
P
os
te
d
on

28
M
ay

20
24

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
es
so
ar
.1
71
69
07
75
.5
23
58
83
5/
v
1
—

T
h
is

is
a
p
re
p
ri
n
t
a
n
d
h
a
s
n
o
t
b
ee
n
p
ee
r-
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

Soil Moisture Cloud Precipitation Feedback in the Lower

Atmosphere from Functional Decomposition of Satellite

Observations

Yifu Gao1, Clement Guilloteau2, Efi Foufoula-Georgiou1, chonggang xu3, Xiaoming Sun4,
and Jasper A. Vrugt1

1University of California, Irvine
2UC Irvine
3lanl
4Los Alamos National Laboratory

May 28, 2024

Abstract

The feedback of topsoil moisture (SM) content on convective clouds and precipitation is not well understood and represented

in the current generation of coupled cloud physics and land-surface models. Here, we use functional decomposition of satellite-

derived SM (SMAP/L4) and cloud vertical profiles (CVP: GPM/DPR/L2A) in the central US to quantify the relationship

between SM and the vertical distribution of cloud water. High-dimensional model representation disentangles the contributions

of SM and other land-surface and atmospheric variables to the CVP. Results show the sign and strength of this feedback varies

with cloud height and time lag and displays a large spatial variability. Positive anomalies in the antecedent 7-hour SM and land-

surface temperature can increase reflectivity up to 4 dBZ in the lower atmosphere (1-3 km above the surface). The presented

approach brings new insights into observational understanding of SM-precipitation feedback and possesses the potential for

diagnosing cloud models regarding land-atmosphere coupling representation.
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1. We present a CPU-friendly functional decomposition of satellite-measured soil moisture (SM) and
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in the context of land-atmosphere coupling
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Abstract1

The feedback of topsoil moisture (SM) content on convective clouds and precipitation is not well un-2

derstood and represented in the current generation of coupled cloud physics and land-surface models.3

Here, we use functional decomposition of satellite-derived SM (SMAP/L4) and cloud vertical profiles4

(CVP: GPM/DPR/L2A) in the central US to quantify the relationship between SM and the vertical5

distribution of cloud water. High-dimensional model representation disentangles the contributions of6

SM and other land-surface and atmospheric variables to the CVP. Results show the sign and strength7

of this feedback varies with cloud height and time lag and displays a large spatial variability. Positive8

anomalies in the antecedent 7-hour SM and land-surface temperature can increase reflectivity up to 49

dBZ in the lower atmosphere (1-3 km above the surface). The presented approach brings new insights10

into observational understanding of SM-precipitation feedback and possesses the potential for diagnosing11

cloud models regarding land-atmosphere coupling representation.12

Plain Language Summary13

This paper focuses on the observational analysis of how soil moisture (SM) influences the vertical cloud-14

water distribution throughout the day. By analyzing data from Soil Moisture Active Passive (SMAP)15

and Dual-frequency Precipitation Radar (DPR), we gain insights into how antecedent SM levels impact16

cloud-water reflectivity at different heights in the lower atmosphere. Our data-driven approach produces17

spatial maps of SM’s contribution to cloud reflectivity and rainfall in the central US conditioned on cloud18

height and SM time lag. The results will help diagnose coupled land-atmosphere models.19

2



1 Introduction20

The feedbacks between soil moisture (SM) and precipitation play a critical role in regulating regional21

hydroclimatic variability. Such feedbacks are governed by a plethora of variables and processes, such as22

(variations in) land surface temperature (Koster et al., 2006), energy partitioning (Golaz et al., 2001;23

Fast et al., 2019; Sakaguchi et al., 2022), planetary boundary layer (PBL) development (Ek & Holtslag,24

2004; Han et al., 2019) and the initiation of convective clouds and precipitation (Ferguson & Wood,25

2011; Taylor et al., 2011; Cioni & Hohenegger, 2017). These feedbacks take place across a continuum26

of spatiotemporal scales, spanning distances from several to thousands of kilometers and time span of27

days to seasons (Trenberth, 1999; Duerinck et al., 2016; Liu et al., 2022). Moreover, SM-precipitation28

feedbacks exhibit substantial regional variability in both their sign and magnitude as a result of the large29

sensitivity of evapotranspiration and atmospheric conditions to SM and latent heat fluxes, respectively30

(Guo et al., 2006). In this paper, we focus our attention on diurnal SM-cloud-precipitation feedbacks,31

abbreviated SMCPF, which control in part the vertical cloud-water distribution, thereby influencing32

weather conditions (Koster et al., 2004) and regional hydroclimatology (Krakauer et al., 2010; Yin33

et al., 2014; Ford et al., 2023). Future climate projections suggest further that SMCPFs may play an34

increasing role in determining changes in mean temperature and extremes as a result of larger SM deficits35

under higher evaporative demands (Dirmeyer et al., 2013; Seneviratne et al., 2013; Taylor, 2015).36

Given the importance of the SMCPF in regulating local and regional weather, much research has37

been devoted to estimating its sign, causality, and physical linkage. That research may be divided into38

simulation-based analysis (Schär et al., 1999; Findell & Eltahir, 2003a; G. Wang et al., 2007; Hohenegger39

et al., 2009; Schlemmer et al., 2012; Tawfik et al., 2015; Gentine et al., 2013), observation-based studies40

(Taylor & Ellis, 2006; Santanello et al., 2009; Taylor et al., 2010; Ferguson & Wood, 2011; Taylor41

et al., 2011; Ford, Rapp, Quiring, & Blake, 2015; Guillod et al., 2015) and a combination thereof42

(Seneviratne et al., 2006; Santanello et al., 2013; Miralles et al., 2014; Spennemann et al., 2018; Baker,43
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Castilho de Souza, et al., 2021; Baker, Garcia-Carreras, et al., 2021). Although numerical models of44

land-atmosphere interactions have advanced considerably in recent decades, the diurnal impact of SM45

on cloud formation and composition is still not particularly well understood. The mechanisms governing46

the sign and strength of the simulated SMCPFs are subject to a large uncertainty depending for example47

on the choice of boundary conditions (Hohenegger et al., 2009) and sub-grid scale process representation48

(Deardorff, 1980; Thompson et al., 2004, 2008). In observational studies, on the other hand, it is difficult49

to filter out the effects of synoptic variability. Moreover, in the absence of high-quality spatiotemporal50

measurements of SM and cloud vertical profiles, past studies have mainly focused on how (gradients51

of) SM affect convection initiation, the PBL height, and precipitation probability (Frye & Mote, 2010;52

Findell et al., 2011; Taylor, 2015; Su & Dickinson, 2017; Graf et al., 2021; Yuan et al., 2020; Ford et al.,53

2023) without recourse to mesoscale diurnal relationships between antecedent SM and the cloud water54

distribution. Advances in our understanding of SM-cloud relationships should improve the diagnosis of55

weather and climate models and enhance the accuracy of their future projections (Williams, 2019).56

Fortunately, remote-sensing data products of SM and the cloud vertical profile from polar-orbiting57

Earth-observing satellites have advanced considerably in the past decades and have the potential to58

substantially advance our understanding of SM-cloud-precipitation relationships. Specifically, the 3-59

hr/9 km Soil Moisture Active Passive (SMAP/L4) and 1.5-hr/5 km Global Precipitation Measurement60

Dual-Frequency Precipitation Radar (GPM/DPR/L2A) provide high-resolution estimates of the topsoil61

moisture content and the vertical distribution of hydrometeors within and above the PBL, respectively,62

at a global coverage. Many studies have confirmed the accuracy and reliability of SMAP/L4 (X. Zhang63

et al., 2017; Reichle et al., 2017; L. Zhang et al., 2017; Koster et al., 2018; Tavakol et al., 2019) and64

GPM/DPR/L2A (Lasser et al., 2019; Pejcic et al., 2020; Liao & Meneghini, 2022) data products.65

In this paper, we demonstrate how functional decomposition of a large database of SMAP/L4 surface66

SM and GPM/DPR/L2A cloud vertical profiles (CVP) provides valuable insights into the relationship67

between antecedent SM and cloud water distribution and reflectivity in the lower troposphere. Specif-68
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ically, we use high-dimensional model representation (HDMR) (Li & Rabitz, 2010; Li & Rabitz, 2012;69

Gao et al., 2023) to disentangle the intricate and dynamic web of land-surface and atmospheric vari-70

ables and interactions that give rise to the SMCPF. HDMR is a generalization of the analysis of variance71

(ANOVA) to dependent input factors and uses a superposition of linear multiples of first-, second-, and72

higher-order component functions to parse out the structural and correlative contributions of SM and73

other land-surface variables to the CVP. The expansion coefficients of the component functions are de-74

termined from a training data set of collocated SMAP/L4 and GPM/DPR/L2A measurements across75

the central US using linear least squares and D-MORPH regression (Li & Rabitz, 2010). We are mainly76

interested in the first-order component functions as they quantify the direct contribution of each land-77

surface variable to the CVP. The method is CPU-efficient and yields spatial maps of the SM contribution78

to cloud reflectivity and rainfall for our study region as a function of cloud height and SM time lag.79

This paper is organized as follows. Section 2 discusses the SMAP/L4 SM and GPM/DPR/L2A80

satellite products and study region. Section 3 summarizes the data preprocessing steps and HDMR81

functional decomposition. Section 4 presents the results of our analysis and documents the relationship82

between SM and the CVP as a function of cloud height, time lag, and spatial coordinates in our study83

region. Section 5 summarizes our main findings and presents suggestions for future work.84

2 Data and Experimental Region85

We use the publicly available 3-hour/9 km SMAP/L4 and 1.5-hour/5 km GPM/DPR/L2A data products86

and single out samples from our study region in the warm seasons (April to October) of 2016 to 201987

with convective precipitation in the afternoon hours until midnight (14:00-24:00 CDT). The altitude88

spans 1 to 5 km, with the 1-3 km zone identified by Findell and Eltahir (2003a) as a critical region89

for convective triggering, and in the 3-5 km zone above this region resides the free atmosphere. We90

succinctly discuss the SMAP/L4 and GPM/DPR/L2A products and our study region. A more detailed91
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description of the satellite data products is found in Text S1.92

Figure 1: August 7, 2016: (a) SMAP/L4 surface SM (3-hour, 9 km, 19:30 CDT) over CONUS and
GPM/DPR/L2A measured (b) surface precipitation (1.5-hour, 5 km, 21:51:10-23:23:44 CDT) and (c)
cloud reflectivity profiles (97.5◦W - 99.5◦W, 36.7◦N) for our study region (red rectangle) in the central
United States. Graph (d) in the bottom right corner displays the number of samples n we have left at
each DPR measurement height after data preprocessing.

The SMAP mission Level 4 SM (L4 SM) product gives 3-hourly estimates of surface and root-zone93

SM at 9-km spatial resolution and global coverage (Reichle et al., 2015). The 3-hour time-averaged 9-94

km geophysical data product (SPL4SMGP) provides estimates of the wetness (0-1) of the top soil layer95

(0-5 cm) (see Figure 1a) and other land-surface variables. Hourly estimates of low-level atmospheric96

temperature (AT) and total precipitable water (TPW) from 0.25◦ × 0.25◦ ERA-5 reanalysis convey the97

stability and humidity of the antecedent atmosphere and are precursors to mesoscale convective events98

(Sherwood, 1999; Findell & Eltahir, 2003a; Holloway & Neelin, 2010). In our functional decomposition,99

we use the mean AT for the critical region, 1-3 km above the soil surface, which roughly corresponds100

6



to levels Psurf − 100 and Psurf − 300 hPa. Section 3.2 discusses in more detail our selection of auxiliary101

land-surface and atmospheric variables.102

The GPM/DPR/L2A product (GPM 2ADPR) provides a swath of precipitation profiles (see Figure103

1b) every 1.5 hours at a spatial resolution of 5 km and vertical increment of 125 m. The major data104

fields zFactorFinal (dBZ) and typePrecip provide vertical profiles of the Ka-band cloud reflectivity105

factor (see Figure 1c) and an 8-digit precipitation type ID, for individual pixels. We only use samples106

classified as convective precipitation and work with 250-m averaged Ka-band cloud reflectivities to107

suppress measurement errors.108

Our study region in Figure 1a (95◦W-105◦W, 32◦N-40◦N) is a hot spot for SM-precipitation coupling109

(Findell & Eltahir, 2003b; Koster et al., 2004; Ford et al., 2023) with large spatial variability in climato-110

logical sign and strength of the SMCPF (Frye & Mote, 2010; Findell et al., 2011; Su & Dickinson, 2017;111

Yuan et al., 2020; Ford et al., 2023). This central region of the US offers an excellent demonstration112

of our method and possibility to benchmark the inferred patterns of the SMCPF sign and magnitude113

against literature findings.114

3 Method115

3.1 Data Preprocessing116

We extract the GPM/DPR/L2A swaths that overpass our study region and use only those samples clas-117

sified as convective precipitation in the ’typePrecip’ data field. This type classification is an important118

byproduct of DPR instruments and crucial to an accurate characterization of the antecedent atmosphere119

using ERA-5 reanalysis AT and TPW data. To avoid water from interception evaporation, we discard120

all samples which received more than 0.5 mm of precipitation in the 18 hours preceding the DPR’s121

scan according to the Multi-Radars Multi-Sensors (MRMS) Gauge-corrected Quantitative Precipitation122

Estimates (J. Zhang et al., 2016). This should also reduce the impacts of large-scale synoptic systems123
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(Findell et al., 2011). Next, we collocate SMAP/L4 and ERA-5 data and GPM/DPR/L2A measured124

cloud profiles using linear interpolation and time lags ∆t = tdpr − tsmap of 7 and 10 hours. In doing so,125

we allow for a 2-hour grace period so as to maximize the sample size. For example, SM data with a126

time lag 6.01 ≤ ∆t ≤ 7.99 are pooled together in the 7-hour time lag. Figure 1d displays the number127

of DPR-measured cloud reflectivities n for the months of April-October (2016-2019) as a function of128

cloud height. Not all heights have the same sample size due to for instance the absence of clouds, radar129

detection threshold, and path attenuation (Iguchi et al., 2010). The pooled samples of April-October130

guarantee a sufficiently large sample size at each cloud height. Next, we decompose this final collection of131

SMAP/L4 - GPM/DPR/L2A samples using HDMR and expand the DPR-measured cloud reflectivities132

at each separate cloud height as a sum of first- and higher-order structural and correlative contributions133

of SM and the auxiliary variables.134

3.2 High-Dimensional Model Representation135

SMCPFs are notoriously challenging to observe and study outside of model environments (Ford et136

al., 2023), hence innovative analytical approaches are required to study them (Koster et al., 2004;137

Seneviratne et al., 2006; Findell et al., 2011; Berg et al., 2013; Guillod et al., 2014; Knist et al., 2017).138

HDMR is particularly appealing in the present context as it expresses all variable interactions in a139

system in a hierarchical order. This allows us to quantify the individual contribution of SM to the CVP.140

Suppose we group all land-surface and atmospheric variables that govern the cloud reflectivity y =141

f(x) at a given cloud height in a d×1 vector x = (x1, . . . , xd)
⊤. HDMR builds on the finite multivariable142

function expansion of Sobol′ (1993) and decomposes the output, y = f(x), of the scalar-valued square-143

integrable function, f ∈ L2(Kd), on the d-dimensional unit cube, Kd = {x|0 ≤ xi ≤ 1; i = 1, . . . , d}, into144

summands of component functions, fi(xi), fij(xi, xj), . . . , f12...d(x1, x2, . . . , xd), to yield (Li & Rabitz,145
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2012)146

y = f0 +

n1∑
i=1

fi(xi) +

n2∑
1≤i<j≤d

fij(xi, xj) +

n3∑
1≤i<j<k≤d

fijk(xi, xj, xk) + · · ·+ f12...d(x1, x2, . . . , xd) + ϵ, (1)

where f0 is the mean output and the residual ϵ ∼ N (0, σ2
ϵ ) is assumed to be zero-mean normally147

distributed with a constant variance, σ2
ϵ . The n1 = d first-order functions, fi(xi), characterize the indi-148

vidual effects of the input variables on the model output. The n2 = d(d− 1)/2 second-, fij(xi, xj), n3 =149

d(d− 1)(d− 2)/6 third-, fijk(xi, xj, xk), up to the dth-order component functions, f12...d(x1, x2, . . . , xd),150

characterize the cooperative contribution of two, three, up to all land-surface variables combined to the151

cloud reflectivity y. As third- and higher-order independent and cooperative effects are usually negligible152

in most physical systems (Rabitz & Aliş, 1999; Kucherenko et al., 2011; H. Wang et al., 2017; Falchi153

et al., 2018; Shereena & Rao, 2019; Gao et al., 2023), our function expansion of the CVP considers only154

the n12 = n1 + n2 first- and second-order component functions155

y = f0 +

n12∑
u=1

fu + ϵ, (2)

where subscript u is the index of the component function rather than its order as in equation (1). Thus,156

f1, . . . , fd, signify the first-order component functions and fd+1, . . . , fd+d(d−1)/2 correspond to the second-157

order component functions. In our implementation, f0 signifies the mean reflectivity in units of dBZ158

and the component functions fu quantify the individual and bivariate contributions of the land-surface159

and atmospheric variables to the cloud reflectivity.160

The component functions must satisfy hierarchical orthogonality to exactly delineate the independent161

(structural) and cooperative (correlative) contributions of individual and groups of input variables to y162

(Li & Rabitz, 2012; Gao et al., 2023). This is enforced through a so-called relaxed vanishing condition163

(Hooker, 2007)164 ∫ 1

0

wu(xu)fu(xu)dxi = 0 for all u ⊆ {1, . . . , d} and i ∈ u, (3)

where u is a subset of superset U = {1, . . . , d}, xu denote the dimensions u of the input vector and165
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wu(xu) signifies the probability density function (pdf) of xu. For a second-order component function,166

the vanishing condition of equation (3) dictates that fij(xi, xj) should be orthogonal to its lower order167

component functions, fi(xi) and fj(xj). The component functions are constructed using the extended168

bases orthonormalized polynomials and associated linear expansion coefficients. D-MORPH regression169

(Li & Rabitz, 2010) enforces hierarchical orthogonality of the component functions in pursuit of the170

optimum expansion coefficients. This method is described in Text S2.171

The statistical significance of a given component function is readily determined by comparing the172

performance of the function expansion with and without this component function. Suppose SSR1 is the173

sum of squared residuals of the function y = y0 +
∑d−1

i=1 fi(xi) with l1 = (d− 1)p expansion coefficients174

and SSR is the same quantity for the same function y = y0 +
∑d

i=1 fi(xi) expanded with fd(xd) and175

l = l1 + p coefficients. To reject the null hypothesis, “H0 : fd(xd) is insignificant”, the F -statistic176

F =
(SSR1 − SSR)/(l − l1)

SSR1/(n− l1)
, (4)

must exceed Fcrit = F−1
F (1− α|l1 − l, n− l1) where F−1

F (pα|ν1, ν2) is the quantile function of the Fisher-177

Snedecor distribution with ν1 and ν2 degrees of freedom at the critical value pα = 1−α and significance178

level α ∈ (0, 1). The magnitude of the F -statistic conveys the importance of fd(xd) in explaining the179

CVP and, thus, can be interpreted as a measure of the feedback strength.180

Now that we have finished discussing the building blocks of our HDMR data decomposition method,181

we are left with the selection of land-surface and atmospheric variables (x2, . . . , xd) which complement182

SM, x1, in explaining the measured cloud reflectivities, y. We tested many different variables in our183

analysis and settled on land-surface temperature (LST), leaf area index (LAI), atmospheric temperature184

(AT), and total precipitable water (TPW) as auxiliary variables. This equates to a 5 × 1 input vector185

x = (x1, . . . , x5)
⊤ = (SM,LST,LAI,AT,TPW)⊤. LAI and LST modulate evapotranspiration under186

SM-limited or energy-limited regimes (Seneviratne et al., 2010) and AT and TPW convey information187

for the SMCPF at synoptic scales about atmospheric preconditioning (Ford, Quiring, et al., 2015; Tuttle188
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& Salvucci, 2017). This explicit treatment of atmospheric conditions can only raise our confidence in189

any causal links that are found between SM and CVP. Figure S1 presents a correlogram of the five input190

variables. Note that we do not consider variables such as the latent heat flux. This derivative product191

depends on SM, hence would only trouble our inference of the relationships and variables that govern192

the CVP.193

4 Results194

4.1 Cloud Height and Temporal Lag of SMCPF195

Figure 2 displays the F -statistics of the (a) SM, (b) LST, and (c) LAI component functions as a function196

of cloud height (1 to 5 km) and time lag (∆t = 7 and 10 h). The solid line denotes the mean of 1,000197

bootstrap trials each with a different selection of r = 0.75n training samples and the light-colored regions198

portray the associated 95% confidence intervals. The dashed black line in each graph corresponds to the199

critical F -value at each cloud height using α = 0.05. The value of the F -statistic is not constant but200

altitude dependent. The influence SM, LST and LAI exert on the CVP is dependent on cloud height.201

In case of SM in panel (a) this equates to a height-dependent SMCPF with a bottom-heavy relationship202

between SM and CVP. The SMCPF is most pronounced in the lower atmosphere at about 1-3 km above203

the surface. Above this level, the impact of SM on the CVP decreases rapidly with altitude. As we will204

shown in Section 4.2, the first-order SM component function f1(x1) displays a positive feedback due to205

a wet soil. A higher SM implies a larger evaporative fraction, promoting moderate PBL growth (see206

Figure S2) and moisture accumulation (Yin et al., 2015). The CVP at higher altitudes is less dependent207

on surface SM and controlled more by the upper atmosphere at levels of about 3 km and beyond208

(Findell & Eltahir, 2003a). Furthermore, a capping inversion layer can inhibit the upward movement209

of warm, moist air from the surface to the free atmosphere (Findell & Eltahir, 2003b). Indeed, the210

HDMR-inferred relationship between SM and CVP as articulated by the F -statistic is corroborated211
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by simulation analyses (Findell & Eltahir, 2003a; Koukoula et al., 2019). This physical underpinning212

inspires confidence in the ability of our methodology to back out SM-cloud feedbacks at different heights.213

The strong agreement in the results of the two time-lags is a result of SM autocorrelation. The ∆t = 7214

hour time lag displays the largest influence on the CVP at all altitudes but the largest two cloud heights215

near 5 km.216

Figure 2: Vertical profiles of the mean F -statistic of the first-order component functions of (a) SM:
f1(x1), (b) LST: f2(x2), and (c) LAI: f3(x3) computed from 1,000 bootstrap iterations. Solid blue and
red lines differentiate between temporal lags (∆t = 7 and 10 hours) and black dashed lines represent
the critical value at significance level α = 0.05, Fcrit. The light blue and red regions correspond to the
95% bootstrap confidence intervals.

Compared to SM, LST exerts control on CVP across a wider vertical range (in Figure 2b), whose217

F -statistic shows a bimodal relationship with height, peaking close to the surface with ∆t = 7 hours218

and at a higher altitude of 3.5-4.0 km with ∆t = 10 hours. As discussed in the next section, f2(x2)219

exhibits a positive correlation with LST, suggesting that positive LST anomalies (or dry soil) play a220

crucial role in shaping CVP. Therefore, the fact that low-level (1.0-2.5 km) CVP is responsive to LST221

comes in qualitative agreement with the pathway of negative SMCPF, driven by the effect of positive222

LST anomalies in catalyzing higher sensible heat flux, convective triggering potential (CTP), and rapid223

PBL growth. We further support this finding by comparison with the ERA5 reanalysis PBL height in224

Figure S2. Such observed response of PBL height to wet and dry surface exhibits strong consistency225

with prior simulation-based and observational studies (Findell & Eltahir, 2003a; Xu et al., 2021; Ford226
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et al., 2023), which indicates two mechanisms for initiating convection: significant moistening of the227

PBL (over wet soil) and rapid growth of the PBL (over dry soil). In addition, the predictability of228

LST decreases first at 3.0 km and increases again at 3.5-4.0 km. The reason why LST is significant at229

a higher altitude may be twofold. On the one hand, the LST anomalies favor strong CTP where air230

parcels can overcome convective inhibition and reach the level of free convection (Taylor et al., 2012).231

If we intuitively consider f2(x2) the contribution of near-surface air to the cloud reflectivity conditioned232

on a specific height and time lag, its F -statistic (in Figure 2b) somehow approximates the dynamics of233

the thermal updraft such that the largest F -statistic value shifts from ∆t = 7 hours to ∆t = 10 hours234

with height changing from 1.0 km to 5.0 km. On the other hand, local LST may also reflect certain235

atmospheric conditions such as the melting layer, which typically resides between 3.0-5.0 km above the236

surface during pre-monsoon and monsoon seasons in the central United States (Song et al., 2021).237

The F -statistic of the LAI component, f3(x3), informs its poor predictive power in the lower at-238

mosphere, primarily due to the governing effects of SM, LST, and AT (see Figure S3) on initiating239

convection and the subsequent formation of cloud/precipitation. In contrast, the modest, albeit statisti-240

cally significant influence of LAI in higher-level CVP can be attributed to its seasonal variations (Savoy241

& Mackay, 2015) and correlation with the atmospheric conditions (see Figure S1). In Text S3 and Fig-242

ures S3-S4, we elaborate on our findings in terms of atmospheric controls on CVP which demonstrate a243

comparable physical underpinning with the land-surface variables.244

4.2 The SMCPF across Space245

In this section, we focus our attention on the spatial pattern of the SMCPF within the study region.246

We reiterate that we conduct functional decomposition of the cloud reflectivity using all the samples of247

April-October (2016-2019) for a specific time lag and cloud height, to guarantee an adequate number248

of samples and storm events. Our goal here is to present a 4-year averaged spatial distribution of249

the derived component functions and determine locations of positive and negative SMCPF rather than250
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focusing on interannual and/or cross-season variations.251

Figure 3: The central United States (95◦W-105◦W, 32◦N-40◦N) with (a) antecedent 7-hr SMAP/L4
soil wetness (-) collocated at coordinates of the GPM/DPR/L2A samples and (b) first-order component
function of soil wetness, f1(x1) (dBZ), evaluated at approximately 2.0 km height. Solid black lines
delineate the state borders while dashed black and grey lines depict the negative feedback and transitional
regions proposed by Findell and Eltahir (2003b). Panel (c) displays the scatter plots of the samples
of antecedent 7-hour SM against the corresponding f1(x1) (dBZ), evaluated at three separate heights,
2.0 km (red circles), 3.5 km (yellow squares), and 5.0 km (blue triangles). The bottom row of panels
presents the same content as panels (a-c) but for (d) SMAP/L4 LST and (e,f) its associated component
function, f2(x2).

Figure 3a-b presents the spatial distribution of the antecedent 7-hour SMAP/L4 soil wetness at252

the top layer (0-5 cm), collocated at the coordinates of the GPM/DPR/L2A samples, alongside the253

corresponding first-order component function, f1(x1) (dBZ), evaluated at 2.0 km. This examination of254

SM’s feedback strength, conditioned on an altitude of 2.0 km and a 7-hour time lag, is of particular255
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interest upon our prior analysis of the F -statistic in Figure 2a. Panels (b-c) reveal the positive feedback256

from SM represented by f1(x1). With a degree of saturation exceeding 0.4, wet soil could increase cloud257

reflectivity by up to 4 dBZ. The fact that the absolute value of f1(x1) decreases with height in Panel (c)258

again lends support to our inferred height-dependent SMCPF in Section 4.1, underscoring the stronger259

coupling between SM and CVP in the low-level atmosphere. As a byproduct, we demonstrate in Text260

S4 and Figure S5 the application of the Marshall-Palmer formula (Marshall & Palmer, 1948) to the261

transformation of f1(x1) (dBZ) into estimates of rainfall rate.262

Significant positive feedback of SM is evident in regions such as northern Texas, central Oklahoma,263

northwestern and southeastern Kansas, and northeastern New Mexico. All these areas, with the ex-264

ception of northeastern New Mexico, are located inside or close to the ’transitional regions’ delineated265

by dashed grey lines as categorized by Findell and Eltahir (2003b). The middle transitional region,266

spanning from the semi-arid southwestern to the humid southeastern parts of the central United States,267

is influenced by both dry and wet soil advantage regimes. Hence, this dual influence explicates the268

observable positive feedback in the central and eastern sections of the transitional region and negative269

feedback in the southwestern part (detailed below). These local wet soil anomalies can be attributed270

to early warm-season mesoscale convective systems (MCSs) and non-MCS rainfall. Typically, the early271

warm-season MCSs were reported a dominant source of the summer SMCPF (Hu et al., 2021), which272

are initiated upwind near the Rocky Mountains Foothills and propagate eastward to the central United273

States (Feng et al., 2019).274

Since SM can indirectly exert feedback on cloud and precipitation through heating or cooling the275

surface (Duerinck et al., 2016), we further delve into examining spatially the samples of antecedent276

7-hour LST (K) and their contribution to cloud, f2(x2) (dBZ), and rainfall, ∆R (mm/hour), in Figures277

3d-f and S6, respectively. f2(x2) exhibits a non-linear dependence on LST where LST anomalies exert278

the most significant influence. From Figure 3d-e, it is suggested that LST above 305 K accounts for an279

increase of at most 4.0 dBZ in the cloud reflectivity and 2.0 mm/hour in rainfall rate (see Figure S6) at280
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both 2.0 and 3.5 km. On the contrary, the samples with a cooler surface (LST<290 K) seem to foster281

a more stable atmospheric state, thereby reducing the cloud reflectivity, especially in the near-surface282

atmosphere (h ≈ 2.0 km). The underlying LST-driven mechanisms were discussed in the previous283

section.284

Geographically, the most significant effects of these anomalies are evident and clustered in the south-285

west of the study region, delineated by 101◦W-105◦W and 32◦N-36◦N. Within this area, we find a moder-286

ate negative correlation (R = −0.41, shown in Figure S7a) between surface SM and the LST component287

function, f2(x2). Moreover, we illustrate in Figure S7b that LST contributes to CVP preferentially over288

dry soil with saturation between 0.1 and 0.4. These findings underscore the presence of the intrinsic289

SM-LST coupling nested within the SMCPF pathways (Seneviratne et al., 2010), and we can conve-290

niently interpret f2(x2) as a proxy for the indirect and negative feedback of SM on CVP. Notably, our291

identified negative feedback region (101◦W-105◦W, 32◦N-36◦N) is consistent with the one proposed by292

Findell and Eltahir (2003b) (represented by the black dashed line in Figure 3d-e). Several factors can293

play a role when it comes to the sources of convective clouds and precipitation over the dry soil. For294

instance, the monsoonal moisture incursion into New Mexico can bring up local humidity and offset295

the reduced evapotranspiration from the local dry soils (Wallace et al., 1999; Klein & Taylor, 2020).296

Besides, the Great Plains Low-Level Jet (GPLLJ) can transport abundant moisture southerly from the297

Gulf of Mexico into the central United States (Ford, Rapp, & Quiring, 2015; Feng et al., 2016).298

5 Discussion and Conclusion299

This study presents a data-driven approach that uses the functional decomposition of a large database300

of satellite-measured SM (SMAP/L4) and CVP (GPM/DPR/L2A) for disentangling and quantifying301

SMCPF in the central United States. Results show that the signs and strengths of the feedback differ302

among cloud heights and geographical locations. A significant positive feedback is observed in the lower303
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atmosphere, particularly between 1.0 and 3.0 km with a temporal lag of 7 hours. With a degree of304

saturation over 0.4, wet soil can potentially increase the cloud reflectivity and rainfall rate by up to 4.0305

dBZ and 2.0 mm/hour at h ≈ 2.0 km, evidently in northern Texas, central Oklahoma, northwestern306

and southeastern Kansas. The negative feedback, indirectly interpreted by the anomalies of LST, is307

effective with a wider vertical extension from 1.0 km to 4.0 km and a time lag of 7-10 hours. These308

LST anomalies can explain comparable increments in cloud reflectivity and rainfall rate to SM but in309

northwestern Texas and southeastern and eastern New Mexico. The identified patterns of SMCPF align310

qualitatively with previous studies that utilize simulations and observations to investigate the underlying311

mechanisms and regional categorizations of the feedback (Findell & Eltahir, 2003a, 2003b; Qian et al.,312

2013; Sathyanadh et al., 2017; Su & Dickinson, 2017; Koukoula et al., 2019; Hu et al., 2021; Ford et al.,313

2023).314

Our approach brings new insights into the observational understanding of the SMCPF characterized315

by cloud height, time lag, and location and possesses the potential for coupled land-atmosphere model316

diagnosis. Despite this, certain limitations are highlighted. Even though a decent amount of samples317

was obtained, they can hardly support extensive analyses over seasonal, interannual, or localized scales318

due to the substantial downsampling. Another possible limitation is the selection of only five land and319

atmospheric variables as inputs of the HDMR emulator. We reiterate that this decision is strategically320

aimed at maximizing the capture of the nonlinear relationship and causal link between cloud and SM.321

Nonetheless, it concurrently overlooks other pertinent variables that could play a significant role in the322

SMCPF pathways.323

For future work, it is important to conduct a comprehensive analysis employing cloud model simula-324

tions and/or reanalysis data sets as inputs of HDMR. This will help diagnose the representativeness of325

the current-generation coupled land-atmosphere models. We should also build robust HDMR emulators326

to be integrated with state-of-the-art cloud models for more accurate prediction of convective clouds327

and precipitation. This necessitates the incorporation of more predictors such as SM gradient (Taylor,328
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2015; Zhou et al., 2021; Graf et al., 2021; Chug et al., 2023) and evaporative fraction (Taylor et al.,329

2013; Ford et al., 2023), along with atmospheric variables like wind speed and water vapor mixing ratio330

(Raymond & Sessions, 2007; Seneviratne et al., 2010). Last but not least, with the advancement of331

a variety of reanalysis datasets, the methodology can be useful for examining the changes in SMCPF332

under increasing hydroclimatic extremes at the regional and global scales.333
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Abstract1

The feedback of topsoil moisture (SM) content on convective clouds and precipitation is not well un-2

derstood and represented in the current generation of coupled cloud physics and land-surface models.3

Here, we use functional decomposition of satellite-derived SM (SMAP/L4) and cloud vertical profiles4

(CVP: GPM/DPR/L2A) in the central US to quantify the relationship between SM and the vertical5

distribution of cloud water. High-dimensional model representation disentangles the contributions of6

SM and other land-surface and atmospheric variables to the CVP. Results show the sign and strength7

of this feedback varies with cloud height and time lag and displays a large spatial variability. Positive8

anomalies in the antecedent 7-hour SM and land-surface temperature can increase reflectivity up to 49

dBZ in the lower atmosphere (1-3 km above the surface). The presented approach brings new insights10

into observational understanding of SM-precipitation feedback and possesses the potential for diagnosing11

cloud models regarding land-atmosphere coupling representation.12

Plain Language Summary13

This paper focuses on the observational analysis of how soil moisture (SM) influences the vertical cloud-14

water distribution throughout the day. By analyzing data from Soil Moisture Active Passive (SMAP)15

and Dual-frequency Precipitation Radar (DPR), we gain insights into how antecedent SM levels impact16

cloud-water reflectivity at different heights in the lower atmosphere. Our data-driven approach produces17

spatial maps of SM’s contribution to cloud reflectivity and rainfall in the central US conditioned on cloud18

height and SM time lag. The results will help diagnose coupled land-atmosphere models.19
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1 Introduction20

The feedbacks between soil moisture (SM) and precipitation play a critical role in regulating regional21

hydroclimatic variability. Such feedbacks are governed by a plethora of variables and processes, such as22

(variations in) land surface temperature (Koster et al., 2006), energy partitioning (Golaz et al., 2001;23

Fast et al., 2019; Sakaguchi et al., 2022), planetary boundary layer (PBL) development (Ek & Holtslag,24

2004; Han et al., 2019) and the initiation of convective clouds and precipitation (Ferguson & Wood,25

2011; Taylor et al., 2011; Cioni & Hohenegger, 2017). These feedbacks take place across a continuum26

of spatiotemporal scales, spanning distances from several to thousands of kilometers and time span of27

days to seasons (Trenberth, 1999; Duerinck et al., 2016; Liu et al., 2022). Moreover, SM-precipitation28

feedbacks exhibit substantial regional variability in both their sign and magnitude as a result of the large29

sensitivity of evapotranspiration and atmospheric conditions to SM and latent heat fluxes, respectively30

(Guo et al., 2006). In this paper, we focus our attention on diurnal SM-cloud-precipitation feedbacks,31

abbreviated SMCPF, which control in part the vertical cloud-water distribution, thereby influencing32

weather conditions (Koster et al., 2004) and regional hydroclimatology (Krakauer et al., 2010; Yin33

et al., 2014; Ford et al., 2023). Future climate projections suggest further that SMCPFs may play an34

increasing role in determining changes in mean temperature and extremes as a result of larger SM deficits35

under higher evaporative demands (Dirmeyer et al., 2013; Seneviratne et al., 2013; Taylor, 2015).36

Given the importance of the SMCPF in regulating local and regional weather, much research has37

been devoted to estimating its sign, causality, and physical linkage. That research may be divided into38

simulation-based analysis (Schär et al., 1999; Findell & Eltahir, 2003a; G. Wang et al., 2007; Hohenegger39

et al., 2009; Schlemmer et al., 2012; Tawfik et al., 2015; Gentine et al., 2013), observation-based studies40

(Taylor & Ellis, 2006; Santanello et al., 2009; Taylor et al., 2010; Ferguson & Wood, 2011; Taylor41

et al., 2011; Ford, Rapp, Quiring, & Blake, 2015; Guillod et al., 2015) and a combination thereof42

(Seneviratne et al., 2006; Santanello et al., 2013; Miralles et al., 2014; Spennemann et al., 2018; Baker,43
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Castilho de Souza, et al., 2021; Baker, Garcia-Carreras, et al., 2021). Although numerical models of44

land-atmosphere interactions have advanced considerably in recent decades, the diurnal impact of SM45

on cloud formation and composition is still not particularly well understood. The mechanisms governing46

the sign and strength of the simulated SMCPFs are subject to a large uncertainty depending for example47

on the choice of boundary conditions (Hohenegger et al., 2009) and sub-grid scale process representation48

(Deardorff, 1980; Thompson et al., 2004, 2008). In observational studies, on the other hand, it is difficult49

to filter out the effects of synoptic variability. Moreover, in the absence of high-quality spatiotemporal50

measurements of SM and cloud vertical profiles, past studies have mainly focused on how (gradients51

of) SM affect convection initiation, the PBL height, and precipitation probability (Frye & Mote, 2010;52

Findell et al., 2011; Taylor, 2015; Su & Dickinson, 2017; Graf et al., 2021; Yuan et al., 2020; Ford et al.,53

2023) without recourse to mesoscale diurnal relationships between antecedent SM and the cloud water54

distribution. Advances in our understanding of SM-cloud relationships should improve the diagnosis of55

weather and climate models and enhance the accuracy of their future projections (Williams, 2019).56

Fortunately, remote-sensing data products of SM and the cloud vertical profile from polar-orbiting57

Earth-observing satellites have advanced considerably in the past decades and have the potential to58

substantially advance our understanding of SM-cloud-precipitation relationships. Specifically, the 3-59

hr/9 km Soil Moisture Active Passive (SMAP/L4) and 1.5-hr/5 km Global Precipitation Measurement60

Dual-Frequency Precipitation Radar (GPM/DPR/L2A) provide high-resolution estimates of the topsoil61

moisture content and the vertical distribution of hydrometeors within and above the PBL, respectively,62

at a global coverage. Many studies have confirmed the accuracy and reliability of SMAP/L4 (X. Zhang63

et al., 2017; Reichle et al., 2017; L. Zhang et al., 2017; Koster et al., 2018; Tavakol et al., 2019) and64

GPM/DPR/L2A (Lasser et al., 2019; Pejcic et al., 2020; Liao & Meneghini, 2022) data products.65

In this paper, we demonstrate how functional decomposition of a large database of SMAP/L4 surface66

SM and GPM/DPR/L2A cloud vertical profiles (CVP) provides valuable insights into the relationship67

between antecedent SM and cloud water distribution and reflectivity in the lower troposphere. Specif-68
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ically, we use high-dimensional model representation (HDMR) (Li & Rabitz, 2010; Li & Rabitz, 2012;69

Gao et al., 2023) to disentangle the intricate and dynamic web of land-surface and atmospheric vari-70

ables and interactions that give rise to the SMCPF. HDMR is a generalization of the analysis of variance71

(ANOVA) to dependent input factors and uses a superposition of linear multiples of first-, second-, and72

higher-order component functions to parse out the structural and correlative contributions of SM and73

other land-surface variables to the CVP. The expansion coefficients of the component functions are de-74

termined from a training data set of collocated SMAP/L4 and GPM/DPR/L2A measurements across75

the central US using linear least squares and D-MORPH regression (Li & Rabitz, 2010). We are mainly76

interested in the first-order component functions as they quantify the direct contribution of each land-77

surface variable to the CVP. The method is CPU-efficient and yields spatial maps of the SM contribution78

to cloud reflectivity and rainfall for our study region as a function of cloud height and SM time lag.79

This paper is organized as follows. Section 2 discusses the SMAP/L4 SM and GPM/DPR/L2A80

satellite products and study region. Section 3 summarizes the data preprocessing steps and HDMR81

functional decomposition. Section 4 presents the results of our analysis and documents the relationship82

between SM and the CVP as a function of cloud height, time lag, and spatial coordinates in our study83

region. Section 5 summarizes our main findings and presents suggestions for future work.84

2 Data and Experimental Region85

We use the publicly available 3-hour/9 km SMAP/L4 and 1.5-hour/5 km GPM/DPR/L2A data products86

and single out samples from our study region in the warm seasons (April to October) of 2016 to 201987

with convective precipitation in the afternoon hours until midnight (14:00-24:00 CDT). The altitude88

spans 1 to 5 km, with the 1-3 km zone identified by Findell and Eltahir (2003a) as a critical region89

for convective triggering, and in the 3-5 km zone above this region resides the free atmosphere. We90

succinctly discuss the SMAP/L4 and GPM/DPR/L2A products and our study region. A more detailed91
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description of the satellite data products is found in Text S1.92

Figure 1: August 7, 2016: (a) SMAP/L4 surface SM (3-hour, 9 km, 19:30 CDT) over CONUS and
GPM/DPR/L2A measured (b) surface precipitation (1.5-hour, 5 km, 21:51:10-23:23:44 CDT) and (c)
cloud reflectivity profiles (97.5◦W - 99.5◦W, 36.7◦N) for our study region (red rectangle) in the central
United States. Graph (d) in the bottom right corner displays the number of samples n we have left at
each DPR measurement height after data preprocessing.

The SMAP mission Level 4 SM (L4 SM) product gives 3-hourly estimates of surface and root-zone93

SM at 9-km spatial resolution and global coverage (Reichle et al., 2015). The 3-hour time-averaged 9-94

km geophysical data product (SPL4SMGP) provides estimates of the wetness (0-1) of the top soil layer95

(0-5 cm) (see Figure 1a) and other land-surface variables. Hourly estimates of low-level atmospheric96

temperature (AT) and total precipitable water (TPW) from 0.25◦ × 0.25◦ ERA-5 reanalysis convey the97

stability and humidity of the antecedent atmosphere and are precursors to mesoscale convective events98

(Sherwood, 1999; Findell & Eltahir, 2003a; Holloway & Neelin, 2010). In our functional decomposition,99

we use the mean AT for the critical region, 1-3 km above the soil surface, which roughly corresponds100
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to levels Psurf − 100 and Psurf − 300 hPa. Section 3.2 discusses in more detail our selection of auxiliary101

land-surface and atmospheric variables.102

The GPM/DPR/L2A product (GPM 2ADPR) provides a swath of precipitation profiles (see Figure103

1b) every 1.5 hours at a spatial resolution of 5 km and vertical increment of 125 m. The major data104

fields zFactorFinal (dBZ) and typePrecip provide vertical profiles of the Ka-band cloud reflectivity105

factor (see Figure 1c) and an 8-digit precipitation type ID, for individual pixels. We only use samples106

classified as convective precipitation and work with 250-m averaged Ka-band cloud reflectivities to107

suppress measurement errors.108

Our study region in Figure 1a (95◦W-105◦W, 32◦N-40◦N) is a hot spot for SM-precipitation coupling109

(Findell & Eltahir, 2003b; Koster et al., 2004; Ford et al., 2023) with large spatial variability in climato-110

logical sign and strength of the SMCPF (Frye & Mote, 2010; Findell et al., 2011; Su & Dickinson, 2017;111

Yuan et al., 2020; Ford et al., 2023). This central region of the US offers an excellent demonstration112

of our method and possibility to benchmark the inferred patterns of the SMCPF sign and magnitude113

against literature findings.114

3 Method115

3.1 Data Preprocessing116

We extract the GPM/DPR/L2A swaths that overpass our study region and use only those samples clas-117

sified as convective precipitation in the ’typePrecip’ data field. This type classification is an important118

byproduct of DPR instruments and crucial to an accurate characterization of the antecedent atmosphere119

using ERA-5 reanalysis AT and TPW data. To avoid water from interception evaporation, we discard120

all samples which received more than 0.5 mm of precipitation in the 18 hours preceding the DPR’s121

scan according to the Multi-Radars Multi-Sensors (MRMS) Gauge-corrected Quantitative Precipitation122

Estimates (J. Zhang et al., 2016). This should also reduce the impacts of large-scale synoptic systems123
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(Findell et al., 2011). Next, we collocate SMAP/L4 and ERA-5 data and GPM/DPR/L2A measured124

cloud profiles using linear interpolation and time lags ∆t = tdpr − tsmap of 7 and 10 hours. In doing so,125

we allow for a 2-hour grace period so as to maximize the sample size. For example, SM data with a126

time lag 6.01 ≤ ∆t ≤ 7.99 are pooled together in the 7-hour time lag. Figure 1d displays the number127

of DPR-measured cloud reflectivities n for the months of April-October (2016-2019) as a function of128

cloud height. Not all heights have the same sample size due to for instance the absence of clouds, radar129

detection threshold, and path attenuation (Iguchi et al., 2010). The pooled samples of April-October130

guarantee a sufficiently large sample size at each cloud height. Next, we decompose this final collection of131

SMAP/L4 - GPM/DPR/L2A samples using HDMR and expand the DPR-measured cloud reflectivities132

at each separate cloud height as a sum of first- and higher-order structural and correlative contributions133

of SM and the auxiliary variables.134

3.2 High-Dimensional Model Representation135

SMCPFs are notoriously challenging to observe and study outside of model environments (Ford et136

al., 2023), hence innovative analytical approaches are required to study them (Koster et al., 2004;137

Seneviratne et al., 2006; Findell et al., 2011; Berg et al., 2013; Guillod et al., 2014; Knist et al., 2017).138

HDMR is particularly appealing in the present context as it expresses all variable interactions in a139

system in a hierarchical order. This allows us to quantify the individual contribution of SM to the CVP.140

Suppose we group all land-surface and atmospheric variables that govern the cloud reflectivity y =141

f(x) at a given cloud height in a d×1 vector x = (x1, . . . , xd)
⊤. HDMR builds on the finite multivariable142

function expansion of Sobol′ (1993) and decomposes the output, y = f(x), of the scalar-valued square-143

integrable function, f ∈ L2(Kd), on the d-dimensional unit cube, Kd = {x|0 ≤ xi ≤ 1; i = 1, . . . , d}, into144

summands of component functions, fi(xi), fij(xi, xj), . . . , f12...d(x1, x2, . . . , xd), to yield (Li & Rabitz,145
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2012)146

y = f0 +

n1∑
i=1

fi(xi) +

n2∑
1≤i<j≤d

fij(xi, xj) +

n3∑
1≤i<j<k≤d

fijk(xi, xj, xk) + · · ·+ f12...d(x1, x2, . . . , xd) + ϵ, (1)

where f0 is the mean output and the residual ϵ ∼ N (0, σ2
ϵ ) is assumed to be zero-mean normally147

distributed with a constant variance, σ2
ϵ . The n1 = d first-order functions, fi(xi), characterize the indi-148

vidual effects of the input variables on the model output. The n2 = d(d− 1)/2 second-, fij(xi, xj), n3 =149

d(d− 1)(d− 2)/6 third-, fijk(xi, xj, xk), up to the dth-order component functions, f12...d(x1, x2, . . . , xd),150

characterize the cooperative contribution of two, three, up to all land-surface variables combined to the151

cloud reflectivity y. As third- and higher-order independent and cooperative effects are usually negligible152

in most physical systems (Rabitz & Aliş, 1999; Kucherenko et al., 2011; H. Wang et al., 2017; Falchi153

et al., 2018; Shereena & Rao, 2019; Gao et al., 2023), our function expansion of the CVP considers only154

the n12 = n1 + n2 first- and second-order component functions155

y = f0 +

n12∑
u=1

fu + ϵ, (2)

where subscript u is the index of the component function rather than its order as in equation (1). Thus,156

f1, . . . , fd, signify the first-order component functions and fd+1, . . . , fd+d(d−1)/2 correspond to the second-157

order component functions. In our implementation, f0 signifies the mean reflectivity in units of dBZ158

and the component functions fu quantify the individual and bivariate contributions of the land-surface159

and atmospheric variables to the cloud reflectivity.160

The component functions must satisfy hierarchical orthogonality to exactly delineate the independent161

(structural) and cooperative (correlative) contributions of individual and groups of input variables to y162

(Li & Rabitz, 2012; Gao et al., 2023). This is enforced through a so-called relaxed vanishing condition163

(Hooker, 2007)164 ∫ 1

0

wu(xu)fu(xu)dxi = 0 for all u ⊆ {1, . . . , d} and i ∈ u, (3)

where u is a subset of superset U = {1, . . . , d}, xu denote the dimensions u of the input vector and165
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wu(xu) signifies the probability density function (pdf) of xu. For a second-order component function,166

the vanishing condition of equation (3) dictates that fij(xi, xj) should be orthogonal to its lower order167

component functions, fi(xi) and fj(xj). The component functions are constructed using the extended168

bases orthonormalized polynomials and associated linear expansion coefficients. D-MORPH regression169

(Li & Rabitz, 2010) enforces hierarchical orthogonality of the component functions in pursuit of the170

optimum expansion coefficients. This method is described in Text S2.171

The statistical significance of a given component function is readily determined by comparing the172

performance of the function expansion with and without this component function. Suppose SSR1 is the173

sum of squared residuals of the function y = y0 +
∑d−1

i=1 fi(xi) with l1 = (d− 1)p expansion coefficients174

and SSR is the same quantity for the same function y = y0 +
∑d

i=1 fi(xi) expanded with fd(xd) and175

l = l1 + p coefficients. To reject the null hypothesis, “H0 : fd(xd) is insignificant”, the F -statistic176

F =
(SSR1 − SSR)/(l − l1)

SSR1/(n− l1)
, (4)

must exceed Fcrit = F−1
F (1− α|l1 − l, n− l1) where F−1

F (pα|ν1, ν2) is the quantile function of the Fisher-177

Snedecor distribution with ν1 and ν2 degrees of freedom at the critical value pα = 1−α and significance178

level α ∈ (0, 1). The magnitude of the F -statistic conveys the importance of fd(xd) in explaining the179

CVP and, thus, can be interpreted as a measure of the feedback strength.180

Now that we have finished discussing the building blocks of our HDMR data decomposition method,181

we are left with the selection of land-surface and atmospheric variables (x2, . . . , xd) which complement182

SM, x1, in explaining the measured cloud reflectivities, y. We tested many different variables in our183

analysis and settled on land-surface temperature (LST), leaf area index (LAI), atmospheric temperature184

(AT), and total precipitable water (TPW) as auxiliary variables. This equates to a 5 × 1 input vector185

x = (x1, . . . , x5)
⊤ = (SM,LST,LAI,AT,TPW)⊤. LAI and LST modulate evapotranspiration under186

SM-limited or energy-limited regimes (Seneviratne et al., 2010) and AT and TPW convey information187

for the SMCPF at synoptic scales about atmospheric preconditioning (Ford, Quiring, et al., 2015; Tuttle188
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& Salvucci, 2017). This explicit treatment of atmospheric conditions can only raise our confidence in189

any causal links that are found between SM and CVP. Figure S1 presents a correlogram of the five input190

variables. Note that we do not consider variables such as the latent heat flux. This derivative product191

depends on SM, hence would only trouble our inference of the relationships and variables that govern192

the CVP.193

4 Results194

4.1 Cloud Height and Temporal Lag of SMCPF195

Figure 2 displays the F -statistics of the (a) SM, (b) LST, and (c) LAI component functions as a function196

of cloud height (1 to 5 km) and time lag (∆t = 7 and 10 h). The solid line denotes the mean of 1,000197

bootstrap trials each with a different selection of r = 0.75n training samples and the light-colored regions198

portray the associated 95% confidence intervals. The dashed black line in each graph corresponds to the199

critical F -value at each cloud height using α = 0.05. The value of the F -statistic is not constant but200

altitude dependent. The influence SM, LST and LAI exert on the CVP is dependent on cloud height.201

In case of SM in panel (a) this equates to a height-dependent SMCPF with a bottom-heavy relationship202

between SM and CVP. The SMCPF is most pronounced in the lower atmosphere at about 1-3 km above203

the surface. Above this level, the impact of SM on the CVP decreases rapidly with altitude. As we will204

shown in Section 4.2, the first-order SM component function f1(x1) displays a positive feedback due to205

a wet soil. A higher SM implies a larger evaporative fraction, promoting moderate PBL growth (see206

Figure S2) and moisture accumulation (Yin et al., 2015). The CVP at higher altitudes is less dependent207

on surface SM and controlled more by the upper atmosphere at levels of about 3 km and beyond208

(Findell & Eltahir, 2003a). Furthermore, a capping inversion layer can inhibit the upward movement209

of warm, moist air from the surface to the free atmosphere (Findell & Eltahir, 2003b). Indeed, the210

HDMR-inferred relationship between SM and CVP as articulated by the F -statistic is corroborated211
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by simulation analyses (Findell & Eltahir, 2003a; Koukoula et al., 2019). This physical underpinning212

inspires confidence in the ability of our methodology to back out SM-cloud feedbacks at different heights.213

The strong agreement in the results of the two time-lags is a result of SM autocorrelation. The ∆t = 7214

hour time lag displays the largest influence on the CVP at all altitudes but the largest two cloud heights215

near 5 km.216

Figure 2: Vertical profiles of the mean F -statistic of the first-order component functions of (a) SM:
f1(x1), (b) LST: f2(x2), and (c) LAI: f3(x3) computed from 1,000 bootstrap iterations. Solid blue and
red lines differentiate between temporal lags (∆t = 7 and 10 hours) and black dashed lines represent
the critical value at significance level α = 0.05, Fcrit. The light blue and red regions correspond to the
95% bootstrap confidence intervals.

Compared to SM, LST exerts control on CVP across a wider vertical range (in Figure 2b), whose217

F -statistic shows a bimodal relationship with height, peaking close to the surface with ∆t = 7 hours218

and at a higher altitude of 3.5-4.0 km with ∆t = 10 hours. As discussed in the next section, f2(x2)219

exhibits a positive correlation with LST, suggesting that positive LST anomalies (or dry soil) play a220

crucial role in shaping CVP. Therefore, the fact that low-level (1.0-2.5 km) CVP is responsive to LST221

comes in qualitative agreement with the pathway of negative SMCPF, driven by the effect of positive222

LST anomalies in catalyzing higher sensible heat flux, convective triggering potential (CTP), and rapid223

PBL growth. We further support this finding by comparison with the ERA5 reanalysis PBL height in224

Figure S2. Such observed response of PBL height to wet and dry surface exhibits strong consistency225

with prior simulation-based and observational studies (Findell & Eltahir, 2003a; Xu et al., 2021; Ford226
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et al., 2023), which indicates two mechanisms for initiating convection: significant moistening of the227

PBL (over wet soil) and rapid growth of the PBL (over dry soil). In addition, the predictability of228

LST decreases first at 3.0 km and increases again at 3.5-4.0 km. The reason why LST is significant at229

a higher altitude may be twofold. On the one hand, the LST anomalies favor strong CTP where air230

parcels can overcome convective inhibition and reach the level of free convection (Taylor et al., 2012).231

If we intuitively consider f2(x2) the contribution of near-surface air to the cloud reflectivity conditioned232

on a specific height and time lag, its F -statistic (in Figure 2b) somehow approximates the dynamics of233

the thermal updraft such that the largest F -statistic value shifts from ∆t = 7 hours to ∆t = 10 hours234

with height changing from 1.0 km to 5.0 km. On the other hand, local LST may also reflect certain235

atmospheric conditions such as the melting layer, which typically resides between 3.0-5.0 km above the236

surface during pre-monsoon and monsoon seasons in the central United States (Song et al., 2021).237

The F -statistic of the LAI component, f3(x3), informs its poor predictive power in the lower at-238

mosphere, primarily due to the governing effects of SM, LST, and AT (see Figure S3) on initiating239

convection and the subsequent formation of cloud/precipitation. In contrast, the modest, albeit statisti-240

cally significant influence of LAI in higher-level CVP can be attributed to its seasonal variations (Savoy241

& Mackay, 2015) and correlation with the atmospheric conditions (see Figure S1). In Text S3 and Fig-242

ures S3-S4, we elaborate on our findings in terms of atmospheric controls on CVP which demonstrate a243

comparable physical underpinning with the land-surface variables.244

4.2 The SMCPF across Space245

In this section, we focus our attention on the spatial pattern of the SMCPF within the study region.246

We reiterate that we conduct functional decomposition of the cloud reflectivity using all the samples of247

April-October (2016-2019) for a specific time lag and cloud height, to guarantee an adequate number248

of samples and storm events. Our goal here is to present a 4-year averaged spatial distribution of249

the derived component functions and determine locations of positive and negative SMCPF rather than250
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focusing on interannual and/or cross-season variations.251

Figure 3: The central United States (95◦W-105◦W, 32◦N-40◦N) with (a) antecedent 7-hr SMAP/L4
soil wetness (-) collocated at coordinates of the GPM/DPR/L2A samples and (b) first-order component
function of soil wetness, f1(x1) (dBZ), evaluated at approximately 2.0 km height. Solid black lines
delineate the state borders while dashed black and grey lines depict the negative feedback and transitional
regions proposed by Findell and Eltahir (2003b). Panel (c) displays the scatter plots of the samples
of antecedent 7-hour SM against the corresponding f1(x1) (dBZ), evaluated at three separate heights,
2.0 km (red circles), 3.5 km (yellow squares), and 5.0 km (blue triangles). The bottom row of panels
presents the same content as panels (a-c) but for (d) SMAP/L4 LST and (e,f) its associated component
function, f2(x2).

Figure 3a-b presents the spatial distribution of the antecedent 7-hour SMAP/L4 soil wetness at252

the top layer (0-5 cm), collocated at the coordinates of the GPM/DPR/L2A samples, alongside the253

corresponding first-order component function, f1(x1) (dBZ), evaluated at 2.0 km. This examination of254

SM’s feedback strength, conditioned on an altitude of 2.0 km and a 7-hour time lag, is of particular255
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interest upon our prior analysis of the F -statistic in Figure 2a. Panels (b-c) reveal the positive feedback256

from SM represented by f1(x1). With a degree of saturation exceeding 0.4, wet soil could increase cloud257

reflectivity by up to 4 dBZ. The fact that the absolute value of f1(x1) decreases with height in Panel (c)258

again lends support to our inferred height-dependent SMCPF in Section 4.1, underscoring the stronger259

coupling between SM and CVP in the low-level atmosphere. As a byproduct, we demonstrate in Text260

S4 and Figure S5 the application of the Marshall-Palmer formula (Marshall & Palmer, 1948) to the261

transformation of f1(x1) (dBZ) into estimates of rainfall rate.262

Significant positive feedback of SM is evident in regions such as northern Texas, central Oklahoma,263

northwestern and southeastern Kansas, and northeastern New Mexico. All these areas, with the ex-264

ception of northeastern New Mexico, are located inside or close to the ’transitional regions’ delineated265

by dashed grey lines as categorized by Findell and Eltahir (2003b). The middle transitional region,266

spanning from the semi-arid southwestern to the humid southeastern parts of the central United States,267

is influenced by both dry and wet soil advantage regimes. Hence, this dual influence explicates the268

observable positive feedback in the central and eastern sections of the transitional region and negative269

feedback in the southwestern part (detailed below). These local wet soil anomalies can be attributed270

to early warm-season mesoscale convective systems (MCSs) and non-MCS rainfall. Typically, the early271

warm-season MCSs were reported a dominant source of the summer SMCPF (Hu et al., 2021), which272

are initiated upwind near the Rocky Mountains Foothills and propagate eastward to the central United273

States (Feng et al., 2019).274

Since SM can indirectly exert feedback on cloud and precipitation through heating or cooling the275

surface (Duerinck et al., 2016), we further delve into examining spatially the samples of antecedent276

7-hour LST (K) and their contribution to cloud, f2(x2) (dBZ), and rainfall, ∆R (mm/hour), in Figures277

3d-f and S6, respectively. f2(x2) exhibits a non-linear dependence on LST where LST anomalies exert278

the most significant influence. From Figure 3d-e, it is suggested that LST above 305 K accounts for an279

increase of at most 4.0 dBZ in the cloud reflectivity and 2.0 mm/hour in rainfall rate (see Figure S6) at280
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both 2.0 and 3.5 km. On the contrary, the samples with a cooler surface (LST<290 K) seem to foster281

a more stable atmospheric state, thereby reducing the cloud reflectivity, especially in the near-surface282

atmosphere (h ≈ 2.0 km). The underlying LST-driven mechanisms were discussed in the previous283

section.284

Geographically, the most significant effects of these anomalies are evident and clustered in the south-285

west of the study region, delineated by 101◦W-105◦W and 32◦N-36◦N. Within this area, we find a moder-286

ate negative correlation (R = −0.41, shown in Figure S7a) between surface SM and the LST component287

function, f2(x2). Moreover, we illustrate in Figure S7b that LST contributes to CVP preferentially over288

dry soil with saturation between 0.1 and 0.4. These findings underscore the presence of the intrinsic289

SM-LST coupling nested within the SMCPF pathways (Seneviratne et al., 2010), and we can conve-290

niently interpret f2(x2) as a proxy for the indirect and negative feedback of SM on CVP. Notably, our291

identified negative feedback region (101◦W-105◦W, 32◦N-36◦N) is consistent with the one proposed by292

Findell and Eltahir (2003b) (represented by the black dashed line in Figure 3d-e). Several factors can293

play a role when it comes to the sources of convective clouds and precipitation over the dry soil. For294

instance, the monsoonal moisture incursion into New Mexico can bring up local humidity and offset295

the reduced evapotranspiration from the local dry soils (Wallace et al., 1999; Klein & Taylor, 2020).296

Besides, the Great Plains Low-Level Jet (GPLLJ) can transport abundant moisture southerly from the297

Gulf of Mexico into the central United States (Ford, Rapp, & Quiring, 2015; Feng et al., 2016).298

5 Discussion and Conclusion299

This study presents a data-driven approach that uses the functional decomposition of a large database300

of satellite-measured SM (SMAP/L4) and CVP (GPM/DPR/L2A) for disentangling and quantifying301

SMCPF in the central United States. Results show that the signs and strengths of the feedback differ302

among cloud heights and geographical locations. A significant positive feedback is observed in the lower303
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atmosphere, particularly between 1.0 and 3.0 km with a temporal lag of 7 hours. With a degree of304

saturation over 0.4, wet soil can potentially increase the cloud reflectivity and rainfall rate by up to 4.0305

dBZ and 2.0 mm/hour at h ≈ 2.0 km, evidently in northern Texas, central Oklahoma, northwestern306

and southeastern Kansas. The negative feedback, indirectly interpreted by the anomalies of LST, is307

effective with a wider vertical extension from 1.0 km to 4.0 km and a time lag of 7-10 hours. These308

LST anomalies can explain comparable increments in cloud reflectivity and rainfall rate to SM but in309

northwestern Texas and southeastern and eastern New Mexico. The identified patterns of SMCPF align310

qualitatively with previous studies that utilize simulations and observations to investigate the underlying311

mechanisms and regional categorizations of the feedback (Findell & Eltahir, 2003a, 2003b; Qian et al.,312

2013; Sathyanadh et al., 2017; Su & Dickinson, 2017; Koukoula et al., 2019; Hu et al., 2021; Ford et al.,313

2023).314

Our approach brings new insights into the observational understanding of the SMCPF characterized315

by cloud height, time lag, and location and possesses the potential for coupled land-atmosphere model316

diagnosis. Despite this, certain limitations are highlighted. Even though a decent amount of samples317

was obtained, they can hardly support extensive analyses over seasonal, interannual, or localized scales318

due to the substantial downsampling. Another possible limitation is the selection of only five land and319

atmospheric variables as inputs of the HDMR emulator. We reiterate that this decision is strategically320

aimed at maximizing the capture of the nonlinear relationship and causal link between cloud and SM.321

Nonetheless, it concurrently overlooks other pertinent variables that could play a significant role in the322

SMCPF pathways.323

For future work, it is important to conduct a comprehensive analysis employing cloud model simula-324

tions and/or reanalysis data sets as inputs of HDMR. This will help diagnose the representativeness of325

the current-generation coupled land-atmosphere models. We should also build robust HDMR emulators326

to be integrated with state-of-the-art cloud models for more accurate prediction of convective clouds327

and precipitation. This necessitates the incorporation of more predictors such as SM gradient (Taylor,328
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2015; Zhou et al., 2021; Graf et al., 2021; Chug et al., 2023) and evaporative fraction (Taylor et al.,329

2013; Ford et al., 2023), along with atmospheric variables like wind speed and water vapor mixing ratio330

(Raymond & Sessions, 2007; Seneviratne et al., 2010). Last but not least, with the advancement of331

a variety of reanalysis datasets, the methodology can be useful for examining the changes in SMCPF332

under increasing hydroclimatic extremes at the regional and global scales.333
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function construction and D-MORPH regression that enforces hierarchical orthogonality

of the component functions in pursuit of the optimum coefficients; (3) Text S3: Investiga-

tion into atmospheric controls on cloud vertical profile (CVP); (4) Text S4: Application

of Marshall-Palmer formula to converting component function, fi(xi), into rainfall rate

estimates; (5) Figure S1: Correlogram of the land-surface and atmospheric variables em-

ployed as inputs in the High-Dimensional Model Representation (HDMR): soil moisture

(SM), land-surface temperature (LST), leaf area index (LAI), atmospheric temperature

(AT), and total precipitable water (TPW); (6) Figure S2: Diurnal development of ERA5

reanalysis planetary boundary layer (PBL) height determined for two groups of samples

where Groups 1 and 2 highlight positive and negative soil moisture cloud precipitation

feedback (SMCPF), respectively; (7) Figure S3: Vertical profiles of the mean F -statistic

of the first-order component functions of AT: f4(x4) and TPW: f5(x5); (8) Figure S4:

Scatter plots of the samples of antecedent 7-hour AT (K) and TPW (kg/m2) against their

first-order component functions, f4(x4) and f5(x5), evaluated at three separate heights;

(9) Figure S5: The central United States (95◦W-105◦W, 32◦N-40◦N) with antecedent

7-hr SMAP/L4 soil wetness (-) of the top layer (0-5 cm) collocated at coordinates of

the GPM/DPR/L2A samples and change in rainfall rate, ∆R (mm/hour), attributed to

SM; (10) Figure S6: same as Figure S5 but for LST and its associated impact on rain-

fall rate; (11) Figure S7: Evidence of negative SMCPF in the southwest (101◦W-105◦W,

32◦N-36◦N) of the central United States.
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Text S1. Data Description: SMAP/L4 and DPR/L2A Products

The SMAP mission Level 4 SM (L4 SM) product provides 3-hourly estimates of sur-

face and root-zone SM at 9-km spatial resolution with global coverage (Reichle et al.,

2015). Despite the malfunction of SMAP’s active radar system since July 2015, its pas-

sive microwave radiometer has continued to operate and measure brightness temperatures.

SMAP L-band (1.4 GHz) brightness temperature data from descending and ascending

half-orbit satellite passes (approximately 6:00 AM and 6:00 PM local solar time, respec-

tively) are assimilated into the NASA catchment land-surface model using the Earth-fixed,

global, cylindrical 9 km Equal-Area Scalable Earth Grid, Version 2.0 (EASE-Grid 2.0) pro-

jection. L4 SM provides surface (see Figure 1a) and root zone SM data in two products.

We use the 3-hour time-averaged 9-km geophysical data product (SPL4SMGP) which

provides soil wetness (0-1) of the top layer (0-5 cm) and other land-surface variables.

Cloud vertical profiles are derived from the dual-frequency precipitation radar (DPR)

aboard the Global Precipitation Measurement (GPM) Core Observatory satellite.

Launched in February 2014, the GPM core satellite orbits the Earth about 16 times

a day in a non-sun-synchronous orbit with an inclination angle of 65◦. The DPR operates

at Ku-band (13.6 GHz) and Ka-band (35.5 GHz) frequencies and is an advanced successor

to the Tropical Rainfall Measuring Mission precipitation radar. The DPR has the capa-

bility of obtaining the raindrop size distribution with improved detection of light rain and

precipitating snow due to the addition of the Ka-band radar. This instrument operates in

two modes: (1) a higher range resolution, lower sensitivity mode in the inner swath (125
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km) and (2) a lower resolution, higher sensitivity mode (Liao & Meneghini, 2022). The

KuPR and KaPR sense rain over land and ocean, day and night.

The GPM/DPR/L2A product (GPM 2ADPR) provides a swath of precipitation profiles

(see Figure 1b) every 1.5 hours with a spatial resolution of 5 km and vertical increment

of 125 m. Each pixel has its own cloud and precipitation profiles such as the cloud

reflectivity factor (see Figure 1c), precipitation rate, height of received echos, and so forth.

The DPR level-2 algorithm is made up of six different modules named preparation (PRE),

vertical profile (VER), classification (CSF), drop size distribution (DSD), surface reference

technique (SRT) and solver (SLV) (Iguchi et al., 2010). The SLV module computes the

DSD, precipitation rate and related physical quantities by solving the radar equations

recursively along range profiles utilizing output received from other modules such as the

measured reflectivity profile (PRE), precipitation type (CSF), path integrated attenuation

(SRT) and an adjustable R−Dm relationship of precipitation rate R and mass-weighted

diameter Dm (DSD). We use the major data fields, zFactorFinal (dBZ) and typePrecip

(-), which provide vertical profiles of the Ka-band cloud reflectivity factor and an 8-digit

ID for precipitation type, respectively. In this study, we take the 250-m average Ka-band

cloud reflectivity and exclusively use samples classified as convective precipitation.
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Text S2. Component Function Construction and D-MORPH Regression

We construct the component functions using the family of orthogonal polynomial functions

(Li & Rabitz, 2012)

ϕ1(xi) = a1xi + a0 ϕ2(xi) = b2x
2
i + b1x1 + b0 ϕ3(xi) = c3x

3
i + c2x

2
i + c1xi + c0

degree p = 1 degree p = 2 degree p = 3,
(S1)

where the values of coefficients a, b and c are derived from Gram-Schmidt orthonormal-

ization. This projection operator constructs an orthonormal basis for the polynomial

functions on the unit interval of x with respect to an arbitrary weighting function. The

component functions are now equal to sums of linear multiples of the orthonormalized

polynomial functions of degrees 1 to p

fi(xi) =

p∑
r=1

α(i)i
r ϕr(xi) (S2a)

fij(xi, xj) =

p∑
r=1

[
α(ij)i
r ϕr(xi) + α(ij)j

r ϕr(xj)
]
+

p∑
r=1

p∑
s=1

β(ij)ij
rs ϕr(xi)ϕs(xj), (S2b)

where the extended bases of the second-order component functions will help satisfy the

vanishing condition in Equation (3). The use of extended bases has implications for our

index notation of the coefficients. Parenthesized symbol(s) in the superscripts of α, β and

γ enumerate the component functions. Non-parenthesized superscripts are indices of the

input vector, x. If all n12 component functions are included in the series expansion of

equation (1) then the number of unknown expansion coefficients equals l = dp + 1
2
d(d −

1)(2p+ p2). At the end of Section 3, we introduce the five (d = 5) input variables used in

our analysis. Thus, with a typical polynomial degree p = 3 (Gao et al., 2023) the number

of unknown expansion coefficients l = 165 is much smaller than the sample size n for each

cloud height (Figure 1d). This minimizes the risk of overfitting.
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Hierarchical representation of the cloud reflectivity into a finite sum of first- and second-

order polynomial component functions offers a significant advantage over function approx-

imation methods such as artificial neural networks. The function expansion delineates

marginal and cooperative effects in determining the magnitude and sign of the SMCPF.

Furthermore, the expansion coefficients α, β and γ of the component functions of equation

(S2) have a closed-form solution for a training record of (x, y)-samples.

We can write equation (2) in matrix form Φc = b and yield

Φ =

ϕ(x(1))⊤

...
ϕ(x(N))⊤

 and b =

 y(1) − y0
...

y(N) − y0

 , (S3a)

whereϕ(x)⊤ is a 1×l design vector with orthonormalized polynomial functions of equation

(S2) (and products thereof) evaluated at their respective entries of x and arranged in

appropriate order, c is a l × 1 coefficient vector with values of α, β and γ and the n× 1

vector b stores differences between the measured y(i) and mean y0 cloud reflectivity for

each training sample, i = (1, . . . , n). To offer some protection against underdetermined

problems N < l or a rank-deficient design matrix, we remove duplicate entries of the

basis functions of the first- and second-order component functions. This reduced system

is easier to solve in practice (Li & Rabitz, 2012). First, we determine the least squares

values ĉls of the expansion coefficients

ĉls = (Φ⊤Φ)†d, (S4)

where the l × (l − dp) matrix (Φ⊤Φ)† is the generalized pseudo inverse of the l × l

Gramian matrix, G = Φ⊤Φ, which satisfies all four Moore-Penrose conditions (Penrose,

1955; Golub & Van Loan, 1996) and whose redundant rows (first dp rows of the first-

order basis functions) are removed and d is the (l − dp) × 1 vector Φ⊤b without the
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first dp rows. Diffeomorphic modulation under observable response preserving homotopy

(D-MORPH) regression (Li & Rabitz, 2010) enforces hierarchical orthogonality of the

component functions in pursuit of the optimum coefficients

ĉdm = Vl−r(U
⊤
l−rVl−r)U

⊤
l−rĉls, (S5)

where Ul−r and Vl−r equal the last l−r columns of the l×l matrices U and V determined

from singular value decomposition PB = UΣV⊤ of the product of a l × l projection

matrix P = Il−G and l× l constraint matrix B of inner products of the orthonormalized

polynomial functions. This latter matrix B enforces the relaxed vanishing condition in

Equation (3) (Li & Rabitz, 2010), matrix Il is the l× l identity matrix and r is the number

of nonzero singular values.
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Text S3. Atmospheric Controls on CVP

Figure S3 displays the similar content as Figure 2 but for the two atmospheric condi-

tions: low-level (roughly 1-3 km) AT and TPW, whose component functions are f4(x4)

and f5(x5), respectively. As anticipated, antecedent 7-10 hours low-level AT significantly

influences the cloud vertical profile (CVP) within the 1-3 km range, denoting a bottom-

heavy relationship. The component function, f4(x4), shows a strong negative correlation

with AT (as illustrated in Figure S5a) and thus underscores the profound contribution

of a cooler early atmosphere to the development of convective clouds/precipitation. The

observed sensitivity of CVP to early-stage AT is deemed reasonable since AT is a crucial

atmospherically forced synoptic condition for diagnosing the likelihood of deep convec-

tion. Conditions of lower AT coupled with higher LST are conducive to higher Convective

Available Potential Energy (CAPE) and Convective Triggering Potential (CTP) (Findell

& Eltahir, 2003a). Compared to TPW, AT exhibits weaker predictability in the free at-

mosphere, likely due to TPW’s more straightforward connection with the cloud formation

(as detailed below). Through integrating the characterized relationships between CVP

and {SM,LST,AT} (i.e., f1(x1), f2(x2), and f4(x4)), we can identify favorable conditions

for SM-cloud-precipitation feedback (SMCPF) within the height range of 1-3 km: (i) sub-

stantial boundary-layer moistening from wet soil (ii) the existence of a unstable lapse rate

facilitated by a warm surface and a cool low-level atmosphere. This finding corroborates

the physical mechanisms underlying SMCPF pathways (Wallace & Hobbs, 2006).

Further investigation of antecedent 7-hour TPW shows somehow the opposite pattern

against AT. Such dependence of CVP on TPW can be explicated by its reflection of the
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synoptic scale humidity of the early atmosphere. Intuitively, early TPW can be viewed

as a proxy for the amount of water vapor that actually condenses and forms clouds and

precipitation later. This is coordinated with the derived positive correlation between

TPW and its component function, f5(x5) in Figure S5. In addition, TPW can be a

precursor to mesoscale convective events. A sharp increase in TPW prior to the convective

precipitation is indicative of the deep convection (Sherwood, 1999; Holloway & Neelin,

2010). This possibly explains why the magnitudes of f5(x5) and its F -statistics increase

with height so that CVP is more sensitive to TPW in the free atmosphere. 7-hour is

observed to be the most informative time lag for the TPW-CVP relationship. This comes

in excellent agreement with the conclusion of Holloway and Neelin (2010) that, with the

involvement of mesoscale convective dynamics, a peak in TPW occurs typically 7-hour

prior to the strong precipitation events at Nauru Island.

In summary, atmospheric controls on CVP can be altitude-dependent. The low-level

AT, along with SM and LST, exhibits a governing effect on convective clouds/precipitation

within the 1-3 km zone. TPW, by contrast, plays a critical role in shaping cloud and

precipitation distribution in the free atmosphere.
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Text S4. Marshall-Palmer formula

The component function, fi(xi) (dBZ), which quantifies the contribution of a variable

(e.g., SM) to cloud reflectivity, can be further converted into estimates of rainfall rate

through the Marshall-Palmer formula (Marshall & Palmer, 1948)

R0 =

[
10(f0/10)

200

]5/8
(S6a)

R1 =

{
10[(f0+fi(xi))/10]

200

}5/8

(S6b)

∆R = R1 −R0, (S6c)

where R0 signifies the mean rainfall rate (mm/hour) estimated from the mean cloud

reflectivity, f0 (dBZ), and R1 is the same quantity but computed using the sum of mean

cloud reflectivity and the SM component, f0 + fi(xi) (dBZ). By taking the difference

between the two quantities (∆R), we can readily determine the impact of SM on rainfall

rates. As is shown in Figure S4c, the 7-hour wet soil can account for up to a 2 mm/hour

increment in rainfall rate at 2.0 km, denoting strong positive feedback.
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Figure S1. Correlogram of the land-surface and atmospheric variables used as inputs of

HDMR. Solid black lines demarcate distinct variables, whereas solid white lines differentiate

between time lags (∆t = 7 and 10 hours) relative to the DPR scanning time.
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Figure S2. Diurnal development of the mean ERA5 reanalysis PBL height at Central Daylight

Time (CDT) determined for two groups of samples. Groups 1 and 2 highlight positive SMCPF

(blue squares) with f1(x1) > 1.0 dBZ and negative SMCPF (violet stars) with f2(x2) > 1.0 dBZ,

respectively, both at a time lag of 7 hours and cloud height of 2.0 km.
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Figure S3. Vertical profiles of the mean F -statistic of the first-order component functions of

(a) AT: f4(x4) and (b) TPW: f5(x5) computed from 1,000 bootstrap iterations. Solid blue and

red lines refer to different temporal lags (∆t = 7 and 10 hours) and black dashed lines represent

the critical value at significance level α = 0.05, Fcrit. The light red and blue regions correspond

to the 95% bootstrap confidence intervals.
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Figure S4. Scatter plots of the samples of antecedent 7-hour (a) AT (K) and (b) TPW (kg/m2)

against their first-order component functions, f4(x4) (dBZ) and f5(x5) (dBZ), evaluated at three

separate heights, 2.0 km (red circles), 3.5 km (yellow squares), and 5.0 km (blue triangles).
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Figure S5. The central United States (95◦W-105◦W, 32◦N-40◦N) with (a) antecedent

7-hr SMAP/L4 soil wetness (-) of the top layer (0-5 cm) collocated at coordinates of the

GPM/DPR/L2A samples and (b) change in rainfall rate, ∆R (mm/hour), at 2.0 km attributed

to SM. Solid black lines delineate the state borders while dashed black and grey lines depict

the negative feedback and transitional regions proposed by Findell and Eltahir (2003b). Panel

(c) displays the scatter plots of the samples of antecedent 7-hour SM against the corresponding

change in rainfall rate, ∆R (mm/hour), evaluated at three separate heights, 2.0 km (red circles),

3.5 km (yellow squares), and 5.0 km (blue triangles).
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Figure S6. Same as Figure S5 but for SMAP/L4 LST and its associated change in rainfall

rate.
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Figure S7. Evidence of negative SMCPF in the southwest (101◦W-105◦W, 32◦N-36◦N) of the

central United States: (a) scatter plot of the SM samples from this area against the respective LST

component function, f2(x2); solid black line portrays the least squares fit of a simple regression

function to the samples; (b) marginal distribution of SM subsampled from panel (a) with f2(x2) >

0 (dBZ). The negative correlation (R = −0.41) between SM and f2(x2) and LST’s pronounced

contribution to the cloud over dry soils highlight the intrinsic SM-LST coupling. This aligns with

the negative SMCPF.
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