the shortwave stratospheric ADRE at the TOA under the all-130 

sky condition. This is because the longwave ADRE is orders of magnitude smaller (Reddy et al., 131 

2005; Heald et al., 2014; Balmes & Fu, 2021), and aerosol scattering is often neglected in the 132 

longwave schemes of radiative transfer models (Mlawer et al., 1997, 2016), despite stratospheric 133 

aerosols being primarily scattering particles. However, the method described here can also be 134 

used to calculate aerosol kernels in the longwave spectrum, at the surface, or for atmospheric 135 

heating rate. Radiative fluxes are computed using the Rapid Radiative Transfer Model (RRTMG) 136 

(Mlawer et al., 1997, 2016). The required inputs for these calculations are obtained from the 137 

Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) 138 

dataset (Gelaro et al., 2017). We use instantaneous atmospheric and cloud profiles, including air 139 

temperature and pressure, surface temperature, surface albedo, water vapor, ozone, specific 140 

humidity, cloud fraction, and the mass fraction of cloud liquid and ice water. The tropopause is 141 

defined according to the criterion of the World Meteorological Organization (WMO, 1957) as 142 

the lowest level where the temperature lapse rate decreases to 2 K/km or less, and the average 143 

lapse rate from this level to any level within the next 2 km does not exceed 2 K/km.  144 

Aerosol optical properties are calculated based on the MERRA-2’s instantaneous aerosol 145 

mixing ratio profiles, which include 72 layers. MERRA-2 provides 15 externally mixed aerosol 146 

tracers: hydrophobic and hydrophilic black and organic carbon, sulfate, dust (five size bins), and 147 
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sea salt (five size bins) (Randles et al., 2017). Aerosol optical properties vary with relative 148 

humidity to account for hygroscopic growth. For computational efficiency, the 3-hourly 149 

MERRA-2 inputs are resampled into a 2.5° × 2.5° grid box. Our goal is to replicate the aerosol 150 

radiative transfer calculations from the MERRA-2 dataset and isolate the impact of stratospheric 151 

aerosols to study the stratospheric ADRE. Validations of aerosol optical property inputs and total 152 

ADRE calculations against MERRA-2 diagnostic aerosol and radiation products are provided in 153 

the Supporting Information (Figures S1-S3). 154 

2.2 Computation of Stratospheric Aerosol Kernels  155 

Aerosol radiative kernels (
𝜕(𝐴𝐷𝑅𝐸)

𝜕𝑥
) are the partial derivative of the ADRE to an aerosol-156 

related property 𝑥 such as AOD and single scattering albedo. These kernels represent how 157 

ADRE responds to atmospheric aerosol perturbations. By multiplying the radiative kernels with 158 

the changes in 𝑥, we can approximate the resulting change in ADRE, which provides a 159 

convenient means for estimating the radiative impact of aerosols.  160 

In this study, we develop kernels for both stratospheric scattering aerosol optical depth 161 

(AODscat) and absorbing aerosol optical depth (AODabs). For each type of kernel, radiative 162 

transfer calculations are performed twice: one with background aerosols and one with 163 

perturbations in the stratospheric aerosols. The sizes of the perturbation are 0.1 for AODscat and 164 

0.01 for AODabs at 550 nm. The perturbation magnitude differs between stratospheric AODscat 165 

and AODabs due to the smaller background stratospheric AODabs compared to AODscat. We use 166 

absolute perturbation values instead of relative ones (such as 1%) to minimize noise from 167 

numerical errors caused by very small background AOD values. We have verified that the 168 

radiative flux changes respond linearly to the AOD perturbations within the typical magnitudes 169 

of stratospheric aerosol perturbations (∆AODscat ranging from 10
-3

 to 1 and ∆AODabs ranging 170 

from 10
-4

 to 1, respectively). The sum of the AODscat and AODabs effects can also be linearly 171 

added to determine the total stratospheric ADRE. Sensitivity tests have also been conducted to 172 

determine the impacts of perturbation height on the aerosol kernels. Results indicate minimal 173 

difference between perturbing a single layer at random altitudes versus the entire stratosphere. 174 

Therefore, for our perturbation runs, we assume a conserved vertical profile shape of 175 

stratospheric aerosols. Details about sensitivity tests of linear scaling, linear additivity, and 176 

height dependency of stratospheric aerosol kernels are provided in the Supporting Information 177 

(Figures S4-S6). 178 

The perturbation computations produce both broadband and band-by-band stratospheric 179 

aerosol kernels. To account for the diurnal cycle, the 3-hourly kernels are averaged into monthly 180 

mean values. These aerosol kernels are computed for an El Niño-Southern Oscillation (ENSO) 181 

neutral year, 2022. The impact of interannual variability on aerosol kernels is small, as 182 

demonstrated by the comparisons of monthly mean kernels between 2020 and 2022. The R-183 

squared values and Root Mean Squared Errors (RMSE) between the monthly mean AODscat 184 

kernels in those two years are 92% and 3.62, respectively, while for the AODabs kernels, they are 185 

97% and 46.90, respectively. Detailed comparisons are provided in the Supporting Information 186 

(Figure S7), showing consistency in both spatial distributions and global mean values. 187 

 188 
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2.2.1 Broadband Aerosol Kernels 189 

Given that solar energy peaks in the mid-visible bands and that aerosol optical properties 190 

are commonly observed in this range, we use the 550 nm AOD as the perturbation variable. The 191 

stratospheric AODscat and AODabs kernels are defined as follows: 192 

𝜕(𝐴𝐷𝑅𝐸)

𝜕(𝐴𝑂𝐷𝑠𝑐𝑎𝑡)
 = 

𝐹𝑛𝑒𝑡(𝐴𝑂𝐷𝑠𝑐𝑎𝑡+∆𝐴𝑂𝐷𝑠𝑐𝑎𝑡,   𝐴𝑂𝐷𝑎𝑏𝑠, SSA', g')−𝐹𝑛𝑒𝑡(𝐴𝑂𝐷𝑠𝑐𝑎𝑡,   𝐴𝑂𝐷𝑎𝑏𝑠,  SSA, g)

∆𝐴𝑂𝐷𝑠𝑐𝑎𝑡
550  (2)  193 

𝜕(𝐴𝐷𝑅𝐸)

𝜕(𝐴𝑂𝐷𝑎𝑏𝑠)
 = 

𝐹𝑛𝑒𝑡(𝐴𝑂𝐷𝑠𝑐𝑎,   𝐴𝑂𝐷𝑎𝑏𝑠+∆𝐴𝑂𝐷𝑎𝑏𝑠, SSA', g')−𝐹𝑛𝑒𝑡(𝐴𝑂𝐷𝑠𝑐𝑎𝑡,   𝐴𝑂𝐷𝑎𝑏𝑠,  SSA, g)

∆𝐴𝑂𝐷𝑎𝑏𝑠
550  (3) 194 

 In the unperturbed runs, the background aerosol profiles of AOD, single scattering albedo 195 

(SSA), and asymmetry factor (g) are taken from reconstructed MERRA-2 aerosol optical 196 

property profiles. In the perturbation runs, an aerosol layer representing the stratospheric aerosol 197 

perturbations is added to the background aerosol profile. This added aerosol layer has the 198 

scattering or absorbing AOD values at 550 nm of 0.1 and 0.01, respectively, and the incremental 199 

AOD values (∆𝐴𝑂𝐷𝑠𝑐𝑎𝑡 and ∆𝐴𝑂𝐷𝑎𝑏𝑠) at other wavelengths are prescribed according to the 200 

Angstrom relationship (with the AE being 1). For the scattering AOD perturbation, the SSA and 201 

g values of this added layer are assumed to be 1 and 0.7. The g value is based on annual and 202 

global mean asymmetry factor values reported by Ayash et al. (2008) as well as the background 203 

upper troposphere and lower stratosphere aerosol configurations in Sellitto et al. (2022). 204 

Weighted averaging is used to calculate the values of these aerosol properties in the perturbation 205 

runs. For 𝐴𝑂𝐷𝑠𝑐𝑎𝑡 perturbation runs, 206 

𝑆𝑆𝐴′ =
𝑆𝑆𝐴550𝐴𝑂𝐷550+1∗∆𝐴𝑂𝐷𝑠𝑐𝑎𝑡

550

𝐴𝑂𝐷550+∆𝐴𝑂𝐷𝑠𝑐𝑎𝑡
550  (4) 207 

𝑔′ =
𝑔550𝑆𝑆𝐴550𝐴𝑂𝐷550+0.7∗1∗∆𝐴𝑂𝐷𝑠𝑐𝑎𝑡

550

𝑆𝑆𝐴550𝐴𝑂𝐷550+1∗∆𝐴𝑂𝐷𝑠𝑐𝑎𝑡
550  (5) 208 

For AODabs perturbation runs, the SSA and g values are 209 

 𝑆𝑆𝐴′ =
𝑆𝑆𝐴550𝐴𝑂𝐷550+0∗∆𝐴𝑂𝐷𝑎𝑏𝑠

550

𝐴𝑂𝐷550+∆𝐴𝑂𝐷𝑎𝑏𝑠
550  (6) 210 

𝑔′ = 𝑔 (7) 211 

To use the aerosol kernels derived here to calculate ADRE, users simply need to obtain 212 

stratospheric ∆𝐴𝑂𝐷𝑠𝑐𝑎𝑡
550  and ∆𝐴𝑂𝐷𝑎𝑏𝑠

550 values appropriate to the case of interest, and then 213 

multiply these with broadband kernel values. 214 

∆𝐴𝐷𝑅𝐸 =
𝜕(𝐴𝐷𝑅𝐸)

𝜕(𝐴𝑂𝐷𝑠𝑐𝑎𝑡)
∙ ∆𝐴𝑂𝐷𝑠𝑐𝑎𝑡

550 +
𝜕(𝐴𝐷𝑅𝐸)

𝜕(𝐴𝑂𝐷𝑎𝑏𝑠)
∙ ∆𝐴𝑂𝐷𝑎𝑏𝑠

550 (8) 215 

Figure 1 shows the global distribution of annual mean stratospheric AODscat and AODabs 216 

kernels, in the units of W/m
2
 per unit change in stratospheric AOD. Both AODscat and AODabs 217 

kernels exhibit strong atmosphere dependencies. In cloudy regions (e.g., the Intertropical 218 

Convergence Zone, tropical eastern Atlantic, northwest Pacific Ocean, and Southern Ocean), the 219 
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sensitivity of stratospheric ADRE to stratospheric AODscat is relatively lower due to the presence 220 

of underlying clouds, while the sensitivity to AODabs is relatively higher, compared to other 221 

regions. This is because in the case of the scattering effect, clouds already brighten the 222 

atmosphere and make the TOA radiation less sensitive to scattering aerosols and in the case of 223 

the absorbing effect, clouds increase the solar radiation reflected into the stratosphere, thereby 224 

amplifying the absorption by the stratospheric aerosols. Similar patterns are observed over the 225 

polar and desert regions with high surface albedo. Because of their scattering or absorbing nature, 226 

AODscat kernels are always negative, while AODabs kernels are always positive. In terms of 227 

global means, a 0.1 increase in stratospheric 𝐴𝑂𝐷𝑠𝑐𝑎𝑡
550  results in a -2.65 W/m² cooling, while a 0.1 228 

increase in 𝐴𝑂𝐷𝑎𝑏𝑠
550 results in a +41.95 W/m² warming at the TOA. Note that these sensitivity 229 

values are larger than those reported by Q. Yu & Huang (2023b), particularly for absorbing 230 

aerosols. This is because the kernels developed in this study focus exclusively on stratospheric 231 

aerosols. These aerosols interact with a larger proportion of photons that have not been 232 

attenuated by clouds or tropospheric absorbers. Additionally, underlying clouds enhance the 233 

brightness of the troposphere, which further intensify the sensitivity of stratospheric ADRE to 234 

AODabs. 235 
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 236 

Figure 1. Spatial distributions of annual mean broadband aerosol kernels (a) for stratospheric 237 

AODscat and (b) for stratospheric AODabs. The global mean and annual mean values are indicated 238 

in the upper right corner of each subplot. Kernels are shown in units of watts per square meter 239 

per unit change in stratospheric AOD at 550 nm. 240 
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 241 

Figure 2. Temporal variations of zonal mean broadband stratospheric aerosol kernels (a) 242 

for stratospheric AODscat and (b) for stratospheric AODabs. 243 

Apart from the spatial inhomogeneity, stratospheric aerosol kernels also display strong 244 

temporal variations. Figure 2 displays the temporal variations in zonal mean stratospheric 245 

broadband AODscat and AODabs kernels. The pronounced latitudinal differences in aerosol 246 

kernels reflect patterns of solar insolation. In tropical regions, the sensitivity of ADRE to 247 

stratospheric aerosols remains high throughout the year, while polar regions show notable 248 

seasonal variations. 249 

2.2.2 Band-by-band Aerosol Kernels 250 

While broadband aerosol kernels are convenient to use, they rely on assumptions about 251 

the wavelength dependency of aerosol optical properties, which may not always be accurate. To 252 

facilitate a more flexible and accurate ADRE quantification, we leverage the band configuration 253 

of the RRTMG model to calculate a set of band-by-band stratospheric aerosol kernels. The 254 

RRTMG shortwave bands, detailed in Table 1, cover a spectrum from 0.2 μm to 12.2 μm across 255 

14 bands. 256 
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Table 1. RRTMG shortwave bands. 257 

SW band Wavenumber 

𝝊[𝒄𝒎−𝟏] 
Wavelength 

𝝀 [𝒏𝒎] 

AOD 

wavelength 

[nm] 

Band 29 820-2600 12195- 3846 7082.2 

 

Band 16 2600-3250 3846-3077 3444.7 

Band 17 3250-4000 3077-2500 2777 

Band 18 4000-4650 2500-2151 2320.2 

Band 19 4650-5150 2151-1942 2044.2 

Band 20 5150-6150 1942-1626 1778.4 

Band 21 6150-7700 1626-1299 1455.2 

Band 22 7700-8050 1299-1242 1270 

Band 23 8050-12850 1242-778 944.3 

Band 24 12850-16000 778-625 693.5 

Band 25 16000-22650 625-442 527.1 

Band 26 22650-29000 442-345 399.8 

Band 27 29000-38000 345-263 329.1 

Band 28 38000-50000 263-200 229.8 

The stratospheric aerosol band-by-band kernels for AODscat and AODabs are expressed as: 258 

𝜕𝐴𝐷𝑅𝐸𝑖

𝜕𝐴𝑂𝐷𝑠𝑐𝑎𝑡
𝑖  =

𝐹𝑛𝑒𝑡(𝐴𝑂𝐷𝑠𝑐𝑎𝑡
𝑖 +∆𝐴𝑂𝐷𝑠𝑐𝑎𝑡

𝑖 , 𝐴𝑂𝐷𝑎𝑏𝑠
𝑖 ,  SSA', g')−𝐹𝑛𝑒𝑡(𝐴𝑂𝐷𝑠𝑐𝑎𝑡

𝑖 , 𝐴𝑂𝐷𝑎𝑏𝑠
𝑖 , SSA𝑖, g𝑖)

∆𝐴𝑂𝐷𝑠𝑐𝑎𝑡
𝑖  (9) 259 
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𝜕𝐴𝐷𝑅𝐸𝑖

𝜕𝐴𝑂𝐷𝑎𝑏𝑠
𝑖  =

𝐹𝑛𝑒𝑡(𝐴𝑂𝐷𝑠𝑐𝑎𝑡
𝑖 , 𝐴𝑂𝐷𝑎𝑏𝑠

𝑖 +∆𝐴𝑂𝐷𝑎𝑏𝑠
𝑖 , SSA', g' )−𝐹𝑛𝑒𝑡(𝐴𝑂𝐷𝑠𝑐𝑎𝑡

𝑖 , 𝐴𝑂𝐷𝑎𝑏𝑠
𝑖 ,  SSA', g')

∆𝐴𝑂𝐷𝑎𝑏𝑠
𝑖  (10) 260 

In the equations above, i represents the i
th

 band in RRTMG. ∆𝐴𝑂𝐷𝑠𝑐𝑎𝑡
𝑖  and ∆𝐴𝑂𝐷𝑎𝑏𝑠

𝑖  are the 261 

added AOD perturbation at the i
th

 band, which vary with wavelength according to the Angstrom 262 

relation in our calculation.  263 

∆𝐴𝑂𝐷𝑠𝑐𝑎𝑡
𝑖 = 0.1 ∗ (

𝑤𝑎𝑣𝑒𝑙𝑒𝑛𝑔𝑡ℎ𝑖

550
)

−1

(11) 264 

∆𝐴𝑂𝐷𝑎𝑏𝑠
𝑖 = 0.01 ∗ (

𝑤𝑎𝑣𝑒𝑙𝑒𝑛𝑔𝑡ℎ𝑖

550
)

−1

(12) 265 

Note that for each band, perturbed AOD is calculated at the central wavelength following 266 

RRTMG configuration as listed in Table 1. The SSA and g calculations in the perturbation runs 267 

are similar to those in the broadband kernel calculation. 268 

To use the band-by-band kernels, users need to obtain the ∆𝐴𝑂𝐷𝑠𝑐𝑎𝑡
𝑖  and ∆𝐴𝑂𝐷𝑎𝑏𝑠

𝑖  for 269 

each band, multiply them by band-by-band kernels, and sum over the 14 bands. 270 

∆ADRE = ∑ (
𝜕𝐴𝐷𝑅𝐸𝑖

𝜕𝐴𝑂𝐷𝑠𝑐𝑎𝑡
𝑖

29
𝑖=16 ∙ ∆𝐴𝑂𝐷𝑠𝑐𝑎𝑡

𝑖 ) + ∑ (
𝜕𝐴𝐷𝑅𝐸𝑖

𝜕𝐴𝑂𝐷𝑎𝑏𝑠
𝑖

29
𝑖=16 ∙ ∆𝐴𝑂𝐷𝑎𝑏𝑠

𝑖 ) (13) 271 
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 272 

Figure 3. Global mean annual mean stratospheric aerosol band-by-band kernels for (a) AODscat 273 

and (b) AODabs. For demonstration purposes, kernels are normalized by the corresponding 274 

bandwidth. The normalized kernel unit is watts per meter squared per unit change in the 275 

respective stratospheric AOD per wavenumber. (c) Normalized spectral solar radiation. 276 

Figure 3 presents the global mean band-by-band stratospheric AODscat and AODabs 277 

kernels. For comparison purposes, the spectral kernels are normalized by the bandwidth. The 278 

results indicate that the spectral signatures of the band-by-band aerosol kernels are primarily 279 

dominated by the strength of incoming solar radiation. The aerosol radiative sensitivity peaks 280 

from the near-ultraviolet band (~22650 cm
-1

) to the near-infrared band (~8080 cm
-1

), which 281 

corresponds to band 23 to 25 (442 nm-1242 nm) in RRTMG as indicated in Table 1. Accurately 282 

determining aerosol optical properties in these bands can help constrain the ADRE without 283 

needing the aerosol information across the full spectrum. Most aerosol retrieval products provide 284 

optical properties at a few discrete wavelengths ranging from near-ultraviolet to near-infrared. 285 

For example, the AErosol RObotic NETwork (AERONET) provides AOD products at 340, 380, 286 

440, 500, 675, 870, and 1020 nm (Giles et al., 2019). By interpolating observed AOD values at 287 

the central AOD wavelengths in the RRTMG configuration for relevant bands and assuming 288 

spectral dependence of optical properties for the remaining bands, users can calculate 289 

stratospheric ADRE more accurately than using broadband kernels. In the following section, we 290 

will use the spectral AOD observations to compare the ADRE values computed from the 291 

broadband and band-by-band stratospheric aerosol kernels.  292 
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2.3 OMPS Aerosol Data and Quality Control 293 

To quantify the stratospheric ADRE, we utilize the aerosol extinction coefficient profiles 294 

from the OMPS-LP Level 2 daily product. The Ozone Mapping and Profiler Suite (OMPS) 295 

measures limb scattering of sunlight at tangent altitudes from ground level up to approximately 296 

100 km with a vertical resolution of 1km (Flynn et al., 2006). The aerosol product from OMPS 297 

has been widely used to study the stratospheric ADRE (Damany-Pearce et al., 2022; Bourassa et 298 

al., 2023; Schoeberl et al., 2023, 2024). This study uses aerosol extinction coefficient retrievals 299 

along the center slit (aligned with the orbital track) of the OMPS-LP. The retrieved extinction 300 

profiles extend up to 40km, and quality control procedures are applied before the analysis 301 

following Damany-Pearce et al. (2022). Only data with ResidualFlag = 0, SingleScatteringAngle 302 

≤ 145 ̊, and SwathLevelQualityFlags with bits 0, 1, and 7 = 0 are considered valid. The 303 

tropopause definition is consistent with that used in the kernel calculation. We integrate the 304 

extinction coefficient throughout the stratosphere to calculate the stratospheric AOD. To 305 

facilitate kernel application, we average the AOD data onto the same 2.5° × 2.5° latitude-306 

longitude grid. 307 

For using the broadband aerosol kernels, we choose the 869 nm extinction coefficient 308 

from OMPS and scale it to 550 nm, assuming an AE value of 1. This AE value is chosen because 309 

it represents the background stratospheric aerosol conditions and the specific conditions of the 310 

Hunga aerosols, and has been applied in other similar studies (Schoeberl et al., 2023; Sellitto et 311 

al., 2024). The 869 nm wavelength is chosen over other channels closer to 550 nm because 312 

OMPS aerosol products have performance issues at shorter wavelengths in the southern 313 

hemisphere (Taha et al., 2021).  314 

For the band-by-band kernel application, we utilize extinction coefficients measured at 315 

510 nm, 600 nm, 675 nm, 745 nm, 869 nm, and 997 nm, and interpolate extinction values to 316 

527.1 nm, 693.5 nm, and 944.3 nm using measurements from the nearest wavelengths as 317 

required by the aerosol kernels. For the remaining bands, we scale the extinction coefficient from 318 

869 nm to the corresponding central AOD wavelength, assuming an AE of 1. In the following 319 

section, we use the OMPS spectral AODs as an example to demonstrate the usage of our kernels.  320 

Our goal is to estimate the changes in stratospheric ADRE (∆ADRE) due to the 2022 321 

Hunga volcanic eruption and the 2020 Australia wildfires using our aerosol kernels. We consider 322 

the MERRA-2 stratospheric AOD as the background aerosol states because no eruptive 323 

volcanoes are included in MERRA-2 after 2010 (Randal et al., 2016). Therefore, the 324 

stratospheric AOD anomaly is calculated by subtracting the background stratospheric AOD 325 

values given by MERRA-2 from OMPS stratospheric AOD. For the kernel application, the AOD 326 

values in Equations (8) and (13) are the differences between OMPS and MERRA-2 stratospheric 327 

AOD. To validate the performance of our aerosol kernels, we use the same AOD anomalies as 328 

input to the RRMTG model to calculate the "truth" values of stratospheric ADRE for comparison.  329 

3 Physically Sorted Aerosol Kernels  330 

As shown in the previous section (e.g., Figures 1 and 2), there are strong spatial and 331 

temporal variabilities in the kernel values. It is thus important to understand how the aerosol 332 

properties and environmental variables (e.g., surface albedo and clouds) interact with each other 333 
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to influence the radiative sensitivity. To address this question, we follow a widely used 334 

conceptual model of ADRE (Chlek & Coakley Jr, 1974; Haywood & Shine, 1995) to identify the 335 

key factors and their expressions to use in an analytical model to predict the kernel values. We 336 

then determine the coefficient values statistically using a multivariable regression method 337 

following (Q. Yu & Huang, 2023a, 2023b). Different from the geographically gridded kernels 338 

presented in the previous section, the physically sorted kernels developed here are not 339 

constrained by space and time, allowing one to more flexibly estimate the stratospheric ADRE.  340 

3.1 Physical Model 341 

We follow the formulation of Haywood & Shine (1995), but consider the stratospheric 342 

aerosols as a scattering layer and represent the troposphere-surface system as a whole with a 343 

reflectance parameter at the tropopause. The all-sky stratospheric ADRE at the TOA can be 344 

expressed as follows: 345 
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ADRE = −STat
2 βωτsecθ

(1−𝑅𝑠)2− 
𝑅𝑠(1−ω)

β
 [

2−τsecθ

ω
 −τsecθ(2β−1)]

1−𝑅𝑠βωτsecθ
 (14) 346 

The environment-related variables are solar insolation (S), atmospheric transmittance (𝑇𝑎𝑡) above 347 

the aerosol layer, the solar zenith angle (θ), and tropopause reflectance (𝑅𝑠). The aerosol-related 348 

variables are the aerosol backscattering ratio (β), aerosol single scattering albedo (ω), and 349 

aerosol optical depth (τ). The stratospheric ADRE is further expanded as: 350 

ADRE = −STat
2 βωτsecθ(1 + 𝑅𝑠τsecθβω){(1 − 𝑅𝑠)2 −  

𝑅𝑠(1−ω)

β
 [

2−τsecθ

ω
 − τsecθ(2β − 1)]} 351 

(15) 352 

The sensitivity of stratospheric ADRE to τ is 353 

𝜕𝐴𝐷𝑅𝐸

𝜕τ
=354 

−STat
2 βω(1 − 𝑅𝑠)2(1 + 2βω𝑅𝑠τsecθ) + STat

2 βω(1 + 2βω𝑅𝑠τsecθ)
𝑅𝑠(1−ω)

β
 [

2−τsecθ

ω
 −355 

τsecθ(2β − 1)] + STat
2 βω(τsecθ + βω𝑅𝑠τsecθ2)[−

𝑅𝑠

β

1−ω

ω
 − 2β + 1] (16) 356 

Neglecting higher-order terms, Equation (16) is approximated as 357 

𝜕𝐴𝐷𝑅𝐸

𝜕τ
= −STat

2 [βω + 𝑅𝑠(2βω + 2 − 3ω) − 𝑅𝑠
2βω + 𝑅𝑠τsecθ(−2 + 3ω − 2ωβ − ω2) +358 

βωτsecθ] (17) 359 

This equation suggests that stratospheric aerosol kernels are influenced by these terms: 𝑅𝑠, 𝑅𝑠τ, 360 

τ, and 𝑅𝑠
2. The combination terms arise from the coupling effects between the stratospheric 361 

aerosol layer and the underlying troposphere-surface system. In the following section, we will 362 

use these terms as predictors to reproduce the spatiotemporally varying stratospheric aerosol 363 

kernels. The goal is to capture the physical processes governing ADRE sensitivity, which should 364 

be independent from geographic locations. 365 

3.2 Statistical Model 366 

Regression models have been a useful tool in predicting radiative forcing and capturing 367 

nonlinear radiative interactions in many studies (Huang et al., 2016; Datseris et al., 2022; Q. Yu 368 

& Huang, 2023b, 2023a). In this work, we built a multi-variable regression model to represent 369 

the annual mean global stratospheric aerosol kernels following Q. Yu & Huang (2023b, 2023a). 370 

The model is expressed as: 371 

𝐘(𝐢,𝐣)−𝐘̅

𝐘̅
= ∑ 𝐀𝐤

𝐗𝐤(𝐢,𝐣)−𝐗𝐤̅̅ ̅̅

𝐗𝐤̅̅ ̅̅
𝐧
𝐤=𝟏  (18) 372 

Here, X are predictors (e.g., 𝑅𝑠 , 𝑅𝑠τ) at latitude i and longitude j. Y is either the broadband 373 

aerosol kernels for stratospheric AODscat or AODabs. 𝐴𝑘 is the regression coefficient and n is the 374 

number of predictors. Note that the global field of Y is predicted by one uniform set of 𝐴𝑘values. 375 

Both predictors and predictands are normalized by their global mean values, denoted by a bar.  376 
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Following the physical model derived above, we select 𝑅𝑠, 𝑅𝑠τ, τ, and 𝑅𝑠
2 as predictors. 377 

As TOA reflectance (R) is more easily obtained, we use it as a proxy for the tropopause 378 

reflectance. To accurately represent global aerosol kernels using as few predictors as possible, 379 

we have tested the performance of all possible combinations of predictors (listed in Supporting 380 

Information Table 1&2). Results suggest that the four predictors are sufficient to capture almost 381 

all main features of stratospheric aerosol kernels.  382 

The physically sorted broadband aerosol kernels for stratospheric AODscat is given by 383 

𝜕(𝐴𝐷𝑅𝐸)
𝜕(𝐴𝑂𝐷𝑠𝑐𝑎𝑡)

𝑆
−(−0.076)

(−0.076)
  = −2.264 ∙

R−0.413

0.413
+ 0.753

𝑅2−0.184

0.184
+ 0.671

𝜏−0.002

0.002
 -0.3186 

R𝜏−0.001

0.001
 (19) 384 

The physically sorted broadband aerosol kernels for stratospheric AODabs is given by 385 

𝜕(𝐴𝐷𝑅𝐸)
𝜕(𝐴𝑂𝐷𝑎𝑏𝑠)

𝑆
  − 1.323

1.323
 =−0.313 ∙

𝑅−0.413

0.413
+ 0.696

𝑅2−0.184

0.184
− 0.175

𝜏−0.002

0.002
 +0.258 

R𝜏−0.001

0.001
  (20) 386 

The comparison of statistically fitted broadband aerosol kernels for stratospheric AODscat and 387 

AODabs against benchmark RRTMG calculations is shown in the Supporting Information 388 

(Figures S8). Results suggest that more than 94% of the spatial variance in aerosol kernels is 389 

captured by the regression model, indicating its effectiveness in predicting the variability of 390 

aerosol kernels. 391 

Figure 4 displays the impact of environmental variables (TOA insolation 𝑆 and 392 

reflectance 𝑅) on the distributions of annual mean global aerosol kernels. Generally speaking, an 393 

increase in solar insolation results in a larger magnitude of aerosol kernels, while a more 394 

reflective underlying "surface" (due to clouds or Earth’s surface) leads to a less cooling or more 395 

warming impact on net TOA fluxes. The physically sorted aerosol kernels can well capture their 396 

sensitivity to those environmental variables. More importantly, they can estimate stratospheric 397 

ADRE sensitivity in idealized conditions where actual observations are lacking. 398 
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 399 

Figure 4. Distributions of broadband stratospheric AODscat and AODabs kernels as a function of 400 

TOA reflectance and TOA insolation. Left column: RRTMG-calculated stratospheric aerosol 401 

kernels; Right column: the physically sorted aerosol kernels predicted by the regression model. 402 

4 Stratospheric Aerosol Kernel Applications 403 

Multiplying aerosol radiative kernels by changes in stratospheric AOD from specific 404 

events (e.g., volcanic eruptions) provides estimates of the corresponding ADRE. In this section, 405 

we examine the radiative effects of the volcanic ash plume from the 2022 Hunga eruption and 406 

the biomass-burning aerosols from the 2020 Australia wildfires to demonstrate the application of 407 

stratospheric aerosol kernels. We compare the results of broadband, band-by-band, and 408 

physically sorted kernels. 409 

4.1 Aerosol Radiative Kernel Comparisons 410 

Given the kernels here are developed specifically for stratospheric aerosols, it is of 411 

interest to compare them with other kernels not designed this way. Besides the simple scaling 412 

relations given in the literature (e.g., Hansen et al. 2005; P. Yu et al. 2021), Q. Yu & Huang, 413 

(2023b, denoted as YH23 from here on) derived a set of global ADRE sensitivity kernels mainly 414 

for tropospheric aerosols and validated against the independent results of Thorsen et al. (2020). 415 
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Schoeberl et al. (2023, 2024) used the YH23 kernels to estimate the radiative impact of the 416 

Hunga eruption. We include the YH23 kernels for comparison in the following.  417 

In Figure 5, we compare the zonal mean AODscat and AODabs sensitivity in YH23 with 418 

the broadband stratospheric aerosol kernels calculated by RRTMG and the statistical regression 419 

model. Results show that the aerosol kernels display significant latitudinal differences. For all-420 

sky stratospheric AODscat kernels, the magnitude peaks in the subtropical regions because the 421 

relative brightness of aerosols is reduced above the tropical cloudy regions. The physically sorted 422 

kernels closely match the RRTMG results, indicating a good performance of the physical sorting 423 

method. Interestingly, the clear-sky, as opposed to the all-sky, AODscat kernels given by YH23 424 

render more similar magnitudes to the all-sky stratospheric AODscat kernels developed here, 425 

especially in the mid-latitudes. This is because the stratospheric aerosols are located above 426 

tropospheric clouds, which suppress the radiative sensitivity to tropospheric AOD perturbations 427 

but do not strongly affect the radiative effect of stratospheric aerosols. Compared to the AODabs 428 

kernels in YH23, the stratospheric AODabs kernels developed here are much larger due to the 429 

enhanced ADRE sensitivity to AODabs above bright underlying clouds. 430 

 431 

Figure 5. Annual mean and zonal mean broadband stratospheric (a) AODscat and (b) AODabs 432 

radiative kernels. YH23-clr and YH23-all represent the clear-sky and all-sky scattering AOD 433 

radiative sensitivity quantified in Q. Yu & Huang (2023b) for tropospheric aerosols. Kernel and 434 

Kernel-phys indicate the broadband kernels calculated from RRTMG and emulated by a 435 

regression model, respectively. 436 

4.2 2022 Hunga Volcanic Eruption 437 

On January 15, 2022, the Hunga Tonga volcano (20.57°S, 175.38°W) erupted violently, 438 

releasing sulfur compounds and other aerosols into the atmosphere (Kloss et al., 2022; Taha et 439 

al., 2022; Schoeberl et al., 2023, 2024). To assess the corresponding ADRE, we first calculate 440 

the stratospheric AOD anomaly following Section 2.3.  441 
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Figure 6a-6d shows the evolution of the zonal mean stratospheric AOD anomaly relative 442 

to the background at different wavelengths throughout 2022. Although the Hunga eruption 443 

occurred in late January, the OMPS product showed little AOD signal initially because the 444 

extinction retrieval becomes unreliable in the presence of clouds and optically thick aerosol 445 

plumes (Taha et al., 2021). Over time, the aerosol plume descented to the lower stratosphere and 446 

dispersed horizontally. Within four months after the eruption, the aerosols primarily remained in 447 

tropical latitudes with some northward spread. This led to an initial AOD peak in the tropical 448 

regions due to the immediate formation and accumulation of aerosols, as reported by other 449 

studies (Schoeberl et al., 2023; Taha et al., 2022). As the southern hemisphere approached 450 

winter, a meridional circulation developed between the tropics and subtropics to maintain the 451 

thermal wind balance, known as the QBO direct, meridional, or secondary circulation (Strahan et 452 

al., 2015). This circulation transported stratospheric aerosols into the mid-latitudes. Meanwhile, 453 

the polar vortex acted as a barrier, causing the accumulated aerosols in the subtropics to create a 454 

second AOD peak during July-September. The double peak features shown here were also 455 

reported in other observations and model simulations (Wang et al., 2023; Schoeberl et al., 2024). 456 

Gaps in the data are caused by spacecraft anomalies or failures to meet the data screening 457 

criteria. 458 

Figure 6e also suggests that the zonal average stratospheric AOD anomaly varies 459 

significantly with wavelength, indicating that assuming a simple Angstrom exponent cannot fully 460 

represent the wavelength dependency of AOD. Therefore, it is important to incorporate the band-461 

by-band kernels with AOD observations to accurately calculate the stratospheric ADRE. 462 
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 463 

Figure 6. Latitude-time plots of the zonal mean stratospheric AOD anomaly at (a) 600 nm, (b) 464 

745 nm, (c) 869 nm, and (d) 997 nm from OMPS-LP in 2022, with the x-axis in (a)-(d) 465 

representing corresponding months. (e) Zonal and annual mean aerosol extinction coefficient at -466 

25S and 17.5 km. The red dots represent OMPS observations, while the blue line shows the 467 

wavelength dependency assuming an AE of 1. 468 

In the ADRE calculation, we assume the AOD anomaly with SSA = 1 because 469 

observations suggest that the absorbing particles in the volcanic ashes are of small amounts and 470 

do not significantly impact the radiative properties (Kloss et al., 2022). We also assume the 471 

stratospheric AOD anomalies from OMPS at a discrete set of wavelengths represent the 472 

observational truth. Figure 7a displays the global mean stratospheric AOD anomaly as calculated 473 

in Section 2.3 throughout 2022. We have listed the spectral AOD anomaly at RRTMG mid-474 

visible bands (bands 23-25). These values are interpolated from the nearby wavelengths from 475 

OMPS. For the broadband AOD anomaly, we calculate the AOD using OMPS 869 nm, assuming 476 

an AE of 1. This way, we can estimate the relative errors of the broadband kernel method when 477 

there are observation uncertainties in AE. Results indicate distinct features in the spectra AOD, 478 

suggesting a peak in global mean AOD values around June.  479 

We further calculated the stratospheric ADRE using both the stratospheric kernels 480 

developed here and the kernels from YH23. The YH23 kernels, although based on total column 481 

aerosols, have been used in stratospheric ADRE quantifications in Schoeberl et al. (2023, 2024). 482 
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By including YH23 kernels in the comparison, we show the discrepancies that would be caused 483 

by kernels not specifically made for stratospheric aerosols. Figure 7b shows the stratospheric 484 

ADRE from the Hunga Eruption in 2022. For comparison, the RRTMG-calculated results based 485 

on the band-by-band AOD inputs are indicated by the red line. In general, the ADRE peaks with 486 

AOD near June, and using the band-by-band aerosol kernels can quantify it most accurately. The 487 

performance of broadband and physically sorted stratospheric aerosol kernels is slightly worse 488 

than that of the band-by-band kernels, as they fail to capture the wavelength dependency 489 

information and the Angstrom exponent assumption may be inadequate. In terms of global mean 490 

values, using the YH23 clear-sky kernel overestimates the cooling effect of the Hunga eruption, 491 

while using the YH23 all-sky kernel underestimates it.  492 
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 493 

Figure 7. Time series of the global mean (a) stratospheric AOD anomaly from OMPS-LP 494 

following the Hunga Eruption in 2022 and (b) stratospheric ADRE from Hunga Eruption in 2022. 495 

YH23-clr and YH23-all represent the clear-sky and all-sky scattering AOD radiative sensitivity 496 

quantified in Q. Yu & Huang (2023b), respectively. Kernel, kernel-phys, and kernel-byb indicate 497 

the broadband kernels calculated from RRTMG, broadband kernels from the regression model, 498 

and the band-by-band kernels, respectively. 499 
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 500 

Figure 8. Annual mean stratospheric ADRE from the Hunga eruption in 2022, with global mean 501 

values indicated in the top right of each subplot. (a) RRTMG benchmark calculations; (b) Band-502 

by-band kernel quantifications; (c) Broadband kernel quantifications; (d) Physically sorted kernel 503 

quantifications; (e) YH23 clear-sky kernel quantifications; (f) YH23 all-sky kernel 504 

quantifications. Global mean values are shown in the top right of each subplot. 505 

Apart from the time evolution, we also compare the spatial patterns of stratospheric 506 

ADRE using different kernel schemes. Figure 8 displays the annual mean stratospheric ADRE 507 

from the Hunga eruption calculated from RRTMG as well as the kernels developed in this work. 508 

Results show that the volcanic eruption caused a uniform cooling in the southern hemisphere’s 509 

tropical and subtropical regions due to the dispersion of aerosols described before. In terms of 510 

global mean ADRE, the Hunga eruption induced a cooling of -0.46 W/m
2
. All stratospheric 511 
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kernels developed in this work can reproduce the spatial features of ADRE relatively well, with 512 

the band-by-band kernels performing the best. Although the YH23 clear-sky scheme can 513 

approximately reproduce the global mean stratospheric ADRE values, it fails to capture the 514 

spatial patterns, especially over the cloudy regions.  515 

Table 2 listed the R
2
 and RMSE values comparing the ADRE induced by the Hunga 516 

eruption, calculated using different kernel schemes and the RRTMG model. Globally, the band-517 

by-band, broadband, and physically sorted aerosol kernels capture 98.89%, 93.83%, and 94.33% 518 

of the variance in RRTMG-calculated ADRE, with RMSEs less than 0.04 W/m² (approximately 519 

8.7% relative to the global mean values). Using YH23 kernels results in RMSEs greater than 520 

0.11 W/m², which is 23.91% relative to the global mean. 521 

Table 2. Performance of stratospheric kernels calculated in this study and kernels from YH23 in 522 

quantifying the ADRE of the 2022 Hunga volcanic eruption and 2020 Australia wildfire. R
2
 523 

represents the coefficient of determination, and RMSE is the Root Mean Squared Error. Relative 524 

errors are calculated by dividing the RMSE by the global mean values. Broadband and 525 

physically sorted kernels are used under the assumption of AE being 1. 526 

 2022 Hunga volcanic eruption 2020 Australia wildfire 

R
2 

RMSE 

(W/m
2
) 

Relative 

errors 

R
2
 RMSE(W/m

2
) Relative 

errors 

Band-by-

band kernels 

98.89% 0.02 4.35% 99.02% 0.01 3.57% 

Broadband 

kernels 

93.83% 0.04 8.70% 94.75% 0.04 14.29% 

Physically 

sorted 

kernels 

94.33% 0.04 8.70% 83.19% 0.08 28.57% 

YH23-clr 95.11% 0.11 23.91% 83.59% 0.37 132.14% 

YH23-all 91.88% 0.17 36.96% 51.32% 0.31 110.71% 

 527 

4.3 2020 Australia Wildfire  528 

In late December 2019, massive bushfires occurred in southeastern Australia and lifted a 529 

considerable amount of smoke into the stratosphere via pyrocumulonimbus clouds. Unlike the 530 
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volcanic eruption case, we apply both the AODscat and AODabs kernels to study the stratospheric 531 

ADRE of the black-carbon-containing smoke particles as they are partly absorbing.  532 

 533 

Figure 9. Same as Figure 6, but for the year 2020. 534 

Figure 9 shows the zonal mean stratospheric AOD anomaly at different wavelengths, 535 

over 8 months starting in January 2020. After several periods of intense fires in early January 536 

2020, the stratospheric AOD reached a maximum in early February and decayed afterward. The 537 

delay in reaching the AOD peaks might be due to the subsequent self-lofting of upper 538 

tropospheric aerosols, caused by buoyancy changes from the aerosols absorbing solar radiation 539 

(Ohneiser et al., 2020). After being lifted, aerosols spread equatorward and dilute significantly, 540 

leading to a decrease in the stratospheric AOD anomaly which lasts around eight months. Same 541 

as Figure 6e,  Figure 9e also suggests that the AOD wavelength dependency relationship is 542 

complex, and assuming a certain Angstrom exponent may not be sufficient to represent the band-543 

by-band AOD.  544 

To investigate the performance of kernels in quantifying wildfire-related events, we 545 

assume the stratospheric aerosol anomaly consists of aged biomass burning aerosols with a 546 

single scattering albedo at 550 nm of 0.86 as suggested by recent studies (Damany-Pearce et al., 547 

2022; Ohneiser et al., 2020). Figure 10a shows the global mean stratospheric AOD anomaly in 548 

the mid-visible bands in 2020. The interpolated AOD at RRTMG bands shows distinct 549 
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differences compared to the broadband AOD, especially in February. Broadband AOD is 550 

calculated from scaling 869 nm to 550 nm assuming an AE of 1. Stratospheric ADRE is further 551 

calculated with known AOD and SSA. Figure 10b shows ADRE calculated from the RRTMG as 552 

well as kernel methods. Results show that using YH23 kernel schemes significantly 553 

underestimates the warming effect of stratospheric aerosols. This is because the stratospheric 554 

AODabs kernels are nearly twice as large as the YH-clearsky AODabs kernels, whereas the 555 

AODscat kernels show similar magnitudes compared with the YH-clearsky values (Figure 5b and 556 

Figure S9 in the Supporting Information). These results further emphasize the need to use 557 

kernels specifically designed for stratospheric aerosols to accurately quantify ADRE. As a 558 

comparison, using the stratospheric aerosol kernels captures wildfire-induced ADRE relatively 559 

well. The agreements in ADRE calculations indicate that our stratospheric aerosol kernel dataset 560 

is applicable for quantifying ADRE regardless of aerosol types (either scattering or absorbing). 561 

For the Australia wildfire, the carbonaceous aerosols led to a peak global mean warming of over 562 

+0.4 W/m
2
 in mid-February 2020. 563 
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Figure 11 shows the comparison of the spatial distributions of ADRE calculated by 564 

different kernel schemes. Similar to the Hunga volcanic eruption case, the band-by-band kernel 565 

quantifications align most closely with the RRTMG-calculated results, with the R
2
 being 99.02% 566 

(Table 2). Both the broadband and the physically sorted kernels slightly overestimate the aerosol 567 

warming, especially in the high-latitude regions. The slightly lower performance of broadband 568 

and physically sorted kernels in capturing the spatial patterns of ADRE might come from the 569 

bias in AOD550, as using a uniform AE value for AOD wavelength conversion across the globe 570 

may not be representative. This aligns with other studies indicating that the Angstrom exponent 571 

can vary significantly (Malinina et al., 2019), particularly during wildfire events when the 572 

inclusion of organics can complicate the particle size distribution interpretation (Bourassa et al., 573 

2019). Overall, the stratospheric kernels can capture more than 83.19% of the variance in the 574 

Australia wildfire-induced ADRE, with the RMSEs less than 0.08 W/m
2
 (i.e. 28.57% relative to 575 

the global mean). Both Figure 11 and Table 2 suggest that YH23 kernel schemes are not suitable 576 

for quantifying the wildfire-dominated stratospheric ADRE because of its significant 577 

underestimation of AODabs kernels.  578 

 579 

Figure 10. Same as Figure 7 but for the 2020 Australia wildfire. 580 
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 582 

 583 

Figure 11. Same as Figure 8 but for the 2020 Australia wildfire. 584 

5 Conclusions  585 

 This paper provides, for the first time, a comprehensive set of radiative kernels for 586 

stratospheric aerosols. The kernels are derived for the scattering and absorbing aerosol optical 587 

depth, respectively, based on partial radiative perturbation (PRP) computations using one year of 588 

3-hourly MERRA-2 data. We analyzed the spatial variability of broadband aerosol kernels, 589 

demonstrating that they can be emulated as a joint function of solar insolation, TOA reflectance, 590 

and stratospheric aerosol optical depth. The developed aerosol radiative kernels provide a 591 

versatile tool for assessing the stratospheric ADRE of different aerosol types. 592 
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Stratospheric aerosol kernels exhibit significant spatial, temporal, and spectral variability 593 

(Figures 1-3). Validation tests have been done to evaluate the aerosol height dependency, linear 594 

scaling, and linear additivity of the kernels (Figures S4-S6). On a global scale, a 0.1 increase in 595 

stratospheric 𝐴𝑂𝐷𝑠𝑐𝑎𝑡
550  leads to a cooling effect of -2.65 W/m

2
 at the TOA, while a similar 596 

increase in 𝐴𝑂𝐷𝑎𝑏𝑠
550 results in a warming effect of +41.95 W/m

2
 (Figure 1). The magnitude of 597 

stratospheric aerosol kernels is greater than that for tropospheric aerosols (e.g., Thorsen et al., 598 

2020; Q. Yu & Huang, 2023b), particularly for absorbing aerosols. This is due to the higher 599 

placement of aerosols, which interact with radiation less attenuated by clouds or tropospheric 600 

absorbers. Additionally, underlying clouds enhance the brightness of dark surfaces, thus 601 

amplifying the sensitivity of stratospheric ADRE to absorbing aerosols. Band-by-band aerosol 602 

kernels were calculated for the 14 bands in RRTMG SW, with spectral signatures indicating 603 

peak sensitivity from the near ultraviolet to the near-infrared (bands 23 to 25, 442 nm-1242 nm) 604 

(Figure 3). Using discrete AOD observations at these wavelengths allows for a more accurate 605 

constraint on ADRE. 606 

From the single-layer aerosol analytical model, we identified that broadband aerosol 607 

kernels are related to TOA insolation, tropospheric reflectance, and stratospheric aerosol optical 608 

depth. We proposed a physically sorted set of aerosol kernels using a multivariate regression 609 

model, which can effectively reproduce the RRTMG-calculated broadband kernels (Figure 4 & 610 

S8). These physically sorted kernels are independent from geophysical location and can provide 611 

first-order estimations of stratospheric ADRE using satellite measurements. 612 

 613 

The kernels were applied to calculate the ADRE for two stratospheric aerosol injection 614 

events: the 2022 Hunga volcanic eruption and the 2020 Australia wildfire. There is overall good 615 

agreement between the RRTMG-calculated results and those obtained using the kernels (Figures 616 

7-8, Figures 10-11, Table 2). Band-by-band kernels perform best by constraining the wavelength 617 

dependency of AOD. Using band-by-band kernels can reproduce 99% of the ADRE variance 618 

with relative errors of less than 4%. Using other stratospheric kernels can capture more than 90% 619 

of the variance with relative errors of less than 10% (Table 2), despite the uncertainty in AE. The 620 

stratospheric ADRE from the 2022 Hunga eruption peaked six months after the event, inducing a 621 

global mean cooling of -0.46 W/m
2
 (Figures 7-8). For the 2020 Australia wildfire, the 622 

stratospheric ADRE peaks one month after the event and results in a global mean warming of 623 

+0.28 W/m
2
 from January to August (Figures 10-11).  624 

To accurately calculate stratospheric ADRE, users are recommended to use the band-by-625 

band kernels when reliable spectral AOD data is available. If such information is unavailable, the 626 

broadband aerosol kernels can be used alternatively, although the results should be used with 627 

caution as the broadband kernels are calculated based on an assumed Angstrom Exponent of 1. 628 

The physically sorted kernels have the advantage of not being restricted to specific geographical 629 

locations. With climate change, the aerosol-related and environmental conditions at a location 630 

may change. In such cases, physically sorted kernels may have an advantage for the ADRE 631 

quantification. Considering that there may be rapid stratospheric temperature adjustments in 632 

response to the instantaneous perturbations of the aerosols, the kernels developed in this work 633 

can be extended to include the radiative effects of such adjustments in future work, to provide an 634 

estimation of the effective (adjusted) radiative effect of the stratospheric aerosols.  635 
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Figure S1. Validation of total column aerosol optical depth (AOD) reconstructed from MERRA-2 aerosol 

mixing ratio data for black carbon (BC), dust (DU), sea salt (SS), organic carbon (OC), and sulfate (SU) 
aerosols. The validation is conducted for Beijing, China, in January 2020.  
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Figure S2. The same as Figure S1 but for total column scattering aerosol optical depth. 
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Figure S3. Validation of all-sky total column ADRE calculations using RRMTG for January 1st, 2020. Upper: 

ADRE from MERRA2; Middle: RRTMG-calculated ADRE; Bottom: Bias. 
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Figure S4. Linear scaling test for broadband Top-Of-Atmosphere (TOA) flux changes (∆R) in response to 
perturbations in stratospheric scattering and absorbing AOD. Aerosols are placed at the 1st layer above 
tropopause. The scattering AOD perturbations are 0.1 and 0.01, while the absorbing AOD perturbations 

are 0.01 and 0.001, respectively. 
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Figure S5. linear additivity test for broadband TOA flux changes (∆R) in response to perturbations in 

both stratospheric scattering and absorbing AOD. Aerosols are positioned at the 1st, 5th, and 10th layer 
above the tropopause, respectivly. The perturbations are set to 0.1 for scattering AOD and 0.01 for 

absorbing AOD. The summed ∆R for scattering and absorbing AOD perturbations shows good agreement 
with the results from total AOD perturbations. 
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Figure S6. height dependency test for broadband TOA flux changes (∆R) in response to aerosol 

perturbation layer height. The ADRE results from perturbing AOD at a single radom layer (e.g., 1st, 5th, 
10th above the tropopause) are similar to those obtained from perturbing the entire stratospheric 

aerosol profiles. 
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Figure S7. Comparisons between the annual mean stratospheric AODscat and AODabs kernels for the years 
2020 and 2022. First row: 2020; Middle row: 2022; Bottom row: differences (2020-2022). 
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Figure S8. Validations of the physically sorted broadband aerosol kernels for stratospheric AODscat and 
AODabs against benchmark RRTMG calculations. 

 

 
Figure S9. Comparisons between the stratospheric ADRE kernels developed in this work and the YH23 
clear-sky kernels for total column aerosols. Left column: kernels for AODscat; Right column: kernels for 

AODabs 
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Table 1 Evaluation of predictor performance for SAOD kernels normalized by insolation (
1

𝑆

𝜕𝐴𝐷𝑅𝐸

𝜕𝑆𝐴𝑂𝐷
). R is 

the TOA reflectance and τ is the stratospheric aerosol optical depth. R2 represents the coefficient of 
determination, and RMSE is the Root Mean Squared Error. 

 
1 predictor 𝑅𝑠 𝑅𝑠

2  τ 𝑅𝑠 τ - - 

R2 86.04%  84.21%  69.82%  73.18%  - - 

RMSE 3.40 3.63 4.75 4.51 - - 

2 
predictors 

(𝑅𝑠 τ& (𝑅𝑠
2) (𝑅𝑠 τ& (τ (𝑅𝑠τ& (𝑅𝑠) (𝑅𝑠

2) & (τ (𝑅𝑠) & (τ (𝑅𝑠
2) & (𝑅𝑠) 

R2 92.50%  83.87%  92.50%  91.72%  93.91%  87.30%  

RMSE 2.27 3.55 2.27 2.44 2.02  3.15 

3 
predictors 

(𝑅𝑠
2) & (𝑅𝑠) 

& (τ) 
(𝑅𝑠

2) & (𝑅𝑠) 
& (𝑅𝑠 τ) 

(𝑅𝑠
2) & (τ) & 

(𝑅𝑠 τ) 
   

R2 94.01% 93.55%  92.50%  - - - 

RMSE rmse=2.99 rmse=3.06  rmse=3.26 - - - 

4 
predictors 

(τ) & 𝑅𝑠
2 & 

(𝑅𝑠) & (𝑅𝑠 τ) 
- - - - - 

R2 94.08%  - - - - - 

RMSE 2.38 - - - - - 

 

Table 2 Evaluations of predictor performances for AAOD kernels normalized by insolation (
1

𝑆

𝜕𝐴𝐷𝑅𝐸

𝜕𝐴𝐴𝑂𝐷
). R is 

the TOA reflectance and τ is the stratospheric aerosol optical depth. 
 

1 predictor 𝑅𝑠 𝑅𝑠
2  τ 𝑅𝑠 τ - - 

R2 74.03%  87.49%  1.97%  50.86%  - - 

RMSE 45.45 29.54 83.21 52.46 - - 

2 
predictors 

(𝑅𝑠 τ) & (𝑅𝑠
2) (𝑅𝑠 τ) & (τ) (𝑅𝑠τ) & (𝑅𝑠) (𝑅𝑠

2) & (τ) (𝑅𝑠) & 
(τ) 

(𝑅𝑠
2) & 

(𝑅𝑠) 

R2 90.43%  86.32%  82.59%  88.64%  76.37%  89.89%  

RMSE  23.96 27.55 32.37 26.59 39.53 25.57 

3 
predictors 

(𝑅𝑠
2) & (𝑅𝑠) & 

(τ) 
(𝑅𝑠

2) & (𝑅𝑠) & 
(𝑅𝑠 τ) 

(𝑅𝑠
2) & (τ) & 

(𝑅𝑠 τ) 
   

R2 90.43%  86.32% 82.59% - - - 

RMSE 23.96 27.55 32.37 - - - 

4 
predictors 

(τ) & 𝑅𝑠
2 & 

(𝑅𝑠) & (𝑅𝑠 τ) 
- - - - - 

R2 95.30%  - - - - - 

RMSE 17.99 - - - - - 
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