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Abstract

Full waveform inversion (FWI) creates high resolution models of the Earth’s subsurface structures from seismic waveform data.

Due to the non-linearity and non-uniqueness of FWI problems, finding globally best-fitting model solutions is not necessarily

desirable since they fit noise as well as signal in the data. Bayesian FWI calculates a so-called posterior probability distribution

function, which describes all possible model solutions and their uncertainties. In this paper, we solve Bayesian FWI using

variational inference and propose a new methodology called physically structured variational inference, in which a physics-

based structure is imposed on the variational distribution. In a simple example motivated by prior information from past

FWI solutions, we include parameter correlations between pairs of spatial locations within a dominant wavelength of each

other, and set other correlations to zero. This makes the method far more efficient in terms of both memory requirements

and computation, at the cost of some loss of generality in the solution found. We demonstrate the proposed method with a

2D acoustic FWI scenario, and compare the results with those obtained using other methods. This verifies that the method

can produce accurate statistical information about the posterior distribution with hugely improved efficiency (in our FWI

example, 1 order of magnitude in computation). We further demonstrate that despite the possible reduction in generality of the

solution, the posterior uncertainties can be used to solve post-inversion interrogation problems connected to estimating volumes

of subsurface reservoirs and of stored CO2, with minimal bias, creating a highly efficient FWI-based decision-making workflow.
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Key Points:5

• We propose a new variational inference methodology to construct a Bayesian pos-6

terior solution with a desired correlation structure.7

• The method is far more efficient in terms of both memory requirements and com-8

putation, with some loss of generality in the solution.9

• We apply the inversion results to two post-inversion problems where the volume10

of stored CO2 in a subsurface reservoir is estimated.11
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Abstract12

Full waveform inversion (FWI) creates high resolution models of the Earth’s subsurface13

structures from seismic waveform data. Due to the non-linearity and non-uniqueness of14

FWI problems, finding globally best-fitting model solutions is not necessarily desirable15

since they fit noise as well as signal in the data. Bayesian FWI calculates a so-called pos-16

terior probability distribution function, which describes all possible model solutions and17

their uncertainties. In this paper, we solve Bayesian FWI using variational inference, and18

propose a new methodology called physically structured variational inference, in which19

a physics-based structure is imposed on the variational distribution. In a simple exam-20

ple motivated by prior information from past FWI solutions, we include parameter cor-21

relations between pairs of spatial locations within a dominant wavelength of each other,22

and set other correlations to zero. This makes the method far more efficient in terms of23

both memory requirements and computation, at the cost of some loss of generality in24

the solution found. We demonstrate the proposed method with a 2D acoustic FWI sce-25

nario, and compare the results with those obtained using other methods. This verifies26

that the method can produce accurate statistical information about the posterior dis-27

tribution with hugely improved efficiency (in our FWI example, 1 order of magnitude28

in computation). We further demonstrate that despite the possible reduction in gener-29

ality of the solution, the posterior uncertainties can be used to solve post-inversion in-30

terrogation problems connected to estimating volumes of subsurface reservoirs and of stored31

CO2, with minimal bias, creating a highly efficient FWI-based decision-making work-32

flow.33

Plain Language Summary34

This paper introduces a method to assess uncertainties in seismic images of the sub-35

surface at substantially reduced cost, and to use the information within those uncertain-36

ties to answer explicit high-level questions about volumes of subsurface reservoirs and37

of stored CO2. Computational efficiency is achieved by explicitly imposing known (al-38

ways observed) trade-offs between parameters that describe local properties of the sub-39

surface. This prevents computing power from being used to re-discover such trade-offs40

each time an imaging process is performed. In our two-dimensional example in which41

we image using seismic Full Waveform Inversion, computational cost is reduced by an42



order of magnitude and fully nonlinear uncertainties can be characterized both in sub-43

surface structural parameters, and in answers to high-level questions.44

1 Introduction45

Seismic full waveform inversion (FWI) is a method that generates models of the46

subsurface seismic velocity structure of the Earth given recorded seismograms. This is47

achieved using both kinematic (phase) and dynamic (amplitude) information in the wave-48

forms (Tarantola, 1984). FWI has been applied in various fields, for example including49

regional and global seismology (Fichtner et al., 2009; Tape et al., 2010; French & Ro-50

manowicz, 2014; Bozdağ et al., 2016; Fichtner et al., 2018), seismic exploration (Pratt51

et al., 1998; Virieux & Operto, 2009; Prieux et al., 2013; Warner et al., 2013), medical52

imaging (Bernard et al., 2017; Guasch et al., 2020; Lucka et al., 2021), and non-destructive53

detection (He et al., 2021; Patsia et al., 2023).54

Traditionally, FWI problems are solved using gradient-based local optimisation meth-55

ods, where a misfit function between observed and predicted waveform data is minimised56

iteratively (Plessix, 2006). This process often requires additional regularisation terms,57

such as smoothing and damping terms, to stabilise the optimisation and improve con-58

vergence rates (Zhdanov, 2002; Sen & Roy, 2003; Asnaashari et al., 2013). However, these59

terms may introduce biases to the final inversion results. In addition, it is challenging60

to find a good approximation to the true Earth structure that generated the observed61

waveforms due to the strong non-linearity of the forward function and the non-uniqueness62

of the inverse problem solution (Boyd & Vandenberghe, 2004).63

Recently, FWI has been solved probabilistically using a suite of methods collectively64

referred to as Bayesian inference. In Bayesian FWI, prior knowledge about Earth model65

parameters is updated with new information from the observed waveform data to cal-66

culate a posterior probability distribution function (pdf), according to Bayes’ rule. In67

principle this distribution incorporates all prior information combined with all informa-68

tion from the data, and expresses the information in terms of constraints on the model69

parameters. It thus solves the FWI problem by describing all possible model parame-70

ter values that fit the dataset to within its uncertainty. The range and probability of dif-71

ferent possible models can be used to reduce risk during subsequent decision-making when72

solving real-world interrogation problems (Poliannikov & Malcolm, 2016; Arnold & Cur-73



tis, 2018; Ely et al., 2018; X. Zhao et al., 2022; X. Zhang & Curtis, 2022; Siahkoohi et74

al., 2022).75

Different kinds of Bayesian inference methods have been employed to perform prob-76

abilistic FWI. A direct generalisation from deterministic FWI involves approximating77

the posterior pdf with a Gaussian distribution, centred around an estimated maximum78

a posteriori (MAP) model obtained using local optimisation methods (Gouveia & Scales,79

1998; Bui-Thanh et al., 2013; Zhu et al., 2016; Fang et al., 2018), or through local, low80

rank pdf approximations using a data assimilation technique (Thurin et al., 2019). If both81

the likelihood function and prior distribution are assumed to be Gaussians, then this MAP82

velocity model is equivalent to that obtained using l2 regularised deterministic FWI (W. Wang83

et al., 2023). While this kind of methods can produce probabilistic results, the result-84

ing posterior distribution may be affected by the starting point of the inversion, and may85

not fully capture uncertainty arising from non-linearity of the forward function (Z. Zhao86

& Sen, 2021).87

Fully non-linear Bayesian FWI can be solved using sampling techniques such as Markov88

chain Monte Carlo (McMC), where random samples are drawn from the posterior dis-89

tribution. The inversion results are represented by statistics of the sampled models, such90

as the mean and standard deviation. However, due to the typical high dimensionality91

(number of parameters to be estimated) of FWI problems, direct sampling methods, in-92

cluding the commonly used Metropolis-Hastings (MH)-McMC (Metropolis et al., 1953;93

Hastings, 1970; Mosegaard & Tarantola, 1995; Sambridge & Mosegaard, 2002), become94

impractical. Nevertheless, it is worth noting the existence of studies that employ a target-95

oriented strategy to reduce the dimensionality of parts of the Earth model of interest,96

and employ a localised wavefield injection method to calculate wavefields correspond-97

ing to each model variation. This reduces the computational complexity of FWI, and98

allows Metropolis-Hastings McMC to be applied effectively (Ely et al., 2018; Kotsi et al.,99

2020b; Fu & Innanen, 2022).100

Several advanced techniques have been introduced to improve the sampling effi-101

ciency of McMC for Bayesian FWI. In reversible-jump McMC (RJ-McMC) (Green, 1995,102

2003; Sambridge et al., 2006), a trans-dimensional approach is used to change the parametri-103

sation, including the dimensionality of the model parameter vector. This can significantly104

improve efficiency by reducing dimensionality to only parameters that are necessary to105



explain the data and the forward function, and RJ-McMC has been successfully applied106

to Bayesian FWI (Ray et al., 2016, 2018; Visser et al., 2019; P. Guo et al., 2020). Hamil-107

tonian Monte Carlo (HMC) has also been introduced to improve the sampling efficiency108

of FWI. In HMC, the sampling process is guided by the gradient of the posterior pdf with109

respect to the model parameters, and it has been demonstrated that HMC can improve110

the convergence rate over non-gradient based McMC (Gebraad et al., 2020; Kotsi et al.,111

2020a; de Lima, Corso, et al., 2023; de Lima, Ferreira, et al., 2023; Zunino et al., 2023;112

Dhabaria & Singh, 2024). Biswas and Sen (2022) introduced a reversible-jump Hamil-113

tonian Monte Carlo (RJHMC) algorithm for 2D FWI, Z. Zhao and Sen (2021) and Berti114

et al. (2023) used gradient-based McMC methods to sample the posterior distribution115

efficiently, and Khoshkholgh et al. (2022) solved FWI using informed-proposal Monte Carlo116

(Khoshkholgh et al., 2021). Nevertheless, as with other classes of methods, Monte Carlo117

sampling is known to become computationally intractable for high-dimensional param-118

eter spaces due to the curse of dimensionality (Curtis & Lomax, 2001).119

In this study, we focus instead on variational inference, a method that solves Bayesian120

inversion through optimisation. In variational methods, we define a family of known and121

tractable distributions, referred to as the variational family. From this family, an opti-122

mal member is chosen to approximate the true posterior pdf by minimising the differ-123

ence between the variational and posterior distributions (Bishop, 2006; Blei et al., 2017;124

C. Zhang et al., 2018; X. Zhang et al., 2021). Variational inference solves Bayesian prob-125

lems under an optimisation framework, and the optimisation result is fully probabilis-126

tic. In some classes of problems it can therefore be relatively more efficient and scalable127

to high dimensional problems with large datasets. Variational inference has been applied128

to different geophysical inverse problems, including travel time tomography (X. Zhang129

& Curtis, 2020a; X. Zhao et al., 2021; Levy et al., 2022), seismic migration (Siahkoohi130

et al., 2020; Siahkoohi & Herrmann, 2021; Siahkoohi et al., 2021, 2023), seismic ampli-131

tude inversion (Zidan et al., 2022), earthquake hypocentre inversion (Smith et al., 2022),132

and slip distribution inversion (Sun et al., 2023). However, most of these applications133

have relatively lower dimensionality and weaker non-linearities compared to FWI.134

X. Zhang and Curtis (2020b) introduced a variational method called Stein varia-135

tional gradient descent (SVGD – Liu & Wang, 2016) to transmission FWI where sources136

emulating earthquakes are located underneath the velocity structure to be imaged, with137

receivers on the top surface. SVGD was then applied to 2D reflection FWI with realis-138



tic priors (X. Zhang & Curtis, 2021a; Izzatullah et al., 2023), and 3D acoustic FWI us-139

ing synthetic data (X. Zhang et al., 2023) and field data (Lomas et al., 2023). A stochas-140

tic version of SVGD (Gallego & Insua, 2018) was also employed to improve performance141

for 3D FWI (X. Zhang et al., 2023). X. Zhao and Curtis (2024) introduced boosting vari-142

ational inference (BVI – F. Guo et al., 2016; Miller et al., 2017) for 2D acoustic FWI,143

where a mixture of Gaussian distributions is used to approximate the true posterior dis-144

tribution, resulting in an analytic expression for the posterior distribution. Bates et al.145

(2022) performed medical ultrasound tomography of the brain using FWI, where a mean146

field (diagonal) Gaussian distribution is employed as the variational distribution. Alter-147

natively, W. Wang et al. (2023) improved the resolution of inversion results by decom-148

posing the variational objective function into two terms and re-weighting them, however149

the method tends to underestimate posterior uncertainties. Yin et al. (2024) used con-150

ditional normalizing flows to quantify uncertainties in migration-velocity models.151

Other than in W. Wang et al. (2023), in the above studies variational methods were152

applied to improve the efficiency of Bayesian FWI. For 2D FWI, the required number153

of forward simulations used to estimate means and variances of subsurface parameters154

was reduced to the order of 100,000 by X. Zhao and Curtis (2024), marking a significant155

reduction given that the dimensionality of the FWI problem tackled was higher than 10,000.156

Unfortunately, despite this improvement, the computational cost of solving the forward157

function in FWI remains prohibitively expensive for many practitioners. Consequently,158

performing Bayesian FWI in realistic projects using current variational methods is still159

impractical, even with advanced forward simulation strategies (Treeby & Cox, 2010; Y. Wang160

et al., 2019; X. Zhao et al., 2020).161

In this paper, we propose an efficient and accurate variational methodology for Bayesian162

FWI by imposing physics-based structure on the variational family. The new method163

incorporates expected posterior parameter correlations explicitly. We show that this leads164

to significantly improved accuracy with nearly the same computational cost compared165

to several existing variational methods, or put another way, reduced cost for the same166

accuracy.167

This rest of this paper is organised as follows. In section 2, we first establish the168

framework of variational full waveform inversion. Then we introduce the concept of ADVI,169

and present our new method which we refer to as physically structured variational in-170



ference (PSVI). In section 3, we demonstrate the proposed method with a 2D synthetic171

FWI example and compare the inversion results with those obtained using three other172

variational methods. In section 4, we interpret the inversion results by solving two post-173

inversion interrogation problems. Finally, we provide a brief discussion of the proposed174

method and draw conclusions.175

2 Methodology176

2.1 Variational Full Waveform Inversion (FWI)177

FWI uses full waveform data recorded by seismometers to constrain the Earth’s178

interior structure, typically described by a subsurface velocity model. The forward func-179

tion is defined to predict waveform data that could be recorded at receivers given a sub-180

surface velocity model. This prediction involves solving a wave equation, either in the181

time or frequency domain, often in two or three dimensions, and potentially adding mea-182

surement noise to the data. For simplicity, we assume that the subsurface consists of an183

acoustic, isotropic, lossless medium with constant density, thereby ignoring exclusively184

elastic properties including shear waves, attenuation, and anisotropic properties. This185

simplification allows the scalar acoustic wave equation to be used in forward simulations186

which reduces computational load. The data-model gradients are calculated using the187

adjoint state method (Plessix, 2006).188

In Bayesian FWI, information about the velocity model is characterized by a pos-189

terior probability distribution function (pdf) which describes the uncertainties associ-190

ated with different potential models given the observed data. This can be calculated us-191

ing Bayes’ rule:192

p(m|dobs) =
p(dobs|m)p(m)

p(dobs)
(1)

where p(·) denotes a probability distribution. Symbol x|y indicates conditional depen-193

dence between two random variables x and y, and reads as x given y. Term p(m) de-194

scribes the prior information available on the model parameter m, and p(dobs|m) is the195

likelihood, meaning the probability of the synthetic waveform data dsyn generated by a196

given model m through forward simulation matching the observed data dobs. A Gaus-197

sian distribution is often used to define the data likelihood function:198

p(dobs|m) ∝ exp

[
−
(dsyn − dobs)

TΣ−1
d (dsyn − dobs)

2

]
(2)



where Σd is the covariance matrix of the data error. The denominator p(dobs) in equa-199

tion 1 is referred to as the evidence and is a normalisation constant to ensure that the200

result of equation 1 is a valid probability distribution.201

Bayesian inversion is often solved by Monte Carlo sampling methods. However, the202

required number of samples increases exponentially with the dimensionality of the in-203

verse problem (the number of unknown model parameters), due to the curse of dimen-204

sionality (Curtis & Lomax, 2001). It is very expensive to obtain statistics of posterior205

pdf’s in FWI using Monte Carlo methods, especially when the Earth model m contains206

more than 10,000 parameters, as is standard in such problems (Gebraad et al., 2020).207

In this paper, we use variational inference to solve Bayesian FWI. In variational208

methods, a family of distributions (called the variational family) Q(m) = {q(m)} is209

defined, from which we select an optimal member to approximate the true (unknown)210

posterior distribution. The optimal distribution can be found by minimising the differ-211

ence (distance) between the posterior and variational distributions. Typically, the Kullback-212

Leibler (KL) divergence (Kullback & Leibler, 1951) is used to measure the distance be-213

tween two probability distributions, defined as the following expectation term214

KL[q(m)||p(m|dobs)] = Eq(m)[log q(m)− log p(m|dobs)] (3)

The KL divergence of two distributions is non-negative, and equals zero only when the215

two distributions are identical. Substituting equation 1 into 3, we find that minimising216

the KL[q(m)||p(m|dobs)] is equivalent to maximising the following evidence lower bound217

of log p(dobs) (ELBO[q(m)]):218

ELBO[q(m)] = Eq(m)[log p(m,dobs)− log q(m)] (4)

In this way, we convert a random sampling problem into a numerical optimisation, while219

the optimisation result is still a probability distribution that approximates the true pos-220

terior pdf.221

A key challenge in variational inference is to choose the variational family Q(m).222

This determines both the accuracy and efficiency of the variational methods: increas-223

ing the complexity (and hence, expressivity) of Q(m) increases the approximation ac-224

curacy as well as the optimisation complexity. Given the expensive nature of forward sim-225

ulations in FWI, our primary goal is to reduce computational costs (by reducing the num-226



ber of forward simulations) while maintaining accuracy at an acceptable level. In the fol-227

lowing sections we introduce a method called automatic differentiation variational in-228

ference (ADVI – Kucukelbir et al., 2017), and propose an alternative effective variational229

methodology for FWI.230

2.2 Automatic Differentiation Variational Inference (ADVI)231

ADVI is a well-established variational method that defines a Gaussian variational232

distribution q = N (µ,Σ), parametrised by a mean vector µ and a covariance matrix233

Σ (Kucukelbir et al., 2017). In addition, since a Gaussian distribution is defined over234

the space of real numbers and since in most geophysical imaging problems model param-235

eters are bounded by physical constraints (e.g., seismic velocity should be a positive num-236

ber), an invertible transform (a bijection) is applied to convert the Gaussian variational237

distribution into a bounded space that defines model parameter m. The transformed dis-238

tribution is then used to approximate the true posterior distribution.239

To determine the optimal Gaussian distribution in the unbounded space, we max-240

imise the ELBO[q(m)] in equation 4 with respect to µ and Σ. This can be solved us-241

ing a gradient based optimisation method. According to Kucukelbir et al. (2017), the242

gradient of the ELBO with respect to the covariance matrix Σ involves computing |Σ|,243

where |·| denotes the determinant of a matrix. Direct calculation of |Σ| has a compu-244

tational complexity of O(n3), which becomes prohibitively expensive for high dimensional245

inference problems such as FWI. Therefore, we often use a Cholesky factorisation to parametrise246

Σ247

Σ = LLT (5)

where L is a lower triangular matrix. Since |L| can be calculated easily as the product248

of its diagonal elements, the determinant |Σ| can be obtained by |Σ| = |L|2. Note that249

the diagonal elements of L are associated with the variances of model parameters, and250

should be non-negative to ensure that L and Σ are positive semidefinite. The off-diagonal251

values of L contain correlation information between model parameters.252

For a n-dimensional problem, we need n(n+1)/2 parameters to construct a full253

matrix L, and consequently a full covariance matrix Σ. The corresponding method is254

known as full rank ADVI (Kucukelbir et al., 2017). For example, in Figure 1a, the ve-255

locity model comprising 110 × 250 pixels requires 378,138,750 parameters to describe256



the full matrix L. This number becomes computationally intractable for large scale 2D257

and 3D FWI problems.258

Alternatively, a mean field approximation is often used to reduce computational259

complexity, where L and Σ are parametrised by diagonal matrices. The variational dis-260

tribution becomes a diagonal Gaussian distribution, which neglects correlation informa-261

tion between different model parameters. In this way, the total number of variables that262

must be optimised is 2n (both µ and Σ contain n independent elements), so is doubled263

compared to a conventional deterministic inversion. Therefore, the computational over-264

head is manageable for most problems. Mean field ADVI has been applied to Bayesian265

FWI in several studies (Bates et al., 2022; W. Wang et al., 2023; X. Zhang et al., 2023),266

demonstrating that the method is computationally efficient and is able to provide an ac-267

curate mean model of the posterior distribution. However, in problems with significant268

posterior correlations, it tends to strongly underestimate posterior uncertainties since269

correlation information is neglected a priori (X. Zhang et al., 2023).270

2.3 Physically Structured Variational Inference (PSVI)271

Full rank ADVI and mean field ADVI represent two extreme approaches to con-272

struct L: the former aims to optimise all off-diagonal elements of L to capture the full273

correlation information of m, whereas the latter sets the off-diagonal elements to zero274

to reduce computational requirements. In the following, we parametrise L using a physics-275

guided structure, which models a subset of its off-diagonal elements.276

In most imaging problems, accurate correlation information plays an important role277

in capturing true structures such as the continuity of properties across neighbouring spa-278

tial. Since modelling a full covariance matrix (i.e., full rank ADVI) for high dimensional279

problems is practically intractable, another approach is to model the most important cor-280

relation in vector m, guided by physical properties (prior knowledge) of imaging prob-281

lems. To illustrate, Figure 1d shows a 2D velocity structure discretized using nx×nz282

square grid cells in horizontal and vertical directions, with each cell representing a ve-283

locity value at the corresponding spatial location. It is often the case that any grid cell,284

such as the one marked by a black dot in Figure 1d, is strongly correlated with its sur-285

rounding cells (e.g., cells marked by white pluses). The magnitude of correlations be-286

tween this central cell and other cells decreases as the distance between two locations287



Figure 1. (a) P wave velocity of the Marmousi model used in a 2D acoustic FWI test. Source

locations are indicated by red stars and the receiver line is marked by a white line. Dashed black

lines display the locations of two vertical profiles used to compare the posterior marginal proba-

bility distributions in Figure 4. (b) Upper and lower bounds of the Uniform prior distribution at

different depths. (c) Observed dataset which contains twelve common shot gathers. (d) Velocity

structure inside the white box in (a), and crosses in cells discussed in the main text.



increases. Cells that are far away from the black dot (e.g., cells denoted by red crosses288

in Figure 1d) are only weakly correlated with the black-dotted cell, so these correlations289

can safely be ignored. This feature has been observed in many different imaging prob-290

lems (Ardizzone et al., 2018; Gebraad et al., 2020; Biswas & Sen, 2022); a clear exam-291

ple displaying such correlations in a velocity profile with depth is shown in Figure 6 of292

X. Zhang and Curtis (2021b), from the results of surface wave dispersion inversion us-293

ing two independent nonlinear inversion methods (invertible neural networks and Monte294

Carlo).295

This suggests that it might suffice to model correlations only between parameter296

values that are spatially close to each other, i.e. which lie within a dominant wavelength,297

and ignore those that are far away by assuming a particular sparse structure for L. We298

therefore set off-diagonal elements of L which represent the main correlations of inter-299

est as parameters to be optimised during variational inversion, while imposing all other300

off-diagonal elements to be zero. Note that we thus impose only a structure on L rather301

than placing constraints on the values of its (non-zero) off-diagonal elements: those val-302

ues are updated freely during inversion.303

Suppose that the 2D velocity model displayed in Figure 1d is defined by vector m304

in row-major order (i.e., the first nx elements of m comprise the first row of the 2D im-305

age, the second nx elements comprise the second row, and so on). As illustrated in equa-306

tion 6 below, the first-order off-diagonal elements (blue ones in equation 6 that are di-307

rectly below the diagonal elements) contain correlation information between two hori-308

zontally adjacent grid cells, and off-diagonal elements that are nx rows below the main309

diagonal elements (red ones in equation 6) describe correlations between two vertically310

adjacent cells311

L =



l0,1

l1,1 l0,2

0 l1,2 l0,3

... 0 l1,3 ...

lnx,1 ... 0 ... l0,n−2

0 ... ... ... l1,n−2 l0,n−1

... 0 lnx,n−nx ... 0 l1,n−1 l0,n



(6)



Note that in equation 6, the first subscript i indicates a block of off-diagonal elements312

that are i rows below the main diagonal (i.e., at an offset of i from the main diagonal),313

and the second subscript j indicates that li,j is the jth element of that off-diagonal block.314

This differs from the commonly used indexing scheme in which the two subscripts im-315

ply the row and column number of an element. If we set all remaining elements of L to316

zero, then covariance matrix Σ = LLT also has non-zero entities only at two off-diagonal317

blocks located 1 and nx rows below and above the main diagonal elements (similar to318

the red and blue elements in equation 6). If such a covariance matrix Σ is used, the vari-319

ational distribution would also capture a specific spatial correlation structure that only320

includes parameter correlations between pairs of adjacent cells in both horizontal and321

vertical directions. Thus, for the grid cell denoted by the black dot in Figure 1d, we would322

model correlations between this cell and its four adjacent cells inside the red box in Fig-323

ure 1d: all other correlations are set to zero.324

We can impose any desired correlation structure on Σ, by setting the correspond-325

ing off-diagonal blocks in L as unknown hyperparameters and optimising them during326

inversion. The size of the defined correlation template should be relatively small com-327

pared to the dimensionality of the problem, so the total number of parameters required328

to construct L would also be relatively small compared to that in full rank ADVI. For329

example, if the white pluses in Figure 1d are used to define a 5 × 5 correlation kernel330

then the required number of parameters to construct Σ is smaller than 13n. Here n is331

the dimensionality of model vector m, and the number 13 consists of 1 main diagonal332

block and 12 off-diagonal blocks representing 12 different offsets between cells marked333

by the white crosses and the central cell in the 5×5 kernel. Since each off-diagonal block334

contains fewer parameters than the main diagonal block (i.e., the blue and red elements335

in equation 6 are fewer than the diagonal elements), the total number of parameters is336

smaller than 13n, which is a significant reduction compared to n(n+1)/2 parameters337

used in full rank ADVI.338

We implement the aforementioned approach to parametrise the matrix L and ob-339

tain a sparse approximation of the covariance matrix. The inversion results thus effec-340

tively and efficiently capture structured correlation information. Since this originated341

from the inherent physical properties of imaging problems, we name the method as phys-342

ically structured variational inference (PSVI).343



To update the variational parameters, we use gradient based optimisation meth-344

ods. The gradient of the ELBO with respect to the variational parameters can be cal-345

culated easily using advanced automatic differentiation libraries such as TensorFlow (Abadi346

et al., 2016) and PyTorch (Paszke et al., 2019). The expectation term in the EBLO (equa-347

tion 4) can be estimated by Monte Carlo integration with a small number of samples,348

which is reasonable because the optimisation is typically carried out over many itera-349

tions, allowing the gradients to converge statistically towards the correct solution (Kucukelbir350

et al., 2017). Given that the computational cost of updating the variational parameters351

is negligible in comparison to forward modelling in FWI, the proposed method is almost352

as efficient as mean field ADVI.353

3 2D Acoustic FWI Example354

In this section, we test the proposed PSVI algorithm in a 2D acoustic FWI exam-355

ple. The true velocity model, shown in Figure 1a, is obtained by truncating the origi-356

nal Marmousi model (Martin et al., 2006) and downsampling it into 110 × 250 regular357

grid cells. The grid cell size is 20m in both directions. For simplicity, we maintain a con-358

stant density. We simulate 12 sources on the surface with a spacing of 400m (indicated359

by red stars in Figure 1a). A receiver line containing 250 receivers at an interval of 20m360

is placed on the seabed at 200m depth (white line in Figure 1a). The observed waveform361

data are generated by solving the 2D acoustic wave equation using a time-domain finite362

difference method. The simulation length is 4s with a sample interval of 2ms. The source363

function is a Ricker wavelet with a dominant frequency of 10 Hz. Figure 1c displays this364

observed waveform dataset.365

We define a Uniform prior distribution for the velocity values in each grid cell. Fig-366

ure 1b shows the lower and upper bounds of the prior distribution at different depths.367

We set the velocity in the water layer (down to 200m depth) to its true value during in-368

version. The likelihood function is a Gaussian distribution (equation 2) with a diago-369

nal covariance matrix Σd assuming independence among all data points. We take the370

maximum amplitude value of each trace and average them. The data noise is assumed371

to be 1% of the obtained average value. The same finite difference solver is used to cal-372

culate the synthetic waveform data dsyn, and the gradient of the data misfit (negative373

log-likelihood function) with respect to the velocity model is computed using the adjoint-374

state method (Plessix, 2006). For variational inversion, we use Monte Carlo integration375



Figure 2. Variation of the negative ELBO with respect to iterations.

to estimate the ELBO in equation 4, and use the automatic differentiation framework376

provided by PyTorch to build a computational graph, which (automatically) calculates377

the ELBO and its gradient with respect to the variational parameters (Paszke et al., 2019).378

Optimization process is carried out using the Adam algorithm (Kingma & Ba, 2014).379

We apply mean field ADVI and PSVI to this Bayesian FWI problem. Consider-380

ing the dimensionality of this problem (100×250 = 25,000), full rank ADVI is not per-381

formed since constructing a full covariance matrix would be extremely expensive in terms382

of both memory requirements and computational cost. For mean field ADVI, we use a383

diagonal Gaussian distribution to approximate the posterior distribution in the unbounded384

space. For PSVI, a 5×5 correlation kernel is employed to model the main correlations385

between model parameters, as illustrated by the white pluses in Figure 1d for the cen-386

tral black dotted cell. The choice of this correlation kernel is based on the estimated dom-387

inant wavelength of this problem (approximately 200m in shallow subsurface). In both388

tests, variational parameters (µ and L) are updated for 5000 iterations, with 2 random389

samples per iteration used to approximate the ELBO[q(m)] and its gradients with re-390

spect to µ and L. Figure 2 displays the negative ELBOs for these two tests as a func-391

tion of iterations, indicating that both algorithms achieve a reasonable level of conver-392

gence with nearly the same convergence speed, even though PSVI has far more param-393

eters to optimise.394

Figures 3a and 3b depict the inversion results. The mean, standard deviation and395

the relative error (computed by dividing the absolute error between the true and mean396

models by the standard deviation model) of the posterior distribution are displayed from397



top to bottom row. The two mean velocity maps exhibit similar features across most lo-398

cations, generally resembling the true velocity map in Figure 1a. The inversion results399

struggle to recover some thin layers in the deeper part of the model, potentially due to400

the relatively low frequency (10 Hz) data used for FWI. Additionally, certain discrep-401

ancies are observed between these two maps at specific locations. For example, in the402

tilt layers annotated by red and black arrows in Figures 3a and 3b, the mean velocity403

model from mean field ADVI displays discontinuities, while the PSVI results show more404

continuity, closely resembling the true velocity model. One possible reason for this dis-405

crepancy is that accurate correlation information is crucial for recovering the continu-406

ity of spatial locations, especially for these thin layers. All correlations between pairs of407

model parameters are neglected in mean field ADVI, and thus the results may fail to re-408

cover the true velocity structures at these locations. By incorporating physically struc-409

tured correlations between cells within a dominant wavelength, the proposed method im-410

proves the inversion accuracy.411

Both inversion results show increased uncertainties with greater depth, since the412

sensitivity of observed seismic data decreases at depth, thus deeper parts of the model413

are less constrained by the data. The standard deviation values obtained from mean field414

ADVI are generally smaller than those from PSVI, especially in the shallower subsur-415

face above 1.5km depth. This is because mean field ADVI tends to underestimate pos-416

terior uncertainties by neglecting correlations. Similar phenomena have been observed417

in previous studies (Ely et al., 2018; W. Wang et al., 2023; X. Zhao & Curtis, 2024). There-418

fore, the relative errors from mean field ADVI are larger compared to those from the pro-419

posed method, especially at locations with a depth of 1km and a distance between 0 –420

1.5km, where the mean model deviates from the true model by more than 3 standard421

deviations. This discrepancy suggests a low credibility of the inversion results obtained422

from mean field ADVI. As marked by a white arrow in Figure 3a, lower uncertainty noise423

is observed, which correspond to layers that are not continuous in the mean velocity map424

marked by a red arrow. This feature again proves that mean field ADVI provides biased425

uncertain estimates. By contrast, such uncertainty structures are not observed in Fig-426

ure 3b, indicating that PSVI has the capability to correct some biases introduced by mean427

field ADVI.428

To validate the inversion results displayed in Figure 3b, we apply two additional429

variational methods to this problem: boosting variational inference (BVI – F. Guo et al.,430



Figure 3. Mean (top row), standard deviation (middle row) and relative error (bottom row)

of the posterior distribution obtained using (a) mean field ADVI, (b) PSVI, (c) boosting varia-

tional inference (BVI) and (d) stochastic SVGD (sSVGD), respectively. The relative error is the

absolute error between the mean and true models divided by the corresponding standard devia-

tion.

2016; Miller et al., 2017) and stochastic Stein variational gradient descent (sSVGD – Gal-431

lego & Insua, 2018). In BVI, a mixture distribution, in this case a mixture of Gaussians,432

is used to approximate the posterior distribution considering the fact that a mixture dis-433

tribution can approximate any target distribution to any level of accuracy. sSVGD is a434

Monte Carlo based variational method that iteratively pushes a set of random samples435

towards the posterior distribution by minimising the KL divergence. In addition, a noise436

term is introduced to these samples at each iteration such that the algorithm converges437

to the true posterior distribution asymptotically. These two methods have been applied438

to acoustic FWI problems, and have proved to provide reasonable posterior solutions in439

two and three dimensional Earth models (X. Zhang et al., 2023; X. Zhao & Curtis, 2024).440

Figures 3c and 3d depict the inversion results obtained using BVI and sSVGD, respec-441

tively. They present very similar features compared to those displayed in Figure 3b: the442

same continuous structures in the deeper part of the model (denoted by red and black443

arrows) are observed in the mean velocity maps, and similar higher standard deviation444

values associated with lower relative errors (distributed within 2 standard deviations)445

are also present.446

To further analyse the accuracy of the inversion results, in Figure 4 we compare447

the posterior marginal distributions obtained from the four tested methods along two448



Figure 4. Posterior marginal distributions coloured from dark blue (zero probability) to yel-

low (maximum value of marginal pdf’s in each plot), along two vertical profiles at distances of

1km (top row) and 2.6km (bottom row) obtained using (a) mean field ADVI, (b) PSVI, (c) BVI

and (d) sSVGD. The locations of these two profiles are represented by black dashed lines in Fig-

ure 1a. In each figure, two white lines show the prior bounds, and black and red lines show the

mean and true velocity values.



vertical profiles at horizontal locations of 1km (top row) and 2.6km (bottom row), re-449

spectively. The location of these two profiles are displayed by dashed black lines in Fig-450

ure 1a. The first profile (at a distance of 1km) is strategically placed in regions where451

the relative errors from mean field ADVI (Figure 3a) are higher, while the second one452

(at 2.6km) is centrally located within the imaging region. Red lines show the true ve-453

locity values and black lines show the mean velocity values obtained using different meth-454

ods. Overall, the marginal distributions in Figure 4a are narrower compared to those in455

Figures 4b to 4d, indicating lower posterior uncertainties akin to Figure 3. In the first456

row of Figure 4 between depths of 0.7km – 1 km and 1.3km – 1.8km, the true velocity457

values are excluded from the posterior distribution obtained using mean field ADVI, whereas458

those values correctly reside within the high probability region of the posterior pdfs ob-459

tained using the other three methods. These phenomena again prove that mean field ADVI460

tends to underestimate the posterior uncertainties and introduce biases into the inver-461

sion results. By including the main correlation information between adjacent grid cells,462

PSVI yields better inversion results that are highly consistent with two entirely indepen-463

dent methods. Therefore, we assert that the posterior standard deviations derived from464

PSVI are likely to be correct.465

Given that PSVI is designed to capture correlations between spatially close grid466

cells, we compare the posterior correlation coefficients between model parameters esti-467

mated using different methods. Figure 5 shows the covariance matrices for velocity val-468

ues within the white box in Figure 1a, obtained using the above four inversion methods.469

Mean field ADVI uses a transformed diagonal Gaussian distribution to approximate the470

posterior pdf and disregards correlations between model parameters, thus the posterior471

covariance matrix predominantly exhibits strong diagonal values corresponding to the472

variances of model parameters. By incorporating a specific (desired) correlation struc-473

ture into the variational distribution, the covariance matrix obtained using PSVI displays474

off-diagonal values representing correlations between different parameters, which are not475

observed from the results using mean field ADVI. Due to the use of a 5×5 correlation476

kernel (as represented by the white pluses in Figure 1d), we only include correlation in-477

formation between a given grid cell and cells within two layers of cells surrounding it.478

As a result, Figure 5b displays four off-diagonal blocks (two above and two below the479

diagonal elements). We observe negative correlations between neighbouring cells (in the480



first off-diagonal block below and above the diagonal values) and positive correlations481

between every second neighbouring cells (found in the second off-diagonal block).482

In Figures 5c and 5d, similar negative off-diagonal correlation blocks are observed483

in the covariance matrices obtained using BVI and sSVGD. This confirms that in this484

test we successfully capture the correct correlation information between adjacent cells485

by using PSVI. While there may be positive correlations with cells two layers apart, these486

are not visible; this may be because Figures 5c and 5d show a general ‘speckle’ of non-487

zero background correlation values that are absent in Figure 5b. In PSVI, we construct488

a sparse covariance matrix with specific non-zero off-diagonal elements, and set all other489

values to zero. This neglects correlations between locations that are spatially far away490

from each other. It should be noted that we do not know whether any of these values491

in Figures 5c and 5d are correct, since they do not match between the two panels. In the492

next section, we also prove that these non-zero background correlations play a less sig-493

nificant role in a simulation of a real-world decision-making process. So again we sug-494

gest that our implementation of PSVI has modelled the most prominent and consistent495

features of the correlation structure.496

Finally, we analyse the efficiency of the proposed method and compare its cost with497

other methods. As mentioned in Section 2, the number of hyperparameters that need498

to be optimised in PSVI is higher than that in mean field ADVI but is significantly lower499

than that in full rank ADVI. In our test, we find that the computational cost for opti-500

mising these variational parameters is much cheaper (almost negligible) compared to the501

cost used for forward and adjoint simulations in FWI. Therefore, the number of simu-502

lations serves as a good metric for the overall cost in this example.503

Table 1 summarises the number of simulations used in each tested method. The504

same simulation settings are used in mean field ADVI and PSVI (10,000 simulations con-505

sisting of 5000 iterations with 2 samples per iteration). For BVI, we use a mixture of 24506

diagonal Gaussian distributions to approximate the posterior distribution. Each com-507

ponent is updated by 2500 iterations with 2 samples per iteration. Note that the num-508

ber of simulations used to optimise each component for BVI is smaller than that for ADVI,509

as full convergence of each component is not necessarily required in BVI (X. Zhao & Cur-510

tis, 2024). For sSVGD, we run 5000 iterations with 24 samples, resulting in a total of511

120,000 forward evaluations for both BVI and sSVGD. In these two tests, relatively larger512



Figure 5. Covariance matrices for velocity values inside the white box in Figure 1a, calculated

using the inversion results from (a) mean field ADVI, (b) PSVI, (c) BVI and (d) sSVGD.



Table 1. Number of forward and gradient evaluations for mean field ADVI, PSVI, BVI, and

sSVGD. The values represent an indication of the computational cost of each method, as the

evaluation of data-model gradients in FWI is by far the most expensive part of each calculation.

Method Number of Gradient Evaluations

Mean field ADVI 10,000

PSVI 10,000

BVI 120,000

sSVGD 120,000

step sizes are used to speedup the convergence of BVI and sSVGD. However, they still513

remain one order of magnitude more computationally expensive than mean field ADVI514

and PSVI. In addition, Figure 2 shows that mean field ADVI and PSVI present roughly515

the same convergence rate given the same number of forward simulations. This verifies516

the statement that PSVI is almost as efficient as mean field ADVI. The latter is known517

to be a particularly inexpensive (yet biased) method for Bayesian inversion from previ-518

ous studies (X. Zhang & Curtis, 2020a; X. Zhao et al., 2021; Bates et al., 2022; Sun et519

al., 2023). On the other hand, the PSVI method improves the inversion accuracy and520

provides similar results compared to two accurate but more computationally demand-521

ing methods (BVI and sSVGD). Thus, the proposed method shown to be an efficient al-522

gorithm that has provided reliable uncertainty estimates.523

4 Interrogating FWI results524

The objective of scientific investigations is typically to answer some specific and525

high-level questions. Examples of these questions in the field of geophysics can be: How526

large is a subsurface structure? Is this a good location for carbon capture and storage (CCS)?527

Normally these questions are answered in a biased manner without evaluating uncertain-528

ties in the results. Interrogation theory provides a systematic way to obtain the least-529

biased answer to these questions (Arnold & Curtis, 2018). In this section, we solve two530

interrogation problems using the FWI results obtained above, to evaluate the potential531

practical value of the correlations estimated by PSVI.532



Figure 6. Mean velocity maps inside the white box in Figure 1a (corresponding to the true

velocity map displayed in Figure 1d), obtained using (a) mean field ADVI, (b) PSVI, (c) BVI

and (d) sSVGD. Black dashed boxes show the region where interrogation is performed.

Interrogation theory shows that the optimal answer a∗ to a specific question Q that533

has a continuous space of possible answers is expressed by the following expectation term:534

a∗ = E[T (m|Q)] =

∫
m

T (m|Q)p(m|dobs) dm, (7)

where optimality is defined with respect to a squared utility (Arnold & Curtis, 2018).535

The expectation is taken with respect to the posterior distribution p(m|dobs) of model536

parameter m. Term T (m|Q) is a target function conditioned on the question Q of in-537

terest. It is defined to map the high dimensional model parameter m into a low dimen-538

sional target function value t in a target space T, within which the question Q can be539

answered directly. In such cases the optimal answer in equation 7 is simply the expec-540

tation or mean of the posterior target function.541

4.1 Interrogation for reservoir size542

Figure 6 shows the inverted mean models of the velocity structure within the white543

box in Figure 1a, obtained through (a) mean field ADVI, (b) PSVI, (c) BVI, and (d) sSVGD.544

In each figure, we observe a low velocity body at the centre of the model section, out-545

lined by a dashed black box. In this first example, we treat this low velocity zone as a546

reservoir and use interrogation theory to estimate its size.547

Previously, volume-related questions were answered using seismic imaging results548

obtained from travel time tomographic inversion (X. Zhao et al., 2022) and FWI (X. Zhang549

& Curtis, 2022; X. Zhao & Curtis, 2024). Following these studies, we define a target func-550

tion T (m|Q) as the area of the largest continuous low velocity body, which converts a551

high dimensional velocity model into a scalar value, representing the estimated reservoir552



Figure 7. Posterior distributions of the low velocity reservoir size using FWI results obtained

from (a) mean field ADVI, (b) PSVI, (c) BVI and (d) sSVGD, respectively. Red lines denote the

true reservoir size, and black dashed lines denote the optimal size obtained using interrogation

theory.

area from a given posterior sample. Note that this process involves using a velocity thresh-553

old to distinguish between low and high velocities. We use the same data-driven method554

introduced in X. Zhao et al. (2022) to determine the least biased estimate of this thresh-555

old value. This involves selecting some cells that are almost definitely inside the low ve-556

locity anomaly, others that are almost definitely outside; we then choose the threshold557

value such that the expected probability of interior cells being below that value equals558

the expected probability of exterior cells being above that value, according to the pos-559

terior pdf. We are then able to calculate the target function for every posterior sample.560

Figure 7 displays the posterior distributions of the target function (reservoir size)561

using the four inversion results obtained previously. In this synthetic test, the true reser-562

voir area is precisely known from Figure 1d and is denoted by red lines in Figure 7. The563

optimal (least-biased) answer estimated from each inversion method corresponds to the564

mean value of the respective posterior target function (as per equation 7), and is displayed565

by a dashed black line in each figure. As discussed in previous sections, mean field ADVI566

tends to underestimate posterior uncertainties and provides biased inversion results. We567

see that, the corresponding interrogation results in Figure 7a are also biased: the opti-568

mal answer shows a significant error and is far from the true answer, and indeed the true569

answer is even excluded from the posterior distribution of the estimated volume. By con-570

trast, if we impose physically structured correlation information on model parameter,571

the optimal answer estimated by PSVI aligns closely with the true answer (Figure 7b).572

The posterior distribution of the target function also successfully captures bimodal un-573

certainties, similar to those obtained using BVI and sSVGD.574



4.2 Interrogation for CO2 storage575

In the second example, we apply the inversion results to answer a more realistic576

and practically interesting question. Assume the low velocity reservoir identified above577

is used in a carbon capture and storage (CCS) project and is injected with CO2. The578

injection of CO2 into a porous rock produces changes in petrophysical parameters of the579

rock, such as pore fluid phase and water saturation. These changes further result in vari-580

ations in seismic response of a reservoir, such as seismic velocity. Leveraging the FWI581

results, we can use these variations to monitor the injected CO2 in a subsurface CCS project582

by answering the question: what is the total volume of CO2 stored in this reservoir?583

For the characterisation of changes in seismic velocity due to physical parameters584

related to CO2, especially CO2 saturation (Sco2) in the reservoir, we first represent the585

P wave velocity vp of a saturated rock using the bulk modulus Ksat, shear modulus Gsat586

and density ρsat of the rock by587

vp =

√
Ksat + 4Gsat/3

ρsat
(8)

The bulk modulus can be calculated using the Gassmann equation (Gassmann, 1951):588

Ksat = Kd +
(1− Kd

Km
)2

ϕ
Kf

+ 1−ϕ
Km

− Kd

K2
m

(9)

where ϕ is the porosity, and Kd, Km and Kf are the bulk moduli of dry rock, solid ma-589

trix and pore fluid. The density of a saturated rock can be calculated as590

ρsat = (1− ϕ)ρm + ϕρf (10)

where ρm and ρf are the densities of grain matrix and fluid, respectively. The shear mod-591

ulus Gsat is not affected by fluid and only depends on the shear modulus of dry rock Gd592

Gsat = Gd (11)

Assuming the reservoir is saturated by two distinct fluids, water and CO2, the sat-593

uration values for water (Sw) and CO2 (Sco2) are constrained by the relation: Sw+Sco2 =594

1. Then, the bulk modulus and density of fluid can be calculated using the mixing rules595

ρf = Swρw + Sco2ρco2 (12)
596

Kf = Se
wKw + (1− Se

w)Kco2 (13)



Table 2. Rock physics parameters and their associated standard deviations (uncertainties)

estimated from the Sleipner field (Dupuy et al., 2017; Ghosh & Ojha, 2020).

Parameter Km Kd Kw Kco2 Gm Gd ρm ρw ρco2 ϕ

(GPa) (GPa) (GPa) (GPa) (GPa) (GPa) (kg/m3) (kg/m3) (kg/m3) (%)

Mean value 39.3 2.56 2.31 0.08 44.8 8.1 2664 1030 700 0.3

Uncertainty 1.41 0.08 0.07 0.04 0.81 0.24 3 20 77 0.02

where ρw, ρco2 , Kw and Kco2 are the densities and bulk moduli of water and CO2, and597

e is an empirical value (Brie et al., 1995). In this example, we use e = 11 as suggested598

by Kim et al. (2013). The injection of CO2 into a reservoir alters the saturation values599

Sw and Sco2 , changing Kf and ρf , and thus also vp through equations 8 to 13. There-600

fore, we can estimate Sco2 using P wave velocity values obtained from FWI.601

To simplify the problem, we assume that some of the aforementioned rock physics602

parameters follow Gaussian distributions. Their means and standard deviations are es-603

timated from the Sleipner field (Dupuy et al., 2017; Ghosh & Ojha, 2020; Strutz & Cur-604

tis, 2024), as listed in Table 2. Given these parameters, we build a direct relationship605

between P wave velocity vp and CO2 saturation Sco2 . The results are depicted by the606

joint probability distribution of vp and Sco2 displayed in Figure 8a. The red curve is the607

reference vp − Sco2 curve obtained using the mean values from Table 2. In Figure 8a,608

the posterior distribution of CO2 saturation for any P-wave velocity value can be obtained.609

For example, Figures 8b and 8c illustrate two such posterior pdfs corresponding to ve-610

locity values of 2045m/s (solid white line in Figure 8a) and 1840m/s (dashed white line).611

In Figure 8 we observe that seismic velocity is sensitive to small CO2 saturations (be-612

low 0.2) and is insensitive for larger Sco2 values (Kim et al., 2013).613

In the previous interrogation example, we defined the largest continuous low ve-614

locity body as the reservoir of interest for a posterior velocity sample. For each grid cell615

within the identified reservoir, we substitute its velocity value into Figure 8a to obtain616

the posterior pdf of CO2 saturation. Finally, the total (2D) CO2 volume Vco2 stored in617

the reservoir can be calculated by618

Vco2 =
∑

V ϕSco2 (14)



Figure 8. (a) Joint probability distribution of P wave velocity and CO2 saturation given

other parameters listed in Table 2. Red curve shows a one-to-one mapping between vp and Sco2

obtained using the mean values in Table 2, and the colour scale from red through green to dark

blue represents the probability distribution of velocity, given any value of CO2 and the Gaussian

distributions defined in Table 2. (b) and (c) display the posterior distributions of CO2 saturation

for velocity values of 2045m/s and 1840m/s, marked by solid and dashed white lines, respectively,

in (a).

where V is the (2D) volume (i.e. area) of each grid cell in FWI, and the summation is619

taken over all grid cells within the reservoir. This defines the target function for this in-620

terrogation problem.621

Figure 9 displays the posterior distributions of the estimated (2D) CO2 volume ob-622

tained using different inversion methods. Similar to the reservoir size displayed in Fig-623

ure 7, mean field ADVI provides rather biased interrogation results since it tends to un-624

derestimate posterior uncertainties. In contrast, the other three methods provide sim-625

ilar (and possibly correct) posterior distributions with two distinct modes. The three es-626

timated answers are close to the true value, which lies inside the high probability region627

of the posterior distributions. Figures 7 and 9 prove that PSVI provides accurate un-628

certainty information that can be used to answer real-world questions correctly. More-629

over, the non-zero background correlations ignored by PSVI (displayed in Figures 5c and630

5d) are shown to be less important for post-inversion decision-making.631

5 Discussion632

PSVI can be considered as an intermediate approach between mean field ADVI and633

full rank ADVI (Kucukelbir et al., 2017). Mean field ADVI neglects all correlations to634

reduce computations and thus strongly underestimates posterior uncertainties. Full rank635

ADVI includes full correlation information between model parameters but is computa-636



Figure 9. Posterior distributions of the (2D) CO2 volume stored in the low velocity reservoir,

calculated using (a) mean field ADVI, (b) PSVI, (c) BVI and (d) sSVGD. Red lines denote the

true CO2 volume, and black dashed lines denote the least-biased CO2 volume estimated using

interrogation theory.

tionally intractable for high dimensional problems such as 2D or 3D FWI. PSVI, with637

its ability to capture structured correlations, strikes a balance between efficiency and ac-638

curacy. In the context of Bayesian FWI, where problems are often high dimensional and639

non-linear, PSVI offers improved inversion results while maintaining a computational cost640

comparable to mean field ADVI. For inverse problems with lower dimensionality such641

that modelling a full covariance matrix is affordable, full rank ADVI could be a more642

suitable choice. When dealing with problems with strong multimodality, these Gaussian-643

based methods are not suitable. It is then advisable to use other variational methods such644

as normalizing flows (Rezende & Mohamed, 2015), BVI (F. Guo et al., 2016; Miller et645

al., 2017) or deterministic or stochastic SVGD (Liu & Wang, 2016; Gallego & Insua, 2018).646

These methods have shown effectiveness in solving multimodal problems, albeit at the647

cost of a larger number of forward simulations. The No Free Lunch theorem (Wolpert648

& Macready, 1997) can be paraphrased as: no method is better than any other method649

when averaged across all problems. There is therefore no possibility to find a ‘best’ method650

in general. Nevertheless, individual classes of problems may have more or less efficient651

algorithms, so having a variety of methods allows for tailored decisions to be based on652

the nature of the problem to be addressed.653

In the 2D FWI example, we use a 5×5 correlation kernel as displayed in Figure 1d.654

To investigate the impact of the correlation kernel size on inversion results, we conduct655

an additional test using an 11×11 kernel. The mean, standard deviation and relative er-656

ror maps of the obtained posterior distribution are displayed in Figure 10a, which re-657

veal nearly identical features, such as the continuous layers discussed previously, when658



Figure 10. Inversion results obtained from PSVI using an 11×11 correlation kernel. (a)

Mean, standard deviation and relative error maps. (b) Covariance matrix inside the white box in

Figure 1a.

compared to those obtained using the 5×5 correlation kernel (Figure 3b). Figure 10b dis-659

plays the posterior covariance matrix, which as expected presents more non-zero off-diagonal660

covariance blocks than the 5×5 kernel (Figure 5b). The covariance magnitudes decay661

from the main diagonal block, and become relatively small from the second off-diagonal662

block. However, modelling these additional covariances requires more parameters to con-663

struct the matrix L. In addition, from Figures 5c and 5d, the covariance matrices cal-664

culated using BVI and sSVGD exhibit only one prominent off-diagonal block, probably665

because the non-linearity of FWI makes it challenging to capture a broader correlation666

structure with embedding prior knowledge of the type of structure sought. Therefore,667

we conclude that the 5×5 correlation kernel used above is a reasonable choice that trades668

off both accuracy and efficiency.669

In real applications, if other prior knowledge about the subsurface structure is avail-670

able (e.g., from seismic travel time tomography), we can design specific correlation ker-671

nels to capture target-oriented correlation information. Furthermore, the underlying prin-672

ciples of PSVI can be adapted to address temporal problems such as time-lapse (4D) seis-673

mic monitoring in which we might expect spatial regularity in the location of injected674

fluids, or in earthquake forecasting where correlations between seismic events over time675

might be captured effectively.676



PSVI is not merely an extension of mean field ADVI as proposed by Kucukelbir677

et al. (2017). In fact it can be used to extend a variety of variational methods to enhance678

their accuracy and efficiency. For example, in BVI the physically structured approach679

in PSVI can replace diagonal Gaussians in modelling the Gaussian component distribu-680

tions used in X. Zhao and Curtis (2024). This substitution is likely to improve the ac-681

curacy of each component while maintaining similar computational efficiency, potentially682

leading to a reduction in the required number of components and overall computational683

cost for BVI.684

Similar to BVI, PSVI produces an analytic posterior expression. Therefore, sav-685

ing and loading inversion results, generating new posterior samples, and sharing the pos-686

terior distribution with others post inversion is simple (Scheiter et al., 2022). The pro-687

posed method can also be extended to other general Gaussian-based methods such as688

Gaussian processes (Ray & Myer, 2019; Valentine & Sambridge, 2020a, 2020b; Ray, 2021;689

Blatter et al., 2021) and mixture density networks (Bishop, 1994; Devilee et al., 1999;690

Meier et al., 2007; Shahraeeni & Curtis, 2011; Shahraeeni et al., 2012; Earp & Curtis,691

2020; Hansen & Finlay, 2022; Bloem et al., 2023), to capture desired correlation struc-692

tures. Interestingly, special neural network structures are designed for the same purpose,693

such as the coupling layer (Dinh et al., 2015, 2017; Durkan et al., 2019; X. Zhao et al.,694

2021; X. Zhang & Curtis, 2021b) and the autoregressive layer (Kingma et al., 2016; Pa-695

pamakarios et al., 2017; Huang et al., 2018; De Cao et al., 2019; Levy et al., 2022). How-696

ever, they often come with a higher number of hyperparameters, making PSVI an at-697

tractive and practical choice.698

Considering that solving the forward function in 2D FWI is not hugely expensive,699

we use a relatively smaller step size and more iterations during variational inversion to700

ensure that the optimisation process has converged stably. Figure 2 illustrates that the701

negative ELBOs stop decreasing after 2500 - 3000 iterations, indicating that the full 5000702

iterations used here might be redundant. For higher dimensional problems such as 3D703

FWI, we can potentially use larger step sizes with fewer iterations, thereby optimising704

the balance between computational resources and convergence speed.705

The two interrogation examples presented here underscore the significance of es-706

timating accurate uncertainties, even if that demands a substantial increase in compu-707

tational input. Biased uncertainty information (such as that provided by mean field ADVI)708



leads to incorrect answers about Earth properties. Therefore, while obtaining an accu-709

rate mean velocity model in Bayesian inversion, or just the best-fit model in determin-710

istic inversion, may appear useful, they are far from sufficient for an unbiased and quan-711

titative interpretation of the true Earth. The pursuit of not only precision in mean ve-712

locity models but also robust and reliable uncertainty estimates is important for a com-713

prehensive understanding of subsurface structures.714

In the first interrogation example, we estimated the size of a subsurface reservoir,715

where we use relative velocity values and classify them as either low or high based on716

a velocity threshold value (X. Zhao et al., 2022). In the second example, we take the ab-717

solute velocity values and convert them into CO2 saturation estimates using a non-linear718

rock physics relationship. If the inversion is performed with higher frequency data, the719

inverted velocity values would be better constrained and become more accurate. Con-720

sequently, the posterior distribution of the estimated CO2 volume can be improved. In721

future, 3D Bayesian FWI, together with more advanced reservoir simulation and rock722

physics inversion techniques, can facilitate more sophisticated and realistic interrogation723

applications in subsurface carbon capture and storage, or other subsurface projects. This724

comprehensive approach, enriched with full uncertainty assessments, could significantly725

contribute to our understanding and improve decision-making in the context of such en-726

deavours.727

6 Conclusion728

In this work, we propose physically structured variational inference (PSVI) to per-729

form 2D Bayesian full waveform inversion (FWI), in which a physical structure is im-730

posed on the uncertainties in variational distributions based on prior information about731

imaging problem solutions. In our application, correlations between specific pairs of spa-732

tial locations are parametrised and inferred during inversion. Thus, we are able to cap-733

ture the main correlations with a desired structure in a computationally efficient man-734

ner. We apply the proposed method together with three other variational methods: mean735

field automatic differentiation variational inference (ADVI), boosting variational infer-736

ence (BVI) and stochastic Stein variational gradient descent (sSVGD), to a synthetic FWI737

example. This demonstrates that PSVI yields accurate first-order statistical information,738

including the mean and standard deviation maps as well as the marginal distributions,739

which are all consistent with those obtained using BVI and sSVGD. It also provides other740



second-order statistical information, specifically the posterior covariances. In addition,741

the obtained full uncertainty information is verified through the application of the in-742

version results to two post-inversion interrogation problems: one estimating a subsur-743

face reservoir size and another estimating CO2 volume in a carbon capture and storage744

project. In our examples, PSVI exhibits nearly the same computational efficiency as mean745

field ADVI while enhancing the inversion accuracy significantly. This opens the possi-746

bility that 3D probabilistic FWI with full uncertainty estimation can be performed both747

efficiently and accurately.748

7 Open Research749

Software used to perform variational inference can be found at Pyro website (https://750

pyro.ai/, Bingham et al., 2018) and in X. Zhang and Curtis (2023). Software used to751

perform Automatic Differentiation can be found at PyTorch website (https://pytorch752

.org/, Paszke et al., 2019).753
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Abstract12

Full waveform inversion (FWI) creates high resolution models of the Earth’s subsurface13

structures from seismic waveform data. Due to the non-linearity and non-uniqueness of14

FWI problems, finding globally best-fitting model solutions is not necessarily desirable15

since they fit noise as well as signal in the data. Bayesian FWI calculates a so-called pos-16

terior probability distribution function, which describes all possible model solutions and17

their uncertainties. In this paper, we solve Bayesian FWI using variational inference, and18

propose a new methodology called physically structured variational inference, in which19

a physics-based structure is imposed on the variational distribution. In a simple exam-20

ple motivated by prior information from past FWI solutions, we include parameter cor-21

relations between pairs of spatial locations within a dominant wavelength of each other,22

and set other correlations to zero. This makes the method far more efficient in terms of23

both memory requirements and computation, at the cost of some loss of generality in24

the solution found. We demonstrate the proposed method with a 2D acoustic FWI sce-25

nario, and compare the results with those obtained using other methods. This verifies26

that the method can produce accurate statistical information about the posterior dis-27

tribution with hugely improved efficiency (in our FWI example, 1 order of magnitude28

in computation). We further demonstrate that despite the possible reduction in gener-29

ality of the solution, the posterior uncertainties can be used to solve post-inversion in-30

terrogation problems connected to estimating volumes of subsurface reservoirs and of stored31

CO2, with minimal bias, creating a highly efficient FWI-based decision-making work-32

flow.33

Plain Language Summary34

This paper introduces a method to assess uncertainties in seismic images of the sub-35

surface at substantially reduced cost, and to use the information within those uncertain-36

ties to answer explicit high-level questions about volumes of subsurface reservoirs and37

of stored CO2. Computational efficiency is achieved by explicitly imposing known (al-38

ways observed) trade-offs between parameters that describe local properties of the sub-39

surface. This prevents computing power from being used to re-discover such trade-offs40

each time an imaging process is performed. In our two-dimensional example in which41

we image using seismic Full Waveform Inversion, computational cost is reduced by an42



order of magnitude and fully nonlinear uncertainties can be characterized both in sub-43

surface structural parameters, and in answers to high-level questions.44

1 Introduction45

Seismic full waveform inversion (FWI) is a method that generates models of the46

subsurface seismic velocity structure of the Earth given recorded seismograms. This is47

achieved using both kinematic (phase) and dynamic (amplitude) information in the wave-48

forms (Tarantola, 1984). FWI has been applied in various fields, for example including49

regional and global seismology (Fichtner et al., 2009; Tape et al., 2010; French & Ro-50

manowicz, 2014; Bozdağ et al., 2016; Fichtner et al., 2018), seismic exploration (Pratt51

et al., 1998; Virieux & Operto, 2009; Prieux et al., 2013; Warner et al., 2013), medical52

imaging (Bernard et al., 2017; Guasch et al., 2020; Lucka et al., 2021), and non-destructive53

detection (He et al., 2021; Patsia et al., 2023).54

Traditionally, FWI problems are solved using gradient-based local optimisation meth-55

ods, where a misfit function between observed and predicted waveform data is minimised56

iteratively (Plessix, 2006). This process often requires additional regularisation terms,57

such as smoothing and damping terms, to stabilise the optimisation and improve con-58

vergence rates (Zhdanov, 2002; Sen & Roy, 2003; Asnaashari et al., 2013). However, these59

terms may introduce biases to the final inversion results. In addition, it is challenging60

to find a good approximation to the true Earth structure that generated the observed61

waveforms due to the strong non-linearity of the forward function and the non-uniqueness62

of the inverse problem solution (Boyd & Vandenberghe, 2004).63

Recently, FWI has been solved probabilistically using a suite of methods collectively64

referred to as Bayesian inference. In Bayesian FWI, prior knowledge about Earth model65

parameters is updated with new information from the observed waveform data to cal-66

culate a posterior probability distribution function (pdf), according to Bayes’ rule. In67

principle this distribution incorporates all prior information combined with all informa-68

tion from the data, and expresses the information in terms of constraints on the model69

parameters. It thus solves the FWI problem by describing all possible model parame-70

ter values that fit the dataset to within its uncertainty. The range and probability of dif-71

ferent possible models can be used to reduce risk during subsequent decision-making when72

solving real-world interrogation problems (Poliannikov & Malcolm, 2016; Arnold & Cur-73



tis, 2018; Ely et al., 2018; X. Zhao et al., 2022; X. Zhang & Curtis, 2022; Siahkoohi et74

al., 2022).75

Different kinds of Bayesian inference methods have been employed to perform prob-76

abilistic FWI. A direct generalisation from deterministic FWI involves approximating77

the posterior pdf with a Gaussian distribution, centred around an estimated maximum78

a posteriori (MAP) model obtained using local optimisation methods (Gouveia & Scales,79

1998; Bui-Thanh et al., 2013; Zhu et al., 2016; Fang et al., 2018), or through local, low80

rank pdf approximations using a data assimilation technique (Thurin et al., 2019). If both81

the likelihood function and prior distribution are assumed to be Gaussians, then this MAP82

velocity model is equivalent to that obtained using l2 regularised deterministic FWI (W. Wang83

et al., 2023). While this kind of methods can produce probabilistic results, the result-84

ing posterior distribution may be affected by the starting point of the inversion, and may85

not fully capture uncertainty arising from non-linearity of the forward function (Z. Zhao86

& Sen, 2021).87

Fully non-linear Bayesian FWI can be solved using sampling techniques such as Markov88

chain Monte Carlo (McMC), where random samples are drawn from the posterior dis-89

tribution. The inversion results are represented by statistics of the sampled models, such90

as the mean and standard deviation. However, due to the typical high dimensionality91

(number of parameters to be estimated) of FWI problems, direct sampling methods, in-92

cluding the commonly used Metropolis-Hastings (MH)-McMC (Metropolis et al., 1953;93

Hastings, 1970; Mosegaard & Tarantola, 1995; Sambridge & Mosegaard, 2002), become94

impractical. Nevertheless, it is worth noting the existence of studies that employ a target-95

oriented strategy to reduce the dimensionality of parts of the Earth model of interest,96

and employ a localised wavefield injection method to calculate wavefields correspond-97

ing to each model variation. This reduces the computational complexity of FWI, and98

allows Metropolis-Hastings McMC to be applied effectively (Ely et al., 2018; Kotsi et al.,99

2020b; Fu & Innanen, 2022).100

Several advanced techniques have been introduced to improve the sampling effi-101

ciency of McMC for Bayesian FWI. In reversible-jump McMC (RJ-McMC) (Green, 1995,102

2003; Sambridge et al., 2006), a trans-dimensional approach is used to change the parametri-103

sation, including the dimensionality of the model parameter vector. This can significantly104

improve efficiency by reducing dimensionality to only parameters that are necessary to105



explain the data and the forward function, and RJ-McMC has been successfully applied106

to Bayesian FWI (Ray et al., 2016, 2018; Visser et al., 2019; P. Guo et al., 2020). Hamil-107

tonian Monte Carlo (HMC) has also been introduced to improve the sampling efficiency108

of FWI. In HMC, the sampling process is guided by the gradient of the posterior pdf with109

respect to the model parameters, and it has been demonstrated that HMC can improve110

the convergence rate over non-gradient based McMC (Gebraad et al., 2020; Kotsi et al.,111

2020a; de Lima, Corso, et al., 2023; de Lima, Ferreira, et al., 2023; Zunino et al., 2023;112

Dhabaria & Singh, 2024). Biswas and Sen (2022) introduced a reversible-jump Hamil-113

tonian Monte Carlo (RJHMC) algorithm for 2D FWI, Z. Zhao and Sen (2021) and Berti114

et al. (2023) used gradient-based McMC methods to sample the posterior distribution115

efficiently, and Khoshkholgh et al. (2022) solved FWI using informed-proposal Monte Carlo116

(Khoshkholgh et al., 2021). Nevertheless, as with other classes of methods, Monte Carlo117

sampling is known to become computationally intractable for high-dimensional param-118

eter spaces due to the curse of dimensionality (Curtis & Lomax, 2001).119

In this study, we focus instead on variational inference, a method that solves Bayesian120

inversion through optimisation. In variational methods, we define a family of known and121

tractable distributions, referred to as the variational family. From this family, an opti-122

mal member is chosen to approximate the true posterior pdf by minimising the differ-123

ence between the variational and posterior distributions (Bishop, 2006; Blei et al., 2017;124

C. Zhang et al., 2018; X. Zhang et al., 2021). Variational inference solves Bayesian prob-125

lems under an optimisation framework, and the optimisation result is fully probabilis-126

tic. In some classes of problems it can therefore be relatively more efficient and scalable127

to high dimensional problems with large datasets. Variational inference has been applied128

to different geophysical inverse problems, including travel time tomography (X. Zhang129

& Curtis, 2020a; X. Zhao et al., 2021; Levy et al., 2022), seismic migration (Siahkoohi130

et al., 2020; Siahkoohi & Herrmann, 2021; Siahkoohi et al., 2021, 2023), seismic ampli-131

tude inversion (Zidan et al., 2022), earthquake hypocentre inversion (Smith et al., 2022),132

and slip distribution inversion (Sun et al., 2023). However, most of these applications133

have relatively lower dimensionality and weaker non-linearities compared to FWI.134

X. Zhang and Curtis (2020b) introduced a variational method called Stein varia-135

tional gradient descent (SVGD – Liu & Wang, 2016) to transmission FWI where sources136

emulating earthquakes are located underneath the velocity structure to be imaged, with137

receivers on the top surface. SVGD was then applied to 2D reflection FWI with realis-138



tic priors (X. Zhang & Curtis, 2021a; Izzatullah et al., 2023), and 3D acoustic FWI us-139

ing synthetic data (X. Zhang et al., 2023) and field data (Lomas et al., 2023). A stochas-140

tic version of SVGD (Gallego & Insua, 2018) was also employed to improve performance141

for 3D FWI (X. Zhang et al., 2023). X. Zhao and Curtis (2024) introduced boosting vari-142

ational inference (BVI – F. Guo et al., 2016; Miller et al., 2017) for 2D acoustic FWI,143

where a mixture of Gaussian distributions is used to approximate the true posterior dis-144

tribution, resulting in an analytic expression for the posterior distribution. Bates et al.145

(2022) performed medical ultrasound tomography of the brain using FWI, where a mean146

field (diagonal) Gaussian distribution is employed as the variational distribution. Alter-147

natively, W. Wang et al. (2023) improved the resolution of inversion results by decom-148

posing the variational objective function into two terms and re-weighting them, however149

the method tends to underestimate posterior uncertainties. Yin et al. (2024) used con-150

ditional normalizing flows to quantify uncertainties in migration-velocity models.151

Other than in W. Wang et al. (2023), in the above studies variational methods were152

applied to improve the efficiency of Bayesian FWI. For 2D FWI, the required number153

of forward simulations used to estimate means and variances of subsurface parameters154

was reduced to the order of 100,000 by X. Zhao and Curtis (2024), marking a significant155

reduction given that the dimensionality of the FWI problem tackled was higher than 10,000.156

Unfortunately, despite this improvement, the computational cost of solving the forward157

function in FWI remains prohibitively expensive for many practitioners. Consequently,158

performing Bayesian FWI in realistic projects using current variational methods is still159

impractical, even with advanced forward simulation strategies (Treeby & Cox, 2010; Y. Wang160

et al., 2019; X. Zhao et al., 2020).161

In this paper, we propose an efficient and accurate variational methodology for Bayesian162

FWI by imposing physics-based structure on the variational family. The new method163

incorporates expected posterior parameter correlations explicitly. We show that this leads164

to significantly improved accuracy with nearly the same computational cost compared165

to several existing variational methods, or put another way, reduced cost for the same166

accuracy.167

This rest of this paper is organised as follows. In section 2, we first establish the168

framework of variational full waveform inversion. Then we introduce the concept of ADVI,169

and present our new method which we refer to as physically structured variational in-170



ference (PSVI). In section 3, we demonstrate the proposed method with a 2D synthetic171

FWI example and compare the inversion results with those obtained using three other172

variational methods. In section 4, we interpret the inversion results by solving two post-173

inversion interrogation problems. Finally, we provide a brief discussion of the proposed174

method and draw conclusions.175

2 Methodology176

2.1 Variational Full Waveform Inversion (FWI)177

FWI uses full waveform data recorded by seismometers to constrain the Earth’s178

interior structure, typically described by a subsurface velocity model. The forward func-179

tion is defined to predict waveform data that could be recorded at receivers given a sub-180

surface velocity model. This prediction involves solving a wave equation, either in the181

time or frequency domain, often in two or three dimensions, and potentially adding mea-182

surement noise to the data. For simplicity, we assume that the subsurface consists of an183

acoustic, isotropic, lossless medium with constant density, thereby ignoring exclusively184

elastic properties including shear waves, attenuation, and anisotropic properties. This185

simplification allows the scalar acoustic wave equation to be used in forward simulations186

which reduces computational load. The data-model gradients are calculated using the187

adjoint state method (Plessix, 2006).188

In Bayesian FWI, information about the velocity model is characterized by a pos-189

terior probability distribution function (pdf) which describes the uncertainties associ-190

ated with different potential models given the observed data. This can be calculated us-191

ing Bayes’ rule:192

p(m|dobs) =
p(dobs|m)p(m)

p(dobs)
(1)

where p(·) denotes a probability distribution. Symbol x|y indicates conditional depen-193

dence between two random variables x and y, and reads as x given y. Term p(m) de-194

scribes the prior information available on the model parameter m, and p(dobs|m) is the195

likelihood, meaning the probability of the synthetic waveform data dsyn generated by a196

given model m through forward simulation matching the observed data dobs. A Gaus-197

sian distribution is often used to define the data likelihood function:198

p(dobs|m) ∝ exp

[
−
(dsyn − dobs)

TΣ−1
d (dsyn − dobs)

2

]
(2)



where Σd is the covariance matrix of the data error. The denominator p(dobs) in equa-199

tion 1 is referred to as the evidence and is a normalisation constant to ensure that the200

result of equation 1 is a valid probability distribution.201

Bayesian inversion is often solved by Monte Carlo sampling methods. However, the202

required number of samples increases exponentially with the dimensionality of the in-203

verse problem (the number of unknown model parameters), due to the curse of dimen-204

sionality (Curtis & Lomax, 2001). It is very expensive to obtain statistics of posterior205

pdf’s in FWI using Monte Carlo methods, especially when the Earth model m contains206

more than 10,000 parameters, as is standard in such problems (Gebraad et al., 2020).207

In this paper, we use variational inference to solve Bayesian FWI. In variational208

methods, a family of distributions (called the variational family) Q(m) = {q(m)} is209

defined, from which we select an optimal member to approximate the true (unknown)210

posterior distribution. The optimal distribution can be found by minimising the differ-211

ence (distance) between the posterior and variational distributions. Typically, the Kullback-212

Leibler (KL) divergence (Kullback & Leibler, 1951) is used to measure the distance be-213

tween two probability distributions, defined as the following expectation term214

KL[q(m)||p(m|dobs)] = Eq(m)[log q(m)− log p(m|dobs)] (3)

The KL divergence of two distributions is non-negative, and equals zero only when the215

two distributions are identical. Substituting equation 1 into 3, we find that minimising216

the KL[q(m)||p(m|dobs)] is equivalent to maximising the following evidence lower bound217

of log p(dobs) (ELBO[q(m)]):218

ELBO[q(m)] = Eq(m)[log p(m,dobs)− log q(m)] (4)

In this way, we convert a random sampling problem into a numerical optimisation, while219

the optimisation result is still a probability distribution that approximates the true pos-220

terior pdf.221

A key challenge in variational inference is to choose the variational family Q(m).222

This determines both the accuracy and efficiency of the variational methods: increas-223

ing the complexity (and hence, expressivity) of Q(m) increases the approximation ac-224

curacy as well as the optimisation complexity. Given the expensive nature of forward sim-225

ulations in FWI, our primary goal is to reduce computational costs (by reducing the num-226



ber of forward simulations) while maintaining accuracy at an acceptable level. In the fol-227

lowing sections we introduce a method called automatic differentiation variational in-228

ference (ADVI – Kucukelbir et al., 2017), and propose an alternative effective variational229

methodology for FWI.230

2.2 Automatic Differentiation Variational Inference (ADVI)231

ADVI is a well-established variational method that defines a Gaussian variational232

distribution q = N (µ,Σ), parametrised by a mean vector µ and a covariance matrix233

Σ (Kucukelbir et al., 2017). In addition, since a Gaussian distribution is defined over234

the space of real numbers and since in most geophysical imaging problems model param-235

eters are bounded by physical constraints (e.g., seismic velocity should be a positive num-236

ber), an invertible transform (a bijection) is applied to convert the Gaussian variational237

distribution into a bounded space that defines model parameter m. The transformed dis-238

tribution is then used to approximate the true posterior distribution.239

To determine the optimal Gaussian distribution in the unbounded space, we max-240

imise the ELBO[q(m)] in equation 4 with respect to µ and Σ. This can be solved us-241

ing a gradient based optimisation method. According to Kucukelbir et al. (2017), the242

gradient of the ELBO with respect to the covariance matrix Σ involves computing |Σ|,243

where |·| denotes the determinant of a matrix. Direct calculation of |Σ| has a compu-244

tational complexity of O(n3), which becomes prohibitively expensive for high dimensional245

inference problems such as FWI. Therefore, we often use a Cholesky factorisation to parametrise246

Σ247

Σ = LLT (5)

where L is a lower triangular matrix. Since |L| can be calculated easily as the product248

of its diagonal elements, the determinant |Σ| can be obtained by |Σ| = |L|2. Note that249

the diagonal elements of L are associated with the variances of model parameters, and250

should be non-negative to ensure that L and Σ are positive semidefinite. The off-diagonal251

values of L contain correlation information between model parameters.252

For a n-dimensional problem, we need n(n+1)/2 parameters to construct a full253

matrix L, and consequently a full covariance matrix Σ. The corresponding method is254

known as full rank ADVI (Kucukelbir et al., 2017). For example, in Figure 1a, the ve-255

locity model comprising 110 × 250 pixels requires 378,138,750 parameters to describe256



the full matrix L. This number becomes computationally intractable for large scale 2D257

and 3D FWI problems.258

Alternatively, a mean field approximation is often used to reduce computational259

complexity, where L and Σ are parametrised by diagonal matrices. The variational dis-260

tribution becomes a diagonal Gaussian distribution, which neglects correlation informa-261

tion between different model parameters. In this way, the total number of variables that262

must be optimised is 2n (both µ and Σ contain n independent elements), so is doubled263

compared to a conventional deterministic inversion. Therefore, the computational over-264

head is manageable for most problems. Mean field ADVI has been applied to Bayesian265

FWI in several studies (Bates et al., 2022; W. Wang et al., 2023; X. Zhang et al., 2023),266

demonstrating that the method is computationally efficient and is able to provide an ac-267

curate mean model of the posterior distribution. However, in problems with significant268

posterior correlations, it tends to strongly underestimate posterior uncertainties since269

correlation information is neglected a priori (X. Zhang et al., 2023).270

2.3 Physically Structured Variational Inference (PSVI)271

Full rank ADVI and mean field ADVI represent two extreme approaches to con-272

struct L: the former aims to optimise all off-diagonal elements of L to capture the full273

correlation information of m, whereas the latter sets the off-diagonal elements to zero274

to reduce computational requirements. In the following, we parametrise L using a physics-275

guided structure, which models a subset of its off-diagonal elements.276

In most imaging problems, accurate correlation information plays an important role277

in capturing true structures such as the continuity of properties across neighbouring spa-278

tial. Since modelling a full covariance matrix (i.e., full rank ADVI) for high dimensional279

problems is practically intractable, another approach is to model the most important cor-280

relation in vector m, guided by physical properties (prior knowledge) of imaging prob-281

lems. To illustrate, Figure 1d shows a 2D velocity structure discretized using nx×nz282

square grid cells in horizontal and vertical directions, with each cell representing a ve-283

locity value at the corresponding spatial location. It is often the case that any grid cell,284

such as the one marked by a black dot in Figure 1d, is strongly correlated with its sur-285

rounding cells (e.g., cells marked by white pluses). The magnitude of correlations be-286

tween this central cell and other cells decreases as the distance between two locations287



Figure 1. (a) P wave velocity of the Marmousi model used in a 2D acoustic FWI test. Source

locations are indicated by red stars and the receiver line is marked by a white line. Dashed black

lines display the locations of two vertical profiles used to compare the posterior marginal proba-

bility distributions in Figure 4. (b) Upper and lower bounds of the Uniform prior distribution at

different depths. (c) Observed dataset which contains twelve common shot gathers. (d) Velocity

structure inside the white box in (a), and crosses in cells discussed in the main text.



increases. Cells that are far away from the black dot (e.g., cells denoted by red crosses288

in Figure 1d) are only weakly correlated with the black-dotted cell, so these correlations289

can safely be ignored. This feature has been observed in many different imaging prob-290

lems (Ardizzone et al., 2018; Gebraad et al., 2020; Biswas & Sen, 2022); a clear exam-291

ple displaying such correlations in a velocity profile with depth is shown in Figure 6 of292

X. Zhang and Curtis (2021b), from the results of surface wave dispersion inversion us-293

ing two independent nonlinear inversion methods (invertible neural networks and Monte294

Carlo).295

This suggests that it might suffice to model correlations only between parameter296

values that are spatially close to each other, i.e. which lie within a dominant wavelength,297

and ignore those that are far away by assuming a particular sparse structure for L. We298

therefore set off-diagonal elements of L which represent the main correlations of inter-299

est as parameters to be optimised during variational inversion, while imposing all other300

off-diagonal elements to be zero. Note that we thus impose only a structure on L rather301

than placing constraints on the values of its (non-zero) off-diagonal elements: those val-302

ues are updated freely during inversion.303

Suppose that the 2D velocity model displayed in Figure 1d is defined by vector m304

in row-major order (i.e., the first nx elements of m comprise the first row of the 2D im-305

age, the second nx elements comprise the second row, and so on). As illustrated in equa-306

tion 6 below, the first-order off-diagonal elements (blue ones in equation 6 that are di-307

rectly below the diagonal elements) contain correlation information between two hori-308

zontally adjacent grid cells, and off-diagonal elements that are nx rows below the main309

diagonal elements (red ones in equation 6) describe correlations between two vertically310

adjacent cells311

L =



l0,1

l1,1 l0,2

0 l1,2 l0,3

... 0 l1,3 ...

lnx,1 ... 0 ... l0,n−2

0 ... ... ... l1,n−2 l0,n−1

... 0 lnx,n−nx ... 0 l1,n−1 l0,n



(6)



Note that in equation 6, the first subscript i indicates a block of off-diagonal elements312

that are i rows below the main diagonal (i.e., at an offset of i from the main diagonal),313

and the second subscript j indicates that li,j is the jth element of that off-diagonal block.314

This differs from the commonly used indexing scheme in which the two subscripts im-315

ply the row and column number of an element. If we set all remaining elements of L to316

zero, then covariance matrix Σ = LLT also has non-zero entities only at two off-diagonal317

blocks located 1 and nx rows below and above the main diagonal elements (similar to318

the red and blue elements in equation 6). If such a covariance matrix Σ is used, the vari-319

ational distribution would also capture a specific spatial correlation structure that only320

includes parameter correlations between pairs of adjacent cells in both horizontal and321

vertical directions. Thus, for the grid cell denoted by the black dot in Figure 1d, we would322

model correlations between this cell and its four adjacent cells inside the red box in Fig-323

ure 1d: all other correlations are set to zero.324

We can impose any desired correlation structure on Σ, by setting the correspond-325

ing off-diagonal blocks in L as unknown hyperparameters and optimising them during326

inversion. The size of the defined correlation template should be relatively small com-327

pared to the dimensionality of the problem, so the total number of parameters required328

to construct L would also be relatively small compared to that in full rank ADVI. For329

example, if the white pluses in Figure 1d are used to define a 5 × 5 correlation kernel330

then the required number of parameters to construct Σ is smaller than 13n. Here n is331

the dimensionality of model vector m, and the number 13 consists of 1 main diagonal332

block and 12 off-diagonal blocks representing 12 different offsets between cells marked333

by the white crosses and the central cell in the 5×5 kernel. Since each off-diagonal block334

contains fewer parameters than the main diagonal block (i.e., the blue and red elements335

in equation 6 are fewer than the diagonal elements), the total number of parameters is336

smaller than 13n, which is a significant reduction compared to n(n+1)/2 parameters337

used in full rank ADVI.338

We implement the aforementioned approach to parametrise the matrix L and ob-339

tain a sparse approximation of the covariance matrix. The inversion results thus effec-340

tively and efficiently capture structured correlation information. Since this originated341

from the inherent physical properties of imaging problems, we name the method as phys-342

ically structured variational inference (PSVI).343



To update the variational parameters, we use gradient based optimisation meth-344

ods. The gradient of the ELBO with respect to the variational parameters can be cal-345

culated easily using advanced automatic differentiation libraries such as TensorFlow (Abadi346

et al., 2016) and PyTorch (Paszke et al., 2019). The expectation term in the EBLO (equa-347

tion 4) can be estimated by Monte Carlo integration with a small number of samples,348

which is reasonable because the optimisation is typically carried out over many itera-349

tions, allowing the gradients to converge statistically towards the correct solution (Kucukelbir350

et al., 2017). Given that the computational cost of updating the variational parameters351

is negligible in comparison to forward modelling in FWI, the proposed method is almost352

as efficient as mean field ADVI.353

3 2D Acoustic FWI Example354

In this section, we test the proposed PSVI algorithm in a 2D acoustic FWI exam-355

ple. The true velocity model, shown in Figure 1a, is obtained by truncating the origi-356

nal Marmousi model (Martin et al., 2006) and downsampling it into 110 × 250 regular357

grid cells. The grid cell size is 20m in both directions. For simplicity, we maintain a con-358

stant density. We simulate 12 sources on the surface with a spacing of 400m (indicated359

by red stars in Figure 1a). A receiver line containing 250 receivers at an interval of 20m360

is placed on the seabed at 200m depth (white line in Figure 1a). The observed waveform361

data are generated by solving the 2D acoustic wave equation using a time-domain finite362

difference method. The simulation length is 4s with a sample interval of 2ms. The source363

function is a Ricker wavelet with a dominant frequency of 10 Hz. Figure 1c displays this364

observed waveform dataset.365

We define a Uniform prior distribution for the velocity values in each grid cell. Fig-366

ure 1b shows the lower and upper bounds of the prior distribution at different depths.367

We set the velocity in the water layer (down to 200m depth) to its true value during in-368

version. The likelihood function is a Gaussian distribution (equation 2) with a diago-369

nal covariance matrix Σd assuming independence among all data points. We take the370

maximum amplitude value of each trace and average them. The data noise is assumed371

to be 1% of the obtained average value. The same finite difference solver is used to cal-372

culate the synthetic waveform data dsyn, and the gradient of the data misfit (negative373

log-likelihood function) with respect to the velocity model is computed using the adjoint-374

state method (Plessix, 2006). For variational inversion, we use Monte Carlo integration375



Figure 2. Variation of the negative ELBO with respect to iterations.

to estimate the ELBO in equation 4, and use the automatic differentiation framework376

provided by PyTorch to build a computational graph, which (automatically) calculates377

the ELBO and its gradient with respect to the variational parameters (Paszke et al., 2019).378

Optimization process is carried out using the Adam algorithm (Kingma & Ba, 2014).379

We apply mean field ADVI and PSVI to this Bayesian FWI problem. Consider-380

ing the dimensionality of this problem (100×250 = 25,000), full rank ADVI is not per-381

formed since constructing a full covariance matrix would be extremely expensive in terms382

of both memory requirements and computational cost. For mean field ADVI, we use a383

diagonal Gaussian distribution to approximate the posterior distribution in the unbounded384

space. For PSVI, a 5×5 correlation kernel is employed to model the main correlations385

between model parameters, as illustrated by the white pluses in Figure 1d for the cen-386

tral black dotted cell. The choice of this correlation kernel is based on the estimated dom-387

inant wavelength of this problem (approximately 200m in shallow subsurface). In both388

tests, variational parameters (µ and L) are updated for 5000 iterations, with 2 random389

samples per iteration used to approximate the ELBO[q(m)] and its gradients with re-390

spect to µ and L. Figure 2 displays the negative ELBOs for these two tests as a func-391

tion of iterations, indicating that both algorithms achieve a reasonable level of conver-392

gence with nearly the same convergence speed, even though PSVI has far more param-393

eters to optimise.394

Figures 3a and 3b depict the inversion results. The mean, standard deviation and395

the relative error (computed by dividing the absolute error between the true and mean396

models by the standard deviation model) of the posterior distribution are displayed from397



top to bottom row. The two mean velocity maps exhibit similar features across most lo-398

cations, generally resembling the true velocity map in Figure 1a. The inversion results399

struggle to recover some thin layers in the deeper part of the model, potentially due to400

the relatively low frequency (10 Hz) data used for FWI. Additionally, certain discrep-401

ancies are observed between these two maps at specific locations. For example, in the402

tilt layers annotated by red and black arrows in Figures 3a and 3b, the mean velocity403

model from mean field ADVI displays discontinuities, while the PSVI results show more404

continuity, closely resembling the true velocity model. One possible reason for this dis-405

crepancy is that accurate correlation information is crucial for recovering the continu-406

ity of spatial locations, especially for these thin layers. All correlations between pairs of407

model parameters are neglected in mean field ADVI, and thus the results may fail to re-408

cover the true velocity structures at these locations. By incorporating physically struc-409

tured correlations between cells within a dominant wavelength, the proposed method im-410

proves the inversion accuracy.411

Both inversion results show increased uncertainties with greater depth, since the412

sensitivity of observed seismic data decreases at depth, thus deeper parts of the model413

are less constrained by the data. The standard deviation values obtained from mean field414

ADVI are generally smaller than those from PSVI, especially in the shallower subsur-415

face above 1.5km depth. This is because mean field ADVI tends to underestimate pos-416

terior uncertainties by neglecting correlations. Similar phenomena have been observed417

in previous studies (Ely et al., 2018; W. Wang et al., 2023; X. Zhao & Curtis, 2024). There-418

fore, the relative errors from mean field ADVI are larger compared to those from the pro-419

posed method, especially at locations with a depth of 1km and a distance between 0 –420

1.5km, where the mean model deviates from the true model by more than 3 standard421

deviations. This discrepancy suggests a low credibility of the inversion results obtained422

from mean field ADVI. As marked by a white arrow in Figure 3a, lower uncertainty noise423

is observed, which correspond to layers that are not continuous in the mean velocity map424

marked by a red arrow. This feature again proves that mean field ADVI provides biased425

uncertain estimates. By contrast, such uncertainty structures are not observed in Fig-426

ure 3b, indicating that PSVI has the capability to correct some biases introduced by mean427

field ADVI.428

To validate the inversion results displayed in Figure 3b, we apply two additional429

variational methods to this problem: boosting variational inference (BVI – F. Guo et al.,430



Figure 3. Mean (top row), standard deviation (middle row) and relative error (bottom row)

of the posterior distribution obtained using (a) mean field ADVI, (b) PSVI, (c) boosting varia-

tional inference (BVI) and (d) stochastic SVGD (sSVGD), respectively. The relative error is the

absolute error between the mean and true models divided by the corresponding standard devia-

tion.

2016; Miller et al., 2017) and stochastic Stein variational gradient descent (sSVGD – Gal-431

lego & Insua, 2018). In BVI, a mixture distribution, in this case a mixture of Gaussians,432

is used to approximate the posterior distribution considering the fact that a mixture dis-433

tribution can approximate any target distribution to any level of accuracy. sSVGD is a434

Monte Carlo based variational method that iteratively pushes a set of random samples435

towards the posterior distribution by minimising the KL divergence. In addition, a noise436

term is introduced to these samples at each iteration such that the algorithm converges437

to the true posterior distribution asymptotically. These two methods have been applied438

to acoustic FWI problems, and have proved to provide reasonable posterior solutions in439

two and three dimensional Earth models (X. Zhang et al., 2023; X. Zhao & Curtis, 2024).440

Figures 3c and 3d depict the inversion results obtained using BVI and sSVGD, respec-441

tively. They present very similar features compared to those displayed in Figure 3b: the442

same continuous structures in the deeper part of the model (denoted by red and black443

arrows) are observed in the mean velocity maps, and similar higher standard deviation444

values associated with lower relative errors (distributed within 2 standard deviations)445

are also present.446

To further analyse the accuracy of the inversion results, in Figure 4 we compare447

the posterior marginal distributions obtained from the four tested methods along two448



Figure 4. Posterior marginal distributions coloured from dark blue (zero probability) to yel-

low (maximum value of marginal pdf’s in each plot), along two vertical profiles at distances of

1km (top row) and 2.6km (bottom row) obtained using (a) mean field ADVI, (b) PSVI, (c) BVI

and (d) sSVGD. The locations of these two profiles are represented by black dashed lines in Fig-

ure 1a. In each figure, two white lines show the prior bounds, and black and red lines show the

mean and true velocity values.



vertical profiles at horizontal locations of 1km (top row) and 2.6km (bottom row), re-449

spectively. The location of these two profiles are displayed by dashed black lines in Fig-450

ure 1a. The first profile (at a distance of 1km) is strategically placed in regions where451

the relative errors from mean field ADVI (Figure 3a) are higher, while the second one452

(at 2.6km) is centrally located within the imaging region. Red lines show the true ve-453

locity values and black lines show the mean velocity values obtained using different meth-454

ods. Overall, the marginal distributions in Figure 4a are narrower compared to those in455

Figures 4b to 4d, indicating lower posterior uncertainties akin to Figure 3. In the first456

row of Figure 4 between depths of 0.7km – 1 km and 1.3km – 1.8km, the true velocity457

values are excluded from the posterior distribution obtained using mean field ADVI, whereas458

those values correctly reside within the high probability region of the posterior pdfs ob-459

tained using the other three methods. These phenomena again prove that mean field ADVI460

tends to underestimate the posterior uncertainties and introduce biases into the inver-461

sion results. By including the main correlation information between adjacent grid cells,462

PSVI yields better inversion results that are highly consistent with two entirely indepen-463

dent methods. Therefore, we assert that the posterior standard deviations derived from464

PSVI are likely to be correct.465

Given that PSVI is designed to capture correlations between spatially close grid466

cells, we compare the posterior correlation coefficients between model parameters esti-467

mated using different methods. Figure 5 shows the covariance matrices for velocity val-468

ues within the white box in Figure 1a, obtained using the above four inversion methods.469

Mean field ADVI uses a transformed diagonal Gaussian distribution to approximate the470

posterior pdf and disregards correlations between model parameters, thus the posterior471

covariance matrix predominantly exhibits strong diagonal values corresponding to the472

variances of model parameters. By incorporating a specific (desired) correlation struc-473

ture into the variational distribution, the covariance matrix obtained using PSVI displays474

off-diagonal values representing correlations between different parameters, which are not475

observed from the results using mean field ADVI. Due to the use of a 5×5 correlation476

kernel (as represented by the white pluses in Figure 1d), we only include correlation in-477

formation between a given grid cell and cells within two layers of cells surrounding it.478

As a result, Figure 5b displays four off-diagonal blocks (two above and two below the479

diagonal elements). We observe negative correlations between neighbouring cells (in the480



first off-diagonal block below and above the diagonal values) and positive correlations481

between every second neighbouring cells (found in the second off-diagonal block).482

In Figures 5c and 5d, similar negative off-diagonal correlation blocks are observed483

in the covariance matrices obtained using BVI and sSVGD. This confirms that in this484

test we successfully capture the correct correlation information between adjacent cells485

by using PSVI. While there may be positive correlations with cells two layers apart, these486

are not visible; this may be because Figures 5c and 5d show a general ‘speckle’ of non-487

zero background correlation values that are absent in Figure 5b. In PSVI, we construct488

a sparse covariance matrix with specific non-zero off-diagonal elements, and set all other489

values to zero. This neglects correlations between locations that are spatially far away490

from each other. It should be noted that we do not know whether any of these values491

in Figures 5c and 5d are correct, since they do not match between the two panels. In the492

next section, we also prove that these non-zero background correlations play a less sig-493

nificant role in a simulation of a real-world decision-making process. So again we sug-494

gest that our implementation of PSVI has modelled the most prominent and consistent495

features of the correlation structure.496

Finally, we analyse the efficiency of the proposed method and compare its cost with497

other methods. As mentioned in Section 2, the number of hyperparameters that need498

to be optimised in PSVI is higher than that in mean field ADVI but is significantly lower499

than that in full rank ADVI. In our test, we find that the computational cost for opti-500

mising these variational parameters is much cheaper (almost negligible) compared to the501

cost used for forward and adjoint simulations in FWI. Therefore, the number of simu-502

lations serves as a good metric for the overall cost in this example.503

Table 1 summarises the number of simulations used in each tested method. The504

same simulation settings are used in mean field ADVI and PSVI (10,000 simulations con-505

sisting of 5000 iterations with 2 samples per iteration). For BVI, we use a mixture of 24506

diagonal Gaussian distributions to approximate the posterior distribution. Each com-507

ponent is updated by 2500 iterations with 2 samples per iteration. Note that the num-508

ber of simulations used to optimise each component for BVI is smaller than that for ADVI,509

as full convergence of each component is not necessarily required in BVI (X. Zhao & Cur-510

tis, 2024). For sSVGD, we run 5000 iterations with 24 samples, resulting in a total of511

120,000 forward evaluations for both BVI and sSVGD. In these two tests, relatively larger512



Figure 5. Covariance matrices for velocity values inside the white box in Figure 1a, calculated

using the inversion results from (a) mean field ADVI, (b) PSVI, (c) BVI and (d) sSVGD.



Table 1. Number of forward and gradient evaluations for mean field ADVI, PSVI, BVI, and

sSVGD. The values represent an indication of the computational cost of each method, as the

evaluation of data-model gradients in FWI is by far the most expensive part of each calculation.

Method Number of Gradient Evaluations

Mean field ADVI 10,000

PSVI 10,000

BVI 120,000

sSVGD 120,000

step sizes are used to speedup the convergence of BVI and sSVGD. However, they still513

remain one order of magnitude more computationally expensive than mean field ADVI514

and PSVI. In addition, Figure 2 shows that mean field ADVI and PSVI present roughly515

the same convergence rate given the same number of forward simulations. This verifies516

the statement that PSVI is almost as efficient as mean field ADVI. The latter is known517

to be a particularly inexpensive (yet biased) method for Bayesian inversion from previ-518

ous studies (X. Zhang & Curtis, 2020a; X. Zhao et al., 2021; Bates et al., 2022; Sun et519

al., 2023). On the other hand, the PSVI method improves the inversion accuracy and520

provides similar results compared to two accurate but more computationally demand-521

ing methods (BVI and sSVGD). Thus, the proposed method shown to be an efficient al-522

gorithm that has provided reliable uncertainty estimates.523

4 Interrogating FWI results524

The objective of scientific investigations is typically to answer some specific and525

high-level questions. Examples of these questions in the field of geophysics can be: How526

large is a subsurface structure? Is this a good location for carbon capture and storage (CCS)?527

Normally these questions are answered in a biased manner without evaluating uncertain-528

ties in the results. Interrogation theory provides a systematic way to obtain the least-529

biased answer to these questions (Arnold & Curtis, 2018). In this section, we solve two530

interrogation problems using the FWI results obtained above, to evaluate the potential531

practical value of the correlations estimated by PSVI.532



Figure 6. Mean velocity maps inside the white box in Figure 1a (corresponding to the true

velocity map displayed in Figure 1d), obtained using (a) mean field ADVI, (b) PSVI, (c) BVI

and (d) sSVGD. Black dashed boxes show the region where interrogation is performed.

Interrogation theory shows that the optimal answer a∗ to a specific question Q that533

has a continuous space of possible answers is expressed by the following expectation term:534

a∗ = E[T (m|Q)] =

∫
m

T (m|Q)p(m|dobs) dm, (7)

where optimality is defined with respect to a squared utility (Arnold & Curtis, 2018).535

The expectation is taken with respect to the posterior distribution p(m|dobs) of model536

parameter m. Term T (m|Q) is a target function conditioned on the question Q of in-537

terest. It is defined to map the high dimensional model parameter m into a low dimen-538

sional target function value t in a target space T, within which the question Q can be539

answered directly. In such cases the optimal answer in equation 7 is simply the expec-540

tation or mean of the posterior target function.541

4.1 Interrogation for reservoir size542

Figure 6 shows the inverted mean models of the velocity structure within the white543

box in Figure 1a, obtained through (a) mean field ADVI, (b) PSVI, (c) BVI, and (d) sSVGD.544

In each figure, we observe a low velocity body at the centre of the model section, out-545

lined by a dashed black box. In this first example, we treat this low velocity zone as a546

reservoir and use interrogation theory to estimate its size.547

Previously, volume-related questions were answered using seismic imaging results548

obtained from travel time tomographic inversion (X. Zhao et al., 2022) and FWI (X. Zhang549

& Curtis, 2022; X. Zhao & Curtis, 2024). Following these studies, we define a target func-550

tion T (m|Q) as the area of the largest continuous low velocity body, which converts a551

high dimensional velocity model into a scalar value, representing the estimated reservoir552



Figure 7. Posterior distributions of the low velocity reservoir size using FWI results obtained

from (a) mean field ADVI, (b) PSVI, (c) BVI and (d) sSVGD, respectively. Red lines denote the

true reservoir size, and black dashed lines denote the optimal size obtained using interrogation

theory.

area from a given posterior sample. Note that this process involves using a velocity thresh-553

old to distinguish between low and high velocities. We use the same data-driven method554

introduced in X. Zhao et al. (2022) to determine the least biased estimate of this thresh-555

old value. This involves selecting some cells that are almost definitely inside the low ve-556

locity anomaly, others that are almost definitely outside; we then choose the threshold557

value such that the expected probability of interior cells being below that value equals558

the expected probability of exterior cells being above that value, according to the pos-559

terior pdf. We are then able to calculate the target function for every posterior sample.560

Figure 7 displays the posterior distributions of the target function (reservoir size)561

using the four inversion results obtained previously. In this synthetic test, the true reser-562

voir area is precisely known from Figure 1d and is denoted by red lines in Figure 7. The563

optimal (least-biased) answer estimated from each inversion method corresponds to the564

mean value of the respective posterior target function (as per equation 7), and is displayed565

by a dashed black line in each figure. As discussed in previous sections, mean field ADVI566

tends to underestimate posterior uncertainties and provides biased inversion results. We567

see that, the corresponding interrogation results in Figure 7a are also biased: the opti-568

mal answer shows a significant error and is far from the true answer, and indeed the true569

answer is even excluded from the posterior distribution of the estimated volume. By con-570

trast, if we impose physically structured correlation information on model parameter,571

the optimal answer estimated by PSVI aligns closely with the true answer (Figure 7b).572

The posterior distribution of the target function also successfully captures bimodal un-573

certainties, similar to those obtained using BVI and sSVGD.574



4.2 Interrogation for CO2 storage575

In the second example, we apply the inversion results to answer a more realistic576

and practically interesting question. Assume the low velocity reservoir identified above577

is used in a carbon capture and storage (CCS) project and is injected with CO2. The578

injection of CO2 into a porous rock produces changes in petrophysical parameters of the579

rock, such as pore fluid phase and water saturation. These changes further result in vari-580

ations in seismic response of a reservoir, such as seismic velocity. Leveraging the FWI581

results, we can use these variations to monitor the injected CO2 in a subsurface CCS project582

by answering the question: what is the total volume of CO2 stored in this reservoir?583

For the characterisation of changes in seismic velocity due to physical parameters584

related to CO2, especially CO2 saturation (Sco2) in the reservoir, we first represent the585

P wave velocity vp of a saturated rock using the bulk modulus Ksat, shear modulus Gsat586

and density ρsat of the rock by587

vp =

√
Ksat + 4Gsat/3

ρsat
(8)

The bulk modulus can be calculated using the Gassmann equation (Gassmann, 1951):588

Ksat = Kd +
(1− Kd

Km
)2

ϕ
Kf

+ 1−ϕ
Km

− Kd

K2
m

(9)

where ϕ is the porosity, and Kd, Km and Kf are the bulk moduli of dry rock, solid ma-589

trix and pore fluid. The density of a saturated rock can be calculated as590

ρsat = (1− ϕ)ρm + ϕρf (10)

where ρm and ρf are the densities of grain matrix and fluid, respectively. The shear mod-591

ulus Gsat is not affected by fluid and only depends on the shear modulus of dry rock Gd592

Gsat = Gd (11)

Assuming the reservoir is saturated by two distinct fluids, water and CO2, the sat-593

uration values for water (Sw) and CO2 (Sco2) are constrained by the relation: Sw+Sco2 =594

1. Then, the bulk modulus and density of fluid can be calculated using the mixing rules595

ρf = Swρw + Sco2ρco2 (12)
596

Kf = Se
wKw + (1− Se

w)Kco2 (13)



Table 2. Rock physics parameters and their associated standard deviations (uncertainties)

estimated from the Sleipner field (Dupuy et al., 2017; Ghosh & Ojha, 2020).

Parameter Km Kd Kw Kco2 Gm Gd ρm ρw ρco2 ϕ

(GPa) (GPa) (GPa) (GPa) (GPa) (GPa) (kg/m3) (kg/m3) (kg/m3) (%)

Mean value 39.3 2.56 2.31 0.08 44.8 8.1 2664 1030 700 0.3

Uncertainty 1.41 0.08 0.07 0.04 0.81 0.24 3 20 77 0.02

where ρw, ρco2 , Kw and Kco2 are the densities and bulk moduli of water and CO2, and597

e is an empirical value (Brie et al., 1995). In this example, we use e = 11 as suggested598

by Kim et al. (2013). The injection of CO2 into a reservoir alters the saturation values599

Sw and Sco2 , changing Kf and ρf , and thus also vp through equations 8 to 13. There-600

fore, we can estimate Sco2 using P wave velocity values obtained from FWI.601

To simplify the problem, we assume that some of the aforementioned rock physics602

parameters follow Gaussian distributions. Their means and standard deviations are es-603

timated from the Sleipner field (Dupuy et al., 2017; Ghosh & Ojha, 2020; Strutz & Cur-604

tis, 2024), as listed in Table 2. Given these parameters, we build a direct relationship605

between P wave velocity vp and CO2 saturation Sco2 . The results are depicted by the606

joint probability distribution of vp and Sco2 displayed in Figure 8a. The red curve is the607

reference vp − Sco2 curve obtained using the mean values from Table 2. In Figure 8a,608

the posterior distribution of CO2 saturation for any P-wave velocity value can be obtained.609

For example, Figures 8b and 8c illustrate two such posterior pdfs corresponding to ve-610

locity values of 2045m/s (solid white line in Figure 8a) and 1840m/s (dashed white line).611

In Figure 8 we observe that seismic velocity is sensitive to small CO2 saturations (be-612

low 0.2) and is insensitive for larger Sco2 values (Kim et al., 2013).613

In the previous interrogation example, we defined the largest continuous low ve-614

locity body as the reservoir of interest for a posterior velocity sample. For each grid cell615

within the identified reservoir, we substitute its velocity value into Figure 8a to obtain616

the posterior pdf of CO2 saturation. Finally, the total (2D) CO2 volume Vco2 stored in617

the reservoir can be calculated by618

Vco2 =
∑

V ϕSco2 (14)



Figure 8. (a) Joint probability distribution of P wave velocity and CO2 saturation given

other parameters listed in Table 2. Red curve shows a one-to-one mapping between vp and Sco2

obtained using the mean values in Table 2, and the colour scale from red through green to dark

blue represents the probability distribution of velocity, given any value of CO2 and the Gaussian

distributions defined in Table 2. (b) and (c) display the posterior distributions of CO2 saturation

for velocity values of 2045m/s and 1840m/s, marked by solid and dashed white lines, respectively,

in (a).

where V is the (2D) volume (i.e. area) of each grid cell in FWI, and the summation is619

taken over all grid cells within the reservoir. This defines the target function for this in-620

terrogation problem.621

Figure 9 displays the posterior distributions of the estimated (2D) CO2 volume ob-622

tained using different inversion methods. Similar to the reservoir size displayed in Fig-623

ure 7, mean field ADVI provides rather biased interrogation results since it tends to un-624

derestimate posterior uncertainties. In contrast, the other three methods provide sim-625

ilar (and possibly correct) posterior distributions with two distinct modes. The three es-626

timated answers are close to the true value, which lies inside the high probability region627

of the posterior distributions. Figures 7 and 9 prove that PSVI provides accurate un-628

certainty information that can be used to answer real-world questions correctly. More-629

over, the non-zero background correlations ignored by PSVI (displayed in Figures 5c and630

5d) are shown to be less important for post-inversion decision-making.631

5 Discussion632

PSVI can be considered as an intermediate approach between mean field ADVI and633

full rank ADVI (Kucukelbir et al., 2017). Mean field ADVI neglects all correlations to634

reduce computations and thus strongly underestimates posterior uncertainties. Full rank635

ADVI includes full correlation information between model parameters but is computa-636



Figure 9. Posterior distributions of the (2D) CO2 volume stored in the low velocity reservoir,

calculated using (a) mean field ADVI, (b) PSVI, (c) BVI and (d) sSVGD. Red lines denote the

true CO2 volume, and black dashed lines denote the least-biased CO2 volume estimated using

interrogation theory.

tionally intractable for high dimensional problems such as 2D or 3D FWI. PSVI, with637

its ability to capture structured correlations, strikes a balance between efficiency and ac-638

curacy. In the context of Bayesian FWI, where problems are often high dimensional and639

non-linear, PSVI offers improved inversion results while maintaining a computational cost640

comparable to mean field ADVI. For inverse problems with lower dimensionality such641

that modelling a full covariance matrix is affordable, full rank ADVI could be a more642

suitable choice. When dealing with problems with strong multimodality, these Gaussian-643

based methods are not suitable. It is then advisable to use other variational methods such644

as normalizing flows (Rezende & Mohamed, 2015), BVI (F. Guo et al., 2016; Miller et645

al., 2017) or deterministic or stochastic SVGD (Liu & Wang, 2016; Gallego & Insua, 2018).646

These methods have shown effectiveness in solving multimodal problems, albeit at the647

cost of a larger number of forward simulations. The No Free Lunch theorem (Wolpert648

& Macready, 1997) can be paraphrased as: no method is better than any other method649

when averaged across all problems. There is therefore no possibility to find a ‘best’ method650

in general. Nevertheless, individual classes of problems may have more or less efficient651

algorithms, so having a variety of methods allows for tailored decisions to be based on652

the nature of the problem to be addressed.653

In the 2D FWI example, we use a 5×5 correlation kernel as displayed in Figure 1d.654

To investigate the impact of the correlation kernel size on inversion results, we conduct655

an additional test using an 11×11 kernel. The mean, standard deviation and relative er-656

ror maps of the obtained posterior distribution are displayed in Figure 10a, which re-657

veal nearly identical features, such as the continuous layers discussed previously, when658



Figure 10. Inversion results obtained from PSVI using an 11×11 correlation kernel. (a)

Mean, standard deviation and relative error maps. (b) Covariance matrix inside the white box in

Figure 1a.

compared to those obtained using the 5×5 correlation kernel (Figure 3b). Figure 10b dis-659

plays the posterior covariance matrix, which as expected presents more non-zero off-diagonal660

covariance blocks than the 5×5 kernel (Figure 5b). The covariance magnitudes decay661

from the main diagonal block, and become relatively small from the second off-diagonal662

block. However, modelling these additional covariances requires more parameters to con-663

struct the matrix L. In addition, from Figures 5c and 5d, the covariance matrices cal-664

culated using BVI and sSVGD exhibit only one prominent off-diagonal block, probably665

because the non-linearity of FWI makes it challenging to capture a broader correlation666

structure with embedding prior knowledge of the type of structure sought. Therefore,667

we conclude that the 5×5 correlation kernel used above is a reasonable choice that trades668

off both accuracy and efficiency.669

In real applications, if other prior knowledge about the subsurface structure is avail-670

able (e.g., from seismic travel time tomography), we can design specific correlation ker-671

nels to capture target-oriented correlation information. Furthermore, the underlying prin-672

ciples of PSVI can be adapted to address temporal problems such as time-lapse (4D) seis-673

mic monitoring in which we might expect spatial regularity in the location of injected674

fluids, or in earthquake forecasting where correlations between seismic events over time675

might be captured effectively.676



PSVI is not merely an extension of mean field ADVI as proposed by Kucukelbir677

et al. (2017). In fact it can be used to extend a variety of variational methods to enhance678

their accuracy and efficiency. For example, in BVI the physically structured approach679

in PSVI can replace diagonal Gaussians in modelling the Gaussian component distribu-680

tions used in X. Zhao and Curtis (2024). This substitution is likely to improve the ac-681

curacy of each component while maintaining similar computational efficiency, potentially682

leading to a reduction in the required number of components and overall computational683

cost for BVI.684

Similar to BVI, PSVI produces an analytic posterior expression. Therefore, sav-685

ing and loading inversion results, generating new posterior samples, and sharing the pos-686

terior distribution with others post inversion is simple (Scheiter et al., 2022). The pro-687

posed method can also be extended to other general Gaussian-based methods such as688

Gaussian processes (Ray & Myer, 2019; Valentine & Sambridge, 2020a, 2020b; Ray, 2021;689

Blatter et al., 2021) and mixture density networks (Bishop, 1994; Devilee et al., 1999;690

Meier et al., 2007; Shahraeeni & Curtis, 2011; Shahraeeni et al., 2012; Earp & Curtis,691

2020; Hansen & Finlay, 2022; Bloem et al., 2023), to capture desired correlation struc-692

tures. Interestingly, special neural network structures are designed for the same purpose,693

such as the coupling layer (Dinh et al., 2015, 2017; Durkan et al., 2019; X. Zhao et al.,694

2021; X. Zhang & Curtis, 2021b) and the autoregressive layer (Kingma et al., 2016; Pa-695

pamakarios et al., 2017; Huang et al., 2018; De Cao et al., 2019; Levy et al., 2022). How-696

ever, they often come with a higher number of hyperparameters, making PSVI an at-697

tractive and practical choice.698

Considering that solving the forward function in 2D FWI is not hugely expensive,699

we use a relatively smaller step size and more iterations during variational inversion to700

ensure that the optimisation process has converged stably. Figure 2 illustrates that the701

negative ELBOs stop decreasing after 2500 - 3000 iterations, indicating that the full 5000702

iterations used here might be redundant. For higher dimensional problems such as 3D703

FWI, we can potentially use larger step sizes with fewer iterations, thereby optimising704

the balance between computational resources and convergence speed.705

The two interrogation examples presented here underscore the significance of es-706

timating accurate uncertainties, even if that demands a substantial increase in compu-707

tational input. Biased uncertainty information (such as that provided by mean field ADVI)708



leads to incorrect answers about Earth properties. Therefore, while obtaining an accu-709

rate mean velocity model in Bayesian inversion, or just the best-fit model in determin-710

istic inversion, may appear useful, they are far from sufficient for an unbiased and quan-711

titative interpretation of the true Earth. The pursuit of not only precision in mean ve-712

locity models but also robust and reliable uncertainty estimates is important for a com-713

prehensive understanding of subsurface structures.714

In the first interrogation example, we estimated the size of a subsurface reservoir,715

where we use relative velocity values and classify them as either low or high based on716

a velocity threshold value (X. Zhao et al., 2022). In the second example, we take the ab-717

solute velocity values and convert them into CO2 saturation estimates using a non-linear718

rock physics relationship. If the inversion is performed with higher frequency data, the719

inverted velocity values would be better constrained and become more accurate. Con-720

sequently, the posterior distribution of the estimated CO2 volume can be improved. In721

future, 3D Bayesian FWI, together with more advanced reservoir simulation and rock722

physics inversion techniques, can facilitate more sophisticated and realistic interrogation723

applications in subsurface carbon capture and storage, or other subsurface projects. This724

comprehensive approach, enriched with full uncertainty assessments, could significantly725

contribute to our understanding and improve decision-making in the context of such en-726

deavours.727

6 Conclusion728

In this work, we propose physically structured variational inference (PSVI) to per-729

form 2D Bayesian full waveform inversion (FWI), in which a physical structure is im-730

posed on the uncertainties in variational distributions based on prior information about731

imaging problem solutions. In our application, correlations between specific pairs of spa-732

tial locations are parametrised and inferred during inversion. Thus, we are able to cap-733

ture the main correlations with a desired structure in a computationally efficient man-734

ner. We apply the proposed method together with three other variational methods: mean735

field automatic differentiation variational inference (ADVI), boosting variational infer-736

ence (BVI) and stochastic Stein variational gradient descent (sSVGD), to a synthetic FWI737

example. This demonstrates that PSVI yields accurate first-order statistical information,738

including the mean and standard deviation maps as well as the marginal distributions,739

which are all consistent with those obtained using BVI and sSVGD. It also provides other740



second-order statistical information, specifically the posterior covariances. In addition,741

the obtained full uncertainty information is verified through the application of the in-742

version results to two post-inversion interrogation problems: one estimating a subsur-743

face reservoir size and another estimating CO2 volume in a carbon capture and storage744

project. In our examples, PSVI exhibits nearly the same computational efficiency as mean745

field ADVI while enhancing the inversion accuracy significantly. This opens the possi-746

bility that 3D probabilistic FWI with full uncertainty estimation can be performed both747

efficiently and accurately.748

7 Open Research749

Software used to perform variational inference can be found at Pyro website (https://750

pyro.ai/, Bingham et al., 2018) and in X. Zhang and Curtis (2023). Software used to751

perform Automatic Differentiation can be found at PyTorch website (https://pytorch752

.org/, Paszke et al., 2019).753
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