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Abstract

We investigate the relationship between the seismogenic behavior of global megathrusts and various subduction parameters. We

performed a parametric approach by implementing three decision tree-based Machine Learning (ML) algorithms to predict the

b-value of the frequency-magnitude relationship of seismicity as a non-linear combination of subduction variables (subducting

plate age and roughness, slab dip, convergence speed and azimuth, distance to closest ridge and plate boundary). Using the

Shapley Additive exPlanations (SHAP) to interpret the ML results, we observe that plate age and subduction dip are the

most influential variables. The results suggest that older, shallow-dipping plates contribute to low b-values, indicating higher

megathrust stress. This pattern is attributed to the higher rigidity of older plates, increasing flexural strength, and generating

a shallow penetration angle, increasing the frictional interplate area and intensifying the megathrust stress. These findings offer

new insights into the non-linear complexity of seismic behaviour at global scale.
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Abstract 18 

We investigate the relationship between the seismogenic behavior of global megathrusts and 19 

various subduction parameters. We performed a parametric approach by implementing three 20 

decision tree-based Machine Learning (ML) algorithms to predict the b-value of the frequency-21 

magnitude relationship of seismicity as a non-linear combination of subduction variables 22 

(subducting plate age and roughness, slab dip, convergence speed and azimuth, distance to 23 

closest ridge and plate boundary). Using the Shapley Additive exPlanations (SHAP) to interpret 24 

the ML results, we observe that plate age and subduction dip are the most influential variables. 25 

The results suggest that older, shallow-dipping plates contribute to low b-values, indicating 26 

higher megathrust stress. This pattern is attributed to the higher rigidity of older plates, 27 

increasing flexural strength, and generating a shallow penetration angle, increasing the frictional 28 

interplate area and intensifying the megathrust stress. These findings offer new insights into the 29 

non-linear complexity of seismic behaviour at global scale. 30 

 31 

Plain Language Summary 32 

We carried out a study to investigate how certain characteristics of subduction zones, where one 33 

tectonic plate slides under another, influence the earthquakes behaviour. Using different machine 34 

learning algorithms we examined how different variables in these zones affect the relative 35 

amount of small versus large earthquakes, parameterized by the slope of a log-normal 36 

relationship between frequency and magnitude of events, known as the b–value. Our analysis 37 

showed that the age of the subducting plate and the angle at which it dips under another plate are 38 

the most influential factors in earthquake behaviour. In particular, we found that older plates with 39 

shallow subduction angles are associated with higher stress at the subduction interface, which in 40 

turn, increases the probability of large earthquakes, decreasing the b-value. This is because older, 41 

colder plates are more rigid  than young and hot plates, which increases their resistance to 42 

bending, augmenting the contact area between the plates and the friction between them. These 43 

findings shed light on the complex dynamics of seismic activity on a global scale and provide 44 

valuable information for understanding the earthquake behaviour worldwide. 45 

1. Introduction 46 

The largest earthquakes on Earth occur at convergent plate boundaries along the seismogenic 47 

zone of subduction megathrust. The physical properties of subduction zones vary according to 48 

the region and affect the stress state that, in turn, influences their seismogenic behavior 49 

(Nishikawa & Ide, 2014). To characterise the stress state, different proxies have been used in the 50 

literature, such as the maximum recorded magnitude, the seismicity rate or the slope of the log-51 

normal frequency-magnitude distribution of seismicity, known as the b-value of the Gutenberg-52 

Richter law (Gutenberg & Richter, 1944). Regarding this latter, laboratory experiments and 53 

natural examples suggest that the stress state and the b-value have a negative correlation, with 54 

larger stresses associated with lower b-values because of a dominance of large earthquakes over 55 

small events (Scholz, 1968; Wiemer & Wyss, 1997; Schorlemmer et al., 2005; Spada et al., 56 

2013; El-Isa and Keaton, 2013; Scholz, 2015; Petruccelli et al., 2019). A correlation between 57 

type of faulting, dominant focal mechanism and the b-value in California, Japan and elsewhere, 58 

allows Schoerlemmer et al. (2005) to propose that this parameter can be used as a “stress-meter” 59 

that depends inversely on differential stress, a conclusion supported by Scholz (2015) who 60 
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provided an empirical linear expression for this inverse correlation using data for a wide range of 61 

tectonic settings around the globe. Several authors have reported global variations in this 62 

parameter at subduction zones, reflecting changes in the stress state along the megathrust (e.g., 63 

Carter & Berg, 1981; Nanjo et al., 2012; Kagan & Jackson, 2013; Nishikawa & Ide, 2014). By 64 

the other hand, a number of studies have attempted to clarify the factors that influence the stress 65 

state and thus the seismogenic behaviour and seismic potential of the megathrust (e.g Heuret et 66 

al., 2011; Heuret et al., 2012; Schellart & Rawlinson, 2013; Brizzi et al, 2018; van Rijsingen et 67 

al., 2018; Lallemand et al., 2018). Pioneering studies (Ruff & Kanamori, 1980; Kanamori, 1983) 68 

have suggested that the largest earthquakes seem to occur at subduction zones where the 69 

subducting plate is young and the rate of subduction is high. However, this assumption would be 70 

inconsistent with the seismicity documented during the 21st century (i.e. Stein and Okal, 2007). 71 

On the other hand, Nishikawa & Ide (2014) and Scholz (2015) have found remarkable 72 

correlations between stress levels measured by the b-value and both plate age and slab pull force. 73 

These results allow them to suggest that a younger subducting plate would be associated with a 74 

higher buoyancy, which generates a higher normal stress on the upper plate and therefore a lower 75 

b-value. 76 

Previous works have been mainly based on the recognition and quantification of possible 77 

correlations via linear regression between different parameters characterising the kinematics and 78 

dynamics of subduction zones by one hand and their seismogenic behaviour by the other (e.g. 79 

Ruff & Kanamori, 1980; Heuret et al., 2011; Schellart & Rawlinson, 2013; Nishikawa & Ide, 80 

2014). However, the actual relationship between these parameters is likely non-linear which 81 

justifies the implementation of Machine Learning (ML) methods that are recommended to 82 

understand the nonlinear interdependence between factors influencing processes like seismic 83 

behaviour in various areas (e.g Jones et al., 2020; Xiong et al. 2021). Among these methods, the 84 

work of Schafer & Wenzel (2019) stands out, where an attempt is made to cluster zones of 85 

maximum magnitude based on input of subduction parameters and similarity between areas 86 

according to different properties.  87 

In this study, measurements of subduction parameters and b-values were conducted across 157 88 

transects (Figure 1a), covering most of subduction zones worldwide. The aim was to assess how 89 

these variables collectively affect megathrust stress, represented by the b-value. For this, three 90 

supervised regression ML algorithms were employed to analyze relationships among input 91 

variables and predict the b-value. Subsequently, an interpretation of the generated ML models 92 

was carried out using the Shapley Additive exPlanations (SHAP) values (Lundberg & Lee, 93 

2017), which allowed us to understand the contribution of each feature in the prediction of the b-94 

value, enhancing our understanding of processes that regulate the stress state in the megathrust. 95 

2. Data and Methods 96 

We created an ensemble of 157 trench-perpendicular transects (Figure 1a), covering most of the 97 

subduction zones for which a 3D model of slab geometry is available in the Slab2.0 model 98 

(Hayes et al., 2018). We selected one transect every ~2 degrees along the trench axis of these 99 

subduction zones segments. For each, we quantified a number of subduction parameters and 100 

computed one b-value as described below grouped in Dataset S1. 101 

 102 
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2.1 Quantification of geometric and kinematic parameters of subduction zones 103 

For each studied transect we computed values of all the parameters listed in Table S1, as 104 

explained in the caption of Figure S1. Convergence velocity (vc_10 in Table S1), azimuth angle 105 

(ang_conv in Table S1) and oceanic plate age at the trench (age in Table S1) were derived from 106 

the plate kinematics model of Müller et al. (2016), interpolating their grids at the intersection of 107 

each transect with the trench. Seafloor roughness was derived from the General Bathymetric 108 

Chart of the Oceans (GEBCO) bathymetry. To quantify the roughness, the standard deviation of 109 

the bathymetry with respect to a polynomial fit along a transect perpendicular to the trench was 110 

calculated oceanward (roughness in Table S1, based in Lallemand et al., 2018). To measure the 111 

distance along the trench between each transect and both the oceanic plate edge and the nearest 112 

ridge (Dse and Dcr in Table S1), ArcGIS Pro software was implemented directly with its 113 

basemap as a reference. Finally, the subduction angle between 0 and 60 km depth (ang_60 in 114 

Table S1) was obtained from the Slab2.0 model of Hayes et al. (2018). The distribution of all the 115 

subduction parameters is shown in Figure S19 in Supporting Information S1. 116 

 117 
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Figure 1. Distribution of transects perpendicular to the trench for the quantification of subduction parameters and b-118 

value. In Figure 1a, the overall distribution of transects in major subduction zones is depicted (dark lines), showing 119 

the depth to the subducting plate as reported by the Slab2.0 model (Hayes et al., 2018), in addition with seafloor age 120 

contours provided by the grid of Müller et al. (2016). Figure 1b provides a close-up view of the areas from each 121 

transect along central Chile, emphasising the 25% overlap with neighbouring segments. The estimation of the b-122 

value for each transect considers seismicity located 200 km at bouth sides of the transect.  Figure 1c illustrates an 123 

exemplary depth profile of seismicity for one of the transects. Different filters at distances of ±5, ±10, and ±15 km 124 

relative to the slab upper surface are applied to evaluate the sensitivity of the b-value estimation to this choice. 125 

Figure 1a tectonic plates abbreviations: EUR = Eurasian, ARA = Arabian, IND = Indian, NAM = Northamerican, 126 

CAR = Caribbean, JFC = Juan de Fuca, PAC = Pacific, PHI = Philippine, SOM = Somalian, AUS = Australian, 127 

NAZ = Nazca, SAM = Southamerican, COC = Cocos plate, SCO = Scotia, ANT = Antartic, AFR = African. 128 

2.2 Estimation of b-value 129 

We use the seismicity catalogue provided by the International Seismological Center (ISC) 130 

between years 1900 and 2022. To estimate the b-value for each studied transect, we consider 131 

earthquakes with epicentres within an area extending 200 km laterally on both sides of the 132 

transect (Figure 1b). We consider a 25% overlap between each transect to capture the spatial 133 

variability of seismic activity (Figure 1b). Four sub-catalogues were then created for each 134 

transect considering either all the recorded events or earthquakes located around the slab upper 135 

surface at depths between ±5, ±10 and ±15 km of the Slab2.0 model (Hayes et al., 2018, see 136 

Figure 1c). From these sub-catalogues, magnitude differences between correlative events were 137 

calculated and the b-value was estimated using the b-positive method proposed by van der Elst 138 

(2021). This method, which follows the same form as the maximum likelihood estimator (Aki, 139 

1965), only considers positive magnitude differences to avoid incompleteness problems and the 140 

sequences of aftershocks associated with the seismic catalogue. After exploring the sensitivity of 141 

resulting b-values to the selected distance threshold to the slab upper surface, we decided to 142 

show results considering events within ±10 km of the slab (see Supporting Information S1, 143 

Figures S2-S4, for tests with other filters). 144 

2.3 Machine Learning 145 

Figure S22 represents the methodological flow carried out throughout this study. We applied 146 

three ML algorithms based on decision trees: CatBoost, GradientBoosting and XGBoost (details 147 

in Text S1 in Supporting Information S1), selected for their ability to handle complex data and 148 

provide robust performance with small datasets (Friedman, 2001; 2018; Zou et al., 2022). 149 

Focused on regression problems, these algorithms aim to predict a target variable (b-value in our 150 

case) from a set of input features (subduction parameters). The use of three different supervised 151 

ML algorithms is driven by our quest for convergence in conclusions, ensuring consistency in 152 

results and strengthening the reliability of interpretations. 153 

 154 

For the model’s construction, the data were randomly split into training (90%) and test (10%) 155 

sets. Subsequently, a cross-validation was performed on the training set to build and validate 156 

models using subsets of the data (more details in Text S1 in Supporting Information S1). Here an 157 

optimal set of hyperparameters is determined for each algorithm defining the models. Once 158 

optimised the hyperparameters for each algorithm and built a model with optimal performance, 159 

we evaluated its performance on unseen test data, using metrics such as the Coefficient of 160 

Determination (R2), Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) (see 161 

details in Text S1 in Supporting Information S1). 162 
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 163 

To interpret the inner functioning of the model, SHAP value method (Lundberg and Lee, 2017) 164 

is implemented. This approach examines the effect of each feature on the predicted outcomes by 165 

controlling for the presence of features, which allows us to better understand the decision-166 

making process of the model (Text S2 in Supporting Information S1). In other words, the SHAP 167 

value allows us to quantify the influence of each feature (subduction parameter) on the predicted 168 

outcome (b-value).  169 

Finally, to analyse the stability of the feature importance in the interpretation of the models, 170 

additional tests were performed with different data partitions (80/20 and 70/30) (Figures S7 and 171 

S8 in Supporting Information S1). This approach, applied to a small dataset of 157 observations, 172 

allows to evaluate the robustness of the constructed models and their sensitivity to specific data 173 

partitions. Specific details on metrics and performance of each algorithm are in Supporting 174 

Information S1 (Table S2 and Figures S5-S6, S9-S12). 175 

 176 

3. Results 177 

 178 

The map in Figure 2 shows the global distribution of the estimated b-values only using 179 

earthquakes for ±10 km around the slab upper surface. We computed similar maps considering 180 

earthquakes ±5 and ±15 km around the slab surface and all available earthquakes (Figure S2 in 181 

Supporting Information S1). As can be concluded by comparing Figure 2 with Figure S2, the 182 

obtained b-values are not very sensitive to this election, something that is also apparent in Figure 183 

S4 where we show for each transect the mean b-value averaging the different slab filters with 184 

standard deviation commonly lower than 0.15 (i.e. a 20-25% of the observed range of variations 185 

of computed b-values in Figure 2).  186 

 187 

A significant variation in the b-values is observed in different regions of the world. For the South 188 

American zone, a high variability is observed, with values close to 0.8 dominating and areas of 189 

increased b-value coinciding with the subduction of the Juan Fernandez and Carnegie ridges. 190 

Likewise, in Cascadia, Sumatra and Aleutians, low b-values (<0.75) predominate, indicating 191 

high stress of the megathrust. b-values close to 1 representing moderate stress are found in the 192 

Marianas, Philippines and Tonga-Kermadec. For the Sandwich, Caribbean, Philippines and 193 

Central America zones, trends towards b-values higher than 1 are observed. The highest b-value 194 

(near 1.4), indicating lowest stress, is observed particularly for the Central American zone. 195 

 196 
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      197 
Figure 2. Computed b-values for each transect considering seismicity recorded within ± 10km of the slab upper 198 

surface.      199 

 200 

The performance of the three ML algorithms is analysed below based on the metrics provided by 201 

R
2
 as a measure of the percentage of variability explained by the independent variables in the 202 

target variable (other metrics are presented in Table S2 of Supporting Information S1). We focus 203 

on results obtained with a 90/10 ratio between training and test data (results with lower ratios are 204 

also shown in the Supporting  Information S1, Figures S7-S12) 205 

 206 

Overall, at a ratio of 90/10, all three algorithms were found to have considerable predictive 207 

ability, with R2 values of 0.83, 0.88 and 0.82 for XGBoost, GradientBoosting and CatBoost, 208 

respectively (Figure S5 in Supporting Information S1) and predicted residual errors lower than 209 

0.15-0.2 (Figure S6). When interpreting the ML models using SHAP values, regardless of the 210 

algorithm and the proportion of training and test data used, a consistency in the data patterns can 211 

be seen, despite an expected degradation in the performance quality (lower R
2
 and larger 212 

residuals) for lower training/test ratios (compare Figures S7 and S8 with Figure 3, and S9-S12 213 

with S5-S6). In Figure 3, we present the detailed interpretation of the models with SHAP values 214 

for a 90/10 partition of the data, revealing how the input variables contribute to the prediction of 215 

the output variable. Similar SHAP values for 80/20 and 70/30 partitions can be found in Figures 216 

S7 and S8, and tests for b-values computed considering seismicity within ±5 and ±15 km from 217 

the slab upper surface along with their statistical indicators are shown in Figures S8 to S13. 218 

      219 

From the bar plots in Figures 3a, c, and e, we observe that the subduction variables having the 220 

largest impact in predicting the b-value for the three ML algorithms are consistently the plate 221 

age, the subduction angle (ang_60), and the distance to the closest slab edge (Dse). In both 222 

GradientBoosting and XGBoost (Figure 3c and e), the plate age and subduction angle are ranked 223 

in first and second place, respectively, while in CatBoost (Figure 3a), this order is inverted. 224 
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Notably, when examining the summary plot for the three models (Figures 3b, d and f), we can 225 

discern a clear trend in the impact of plate age and subduction angle. For instance, we can see 226 

that older subducting plates (red dots) are associated with negative SHAP values that predict low 227 

b-values, and vice versa. Conversely, the impact of the subduction angle is observed in the 228 

opposite way, where smaller dip angles (blue dots) have negative contributions in the SHAP 229 

values and therefore in low b-values, and vice versa. The trend for the impact of the distance to 230 

the closest slab edge (Dse) is less clear than the other two variables, showing some variability 231 

and outliers in its impact on predictions (no clear trend from red to blue or viceversa along the x-232 

axis). 233 

 234 

The remaining variables (ang_conv, vc_10, Dcr, and roughness) reveal distinct patterns and less 235 

relevant contributions to the predictive models. Convergence azimuth angle (ang_conv), while 236 

displaying a generally low impact, exhibits a noteworthy trend where smaller to medium angles 237 

(i.e. orthogonal to semi-oblique convergence) consistently contribute to low b-values. In the case 238 

of convergence velocity (vc_10), all three algorithms present an unclear trend. High values 239 

contribute both positively and negatively, rendering its impact ambiguous.  240 

 241 

For Dcr, a consistent observation emerges, particularly pronounced in CatBoost and Gradient 242 

Boosting: predominantly low Dcr (i.e. when the transect is closer to a subducting ridge) 243 

contribute positively to predictions and therefore are associated with high b-values, while large 244 

Dcr have a negative impact predicting low b-values. Finally, the subducting plate roughness is 245 

consistently indicated as the variable with the least impact across all three algorithms. In 246 

addition, its relationship with b-value via SHAP value remains unclear, adding an element of 247 

complexity to its role in shaping the predictive accuracy of the models. 248 

 249 

 250 

 251 
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      252 

Figure 3. Comparison of feature importance in predicting the b-value for three different models, each trained with a 253 

90/10 train-test partition and using each of the three ML algorithms. Figures 3a, c, and e show the mean absolute 254 

SHAP values for each variable for each model, indicating the impact of variables ordered by highest to lowest 255 

relevance. Figures 3b, d, and f show the relative contribution of each feature to the predictions of the ML model. 256 

The points on the horizontal axis represent the magnitude of the impact of each feature, where positive SHAP values 257 

contribute to higher predictions and negative SHAP values contribute to a lower prediction in the model. The color 258 

of each point indicates the value of the feature for that sample, with blue for low values and red for high values. The 259 

vertical line in the center reflects the mean value of the model’s predictions. ang_60 = subduction angle between 0 – 260 

60 km depth; ang_conv = convergence azimuth; vc_10 = convergence velocity: Dse = distance between each 261 

transect and the closest slab edge along the trench; Dcr = distance between each transect and the closest subducting 262 

ridge along the trench, roughness = seafloor roughness 250 km seaward from the trench.      263 

The differences observed between the models can be attributed to various technical factors 264 

inherent in each algorithm. Although both GradientBoosting and XGBoost use boosting methods 265 

to build sequential decision trees, they show differences in their inner workings, with 266 
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GradientBoosting  (Bentéjac et al., 2021). Despite this, both show consistent results in this study, 267 

with GradientBoosting showing even better metrics in some cases. However, both algorithms are 268 

effective in regression problems, working with continuous variables and allowing effective 269 

modelling of non-linear relationships. On the other hand, CatBoost is optimised to handle 270 

categorical variables (Prokhorenkova et al., 2018), which could affect the way continuous 271 

variables are handled and prioritised. This could consequently affect the interpretation of the 272 

results and the consistency in the importance of the variables between the different algorithms, as 273 

observed in the prediction of the estimated b-value with seismicity at 5 and 15 km around the 274 

slab (Figures S13 and S14 in Supporting Information S1). 275 

 276 

4. Discussions and conclusions 277 

 278 

Results obtained in this study reveal that oceanic plate age at the trench is the subduction 279 

parameter with a greater influence on the b-value and therefore on the stress state of the 280 

megathrust. In a first glance, this conclusion seems to agree with Nishikawa & Ide (2014, herein 281 

N&I14), who found that plate age has the highest correlation coefficient (0.60) in a linear 282 

regression against b-value, with convergence velocity and upper plate velocity away from the 283 

trench having a rather weak or null correlation. However, the positive correlation between slab 284 

age and b-value observed by N&I14, which for them implies a dominance of the age-dependent 285 

slab buoyancy on megathrust stress state, is at odds with our results since younger subducting 286 

plates (blue dots in Figures 3b, d and f) are associated to positive SHAP values translating into 287 

greater b-values, and vice versa.  288 

 289 

Although we believe that using a linear univariate correlation approach to analyse the likely 290 

complex non-linear interaction of different variables is less efficient than using ML, we still 291 

computed a linear correlation between our estimates of b-value (as seen in Figure 2) and 292 

subducting plate age at the trench, just to repeat the analysis of N&I14 and to have a better base 293 

for comparison (see Figure S20b in Supporting Information S1). We found a very weak and 294 

negative correlation, with a coefficient of -0.12. We tested this correlation using b-values 295 

computed with all the seismicity around each transect (Figure S20d) and only events inside ±5 296 

and ±15 km from the slab upper surface (Figures S20a and S20c), reinforcing this very weak and 297 

negative correlation. We made the same analysis using only events between 1978 and 2009, as 298 

done by N&I14 (Figure S21), finding a somehow stronger negative correlation (coefficients 299 

between -0.18 and -0.23). 300 

 301 

This notable disagreement, which challenges the main conclusions of N&I14, can be due to 302 

several factors. First, our linear correlation (Figure S20) was computed considering almost two 303 

times more data points than N&I14 (157 versus 75), covering subduction areas that were 304 

excluded from their analyses (Alaska-Aleutians, Cascadia, Southern Chile, Lesser Antilles, 305 

Sandwich). We also note that for some regions included in both analyses (e.g. Sumatra, Central 306 

America) we obtain very different estimates of b-value compared with N&I14. These differences 307 

likely own to differences in: the seismicity catalogue used by both studies (ANSS by N&I14 v/s 308 

ISC by us), the time interval considered (1978-2009 by N&I14 v/s 1900-2022 by us), the 309 

hypocentral depths of considered events (all events by N&I14 v/s only those around the slab 310 

upper surface by us), and the method to compute the b-value (maximum likelihood without 311 

declustering of aftershock sequences by N&I14 v/s b-positive by us). Particularly this latter point 312 
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can be significant, since considering only the positive magnitude differences between 313 

consecutive events to perform the b-positive method (van der Elst, 2021), instead of all absolute 314 

magnitudes as the classical maximum likelihood method (Aki, 1965), means that aftershock 315 

sequences are naturally avoided. This ensures that aftershocks, which are known to not obey the 316 

Gutenberg-Richter law, cannot contaminate the overall estimate of the b-value, something 317 

particularly relevant in areas that experienced great earthquakes during the considered time 318 

interval (like in Sumatra-Java between 2004 and 2007, South-Central Chile between 2010 and 319 

2015, or Alaska 2020-2021). 320 

 321 

Accepting that our b-value estimates are well-computed, and they can be considered a good 322 

representation of the stress state at subduction megathrusts, then we must discuss an alternative 323 

conceptual model to the one proposed by Nishikawa and Ide (2014). For this we also consider 324 

the large impact that our ML models unravel for the subduction angle as a predictor of the b-325 

value (high average SHAP values in Figures 3a, c and e). Moreover, our results indicate a 326 

positive correlation between both parameters, with shallower/smaller subduction angles (blue 327 

dots in Figures 3b, d and f) associated with negative SHAP values meaning lower b-values. The 328 

combined trend of b-value being negatively correlated to plate age and positively correlated with 329 

the subduction angle indirectly implies a reverse correlation between these two subduction 330 

parameters, something that is partially supported by recent linear regression analysis at global 331 

scale (i.e. Hu and Gurnis, 2020), although a role of plate motion in controlling slab dip seems to 332 

be dominant (Cruciani et al., 2005; Lallemand et al., 2005). Into this framework, we propose a 333 

novel conceptual model (Figure 4) where the oceanic plate age exerts its dominance via a control 334 

on flexural rigidity of the slab, more specifically on the elastic thickness of the plate. In our 335 

model, the elastic core of older and colder plates is thicker than for younger and hot plates, and 336 

therefore they tend to subduct with larger radius of curvature generating shallow subduction 337 

angles (Wu et al., 2008; Capitanio and Morra, 2012). This setting further implies a larger contact 338 

area between both converging plates across the megathrust and a wider seismogenic zone 339 

because of colder conditions, augmenting thus the the potential for larger earthquakes to occur. 340 

Therefore, zones with older subducting plates will tend to have a greater proportion of large 341 

earthquakes, impacting in a smaller b-value.  342 

 343 
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 366 

 367 

Figure 4. Conceptual model comparing subduction zones characterised by old (a) and young (b) oceanic plates. An 368 

older, thicker (T), and more rigid plate subducts at a shallower angle (ꭤ), which increases the contact surface (red 369 

line) and the overall stress on the megathrust. A younger, thinner (t), more flexible plate subducts at a steeper angle 370 

(β), which reduces the interplate contact surface (red) and the stress on the megathrust. 371 

 372 

 373 

Our results also suggest that other parameters might play a secondary role modulating the stress 374 

state of the megathrust. The distance to the lateral boundaries of subducting plates (Dse in Figure 375 

3) seems to be only marginally less significant than the subduction angle, with transects faraway 376 

from boundaries having the lowest b-values and therefore highest stresses. This is in agreement 377 

with previous researchers (i.e. Schellart and Rawlison, 2013) that found a relative large linear 378 

univariate correlation of Dse with the maximum magnitude of megathrust earthquakes. Plate 379 

convergence appears to have a secondary impact compared to previously discussed parameters, 380 

somewhat in line with global linear regressions (Nishikawa and Ide, 2014; Hu and Gurnis, 2020). 381 

However, it stands in Figures 3b, d and f that most rapid and orthogonal convergence favours 382 

low b-values and large megathrust stresses, as can intuitively be supposed. This is in agreement 383 

with the findings of Heuret et al. (2011), who found that fast subduction zones with cold plates 384 

are associated with large plate interfaces, resulting in higher seismic rates. Although the 385 

calculated b-values seems to be much less sensitive to the proximity to a subducting aseismic 386 

ridge and the roughness of the oceanic crust, our results suggest that megathrust strength tend to 387 

be lower (i.e. higher b-values) in subduction areas dominated by ridge subduction. This can be 388 

also appreciated in Figure 2 for South America for example, where subduction of the Carnegie 389 

Ridge near 5ºS and Juan Fernandez Ridge at 33ºS are clearly related to locally augmented b-390 

values compared to adjacent regions. This has been observed by previous studies in the region 391 

(Legrand et al., 2012) and supports the notion that subducting rough bathymetry associated to 392 

seamount chains decrease the strength of the megathrust and favour convergence absorption via 393 

creep and aseismic slip (i.e. Wang and Bilek, 2014; Basset and Watts, 2015), contributing to low 394 

seismic coupling (Lallemand et al., 2018; van Rijsingen et al., 2018, 2019) and reducing the 395 

probability of a large magnitude earthquakes. 396 

 397 

The complexity of the likely non-linear interactions between subduction variables in terms of 398 

their integrated effect over the megathrust stress state means that using ML approaches, as done 399 

here, to analyse the possible influence of each variable in the context of all other existing 400 

variables is superior compared to previous uni- or multi-variate linear regressions. This 401 

underscores the need for a more holistic approach when interpreting seismic phenomena, 402 

highlighting the importance of the interrelation of multiple factors in predicting the seismic 403 

behaviour of the megathrust. Future works in this line should include other parameters that have 404 

been also indicated as significantly affecting the seismogenic behavior, as the thickness of 405 
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subducting sediment (e.g. Brizzi et al., 2021), gravity anomalies (e.g. Basset and Watts, 2015; 406 

Molina et al., 2021) or temperature (Hyndman, 2023). These considerations emphasize the need 407 

for future research to explore more factors, enhancing our understanding of the complex 408 

interactions between subduction variables and megathrust stress.  409 
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et al. 2018) software. Plate age was also obtained from Müller et al. (2016) but implemented in 418 
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(https://www.gebco.net/data_and_products/gridded_bathymetry_data/#global). The subduction 421 

angle was calculated from Slab2.0 model (Hayes et al. 2018) implemented in ArcGISPro 422 

software (Esri, 2020) version 2.6. From the same model and software, we measured the distance 423 

to the closest subducting slab edge. Maps were created both with python libraries matplotlib 424 

(Caswell et al., 2020), geopandas (Jordahl et al., 2019) and ArcGISPro (Esri, 2020) version 2.6.  425 
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