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Abstract

Geophysical problems often involve Lagrangian particles that follow surrounding flows and record information about the system,

such as the pressure and temperature path recorded in metamorphic rocks. These Lagrangian particles can be useful for

constraining unknown parameters, such as their sources and the thermal and flow processes of the surrounding fluid. To use

information about Lagrangian particles to constrain unknown parameters about the surrounding fluid in an inverse manner,

we have developed a 4D-Var (four-dimensional variational) data assimilation for thermal convection in a particle-grid coupled

system. Here we consider particles advected in a thermally convecting, highly viscous fluid that mimics geochemical tracers in

the Earth’s mantle, and estimate time series of thermal and velocity fields only from the particle records, focusing on their high

traceability in the laminar flow. We present preliminary 4D-Var results using a sufficient amount of synthetic particle position

and velocity data. The 4D-Var run achieves a 60-Myr time reversal of thermal convection with a horizontal wavelength of 6,000

km, without using any temperature data. For smaller scale convection, the cost function tends not to decrease well, but with a

shorter retrospective time domain or a large weight on early stage information, the reconstruction improves. While this work

focuses on mantle dynamics, our framework has the potential to constrain thermal, flow, and mixing processes in any other

laminar flow containing Lagrangian particles that record useful information.
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Abstract

Geophysical problems often involve Lagrangian particles that follow surrounding flows

and record information about the system, such as the pressure and temperature path

recorded in metamorphic rocks. These Lagrangian particles can be useful for constrain-

ing unknown parameters, such as their sources and the thermal and flow processes of the

surrounding fluid. To use information about Lagrangian particles to constrain unknown

parameters about the surrounding fluid in an inverse manner, we have developed a 4D-

Var (four-dimensional variational) data assimilation for thermal convection in a particle-

grid coupled system. Here we consider particles advected in a thermally convecting, highly

viscous fluid that mimics geochemical tracers in the Earth’s mantle, and estimate time

series of thermal and velocity fields only from the particle records, focusing on their high

traceability in the laminar flow. We present preliminary 4D-Var results using a sufficient

amount of synthetic particle position and velocity data. The 4D-Var run achieves a 60-

Myr time reversal of thermal convection with a horizontal wavelength of 6,000 km, with-

out using any temperature data. For smaller scale convection, the cost function tends

not to decrease well, but with a shorter retrospective time domain or a large weight on

early stage information, the reconstruction improves. While this work focuses on man-

tle dynamics, our framework has the potential to constrain thermal, flow, and mixing

processes in any other laminar flow containing Lagrangian particles that record useful

information.

Plain Language Summary

We study how tiny particles carried by moving fluids deep inside the Earth can tell

us a lot about processes that we cannot observe directly. These particles, like pieces of

rock from deep underground, travel with the flow and collect valuable information about

their environment, such as temperature and pressure. We have developed a method to

better understand the hidden motions and properties of these fluids, such as how heat

circulates in the Earth, by looking backward in time. Our approach uses computer sim-

ulations to track how these particles have moved, allowing us to reconstruct the fluid’s

movements and properties. We tested our method on a simple model and were able to

map the flow of heat and matter inside the Earth back 60 million years. This approach

could help scientists better understand not only the Earth’s dynamics, but also those of

other fluid systems that carry similar particles.

–2–
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1 Introduction

Problems in the geosciences often involve “Lagrangian” particles that passively fol-

low the “Eulerian” flow of the surrounding fluid and sometimes record essential infor-

mation about the thermal, flow, and chemical processes of the surrounding fluid. For ex-

ample, metamorphic rocks that we can sample today have been flowing as part of the

Earth’s mantle convection for tens of millions of years, and their mineral and chemical

compositions reflect the P–T (pressure and temperature) of the surrounding environ-

ment (Kuwatani, Nagata, et al., 2018; Kuwatani, Nagao, et al., 2018). In addition, rock

structures may reflect the surrounding flow and stress (Iwamori, 2003). Similarly, the

chemical and mineral composition of volcanic ash can reflect the cooling process of the

plume that carried the ash (Matsumoto & Nakamura, 2017), and the distribution of vol-

canic ash deposits reflects the surrounding wind speed and the strength of the eruption

(Shimizu et al., 2019). Similarly, pumice floating on the ocean erupted from a subma-

rine volcano is a key to estimating ocean temperature and flow processes by analyzing

the growth conditions of shells on the pumice (Watanabe et al., in revision). These ex-

amples underscore the central role of Lagrangian particles in deciphering Earth’s past

environmental conditions.

Although it is very difficult to track individual Lagrangian particles in high-Re (Reynolds

number) fluids, such as volcanic ash in a volcanic plume and pumice floating on the ocean,

particle tracking can be easier for low-Re fluids, such as rocks derived from the mantle.

This is due to the laminar flow of the mantle (Turcotte & Schubert, 2002) and the very

small diffusion coefficient of the elements that make up the mantle and crustal miner-

als under high P–T conditions (e.g., Fei et al., 2013). Based on this background, a so-

called marker-in-cell (or marker-and-cell) method has been widely used in computational

fluid dynamics for geodynamic modeling (e.g., Gerya & Yuen, 2003). The method com-

putes both a grid and particles simultaneously; the velocity fields are solved in the grid

system, and non-diffusive particles passively advect following the velocity field of the sur-

rounding fluid. Thus, this method can compute advection of compositional heterogene-

ity smaller than the resolution of the grid system without numerical diffusion. Previous

studies have used marker-in-cell methods to simulate the transport of crustal and volatile

components during plate subduction processes (e.g., Nakao et al., 2016, 2018), and to

track the P–T paths of crustal rocks in response to tectonic events such as continental

collision and plate subduction (e.g. Warren et al., 2008; Chowdhury et al., 2021).

–3–
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In previous studies, particle tracking using the marker-in-cell method has been dom-

inated by forward simulations; therefore, even though rock data may contain informa-

tion about the temperature, pressure, and flow of the surrounding environment, there

has been no framework to date that uses data from mantle-derived rocks as a quanti-

tative constraint on the surrounding environment or convection processes as an inverse

problem. In other words, there are few data assimilation frameworks in the geodynam-

ics community that consider both a grid and particles in a system to exploit informa-

tion from mantle-derived rocks, as will be explained below.

Let us look at data assimilation schemes and their application to geodynamics. There

are two main approaches to data assimilation: sequential methods and 4D-Var (four-dimensional

variational) methods (e.g., Kalnay, 2003). On the one hand, sequential data assimila-

tion, including the Kalman filter, is a mathematical technique used in forecasting to in-

corporate new observations into a model’s current state estimate. This process updates

predictions by combining observed data with prior knowledge, optimizing accuracy in

real-time applications such as weather forecasting and navigation systems. On the other

hand, 4D-Var, also known as adjoint-based data assimilation, is used to refine model pre-

dictions by optimizing initial conditions. In this method, the gradient of a cost function

representing the difference between model output and observations is calculated by back-

ward integration. For problems in geodynamics, the unknown parameters are the ther-

mal, chemical, and flow structures of the Earth’s deep interior over billions of years, none

of which can be observed in real time. Geophysical observations such as seismic, elec-

tromagnetic, and gravity are useful for estimating unknown parameters of the present-

day crust and mantle (e.g., Iwamori et al., 2021; Kuwatani et al., 2023), but not over ge-

ologic time. Therefore, it is difficult to apply sequential data assimilation to geodynamic

phenomena, except for a short time scale such as post-seismic crustal deformation (Fukuda

& Johnson, 2021). Thus, 4D-Var is dominant in the geodynamic community (Bunge et

al., 2003; Li et al., 2017; Price & Davies, 2018; Ghelichkhan et al., 2021; Nakao et al.,

2024) compared to sequential methods (Bocher et al., 2016), and this study also focuses

on 4D-Var.

In each of the previous geodynamic 4D-Var data assimilations, only “Eulerian” field

data are assimilated to reconstruct thermal and flow processes. In detail, previous stud-

ies often use the present-day thermal structure estimated from seismic tomography, along

with time series of the Earth’s surface velocity field estimated from the plate reconstruc-

–4–
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tion model (e.g., Müller et al., 2016), so that a forward model develops consistently with

these two Eulerian observations. Although some studies include Lagrangian particles in

4D-Var, their scheme does not use any “Lagrangian” information to constrain thermal

and flow processes, but the path of Lagrangian particles is estimated based on the ve-

locity fields optimized by Eulerian observations (Ghelichkhan et al., 2021; Nakao et al.,

2024). Some studies in fluid dynamical communities use Lagrangian information to re-

construct Rayleigh-Bénard convection by using a sequential data assimilation (Bauer et

al., 2022), but to our knowledge, a 4D-Var scheme that considers markers and grids in

a system is very rare even in communities outside geodynamics. Thus, there are prob-

ably no previous studies that use Lagrangian information to estimate their origin or the

time evolution of the surrounding Eulerian field. This study is the first to propose a the-

oretical framework for the 4D-Var marker-in-cell data assimilation for this purpose, i.e.,

retrospective estimation of thermal and flow processes based on Lagrangian information.

This paper is organized as follows. Section 2 describes the 4D-Var data assimila-

tion scheme in order to use Lagrangian particle data based on the concept described above.

Section 3 describes the generation of synthetic Lagrangian particle data to apply the 4D-

Var marker-in-cell method for its validation. Section 4 describes the results of the 4D-

Var simulations assimilating the synthetic data generated in section 3. Section 5 high-

lights the advantages of our 4D-Var methods for traceable particles and discusses the fu-

ture application of the method to the real petrological data. Section 6 concludes the pa-

per.

2 Methods

2.1 Forward equations

We considered a highly viscous, incompressible fluid in which laminar flow occurs.

The fluid convects in a two-dimensional rectangular domain with a horizontal domain

x ∈ [x0, x1] and a vertical domain z ∈ [z0, z1], where x = (x, z)⊤ denotes the Carte-

sian coordinates (Figure 1). The fluid motion develops as a function of time t ∈ [t0, t1].

The driving force of the fluid is thermal buoyancy due to cooling along the upper bound-

ary and heating along the lower boundary and, as such, the fluid flows spontaneously.

The fluid contains tracer particles which are passively advected following the surround-

ing fluid flow. As such, we considered three governing equations: equations of motion,

–5–
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energy conservation, and advection of tracer particles. The forward governing equations

are written in a non-dimensional form.

The equation of motion of a highly viscous fluid flowing due to thermal buoyancy,

which combines the conservation equations of mass and momentum, can be written as

follows (Turcotte & Schubert, 2002):

η∇4ψ = Ra
∂T

∂x
, (1)

where η is the constant effective viscosity of the fluid, ψ(x, t) is the stream function, Ra

is the thermal Rayleigh number (i.e., a nondimensional number representing the inten-

sity of thermal convection), and T (x, t) is the fluid temperature. The stream function

ψ is defined as follows:

u = (u,w)⊤ =

(
∂ψ

∂z
,−∂ψ

∂x

)⊤

, (2)

where u(x, t) is the velocity field of the fluid. The nabla, Laplacian, and biharmonic op-

erators are defined as follows:

∇ =

(
∂

∂x
,
∂

∂z

)
, (3)

∇2 = ∇ · ∇⊤ =
∂2

∂x2
+

∂2

∂z2
, (4)

and

∇4 = ∇2∇2 =
∂4

∂x4
+ 2

∂4

∂x2∂z2
+

∂4

∂z4
, (5)

respectively. The thermal Rayleigh number Ra is defined as follows:

Ra =
ρ0αT∆Tgh

3

η0κ
, (6)

where ρ0 is the reference fluid density, αT is the thermal expansivity, ∆T (= T1−T0 >

0) is the temperature difference between the lower and upper boundaries of the fluid, g

is acceleration due to gravity, h is the fluid thickness, η0 is the reference viscosity, and

κ is the thermal diffusivity. The parameters that make up Ra are constant. Equation

(1) is valid for a two-dimensional domain, the Boussinesq approximation, and a highly

viscous fluid with an infinite Prandtl number and constant viscosity. A free slip condi-

tion was imposed on all four boundaries of the forward equation of motion (equation 1)

(Figure 1a).
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We considered heat transport due to advection and conduction such that the en-

ergy conservation equation can be written as

∂T

∂t
+ u⊤ · (∇T )⊤ = k∇2T, (7)

where k is the thermal conductivity. The fluid is cooled at T0 along the upper bound-

ary, heated at T1 along the lower boundary, and insulated along the side boundaries as

the boundary conditions of equation (7) (Figure 1a).

Tracer particles passively follow the surrounding velocity field as

dxi

dt
= ui (8)

where xi(t) = (xi(t), zi(t))
⊤ is the position of particle i, and ui(t) = u(xi(t), t) is the

velocity of particle i (i = 1, ..., N). Each particle has composition Ci that is constant

throughout the model time domain:

Ci = const. (9)

This assumption is valid only when the diffusion coefficient of the particles is so small

that it can be ignored, as in the Earth’s mantle.

2.2 Cost function

We now address the problem of how to reconstruct fluid convection in the forward

model on the basis of Lagrangian particle information. To do this, we define a cost func-

tion that quantifies the misfit between the observed data and the corresponding mod-

eled variable values as follows:

J = J1 + J2. (10)

J1 is the time-integrated summation of the squared error between observed and mod-

eled particle positions for all particles, and J2 is similarly the squared velocity error:

J1 =

∫ t1

t0

dt

N∑
i=1

1

2
α
(
xi − xobs

i

)⊤ (
xi − xobs

i

)
(11)

J2 =

∫ t1

t0

dt

N∑
i=1

1

2
β
(
ui − uobs

i

)⊤ (
ui − uobs

i

)
(12)

where α and β are the data assimilation weights. The time dependence of the weights

is considered in section 4.2. xobs
i (t) = (xobsi (t), zobsi (t))⊤ and uobs

i (t) = (uobsi (t), wobs
i (t))⊤

denote the observed value of the position and velocity of particle i, respectively, i.e., dxobs
i /dt =

–7–
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(a) Forward model (solve ψ, T, and xi from t0 to t1)
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Figure 1. Model setup for solving (a) forward and (b) adjoint equations of the 4D-Var sim-

ulation. Green characters are related to the equations of motion, red characters to the equa-

tions of energy conservation, and blue characters to the tracer particles. ψ = stream function;

u = (u,w)⊤ = (∂ψ/∂z,−∂ψ/∂x)⊤ = velocity; T = temperature; xi = (xi, zi) = position of

particle i; φ = adjoint stream function; τ = adjoint temperature; λi = (λi, µi) = adjoint posi-

tion of particle i; xobs
i = observed position of particle i; uobs

i = observed velocity of particle i;

x ∈ [x0, x1] = horizontal distance; z ∈ [z0, z1] = vertical distance; t ∈ [t0, t1] = time.
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uobs
i . If an observation of particle i is missing at time t, we replace the observed values

with those in the model, i.e., xobsi (t) = xi(t), z
obs
i (t) = zi(t), u

obs
i (t) = ui(t), or w

obs
i (t) =

wi(t), so that the missing observation is not evaluated in the cost function. We also ap-

ply this rule in the adjoint equations in the following subsection so that the adjoint model

skips the variable correction when an observation is missing.

To reproduce the position and the velocity of each particle in the forward model

that are consistent with the observations, we minimized J subject to the forward gov-

erning equations (i.e., equations 1, 7, and 8). In this case, the following Lagrangian func-

tion L can be defined using the Lagrange multipliers φ, τ , and λi:

L = J

+

∫ t1

t0

dt

∫ x1

x0

dx

∫ z1

z0

dz φ

(
η∇4ψ − Ra

∂T

∂x

)
+

∫ t1

t0

dt

∫ x1

x0

dx

∫ z1

z0

dz τ

(
∂T

∂t
+ u⊤ · (∇T )⊤ − k∇2T

)
+

∫ t1

t0

dt

N∑
i=1

λ⊤
i

(
dxi

dt
− ui

)
. (13)

Hereafter, we refer to φ(x, t) as the adjoint stream function, τ(x, t) as the adjoint tem-

perature, and λi(t) = (λi(t), µi(t))
⊤ as the adjoint position for particle i. Although the

adjoint temperature is widely used in previous 4D-Var geodynamical models (e.g., Bunge

et al., 2003), the adjoint stream function is introduced firstly in Nakao et al. (2024) as

a proxy of an adjoint velocity vector in the previous studies (e.g., Bunge et al., 2003),

and the adjoint particle position is the original of this paper.

2.3 Adjoint equations

Taking variation of the Lagrangian function defined in equation (13) and compar-

ing coefficients, we derived the following non-dimensional adjoint equations.

The coefficients of variation of ψ yields the adjoint equation of motion:

η∇4φ+ (∇τ)× (∇T ) = ∇×
∑
i∈dS

β(ui − uobs
i ). (14)

Note that the cross product of two-dimensional vectors A = (Ax, Az)
⊤ and B = (Bx, Bz)

⊤

becomes the scalar defined as A×B = AxBz−BxAz. dS(x) in the right-hand side of

equation (14) denotes a sufficiently small area around the position on the grid at which

this equation is considered. This operation is required because the velocity error can only

be defined at the particle positions in the present framework, i.e. it is the conversion of

–9–
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the residual velocity values from the particles to the field. dS corresponds to a grid cell

in the numerical calculation. The velocity correction only takes place if the cell contains

the particle.

The variation of T yields the adjoint equation of energy conservation:

−∂τ
∂t

− u⊤ · (∇τ)⊤ − k∇2τ +Ra
∂φ

∂x
= 0. (15)

The variation of xi yields the adjoint equation for advection of particle i:

dλi

dt
= α

(
xi − xobs

i

)
− λ⊤

i (∇iu), (16)

where ∇iu = (∂u/∂xi, ∂w/∂zi).

The variation of T (t0) and xi(t0) yields gradient of the cost function with respect

to the forward variable values at the initial condition:

∂J

∂T (x, t0)
= −τ(x, t0) (17)

∂J

∂xi(t0)
= −λi(t0). (18)

The variation of T (t1) and xi(t1) yields the terminal condition for the backward

calculation:

τ(x, t1) = 0 (19)

λi(t1) = 0. (20)

Note that equations (16), (18), and (20) appear for the first time in this paper in

connection with the introduction of the adjoint particle position λi, while equations (15),

(17), and (19) are the same as in Nakao et al. (2024), which does not correct the par-

ticle positions. On the other hand, the variational calculation yields a free slip bound-

ary condition for equation (14) and τ = 0 for all four boundaries (Figure 1b), in the

agreement with Nakao et al. (2024).

Equations (17) and (18) allow the temperature field and the position of each par-

ticle at the initial condition to be updated based on the values of the adjoint variables

at the initial condition so that the cost function decreases. The adjoint variables at the

initial condition can be obtained by solving equations (14), (15), and (16) backwards in

time, starting from the terminal conditions (equations 19 and 20).

–10–



manuscript submitted to JGR: Machine Learning and Computation

Table 1. Physical parameters used to calculate the thermal Rayleigh number and to dimen-

sionalize the simulation results.

Symbol Explanation Value Unit

cp Isobaric specific heat 1.2× 103 J kg−1 K−1

g Gravitational acceleration 10 m s−2

h Thickness of the convective layer 2× 106 m

∆T Temperature difference between upper and lower boundaries 3× 103 K

αT Thermal expansivity 2.5× 10−5 K−1

η0 Reference viscosity 1022 Pa s

κ Thermal diffusivity 10−6 m2 s−1

ρ0 Reference density 3.9× 103 kg m−3

Table 2. Non-dimensional physical variables used in the governing equations and the dimen-

sionalization. Physical parameters used for the dimensionalization are listed in Table 1.

Symbol Explanation Dimensional value Unit of dimensional value

Ci Composition of particle i – –

k Thermal conductivity k × ρ0cpκ W m−1 K−1

T Temperature T ×∆T K

u = (u,w)⊤ Velocity field u× κ/h m s−1

ui = (ui, wi)
⊤ Velocity of particle i ui × κ/h m s–1

xi = (xi, zi)
⊤ Position of particle i xi × h m

η Viscosity η × η0 Pa s

λi = (λi, µi)
⊤ Adjoint position of particle i – –

τ Adjoint temperature – –

φ Adjoint stream function – –

ψ Stream function ψ × κ m2 s−1

x = (x, z)⊤ Cartesian coordinates x× h m

t Time t× h2/κ s

–11–
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Initial condition Terminal condition
t = t1

t = t0

[2] Solve T, ψ, and xi in forward equations

[3] Solve τ, φ, and λi in adjoint equations

Refer T, ψ, and xi
at every time step

Obtain T (t1)
     and xi (t1)

Start backward
calculation with
τ (t1) = 0 and
λi (t1) = 0

i

Obtain τ (t0)
    and λi (t0)

[1] Start from
first guess
T (t0), xi (t0)

[4] Update T (t0) and xi (t0)
so that J becomes small

Particle data

Impose xobs and uobs

End if J does
not decrese

i

Figure 2. Flowchart of the 4D-Var simulation. J = cost function; T = temperature; ψ =

stream function; xi = position of particle i; τ = adjoint temperature; φ = adjoint stream func-

tion; λi = adjoint position of particle i; xobs
i = observed position of particle i; uobs

i = observed

velocity of particle i; t ∈ [t0, t1] = time. Details are provided in section 2.4.

2.4 Algorithm for data assimilation

We constructed a data assimilation algorithm as shown in Figure 2. The flow chat

is based on Nakao et al. (2024), and we newly add the process to assimilate particle in-

formation to update particle positions, as well as temperature field, at the initial con-

dition. [Process 1] Set the first guess of the variables to optimize, that is, T (x, t0) and

xi(t0). [Process 2] Solve the forward equations (1), (7), and (8) until T (x, t1) and xi(t1)

are obtained. [Process 3] Solve the adjoint equations (14), (15), and (16) backwards in

time starting from t1 to t0. This process refers to the particle data and variables solved

in process 2 at each step. [Process 4] Obtain τ(x, t0) and λi(t0), and update T (x, t0) and

xi(t0). [Process 5] Solve the forward equations again from the updated initial conditions.

These steps are repeated until J becomes sufficiently small.
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2.5 Parameter values and dimensionalization

Although we have described the governing equations for the general fluid in sec-

tions 2.1 and 2.3, we now consider the fluid to be Earth’s mantle by substituting the pa-

rameter values listed in Table 1, which yield Ra = 2.34×106. Using these parameters,

the variables in the governing equations are converted to dimensional values as shown

in Table 2. Furthermore, as shown in Figure 1, we considered a geological spatiotempo-

ral scale such that x0 = 0 and x1 = 3 (0 to 6,000 km horizontally in the dimensional form),

z0 = 0 and z1 = 1 (0 to 2,000 km vertically), t0 = 0, and t1h
2/κ = 30, 60, 90 Myr. The

temperatures of the upper and lower boundaries were set to T0∆T = 273 K (= 0◦C) and

T1∆T = 3,273 K (= 3,000◦C), respectively. We used a constant viscosity of η = 1 (1022

Pa s in the dimensional form) and a constant thermal conductivity of k = 1 (4.68 W/m/K

in the dimensional form).

2.6 Numerical schemes

The forward and adjoint equations in sections 2.1 and 2.3 are discretized in space

and time using a finite volume method and a staggered grid (Figure 1). The grid is rect-

angular and contains 150 uniform 40-km-width cells along the horizontal axis and 50 uni-

form 40-km-height cells along the vertical axis. This resolution is comparable to or bet-

ter than global seismic tomography (e.g., Gu et al., 2001). The variables were also dis-

cretized along the time axis with uniform 2×104-yr intervals. It was confirmed in ad-

vance that the discretization of the forward equations satisfies the Courant–Friedrichs–

Lewy condition with sufficient buffer at each time step in the case of the parameter sets

in Table 1. Although it is not obvious whether the discretized adjoint equations satisfy

the condition, we have confirmed that the numerical simulation of the adjoint part does

not break down. We used the solvers in Nakao et al. (2024), and an additional solver was

introduced in the present model to solve the adjoint particle advection. The model do-

main contains 67,500 particles and their both forward and adjoint positions are updated

at each time step by using the discretized equations in Appendix A.

A simple gradient descent method was used to update the temperature fields and

the particle positions at t = t0 in the forward model:

Tn+1(x, t0) = Tn(x, t0) + εnT τ
n(x, t0) (21)

xn+1
i (t0) = xn

i (t0) + εnxλ
n
i (t0) (22)
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Table 3. Details of reference forward experimental runs for data generation.

Run ID Horizontal wavelength Time window (Myr)

R1 ∼ 3h (6,000 km) 60

R2 ∼ 1.5h (3,000 km) 30, 60, 90

R3 ∼ h (2,000 km) 60

where index n indicates the number of iteration loops. εnT and εnx are the learning rates

for updating the temperature field and particle positions, respectively. If the cost func-

tion becomes larger after these operations, smaller learning rates are given: εn+1
T = 0.8εnT

and εn+1
x = 0.8εnx , and then, the optimization restarts from the previous iteration loop.

The 4D-Var optimization loop stops when J does not decrease even after updating the

larning rates 10 times, or when the iteration step reaches n = 10,001 (Figure 2).

In the first iteration loop (n = 1), we assume a homogeneous thermal structure

T (x, t0) = 0.5 and particle positions xi(t0) = xobs
i (t1) as the first guess. The latter

setting is based on the experimental or petrological background that the chemical com-

position of the Lagrangian samples can be measured after the flow process.

3 Reference forward models and data sampling

To demonstrate the effectiveness of the 4D-Var data assimilation scheme described

in the previous section, we generate synthetic particle data sets that can be obtained from

reference forward models that mimic Earth’s mantle convection. The model setup of the

reference forward models is the same as that of the forward part of the 4D-Var model

(Figure 1), except for the thermal structure and particle positions under the initial con-

dition. The initial thermal structure and particle positions of the reference models are

the unknown variables to be solved by the 4D-Var simulations.

Spherical harmonic analysis of the seismic velocity of the Earth’s interior indicates

that degree-2 structure dominates in the lowermost mantle, and degree 2 and 5 domi-

nate in the uppermost mantle (Gu et al., 2001). This suggests that the dominant wave-

length of convecting cells is ∼4,000 km (degree-5) to ∼20,000 km (degree-2) at the top

of the mantle. To generate such a convective structure, we assume a mixed Gaussian func-
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Figure 3. Snapshots of the three reference forward models R1, R2, and R3 at four time steps.

Upper half panels show temperature (colored contours) and velocity (arrows). Lower half panels

show the position and chemical composition of all particles.
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tion in the initial thermal structure such that

T = 0.5 + 0.1
∑
j

δTj (23)

where δTj is the j-th thermal anomaly

δTj =
pj
2πσ

exp

(
− (x− x̄j)

⊤(x− x̄j)

2σ2

)
. (24)

x̄j is the center of j-th thermal anomaly, e.g., x̄1 = (0.75, 0.25) and x̄2 = (2.25, 0.75)

for run R1. σ = 0.1 is the standard deviation of the mixed Gaussian function. pj is the

temperature polarity; pj = 1 (j = 1, 3, ...) or pj = −1 (j = 2, 4, ...). We generated

three reference forward models R1, R2, and R3 with horizontal spacings of 2,000, 3,000,

and 6,000 km, respectively (Table 3), which are comparable to the horizontal wavelength

of the seismic velocity structure. The upper half of Figure 3 shows that the placed ther-

mal anomalies induce the convection at the corresponding horizontal wavelength.

In addition to the thermal anomalies, nine tracer particles are placed in each grid

cell at the initial condition. The positions of the particles in a cell are randomly deter-

mined. The chemical compositions of each particle, or particle IDs, are set as a function

of depth so that they form a stratified structure at the initial condition for each refer-

ence model. The lower half of Figure 3 shows that the placed particles are advected fol-

lowing the velocity fields induced by the corresponding thermal anomalies placed at the

initial conditions.

We sample the position xobs
i and velocity uobs

i of all particles at each time step from

the reference forward runs. This is unrealistic for the geological context because the rock

samples have little information about the horizontal position and are only available when

they are near the Earth’s surface. Rather, our sampling is similar to observing tracer par-

ticles in a convecting transparent fluid in laboratory experiments to simulate the dynam-

ics of subducting slabs, where the particles are used to visualize the flow of the fluid (Schellart,

2004; Guillaume et al., 2021). The ideal particle dataset is used to demonstrate the va-

lidity of data assimilation for a marker-cell coupled system first proposed in this study.

Future application to petrological data will be discussed in section 5.2.

4 Results

This section shows how the 4D-Var experiments reconstruct the reference forward

runs in the previous section using only particle data xobs
i and uobs

i .
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Figure 4 shows the updating process of the initial temperature and particle posi-

tions when assimilating data sampled from reference run R1. A homogeneous thermal

structure and the particle distributions observed in the final state of the reference for-

ward model are used as the initial guess (first row of Figure 4). As the iteration progresses

in Figure 4, the positive and negative initial temperature anomalies appear (1st column),

the residual temperature and velocity fields between the 4D-Var and reference forward

models become small (2nd column), the layered structure of the initial particle positions

is reconstructed (3rd column), and the error distances of the particle positions between

the 4D-Var and reference forward models become small (4th column).

Figure 5a shows that the cost function J of run 1 (equation 10), as well as the learn-

ing rate for updating the initial particle positions εx (equation 22), decreases as the it-

eration progresses. This shows that the temperature field and the particle positions are

properly corrected so that the forward part of the 4D-Var run explains the time series

of the sampled particle positions and velocity.

Figure 6 shows the evolution of the forward part of run 1 after sufficient optimiza-

tion until the cost function is no longer decreasing (n = 1,333). Although the temper-

atures in the central parts of the thermal anomalies are not fully reproduced in the ini-

tial condition, the residual temperature and velocity are much smaller in the later stages,

e.g., ∼100◦C around the cold downwelling and hot upwelling parts and much smaller in

the thermally homogeneous parts in the terminal condition (2nd column of Figure 6).

As the flow structure is correctly reconstructed, the distribution of the passive particles

also has good much with those in the reference model at each step, e.g., 100–200 km resid-

ual around the cold downwelling and hot upwelling parts, and several km around in the

thermally heterogeneous parts (4th column of Figure 6). Thus, the 4D-Var run well re-

constructs the thermal and flow fields and their time series only from the Lagrangian par-

ticle positions and velocities.

The following subsections investigate the accuracy of the reconstruction of the ther-

mal convection as a function of the horizontal wavelength of the convective cells of the

reference forward runs (section 4.1), the time dependence of the assimilation weights α

and β (section 4.2), and the time window of the assimilation (section 4.3), by varying

the parameters listed in Table 4.
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Figure 4. Values of the variables at the initial condition (t = t0) of run 1 at four different it-

eration steps n; the lower rows of the figure represent more advanced optimization. First columns

show the optimized temperature (colored contours) and velocity fields (arrows). Second columns

show errors of the optimized temperature (colored contours) and velocity (arrows) fields between

the 4D-Var model (run 1) and its reference model (run R1). Third columns show the optimized

particle positions and compositions. Fourth columns show particle positions, and the color of

the particles indicates the distance between the modeled particle locations in run 1 and the true

particle positions in run R1.

Table 4. Details of 4D-Var experimental runs. 1Assimilation weight of particle positions.

2Assimilation weight of particle velocities.

Run ID Data α1 β2 Time window (Myr)

1 Run R1 107 1 60

2 Run R2 107 1 60

3 Run R3 107 1 60

4 Run R2 107(t− t0)/(t1 − t0) (t− t0)/(t1 − t0) 60

5 Run R2 107(t1 − t)/(t1 − t0) (t1 − t)/(t1 − t0) 60

6 Run R2 107 1 30

7 Run R2 107 1 90
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Figure 5. Graphs of cost functions as a function of optimization step n for runs 1, 2, and

3. Upper three figures show the learning rate of particle positions εx in equation (22). Lower

three figures show cost functions J1 (squared error of particle positions as in equation 11; thin

red lines), and J2 (squared error of particle velocities as in equation 12; thin blue lines), and J

(J1 + J2 as in equation 10; thick black lines).

–19–



manuscript submitted to JGR: Machine Learning and Computation

Figure 6. Results of the forward part of run 1 at iteration step n=1,333 at four different time

steps; the lower rows of the figure represent more advanced time steps. First columns show the

optimized temperature (colored contours) and velocity (arrows). Second columns indicate errors

of the optimized temperature (colored contours) and velocity (arrows) fields between the 4D-Var

model (run 1) and its reference model (run R1). Third columns show optimized particle positions

and compositions. Fourth columns show particle positions, and the color of the particles indicates

the distance between the modelled particle positions in run 1 and the true particle positions in

run R1.

4.1 Effects of the convection pattern

This subsection investigates the effects of the horizontal wavelength of the convec-

tive cells of the reference forward models on the reconstruction of the thermal convec-

tion by comparing runs 1–3 after sufficient optimization. Similar to run 1, large temper-

ature residuals remain between the 4D-Var and reference models around the initial ther-

mal anomalies and the corresponding downwelling and upwelling parts in runs 2 and 3

(Figures 7 and 8). The temperature errors cause velocity errors around the correspond-

ing downwelling and upwelling flows, resulting in the larger particle error distances around

the vertical flows; e.g., Figures 7 and 8 show particle error distances of several hundred

km around the thermal anomalies at the initial conditions in runs 2 and 3. Thus, as the

number of the thermal anomalies placed at the initial conditions increases, the cost func-

tion tends not to decrease (Figure 5). These results suggest that the accuracy of the 4D-

Var scheme decreases when reconstructing complex thermal and flow patterns with small

convective cells.
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Figure 7. Same as Figure 6 but for run 2 at iteration step n = 10, 001.

Figure 8. Same as Figure 6 but forrun 3 at iteration step n = 505.
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4.2 Effects of time dependence of the assimilation weight

Here we examine cases where the 4D-Var scheme successfully reconstructs complex

thermal and flow structures and processes due to small convective cells. This subsection

examines the time dependence of the assimilation weights α and β in the cost function

J (equation 10) by comparing runs 4, 2, and 5, each of which assimilates data sampled

from run R2. Run 4 uses larger weights in the later stages, run 2 uses constant weights,

and run 5 uses larger weights in the early stages (Table 4). The ratio α/β is constant

in each run. Figure 9 shows that, among the three experiments, run 5 has the best re-

construction of thermal and flow structures and particle positions, especially in the early

stages. Figure 10 shows that the cost function decreases more when larger weights are

set in the early stages.

4.3 Effects of the assimilation time window

This subsection examines the time window for data assimilation (i.e., t1−t0) by

comparing runs 6, 2, and 7, which use the dataset sampled from the period of 30, 60, and

90 Myr evolution of the reference forward model R2, respectively (Table 4). The 30 Myr

time window accurately reconstructs thermal convection at a wavelength of 4,000 km (run

6 of Figure 11). With the 90 Myr time window, the reconstruction of the thermal con-

vection is poor in the early stages (run 7 of Figure 11). The thermal structure and par-

ticle distribution in run 7 are consistent with the reference run in the later stage, because

the particle positions at t = t1 (90 Myr) are imposed as a first guess, from which the

optimization proceeds. For time windows longer than 100 Myr, numerical calculations

tend to break down. Figure 12 shows that the cost function decreases more when the

time window is shorter.

Here is the summary of the results. The 4D-Var run achieves a 60-Myr time rever-

sal of the convective structure with a horizontal wavelength of 6,000 km (run 1). For ther-

mal convection with a wavelength less than 6,000 km, the cost function tends not to de-

crease well (runs 2 and 3). Nevertheless, the reconstruction improves with a large weight

on early-stage information (run 5) or a shorter retrospective time domain (e.g., 30 Myr

for a wavelength of 4,000 km, run 6).
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Figure 9. Snapshots of the three 4D-Var models run 4 (n = 10,001), run 2 (n = 10,001), and

run 5 (n = 10,001) with different hyperparameter time dependence, at four time steps, compared

to their reference forward model run 2. Upper panels show temperature (colored contours) and

velocity (arrows). Lower panels show the position and chemical composition of the particles.
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rameter time dependency.
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Figure 11. Same as Figure 9 but for run 6 (n = 3,356), run 2 (n = 10,001), and run 7 (n =

3,001) with different assimilation time windows.
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5 Discussion

5.1 Application to fluids containing traceable particles

The 4D-Var marker-in-cell data assimilation achieves a tens of Myr time reversal

of the convective structure at a horizontal wavelength of thousands of km, comparable

to the target scales of geodynamics (Gu et al., 2001; Müller et al., 2016). The method

has successfully estimated the thermal structures of the reference forward models with-

out using any temperature data, because the temperature is optimized as the driving force

of the particle motions.

This study provides new values for a marker-in-cell method. Despite the much higher

computational cost, a marker-in-cell method is necessary to accurately compute the ad-

vection of chemical heterogeneity at resolutions smaller than the grid resolution in geo-

dynamic forward models. Rather, the present results highlight the advantages of trace-

ability of identifiable particles for constraining the convection process of the surround-

ing fluid in the context of inverse problems.

The 4D-Var marker-in-cell method is applicable to models that do not use a stream

function as long as the velocity field can be calculated or is known. For example, the way

to implement particle position correction in a three-dimensional model is simply to add

a dimension to xi, ui, and λi in the forward and adjoint equations of the particle ad-

vection. It is also possible to implement the method in the system containing source and

sink of the fluid flow, such as fluid addition from fractures to fluid flows in an underground

porous medium (Nagao et al., 2013). Thus, our method can be applied not only to the

mantle dynamics but also to a wide range of the fluid containing traceable particles.

It should be noted that our 4D-Var marker-in-cell method may not be applicable

to particles in turbulent flows. This is because it is difficult to track individual particles

for long periods of time in their complex flows. Due to the difficulty of particle track-

ing, previous data assimilation studies for turbulent flows have converted Lagrangian ve-

locity into Eulerian velocity at each time step using a particle image velocimetry (PIV)

imaging (Bauer et al., 2022). In fact, forward numerical simulations to calculate the trans-

port of chemical species in turbulent flows usually do not consider identical particles, but

define the number density per unit cell, which is solved by using an advection-diffusion

equation (e.g., volcanic ash in a pyroclastic flow; Shimizu et al., 2019). Such modeling
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is justified because the random behavior of individual particles can be represented macro-

scopically as diffusion. Thus, untraceable particles can be treated like heat, which can

be expressed as an advection-diffusion equation (equation 7) and solved by a grid. There-

fore, the source and flow process of the untraceable particles in the turbulent flows can

be constrained in the same way that the thermal structure of the past mantle is solved

based on the present mantle temperature estimated from seismic tomography (e.g., Bunge

et al., 2003; Li et al., 2017; Nakao et al., 2024).

5.2 Application of petrological data

It is necessary to discuss how to apply real petrological data reflecting mantle con-

vection to the 4D-Var method, because this study used an ideal dataset mimicking mark-

ers in transparent fluid convecting in a water tank (e.g., Schellart, 2004). In the petro-

logical context, the vertical particle position zobsi and the vertical particle velocity wobs
i

assimilated in the 4D-Var models correspond to the pressure estimated by geobarom-

eters and its time derivative, respectively. Meanwhile, the horizontal position xobsi and

the horizontal velocity uobsi would be estimated based on paleomagnetism. Previous stud-

ies have converted paleomagnetic observations into surface velocity fields using plate re-

construction models (e.g., Bunge et al., 2003; Price & Davies, 2018; Ghelichkhan et al.,

2021), while future studies based on the 4D-Var marker-in-cell method can use such ob-

servations directly as Lagrangian data. The fundamental problem with rock sampling

is that rock samples are available only after they are exposed on the Earth’s surface. There-

fore, it may be difficult for our method to constrain the velocity and temperature of down-

welling flows due to the unavailability of the downwelling samples. To constrain them

as much as possible, it will be necessary in the future study based on real datasets to

include the velocity data around converging boundaries, which is useful to estimate tem-

perature of the downwelling velocity and temperature via a force balance between neg-

ative thermal buoyancy and shear stress around the negative thermal anomaly (Nakao

et al., 2024).

We have considered only the particle positions and velocities in the cost function

and the adjoint equations for simplicity, but it is possible to consider other additional

particle information, such as the temperature estimated by geothermometers. In this case,

a temperature error term will appear in the adjoint energy conservation equation (equa-

tion 15). The Lagrangian temperature records will provide the new insight, since seis-
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mic tomography is the only data reflecting the thermal structure in the previous geo-

dynamic data assimilation studies (e.g., Bunge et al., 2003; Price & Davies, 2018; Ghe-

lichkhan et al., 2021). For example, if there are factors other than temperature that in-

duce fluid flow, such as buoyancy due to chemical heterogeneity, there would be a trade-

off between temperature and chemical composition estimates; temperature estimated from

rock samples would be useful to resolve such a trade-off.

Our numerical experiments show that the reconstruction of the thermal convec-

tion tends to be successful when large assimilation weights are given for particle data

sampled in the early stages (section 4.2), and when the data assimilation time window

for reversal is short (section 4.3). This result seems reasonable because a 4D-Var algo-

rithm generally optimizes variables at the initial conditions through which the thermal

convection develops deterministically. However, the weighting of old petrological data

may require some careful consideration, because the older the rocks, the larger the ex-

pected errors in the estimates of P , T , age, and other parameters due to weathering. To

clarify appropriate assimilation weights for given petrological data, a second-order ad-

joint method that assesses the uncertainty of data assimilation solutions would be use-

ful (Ito et al., 2016). It should be noted, of course, that when applying the 4D-Var marker-

in-cell method, sufficient rock records reflecting the past mantle are required to infer the

mantle convection process.

6 Conclusions

This study has developed a 4D-Var marker-in-cell data assimilation framework that

uses particle data to estimate time series of thermal and flow structures within the sur-

rounding fluid. The 4D-Var marker-in-cell method has been applied to positions and ve-

locities of synthetic particles, sampled from a convection model that emulates Earth’s

mantle convection. This application aimed to simulate the reconstruction process based

on the lateral wavelength of the convecting cells, the data assimilation time window, and

the time dependence of the hyperparameters. The 4D-Var method has successfully achieved

a 60-Myr reversal of the convective structure with a horizontal wavelength of 6,000 km,

without using any temperature data. For convection at smaller scales, the cost function

tends not to decrease effectively. However, improvements in reconstruction have been

observed with either a shorter retrospective time domain or an increased emphasis on

early-stage information.
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Our method highlights the advantages of using highly traceable particles in lam-

inar flow, especially in the context of data assimilation for reconstructing fluid convec-

tion processes. Lagrangian data, derived from geobarometers and geothermometers, pro-

vide insights into the past of the deep mantle. In contrast, Eulerian data, derived from

geophysical surveys, provide a snapshot of the present or shallow Earth dynamics. Con-

sequently, merging these complementary datasets and integrating them into a future data

assimilation framework holds significant potential for quantitatively reconstructing the

evolution of mantle dynamics over historical timescales.

Appendix A Interpolation of velocity for particle advection equations

The forward advection equation of particle i (equation 8) is approximated by a first-

order Lagrangian interpolation as

dxi
dt

=
xi − xW
xE − xW

uE +
xE − xi
xE − xW

uW (A1)

dzi
dt

=
zi − zN
zS − zN

wS +
zS − zi
zS − zN

wN . (A2)

Indices W , E, N , and S indicate left, right, top, and bottom boundaries of the cell at

which tracer particle i locates, respectively (i.e., xW ≤ xi ≤ xE and zN ≤ zi ≤ zS),

as described in Figure A1.

A simple cost function is defined here as

J =

∫ t1

t0

dt

N∑
i=1

1

2
α
[(
xi − xobsi

)2
+

(
zi − zobsi

)2]
. (A3)

Given equations (A1) to (A3), we can derive the adjoint equation for the advec-

tion of particle i as

dλi
dt

= α
(
xi − xobsi

)
− λi

uE − uW
xE − xW

(A4)

dµi

dt
= α

(
zi − zobsi

)
− µi

wS − wN

zS − zN
. (A5)
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