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Abstract

Streamflow monitoring is very important for planning and management of water resources in watersheds, and their prediction

accuracy is crucial for decision-making. The Niger River Basin is a transboundary resource, shared by nine West African

Countries and Algeria and, a large portion of the population rely on the basin for rain-fed agriculture and hydropower. Over

the years, the basin’s streamflow regime has been altered due to climate change, drought, desertification and establishment of

Dams. This research describes a novel Deep Learning framework comprised of Bidirectional-Long Short-Term Memory (LSTM)

requiring Antecedent Precipitation Index (API) and meteorological variables, preprocessed using Normal Quantile Transform

(NQT) as input drivers and, compared with the Soil and Water Assessment Tool (SWAT+) for streamflow prediction. NQT-

API-LSTM which considers catchment wetness and seasonality, was forced with reanalyzed climate (1979–2021) while, SWAT+

was driven with biophysical data and reanalyzed climate (2010–2020). The very high performance of both NQT-API-LSTM

and SWAT+ models showed the models were reliable and can predict regulated flows with reasonable certainty. However,

NQT-API-LSTM outperformed SWAT+ at Lokoja watershed and, realistically captured the influence of seasonal climate and

regional groundwater dynamics from upstream catchments including the Sahara Desert on the Benue, Guinean, Sahelian and

Sudan Flood. Overall, NQT-API-LSTM could be used successfully for watershed-scale streamflow prediction without the need

for continuous ground support data, a benefit for sparsely gauged West African River Basins, while SWAT+ could be used as

an alternative, particularly, to evaluate the watershed’s response to land use/land cover changes.
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Abstract 17 

Streamflow monitoring is very important for planning and management of water resources in 18 

watersheds, and their prediction accuracy is crucial for decision-making. The Niger River Basin 19 

is a transboundary resource, shared by nine West African Countries and Algeria and, a large 20 

portion of the population rely on the basin for rain-fed agriculture and hydropower. Over the 21 

years, the basin’s streamflow regime has been altered due to climate change, drought, 22 

desertification and establishment of Dams. This research describes a novel Deep Learning 23 

framework comprised of Long Short-Term Memory (LSTM) requiring Antecedent Precipitation 24 

Index (API) and meteorological variables, preprocessed using Normal Quantile Transform 25 

(NQT) as input drivers and, compared with the Soil and Water Assessment Tool (SWAT+) for 26 

streamflow prediction. NQT-API-LSTM which considers catchment wetness and seasonality, 27 

was forced with reanalyzed climate (1979–2021) while, SWAT+ was driven with biophysical 28 

data and reanalyzed climate (2010–2020). The very high performance of both NQT-API-LSTM 29 

and SWAT+ models showed the models were reliable and can predict regulated flows with 30 

reasonable certainty. However, NQT-API-LSTM outperformed SWAT+ at Lokoja watershed 31 

and, realistically captured the influence of seasonal climate and regional groundwater dynamics 32 

from upstream catchments including the Sahara Desert on the Benue, Guinean, Sahelian and 33 

Sudan Flood. Overall, NQT-API-LSTM could be used successfully for watershed-scale 34 

streamflow prediction without the need for continuous ground support data, a benefit for sparsely 35 

gauged West African River Basins, while SWAT+ could be used as an alternative, particularly, 36 

to evaluate the watershed’s response to land use/land cover changes. 37 

 38 

1 Introduction 39 

Streamflow is a major component of the hydrological processes in the hydrologic cycle, 40 

and it is required for assessment of the distribution, pattern, characteristics and behaviour of river 41 

networks in a watershed. At watershed scale, streamflow serves a crucial role in quantitative and 42 

qualitative monitoring and, control of water resources (Danandeh, 2018). Streamflow data from 43 

watersheds are required for the effective management of water resources (Ni et al., 2020), 44 

irrigation timing and scheduling (Vogel et al., 2015), hydraulic engineering design of 45 

infrastructures such as dams and reservoirs (Amirhossien et al., 2015; Awchi, 2014), river 46 

behaviour analysis (Fryirs & Brierley, 2013) and flood frequency analysis (Jimoh, 2007). 47 

Accuracy in estimation of the timing and volume of streamflow serves as decision-support tools 48 

for policy makers and water resources managers in developing effective water resources 49 

management schemes such as commissioning hydropower dams, timing and allocation of surface 50 

water for irrigation schemes, inland waterways transportation, construction of bridges and 51 

curvets, flood control and drought monitoring. 52 

Hydrological models are representations of the physical, chemical and biological 53 

characteristics of the drainage basin catchments and, are used for simulation of basin behavior 54 

and the natural hydrological processes (Duan et al., 2019). Generally, hydrological models 55 

simulate the interactions between the input variables (such as climate data and terrain attributes) 56 

and the system (such as the drainage basin catchments) to estimate an output (such as 57 

streamflow, water level, percolation, soil moisture contents and evapotranspiration). 58 

Hydrological models are employed in estimating low flows which are necessary in watershed 59 

management, and forecasting peak flows which are necessary for flood mitigation (Pfannerstill et 60 
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al., 2014). The main challenge in the implementation of hydrological models is the diverse 61 

parameters required for calibrating the model, in other to represent all hydrological processes in 62 

a drainage basin more accurately and reduce flood risk errors due to overestimating peak flows 63 

and, prevent water availability problems due to low flows underestimation (Jimeno-Sáez et al., 64 

2018). 65 

In recent times a number of hydrological models have been developed for simulating 66 

river discharges and associated hydrologic components, as well as assessing rainfall-runoff 67 

relationships and, the water balance in drainage basins (Makwana & Tiwari, 2017). Conceptual 68 

hydrological models utilize a number of mathematical formulations in describing the various 69 

processes of the hydrological cycle to simulate streamflow in a watershed (Noori & Kalin, 2016). 70 

The Soil and Water Assessment Tool (SWAT), is a sophisticated numerical model developed by 71 

Arnold et al. (1998) for simulation of the hydrological processes across several climatic and 72 

ecological regions. SWAT is a conceptual semi-distributed model that has gained increasing 73 

popularity within the last two decades for large scale regional hydrological simulation (Grusson 74 

et al., 2017). SWAT model have been employed in several studies to estimate the streamflow 75 

regimes in various watersheds by utilizing diverse spatial and temporal hydrometeorological and 76 

remote sensing data (Jimeno-Sáez et al., 2018). 77 

SWAT model can assess and simulate streamflow including nutrients and sediments 78 

transport. SWAT model has been evaluated and validated in drainage basins within the United 79 

States of America and watersheds across the world for hydrologic modeling, pollutant loss, and 80 

climate change research (Arnold et al., 1998). SWAT model’s major components are: hydrology; 81 

land use; plant growth; reservoirs; soil; and weather (Arnold et al., 1998). In recent times in the 82 

United States of America, SWAT model is increasingly being adopted for evaluation of the 83 

efficacy of the conservation policy of the United States Department of Agriculture (USDA) 84 

(Mausbach & Dedrick, 2004), for simulation of the Total Maximum Daily Load (TMDL) in 85 

catchments (Borah et al., 2006), for evaluation of hydrological processes at the Upper 86 

Mississippi River Basin, the entire United States of America, and a number of other hydrological 87 

purposes (Arnold et al., 1998). SWAT model has been successfully utilized for modeling the 88 

nitrate-nitrogen loadings and water quality of the raccoon river watershed (Jha et al., 2007). 89 

Adeogun et al. (2018) successfully simulated sediment transport and yield, identified and 90 

prioritized areas susceptible to erosion at the Upper Area of Lake Kainji at the Lower Niger 91 

River Basin in Nigeria and proposed better sediments management plan using SWAT model. 92 

Demirel et al. (2009) reported improvement in daily streamflow simulation accuracy of in data-93 

scarce regional watersheds using SWAT model. 94 

Deep Learning (DL) methods are increasingly becoming accepted as an alternative to the 95 

conventional distributed hydrological models, in simulating complex hydrological processes and 96 

predicting streamflow and water level more accurately. DL is capable of resolving large and 97 

complex tasks such as image classification, nonlinear simulations, time series forecasting, object 98 

detection and pattern analysis by discovering the nonlinear relationships between input data and 99 

the outputs (Hussain et al., 2020). Deep Learning architectures are composed of Artificial Neural 100 

Networks (ANN), and are data-driven approaches with the capability of simulating complex 101 

system dynamics. In recent times, ANNs have been used successfully in research for modeling 102 

complex systems, due to its inherent characteristics such as: being a nonlinear; self-adaptive 103 

data-driven approach; that consist of universal functional approximators; with the capacity to 104 

generalize (Haykin, 1999; Zhang et al., 1998).  105 
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In the last few years, a number of typical ANN architectures and variants that provide 106 

versatile nonlinear solutions for environmental and water resource challenges have been 107 

developed, such as: Convolutional Neural Networks (CNN); Deep Neural Networks (DNN); 108 

Recurrent Neural Networks (RNN); Gated Recurrent Unit (GRU); Long Short-Term Memory 109 

(LSTM) and; Transformers. These Machine Learning (ML) and DL architectures have been 110 

employed to simulate and forecast streamflow in watersheds.  For instance, Hussain, et al. (2020) 111 

utilized extreme learning machine (ELM) and CNN for predicting the daily, weekly and monthly 112 

streamflow for a single step in Gilgit River Basin, Pakistan. According to Hussain, et al. (2020), 113 

the performance metrics indicated that ELM outperformed CNN model with an R2 score of 0.99 114 

for daily streamflow forecasting between 1980 and 2008.  Jimeno-Sáez et al. (2018) applied 115 

ANN and SWAT models to estimate discharge in Miño-Sil and Segura watersheds located in 116 

Peninsular Spain with differing climatic conditions. It was reported that ANNs and SWAT 117 

showed good performance in modeling the daily streamflow of both watersheds. However, 118 

SWAT displayed better skills in predicting low flows, while ANNs showed better skills in 119 

simulating peak flows in the two drainage basins (Jimeno-Sáez et al., 2018).  120 

Also, Fu et al. (2020) forecasted streamflow in Kelantan River catchment at the northeast 121 

region of Malaysia Peninsula by utilizing LSTM model. When compared with DNN models, 122 

LSTM models showed better performance in forecast accuracy irrespective of the characteristic 123 

steady dry season flow, or highly variable monsoon flow. According to Fu et al. (2020), the 124 

LSTM model showed expert skills in streamflow estimation in Kelantan River. Van et al. (2020), 125 

used CNN, LSTM and traditional ML models to forecast daily discharge at Can Tho and Chau 126 

Doc sub-catchments of the Vietnamese Mekong Delta. The CNNs and LSTMs models showed 127 

excellent performance in predicting daily rainfall–runoff. However, the CNN model showed 128 

better accuracy for streamflow simulations at both stations. It was reported that there was no 129 

significant contribution from rainfall because the LSTM and CNN models only considered 130 

lagged flows at gauge station. And concluded that CNN and LSTM models had better 131 

performance than conventional methods and, can be adopted as alternatives in other to increase 132 

the accuracy in simulation of hydrological parameters, especially in regulated upstream flows. 133 

ANN and SWAT were employed for forecasting daily streamflow in Pracana Basin and it was 134 

reported that ANN outperformed SWAT model in predicting high flows. SWAT hydrological 135 

model inefficiency in simulating high flows, despite having better mean squared error value, was 136 

attributed to the model formulation (Demirel et al., 2009). Furthermore, ANN, random forest 137 

(RF), Gaussian linear regression model (GLM), Gaussian generalised additive model (GAM), 138 

multivariate adaptive regression splines (MARSs) and 1D-CNN was used by Singh et al. (2023) 139 

for streamflow prediction in Sutlej River Basin and, concluded that RF outperformed other 140 

models in predicting streamflow. Ghorbani et al. (2016) employed support vector machine, 141 

multilayer perceptron (MLP) and radial basis function (RBF) for daily streamflow prediction 142 

whereas, Guo et al. (2011) used support vector machine and ANN for simulation of streamflow 143 

and concluded that support vector machine (SVM) showed better performance in predicting 144 

streamflow. Most recently, Xu et al. (2023) applied transfer learning (TL) Transformer (TL-145 

Transformer), TL-LSTM, TL-MLP, Transformer, LSTM and MLP for flood modeling in data-146 

sparse regions in the Yellow River, China. 147 

Most physically-based hydrological models are computationally expensive and require 148 

large datasets of hydroclimatic and biophysical attributes for calibration and validation purposes 149 

(Jimeno-Sáez et al., 2018). Even the widely recognized SWAT hydrological model also requires 150 

large datasets comprising of land use, soil, terrain attributes, climate variables and management 151 
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or decision variables in representing the watersheds hydrological conditions, for estimation of its 152 

CN (curve number) parameter. Hydrological modeling has remained a persistent challenge in the 153 

field of operational hydrology, due to the need to minimize the subjectivity of arbitrarily selected 154 

parameters to represent the physical conditions (Ali et al., 2010). However, these models are 155 

constrained by the limitation of required data for the model’s parameter calibration, especially in 156 

sparsely gauged and un-gauged watersheds where data might be missing or inadequate. 157 

The Antecedent Precipitation Index (API), is commonly employed to estimate runoff 158 

from storm events in watersheds where ground-support data is scarce or unavailable. It serves a 159 

crucial role in the estimation of the response of runoff to rainfall, particularly in catchments 160 

where runoff generation is heavily influenced by groundwater and adheres to the principles of 161 

the ‘Variable Source Area’ concept (Hewlett & Hibbert, 1967). Considerable research attention 162 

has been directed toward API (Descroix et al., 2002) which suggests subjectivity, in determining 163 

the API for representing physical conditions (Ali et al., 2010). Antecedent precipitation refers to 164 

the amount of prior rainfall, affecting the runoff yields of a specific storm event. API represents a 165 

measure of soil moisture index or catchment wetness and frequently remains a parameter 166 

determined subjectively and implemented arbitrarily in modeling runoff response to rainfall 167 

(Heggen, 2001). Recent studies have explored the use of API for simulating runoff yields and 168 

streamflow from storm events (Ali et al., 2010; Descroix et al., 2002; Ghosh et al, 2021). A 169 

number of recent studies have reported improved river discharge and stage forecasting by 170 

including API in the ANN model structure (Dawson & Abrahart, 2007). API, being a numerical 171 

value derived from rainfall depth, can be compared to or used as a proxy for soil moisture. It is a 172 

derived variable that can be incorporated into the modeling framework either as a conventional 173 

‘input driver’ or as an expert ‘output hint’. According to Xia et al. (1997), API can improve the 174 

effectiveness of nonlinear forecasting models, depending on their sophistication.  175 

The last few years have seen an increased interest in process-based hydrological models 176 

for streamflow simulation in large West African River Basins (Aich et al., 2015; Poméon et al., 177 

2018; Schuol et al., 2008). To the best of our knowledge, there are relatively few studies that has 178 

looked specifically at climate-driven deep learning approaches for modeling hydrological 179 

processes at watershed-scale. Thus, in this study, we proposed a novel NQT-API-LSTM 180 

ensemble to be used alongside SWAT+ model for daily streamflow simulation in the Niger River 181 

Basin, a large West African watershed with extremely heterogenous climatic conditions. A 182 

comparison of the performance of NQT-API-LSTM and SWAT+ model was made at the 183 

downstream gauging station at Lokoja. While, the efficiency of NQT-API-LSTM in simulating 184 

the Guinean, Sahelian and Sudan Flood events has been assessed at the Sahelian (Niamey) and 185 

Sudan (Jiderebode) sections of the basin. 186 

2 Methodology 187 

2.1 The Study Area 188 

The study area is the Niger River Basin (NRB) spatially delimited to West Africa within 189 

the boundaries of Benin, Burkina Faso, Cameroon, Chad, Côte d’Ivoire, Guinea, Mali, Niger and 190 

Nigeria and, Algeria (North Africa) as shown in Figure 1. Geographically, it stretches between the 191 

meridians of 11°35'16.99" West and 15°51ʹ44.74ʺ East, from Futa Jallon Highlands in Guinea to 192 

Chad; and between the parallels of Latitudes 4°21'19.60" to 23°54'20.41" North of the equator, 193 

from the Hoggar Mountains in Southern Algeria to the Gulf of Guinea. The headwaters of the  194 
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 195 
Figure 1. Niger River Basin along with Reservoirs, Discharge Stations, DEM and River Network 196 

(6th, 7th and 8th Order Channels) 197 

 198 

Niger River System originates in the Futa Jallon Highlands in Guinea, and flows north-eastward, 199 

and during the monsoon forms an extensive floodplain in Mali known as the Inland Delta (Inland 200 

dú Niger). On leaving the delta, the river meanders in Mali, eventually flowing southeast through 201 

Niger, Benin Republic to Nigeria, and converges with the Benue River at Lokoja and, its waters, 202 

including its sediments and other associated loads such as exotic species are discharged into the 203 

Niger Delta by extensions into the Atlantic Ocean (Lienou et al., 2010). There are 58 large dams 204 

and a total of 260 Dams and Reservoirs with a total volume of 4.2 × 1010 m3, providing various 205 

water resources schemes (irrigation, water supply and hydroelectricity) within the river basin 206 

which have significantly altered the streamflow regime (Lienou et al., 2010). The dams are 207 

irregularly distributed and, mostly concentrated in a few parts of NRB, like Burkina-Faso (where 208 

primarily small-sized dams are found) and Nigeria (where dams of all sizes, including large ones, 209 

exist). The capacity of existing dams ranges from 25 × 10-3 million m3 at locations such as Camp 210 

de chasse in Tapoa, Niger to 1.6 × 1010 m3 (Kainji, Nigeria). NRB has a total land area of 211 

2,240,738.61 km2 and, its stream channel subsystem consists of eight (8) orders ranked from 1st 212 

Order to 8th Order with the main channel, the Niger River ranked as the 8th Order and its largest 213 

tributary channel, the Benue River ranked as the 7th Order of NRB. The Niger River, which 214 

stretches approximately 4,200 km, is Africa’s third longest river and, ranks as the second largest 215 
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river in Africa in terms of discharge volume (Oguntunde et al., 2014; Okpara et al., 2013). NRB 216 

encompasses all major climatic regions of West Africa and, the regions are characterized based on 217 

their ecological zones and differing climatic characteristics. The five climatic regions are the 218 

Saharan, Sahelian, Sudan, Guinean, and Guineo-Congolian regions. The Saharan to mid Sahelian 219 

regions of the basin has the driest climatic regime, with average annual rainfall amounts less than 220 

250 mm per year. While, the Guineo-Congolian region is the wettest with rainfall amounts between 221 

2000 mm and 5000 mm. In terms of aridity, NRB encompasses all dryland climate subtypes 222 

(Hyper-arid, Arid, Semi-arid, Dry Subhumid zones) and non-dryland climate subtype (Humid 223 

zone). These climatic zones range from hyper-arid at the Saharan region in the Northern Niger 224 

Basin to humid at the Guineo-Congolian region in the Southern Niger Basin. The climate within 225 

NRB is influenced by the Intertropical Discontinuity (ITD) which by extension influences the 226 

hydrological processes of the river system (Thompson et al., 2017). NRB rainfall scheme is 227 

strongly seasonal and, determined by the Atlantic Monsoon oscillations from May to November. 228 

The magnitude of the Atlantic monsoon event varies greatly between the northern and southern 229 

NRB, but varies uniformly between the eastern and western parts of NRB (Lienou et al., 2010). 230 

The basin exhibits two distinct seasonal rainfall patterns: a unimodal wet season which occurs in 231 

northern NRB and; bimodal wet seasons in southern NRB with a short dry spell between the wet 232 

seasons. Three stream gauges were selected based on data availability and includes: Niamey 233 

gauging station located within the arid Sahelian region of the Middle NRB; Jiderebode gauging 234 

station located within the semi-arid Sudan region of the Lower NRB and; Lokoja gauging station 235 

located within the humid Guinean region of the Lower NRB.  236 

The upstream area and major portions of the Upper Niger Basin is characterized by an 237 

ancient geologic landscape of metaigneous rocks followed by metasedimentary crystalline rocks. 238 

These impermeable rocks limits groundwater occurrence, with small aquifer systems occurring in 239 

areas where these rocks are either fractured or are weathered. At the Upper NRB groundwater do 240 

not contribute to the Niger River due to extremely low groundwater recharge from the headwaters 241 

(Fontes et al., 1991). The landscapes of the western bank of Niger River at the Middle NRB are 242 

characterized by the Liptako-Gourma Massif granitic basement (Descroix et al., 2012), while the 243 

sedimentary basin of Iullemeden lies on the right bank of the Niger River, from the Northern Segou 244 

through Gondo depression of the Eastern Dogon region and the Inland Delta (Andersen et al., 245 

2005). The Iullemeden, is a multi-layered aquifer system consisting of the Continental Terminal 246 

dated Eocene to Pliocene overlain by Quaternary and recent dune-like Holocene ergs or alluvium 247 

deposits with aquifer’s groundwater hydrologically connected to the Niger River. The Continental 248 

Terminal, is an unbroken aquifer of about 100 m thickness covering tens of thousands of square 249 

kilometers, composed mainly of silty sandstones, clays and sand, with high-quality water. It is the 250 

most significant aquifer in the basin, and borders the Niger River System at Goundam, Timbuktu, 251 

and Gourma Rharous in Mali, Hoggar in Algeria and, extending through Bourem in Gao region in 252 

Mali to Niamey, and Gaya in Niger. Its northern stretch includes the Azaouâd, Taoudenni, 253 

Azaouâk and Tilemsi sedimentary basins. The Continental Shale Band aquifer lies underneate the 254 

Eocene to Cretaceous layers of the Continental Terminal formations and borders the Niger River 255 

at the Northern axis of Benin and also within the arid regions of Mali and Niger. At the Lower 256 

NRB in Nigeria, the watercourse flows along the Continental Terminal whose eastern axis borders 257 

the basin at Jos Plateau in Nigeria and, continues along the Quaternary alluvial deposits on both 258 

the right and left banks of the river at Jebba, and extending through the Benue valley to Cameroon 259 

and Chad. The river then flows alongside artesian aquifers and Cretaceous deposits that continue 260 

to Onitsha. At Onitsha, Tertiary marine layer, then spans across the Cretaceous layer, which are 261 



manuscript submitted to Water Resources Research 

 

 

overlaid by saline Quaternary sediments from the coastal region of the Niger Delta. Outside this 262 

sedimentary basin, crystalline basement complex rock materials dated Precambrian, a constituent 263 

of the pan-African shield encloses NRB (Andersen et al., 2005; Persits et al., 1997).  264 

The hydrological regime of NRB is heavily influenced by groundwater base flow, which 265 

is affected by annual rainfall and soil permeability. During the dry season, most of the 266 

contributions occur within the alluvial plains (Andersen et al., 2005). At Benin, the Iullemeden 267 

discharges into the main channel and its tributaries, and continues along the watercourse 268 

downstream. In Nigeria, the Rima and Sokoto rivers, ranked as 6th and 7th order respectively, 269 

which are the main rivers which drains the Iullemeden (IAEA, 2017), flows into the Niger River, 270 

just before Jiderebode gauging station. The Niger River Basin System is characterized by four 271 

major flood events that occurs at various sections of the basin, based on the climatic type which 272 

includes: the Benue; Guinean; Sahelian and; the Sudan Flood. The Benue Flood event is 273 

observed at Lokoja confluence, which is mainly associated with the flood waters from the Benue 274 

River, the largest tributary of the Niger River, whose source lies within the Adamawa Plateau in 275 

Cameroun, as well as the regulated upstream flows from major Dams which include Jebba, 276 

Lagdo, Kainji and Shiroro Dams. The Guinean Flood or “black flood” is the main flood from the 277 

headwaters of the Niger River in Guinea. The Sudan Flood or “white flood” is the local flood 278 

waters in Jiderebode sub-catchment, and the Sahelian Flood or “red flood” is the local flood 279 

waters in Niamey sub-catchment. 280 

2.2 SWAT+ Model 281 

This study simulated streamflow at Lokoja sub-catchment of NRB using the updated 282 

SWAT+ model version 2.2.0 (Bieger et al., 2017). The Soil and Water Assessment Tool (SWAT) 283 

is a semi-distributed, hydrological process-based river basin model, and can be calibrated to run 284 

on multiple temporal resolution (daily, monthly or yearly) depending on the time-scale of the 285 

observation (Arnold et al., 2012). The major constituents of SWAT+ model are: weather, 286 

hydrology, sedimentation, crop growth, pesticides, soil temperature and properties, nutrients, and 287 

agricultural management. SWAT model considers the watershed's heterogeneity by subdividing it 288 

into sub-basins derived from the land use/cover, drainage (river networks), soil properties and 289 

terrain attributes (such as reservoirs and slope). These sub-basins are subsequently partitioned into 290 

hydrologic response units (HRUs), representing distinct land areas characterized by distinctive 291 

combinations of landscape, soil, land use/cover and slope. 292 

SWAT+ estimates the components of the water balance by considering the influence of 293 

climate forcing. The equation representing the water balance is expressed as: 294 

 

𝑆𝑊𝑡 = 𝑆𝑊𝑜 + ∑(𝑅𝑖 − 𝑄𝑖 − 𝐸𝑇𝑖 − 𝑃𝑒𝑖 − 𝑄𝑅𝑖)

𝑡

𝑖=1

 (1) 

Where SWo and SWt represents the initial and final soil water content (mm); the index t 295 

represents time (days); Ri, ETi, Qi, Pei and QRi represents precipitation, evapotranspiration, 296 

surface runoff, percolation and baseflow (all units in mm) (Arnold et al., 1998). 297 

2.2.1 Input Datasets for SWAT+ Model 298 

Hourly ERA5 reanalysis climate data for the period of 1979 to 2020 in 0.25° × 0.25° 299 

grids of (approximately 25 km resolution), which includes temperature, precipitation, dew-point 300 

temperature, solar radiation, u-wind and v-wind components, were obtained from the European 301 

Centre for Medium-Range Weather Forecasts (ECMWF) (Muñoz, 2019) and also retrieved from 302 
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Microsoft Planetary Computer (MPC) data catalog using STAC (Spatio-Temporal Access 303 

Catalog) API (Application Programming interface). The geospatial datasets used in this study 304 

include: HydroSHEDS 3 arc-second resolution (approximately 90 m) hydrologically conditioned 305 

DEM (Lehner et al., 2008; Lehner, 2022), 2 km resolution Harmonized World Soil Database 306 

(HWSD) soil data obtained from the Food and Agricultural Organization (FAO, 2012), ESA 307 

WorldCover 10 m resolution land use/land cover 2020 v100 dataset, made available by the 308 

European Space Agency (ESA) (Zanaga et al., 2021) and retrieved from MPC data catalog using 309 

the STAC API. Streamflow data was obtained from the Nigerian Hydrological Services Agency 310 

(NiHSA) and the Global Runoff Data Centre (GRDC, 2024). Reservoir data was provided by 311 

HydroSHEDS HydroLAKES database version 1.0 (Lehner et al. 2016). 312 

2.2.2 SWAT+ Model Data Preprocessing 313 

In view of computational cost and memory efficiency, HydroSHEDS Hydrologically 314 

conditioned DEM was resampled from 90 m (3 arc-seconds) resolution to 282 m resolution. 315 

While the 10 m resolution ESA Land Use was resampled to 30 m. ERA5 hourly meteorological 316 

reanalysis data was resampled to daily time series. Relative humidity was derived from air 317 

temperature and dew-point temperature according to Sonntag90 method (Sonntag, 1990) and 318 

Wind intensity was derived from the zonal (v-wind) and meridional (u-wind) wind components 319 

before resampling to daily timeseries. A total of 2795 climate data grid points from the 320 

delineated Niger River Basin were used as station data for climate input in SWAT+ model. Data 321 

preprocessing was carried out on node clusters (virtual machine compute instances) linked 322 

together on the backend by Microsoft Azure Kubernetes Services and the frontend by Dask in 323 

Python programming environment. In addition Microsoft Planetary Computer was also used for 324 

Cloud Native data assimilation, data preprocessing and geospastial data analysis using the STAC 325 

(Spatio-Temporal Access Catalog) API (Application Programming interface). 326 

2.2.3 SWAT+ Model Setup 327 

SWAT+ model parametrization was performed using the QSWAT+ interface in QGIS 328 

software. The DEM was used to derive the stream network and delineate the basin and its sub-329 

basin boundaries. The Soil map was overlaid on the delineated watershed and sub-watersheds to 330 

provide details about soil properties, including soil texture, hydraulic conductivity, and available 331 

water content. Next, the land use/cover map was overlaid on the sub-basins and three slope 332 

categories were defined (0 – 3 %; > 3 % – 6 % and; > 6 %). Dominant HRUs option was used to 333 

derive the Hydrological Response Units (HRU) and reservoirs were added. The properties of the 334 

reservoirs included in the SWAT+ model structure in this study is presented in Table 1. Finally, 335 

NRB was subdivided into 11 sub-watersheds and 182 HRUs. The potential evapotranspiration 336 

was determined using the Penman-Monteith method while, the curve number was calculated 337 

using the Muskingum method. The dominant land use/cover distribution for NRB were: barren 338 

(30.36 %), range grasses (28.10 %); agriculture (18.45 %); range-brush (14.76 %); forest (6.83 339 

%); wetland (0.72 %); urban (0.72 %); wetlands water (0.27 %) and; wetlands forested or 340 

mangrove forest (0.00%). The hyper arid, arid and semi-arid climatic condition in the Upper 341 

Sahel and Saharan regions explains the dominance of barren areas in NRB. 342 

 343 

 344 

 345 
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Table 1: Properties of the Reservoirs within the Niger River Basin which are included in the 346 

SWAT+ model 347 

Name River Year Long (°) Lat (°) Elevation 

(m) 

Surface area 

(km2) 

Storage 

volume (km3) 

Kainji Niger 1968 4.56 10.32 110 1034.85 15.00 

Lagdo Benue 1983 13.85 8.89 208 623.12 7.80 

Shiroro Kaduna 1984 6.90 9.98 335 271.12 7.00 

Jebba Niger 1984 4.68 9.36 89 274.76 3.60 

Dadin Kowa Gongola 1988 11.50 10.53 246 150.56 2.86 

Selingue Sankarani 1982 -8.22 11.46 336 335.77 2.17 

Goronye Rima 1983 5.95 13.54 286 107.48 0.98 

Kiri Gongola 1982 12.01 9.76 170 68.52 0.62 

Markala Niger 1947 -6.23 13.50 282 102.32 0.18 

  348 

2.2.4 Sensitivity Analysis, Calibration and Validation 349 

The hydrometeorological daily time series were split into three periods: warm-up; 350 

calibration and; validation. The period spanning from 2007 to 2009 was chosen as the warm-up 351 

phase and followed immediately by the calibration phase spanning from 2010 to 2007.  While, 352 

the validation phase span from 2018 to 2020. Sobol method was used for the sensitivity analysis 353 

while, automatic calibration of the model’s sensitive parameters was done using the Latin 354 

hypercube algorithm in SWAT+ Toolbox v1.0.1. Sensitivity analysis involved identifying the 355 

parameters with the strongest influence on streamflow, by varying the model’s parameters, and 356 

estimating the model’s output changes in relation to its variations (Arnold et al., 2012). During 357 

the sensitivity analysis, 2200 iterations was carried-out to obtain the 1st order sensitivity for the 358 

basin. In conducting calibration, daily streamflow observations at Lokoja gauge station was used 359 

and, involved adjustment of the model’s parameters, in other for the daily simulations to 360 

correspond closely with observations. Automatic calibration was performed using two iterations 361 

of 1500 simulations with the sensitive parameters and, readjusting the parameters prior to the 362 

next simulation. The SWAT+ sensitive parameters for calibration and their final values 363 

considered in this study is shown in Table 2. 364 

2.3 Antecedent Precipitation Index (API) 365 

The antecedent precipitation index (API) is a hydrological model that accounts for 366 

amounts of previous rainfall occurrence prior to new storm events. It is a soil moisture index that 367 

is used in estimating runoff response to rainfall. API is derived from daily rainfall time series 368 

using the equation expressed as; 369 

 

𝐴𝑃𝐼 = ∑ 𝑃𝑡𝑘−𝑡

−𝑖

𝑡=−1

 (2) 

 370 

where Pt is the rainfall amount on the tth day prior to the occurrence of the rainfall event (storm),  371 
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 372 

Table 2. Parameters included in SWAT+ model calibration in Lokoja 373 

Parameter Sensitive Parameter Rank Range Fitted 

Value 

bd Moist bulk density (g/cm3) 1 0.9 – 2.5  -6.74 % 

awc Available water capacity (mm H2O/mm soil) 2 0.01 – 1 -7.98 % 

cn2 SCS runoff curve number 3 35 – 95 4.24 % 

alpha Baseflow alpha factor (1/day) 4 0 – 1 -6.12 % 

perco Percolation Coefficient 5 0 – 1 2.31 % 

revap_co Groundwater “revap” coefficient 6 0.02 – 0.2 12.36 % 

epco Plant uptake compensation factor 7 0 – 1 -6.44 % 

esco Soil evaporation compensation factor 8 0 – 1 2.25 % 

chk Hydraulic conductivity 9 -0.01 – 500 5.43 % 

flo_min Minimum aquifer storage to allow return flow (m) 10 0 – 50 2.58 % 

 374 

and k is a constant (Kohler & Linsley, 1951). 375 

 API for this study was calculated using the daily rainfall (P) data for a period of 43 years 376 

(1979 – 2021) with a constant (k) of 0.98 that was within the limits for k (0.80 – 0.98) 377 

recommended by Viessman & Lewis (1996). 378 

2.4 Data and Data Preprocessing Techniques 379 

The choice of input variables has a significant influence on streamflow simulation and 380 

forecasting. According to systems theory, system variables can be categorized into three distinct 381 

categories: input; output and; state variables. State variables are representations of a measure of 382 

some intrinsic qualities of the system’s condition and, these variables usually exhibit spatial 383 

variations and changes over time. In a Drainage Basin Systems, state variables include; 384 

Discharge (streamflow), Stage (water level) and water quality parameters. Input variables are 385 

further divided into two groups: control variables and random variables. Control variables are 386 

often referred to as management or decision variables such as irrigation extraction rates, and 387 

reservoir or dam storage and release schedule. While random variables exhibit statistical 388 

randomness such as temperature and precipitation. The Output variables represent the future 389 

state(s) being predicted such as streamflow. In most machine learning applications for 390 

streamflow forecasting, state variables frequently serve as both input and output, with input and 391 

output datasets representing the state(s) lag time and lead time respectively. Existing research has 392 

focused on a combination of previous state(s), as univariate or multivariate inputs, to predict 393 

future state(s) as output (Van et al., 2020; Xu et al., 2023), but has failed to explore the 394 

significant influence of meteorological variables on the simulated flow. Thereby limiting the 395 

Deep Learning model’s ability to learn the causal relationship, behavior and pattern of the 396 

meteorological variables and their climatic drivers influencing the hydrological processes in the 397 

watershed. Thus, in this study, reanalysed meteorological variables such as rainfall and 398 

temperature and, API model outputs were utilized as input drivers in the LSTM model 399 

development. 400 

 401 
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 402 
Figure 2. Catchments, reservoirs and drainage network within the Niger River Basin extending to: 403 

(a) Niamey gauge station; (b) Jiderebode gauge station and; (c) Lokoja gauge station 404 

 405 

2.4.1 Feature Engineering 406 

Hourly ERA5 reanalysis meteorological data spanning from 1979 to 2021 in 0.25° × 407 

0.25° grids, was resampled to daily time series. The rainfall and temperature data required by the 408 

LSTM models was determined using the basin areal average. Since the gridded meteorological 409 

data was uniformly distributed, Arithmetic Areal Averaging method, which is based on equal 410 

contribution of all grid cells within the watershed was used to determine the basin areal average. 411 

In other for the model to accurately describe the spatial characteristics and pattern of the basin’s 412 

climate, the DEM was delineated into sub-basins using ArcGIS Pro software. And, HyBAS 413 

HydroBasins level 4 shapefiles (Lehner and Grill, 2013) were merged within the boundaries of 414 

the delineated basins in other to encourage reproducibility. Due to the enormously heterogeneous 415 

geomorphology and climatic conditions of the study area (NRB), a single mesoscale modeling 416 

framework was developed for each sub-watershed as shown in Figure 2. The Arithmetic Areal 417 

Averaging method was applied to the active sub-basins rainfall and temperature data, to generate 418 

the input variables (features) for the LSTM models. Features (input variables) for the LSTM 419 

models to estimate daily streamflow (target) was generated from the precipitation and 420 

temperature time series using time delay embedding such as lag observations and rolling window 421 

statistics operation. Firstly, API was calculated for the selected sub-catchments. Other input 422 

variables considered in the feature space were: daily mean temperature (Tt); daily rainfall (Pt); 423 

lag rainfall (Pt−n); lagged temperature (Tt-n), rolling total rainfall (Rn) and; rolling mean 424 
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temperature (Tm). LSTM model development is dependent on the spatial-temporal relationships 425 

between streamflow and climate dynamics. Similar to previous studies, the time delay 426 

embedding for the input variables (features) were determined using cross-correlation analysis to 427 

assess the temporal relationships between rainfall, temperature and streamflow (Amirhossien et 428 

al., 2015; Jimeno-Sáez et al., 2018).  429 

2.4.2 Feature Selection 430 

Feature space that comprises of large numbers of features (input variables) or highly 431 

correlated features, may lead to unacceptably high variance and reduction in prediction accuracy. 432 

Sparsity constraints can be applied on the feature space to prune uninformative covariates which 433 

do not influence the outputs. The Least Absolute Shrinkage and Selection Operator (LASSO) is a 434 

regression model introduced by Tibshirani (1996), which allows both continuous shrinkage and 435 

variable selection by utilizing an L1-norm sparsity constraint to enforce the coefficients of least 436 

important covariates to zero and retains only important features. The LASSO formulation is 437 

shown as follows: 438 

 

∑(𝑦𝑖 − ∑ 𝑥𝑖𝑗𝛽𝑗

𝑗

)2

𝑛

𝑖=1

+ 𝜆 ∑ |𝛽𝑗|

𝑝

𝑗=1

 (3) 

where xij are the standardized features (input variables) and yi are the response variables (targets) 439 

for i = 1, 2, . . . , N and j = 1, 2, . . . , p, βj represent the coefficient of the j-th feature. 𝜆 ∑ |𝛽𝑗|𝑝
𝑗=1  440 

is the the L1 penalty, also known as the Lasso penalty, and it is controlled by the hyperparameter 441 

λ, which adjusts the strength of the penalty term. In Lasso regression, the goal is to minimize the 442 

cost function by reducing the absolute values of the feature coefficients. As a feature’s 443 

coefficient increases, so does the cost function value. 444 

In other to find the best tuning parameter λ, according to procedures described by 445 

Tibshrani (1996). Features were standardized in other to be mean centered (mean = 0) with unit 446 

variance (standard deviation = 1), and split into training and test sets. Then 99 discrete λ-values 447 

that range from 0.1 to 9.9 with a step of 0.1 (λ1 = 0.1, λ2 = 0.2, λ3 = 0.3, ……, λ99 = 9.9) and 5-448 

fold cross-validation with a grid-search was applied to the training set. Which, randomly splits 449 

all of the training set data up into 5 sets (y1, y2, y3, y4 and y5), then LASSO minimization was 450 

applied 5 times, each time fitted on 4 sets (y1, y2, y3 and y4) and tested on the hold-out set (y5) 451 

chosen randomly, to obtain the regression coefficients (𝛽𝑖) for a specific λ-value (for example λ1 452 

= 0.1). The resulting coefficients, estimates the residuals values of the hold-out set (yi), and the 453 

MSE (mean square error) was computed for each hold-out set (yi,i=1,⋯,5), defined by:  454 

 𝑀𝑆𝐸 = 𝑚𝑒𝑎𝑛((𝑦𝑖 − �̂�𝑖)
2) (4) 

 455 

where yi represents the response variable and ŷi is the residual. Then, the average of the MSE for 456 

each yi,i=1,⋯,5, was computed. The same procedure was repeated for the remaining 98 λ-values, 457 

generating a total number of 495 optimization iterations (99 × 5). After discovering the best 458 

performing tuning parameter, the absolute values of the LASSO coefficients for each predictor 459 

variables were obtained. Important features were selected (𝛽𝑖 > 0) while, non-influential features 460 

(𝛽𝑖 = 0) were dropped. Finally, the features selected for Jiderebode, Lokoja and Niamey 461 

watersheds are shown in Table 3. 462 

 463 

 464 
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Table 3: Feature (Input) Combinations for LSTM Models for Selected Sub-catchments of 465 

Niger River Basin 466 

Watershed Input Combinations Outputs 

Lokoja API, Pt-44, R82, Tt-128, Tm201 Qt 

Jiderebode API, Pt-62, R194, Tt , Tt-130, Tm230 Qt 

Niamey API, Pt-119, R210, Tt, Tt-152, Tm9 Qt 

 467 

2.4.3 Normal Quantile Transformations of Features 468 

Hydrological and meteorological variables such as streamflow and precipitation are often 469 

asymmetric, because these variables have positive values and range from 0 to ∞. There is also 470 

the problem of seasonal variations, serial dependence and non-stationarity of the exogenous 471 

variables of the time series. It is crucial to transform the distribution of hydrometeorological 472 

variables and force them to follow a symmetric distribution, in other to satisfy the essential 473 

assumption of normality, which represents a fundamental concept applicable to most statistical 474 

and machine learning models (Moran, 1970; Goovaerts, 1997; Murphy, 2022). The Normal 475 

Quantile Transform (NQT) has found extensive application in various hydrological and 476 

meteorological contexts to perform nonlinear transformations of the Cumulative Distribution 477 

Function (CDF) into the CDF of the Standard Normal Distribution (Moran, 1970; Bogner et al., 478 

2012), with its probability density function expressed as: 479 

 
𝑓𝑌(𝑦) =

1

√2𝜋𝜎2
𝑒−1

2
𝑦2

 (5) 

 480 

In this study, the quantile‐to‐quantile normal score transformation was applied on each 481 

feature independently to map the p‐quantile of each feature data distribution to the p‐quantile of 482 

the standard normal distribution according to procedures described by Deutsch & Journel (1998); 483 

Pyrcz & Deutsch (2018). Expressed as: 484 

 𝑦 = 𝐹𝑌
−1(𝐹𝑍(𝑧))     ∀ 𝑧 (6) 

 485 

Where, z represents the feature with CDF 𝐹𝑧(𝑧), y is the normal score value with CDF 486 

𝐹𝑌(𝑦) and 𝐹𝑌
−1 represents the Inverse CDF or quantile function of the output standard normal 487 

distribution. The steps includes: Firstly, the feature is split into training set, validation set and test 488 

set data; then the training set data is calibrated to generate the transformation parameters in other 489 

to prevent leakage of information; the CDF of each feature in the feature space is estimated and 490 

used to map the values of the observed variables to a uniform distribution; then, the associated 491 

inverse CDF or quantile function (𝐹𝑌
−1) is used to map the obtained values to the normal 492 

distribution and; extreme values or outliers of the validation set and test set data that fall below 493 

or above the fitted range of the training set data are mapped to the bounds of the output 494 

distribution. NQT is a robust data preprocessing technique that smooths out datasets with 495 

unusual distributions and is insensitive to outliers. 496 



manuscript submitted to Water Resources Research 

 

 

2.4.4 Features and Target Normalization 497 

The streamflow (target) daily time series of the hydrometric gauge stations were checked 498 

for missing data and, the missing data were filled by linear interpolation expressed as: 499 

 
�̂� = 𝑦1 + (𝑥 − 𝑥𝑖)

(𝑦𝑖+1 − 𝑦𝑖)

(𝑥𝑖+1 − 𝑥𝑖)
 (7) 

 500 

where xi and yi represent the first coordinates, while xi+1 and yi+1 denote the second coordinates. x 501 

represents the point at which interpolation is performed, and ŷ corresponds to the interpolated 502 

value. 503 

Most Deep Learning algorithms are not scale / shift invariant so it is important for the 504 

values of features and target to be within the same range. Transforming features and target to 505 

similar scale improves the performance of gradient descent, speeds up learning and, leads to 506 

faster convergence of the neural networks. Scaling is performed in other to prevent features with 507 

large values from dominating over small ones. Features (input variables) and targets 508 

(streamflow) were standardized in other to be mean centered with unit standard deviation. The 509 

procedures include: Firstly, the mean (�̅�) and standard deviation (σ) of the features and target of 510 

the training set were computed, as expressed by equations 8 – 9: 511 

 

�̅� =
1

2
∑ 𝑥𝑖

𝑁

𝑖=1

 (8) 

 512 

 

𝜎 = √
1

𝑁
∑(𝑥𝑖 − �̅�)2

𝑁

𝑖=1

 (9) 

Then the training set, validation set and test set of both the features and target were scaled 513 

as expressed by the equation: 514 

 
𝑥𝑖

′ =
𝑥𝑖 − �̅�

𝜎
 (10) 

where, �̅� and σ represents the mean and standard deviation of the variable x, xi represents the 515 

features and targets that are transformed (scaled) into 𝑥𝑖
′.  516 

2.5 Long short-term memory (LSTM) 517 

Since the introduction of RNNs by William and Zipser in the late 1980s, RNNs and their 518 

variants have received a lot of research attention in recent times. RNN can capture nonlinear 519 

short-term temporal dependencies, in RNN architecture input sequences are mapped to a 520 

sequence of hidden states, which maps to an output. The success of RNN is hindered by the 521 

problem of vanishing and exploding gradients (Hochreiter & Schmidhuber, 1997), which reduces 522 

the ability to capture non-stationary long-term temporal dependencies. 523 

LSTM, displayed in Figure 3a, has the advantage over RNN to capture multiple non-524 

stationary time dependencies and also long-term temporal dependencies due to the replacement 525 

of recurrent units in RNN with memory cells. LSTM cells consists of three gates: an input gate, a 526 

forget gate, and an output gate. These gates enable changes to be applied to a cell state vector 527 

and propagated iteratively in other to memorize and retrieve information over long time periods. 528 

The LSTM cell formulation are shown as follows: 529 
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 530 
Figure 3. (a) Architecture of a LSTM Unit; (b) Bidirectional LSTM Layer 531 

 532 
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 533 

 𝑖𝑡 = 𝜎(𝑊𝑥𝑖𝑥𝑡 + 𝑊ℎ𝑖ℎ𝑡−1 + 𝑏𝑖) 

𝑓𝑖 = 𝜎(𝑊𝑥𝑓𝑥𝑡 + 𝑊ℎ𝑓ℎ𝑡−1 + 𝑏𝑓) 

𝑜𝑡 = 𝜎(𝑊𝑥𝑜𝑥𝑡 + 𝑊ℎ𝑜ℎ𝑡−1 + 𝑏𝑜) 

𝑔𝑡 = 𝜙(𝑊𝑥𝑐𝑥𝑡 + 𝑊ℎ𝑐ℎ𝑡−1 + 𝑏𝑐) 

𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡 + 𝑖𝑡 ⊙ 𝑔𝑡 

ℎ𝑡 = 𝑜𝑡 ⊙ 𝜙 (𝑐𝑡) 

(11) 

 534 

where i is the input gate,  f  is the forget gate and o is the output gate, c is the cell activation, g is 535 

the input modulation gate, h is the hidden vector; the term W and b represents the gate matrix and 536 

bias; while 𝜙 represents a tanh function element-wise application and; ⊙ is the Hadamard 537 

product. 538 

2.5.1 Bidirectional LSTM 539 

Bidirectional LSTM networks, are cutting-edge neural network architectures, which 540 

integrate LSTM gating mechanisms with optimized cell state representations, which are 541 

propagated in both forward and reverse directions. Bidirectional LSTM, displayed in Figure 3b, 542 

takes into account dependencies in both time directions by including expected correlations in 543 

future time-steps and, as a result of reverse state propagation, anticipated future correlations can 544 

influence the current outputs of the network. Unlike RNN and unidirectional LSTM networks, 545 

bidirectional LSTMs have the capability to detect, store, extract and resolve with greater 546 

precision multidimensional temporal dependencies. This study utilized the Bidirectional LSTM 547 

capabilities in assessing the correlation between prior streamflow observations and future 548 

forecasts within the history window in resolving the current streamflow outputs. 549 

2.5.2 LSTM Model Training 550 

The Deep Learning (DL) method used for streamflow forecasting was Bidirectional 551 

LSTM. The models were trained in Python environment with TensorFlow v2 Deep Learning 552 

framework using NVIDIA Tesla K80, M60 and T4 GPUs (Graphics Processing Units). 553 

Catchment seasonality was explicitly represented in the Bidirectional-LSTM model formulation 554 

by transforming the feature matrix to tensors in the feature space, to provide a 90-day history 555 

window with 1-day horizon. The LSTM model architecture and hyperparameters considered for 556 

this study are presented in Tables 4 – 5. Input features and targets were split into three sets of 557 

data: training set; validation set and; test set. Inputs for Lokoja catchment were split into training 558 

set (2010 – 2017): validation set (2018 – 2020): test set (2021) while, Niamey catchment was 559 

split into training set (80 %): validation set (15 %): test set (5 %), and  Jiderebode catchment was 560 

split into training set (80 %): validation set (10 %): test data (10 %). The LSTM models were 561 

trained with the training datasets while the validation datasets were used to generate the 562 

validation cost function (error function) for updating the weights of the neural networks during 563 

backpropagation and the test datasets was used to test model performance. 564 

 565 

 566 

 567 

 568 

 569 

 570 
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 571 

Table 4: LSTM Model Architecture 572 

Layer type Input layer Output layer Parameters 

LSTM Bidirectional layer 1 90 300 186000 

LSTM Bidirectional layer 2 300 100 140400 

Dense layer 1 100 20 2020 

Dropout  20 % 0 

Dense layer 2 20 1 21 

Total Parameters   328441 

 573 

 574 

Table 5: LSTM Model Hyperparameters 575 

Hyperparameters Value 

Evaluation interval 150 

Activation function Tanh 

Optimizer Adam 

Loss function Mean Squared Error (MSE)  

Epoch 100 

Monitor Validation loss 

Regularization Dropout, Early stopping 

Patience 10 

2.6 Hydrological Model Evaluation Criteria 576 

The performance of the LSTM and SWAT models were evaluated using NSE (Nash-577 

Sutcliffe Efficiency), KGE (Kling Gupta Efficiency), KGEʹ (Adjusted Kling Gupta Efficiency), 578 

R2 (Coefficient of Determination), RMSE (Root Mean Square Error) and PBIAS (percent of 579 

model bias). 580 

 581 

KGE is expressed mathematically as: 582 

 

𝐾𝐺𝐸 = 1 − √(𝑟 − 1)2 + [(
𝜎𝑠

𝜎𝑜
) − 1]

2

+ [(
𝜇𝑠

𝜇𝑜
− 1)]

2

 (12) 

where r represents the correlation coefficient between simulations and observations, σ represents 583 

the standard deviation, µ denotes the mean, and the indices s and o correspond to the simulations 584 

and observation values, respectively. KGE ranges from -∞ to 1 (Gupta et al., 2009).  585 
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The modified Kling Gupta Efficiency (KGEʹ), the second objective function for 586 

evaluation of the performance of the hydrological models is expressed mathematically as: 587 

 

𝐾𝐺𝐸ʹ = 1 − √(𝑟 − 1)2 + (𝛽 − 1)2 + (𝛾 − 1)2 
(13) 

 588 

𝛽 =
𝜇𝑠

𝜇𝑜
 589 

𝛾 =
𝐶𝑉𝑠

𝐶𝑉𝑜
=

𝜎𝑠 𝜇𝑠⁄

𝜎𝑜 𝜇𝑜⁄
 590 

 591 

where KGEʹ represents the modified KGE-statistic, r represents the correlation coefficient 592 

between simulations and observations; b and γ are the bias ratio and variability ratio respectively; 593 

µ represents the mean, CVs represents the coefficient of variation, σ represent the standard 594 

deviation, and the indices s and o corresponds to the simulations and observations respectively. 595 

KGEʹ ranges from -∞ to 1 (Kling et al., 2012). 596 

The Nash-Sutcliffe Efficiency (NSE) serves as the third objective function for assessing 597 

the performance of the hydrological models is expressed mathematically as: 598 

 599 

 
𝑁𝑆𝐸 = 1 − [

∑ (𝑂𝑖 − 𝐸𝑖)
2𝑛

𝑖=1

∑ (𝑂𝑖 − �̅�)2𝑛
𝑖=1

] (14) 

where 𝑂𝑖 represents the i-th observation of the variable under evaluation, 𝐸𝑖 corresponds to the i-600 

th simulation of the same variable, �̅� denotes the mean of the observed variables, and n signifies 601 

the total number of observations. NSE ranges from -∞ to 1 (Nash & Sutcliffe, 1970).  602 

PBIAS, the fourth objective function for assessing the performance of the hydrological 603 

models is expressed mathematically as: 604 

 
𝑃𝐵𝐼𝐴𝑆 =

∑ (𝑂𝑖 − 𝐸𝑖) × 100𝑛
𝑖=1

∑ (𝑂𝑖)
𝑛
𝑖=1

 (15) 

where Oi and Ei represents the i-th observation and simulation data respectively, and n represents 605 

the total number of observations. PBIAS ranges from -∞ to ∞ (Gupta et al., 1999). 606 

R2 (Coefficient of Determination), the fifth objective function for evaluation of the degree 607 

of collinearity between observations and simulated estimates is expressed mathematically as: 608 

 
𝑅2 =

[∑ (𝑂𝑖 − �̅�) × (𝐸𝑖 − �̅�)𝑛
𝑖=1 ]2

[[∑ (𝑂𝑖 − �̅�)2𝑛
𝑖=1 ]0.5 × [∑ (𝐸𝑖 − �̅�)2𝑛

𝑖=1 ]0.5]2
 (16) 

where Oi and Ei are the i-th observation and simulation data respectively, �̅� is the mean of the 609 

observation, E̅ represent the mean of the simulation and n represents the total number of 610 

observations. R2 ranges from 0 to 1. 611 

RMSE (root-mean square error), the sixth objective function for evaluation of the 612 

closeness of the simulated to observed streamflow is expressed mathematically as: 613 

 

𝑅𝑀𝑆𝐸 = √
∑ (𝑂𝑖 − 𝐸𝑖)

𝑛
𝑖=1

2

𝑛
 (17) 
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where Oi and Ei are the i-th observation and simulation data respectively, and n represents the 614 

total number of observations. RMSE ranges from 0 (perfect fit) to ∞ (no fit) depending on the 615 

relative range of the simulated to observed data. 616 

Indicators of the best performing hydrological models are KGE, KGEʹ, NSE and R2 of 1 617 

and, PBIAS and RMSE of 0. These coefficients are used for assessment of the goodness of fit of 618 

simulation and observed streamflow, and their performance rating is presented in Table 6. 619 

 620 

Table 6: Hydrological Model Metrics for Daily Time Series 621 

Performance Rating NSE KGE KGEʹ PBIAS (%) 

Very good NSE ≥ 0.7 KGE ≥ 0.7 KGE ≥ 0.7 | PBIAS | ≤ 25 

Good 0.5 ≤ NSE < 0.7 0.5 ≤ KGE < 0.7 0.5 ≤ KGE < 0.7 25 < | PBIAS | ≤ 50 

Satisfactory 0.3 ≤ NSE < 0.5 0.3 ≤ KGE < 0.5 0.3 ≤ KGE < 0.5 50 < | PBIAS | ≤ 70 

Unsatisfactory NSE < 0.3 KGE < 0.3 KGE < 0.3 | PBIAS | > 70 

 622 

4 Results and Discussion 623 

4.1 Results of Performances of NQT-API-LSTM and SWAT+ models 624 

A comparison of the performances of SWAT+ and NQT-API-LSTM is shown in Table 7. 625 

SWAT+ model showed very high efficiency at Lokoja watershed, the NSE values for calibration 626 

was 0.71 and validation was 0.72, KGE values for calibration was 0.85 and validation was 0.81, 627 

KGEʹ values for calibration was 0.85 and validation was 0.83, PBIAS values for calibration was 628 

4.23 and validation was 8.74. The high values of the various efficiency criteria showed that 629 

SWAT+ can be classified as a very good model and, suitable for accurately simulating daily 630 

streamflow in large regional basins such as the Niger River Basin with regulated flows due to 631 

presence of hydrological modifications such as Dams and Reservoirs. 632 

NQT-API-LSTM models showed very high efficiency at Jiderebode, Lokoja and Niamey 633 

watersheds. At Lokoja sub-catchment the values of NSE for calibration/training was 0.94, 634 

validation was 0.93 and testing was 0.86, KGE for calibration/training was 0.96, validation was 635 

0.85 and testing was 0.87, KGEʹ for calibration/training was 0.97, validation was 0.90 and testing 636 

was 0.90 and PBIAS for calibration/training was -1.75, validation was 10.01 and testing was -637 

7.52. For Jiderebode watershed, the values of NSE for calibration/training was 0.81, validation 638 

was 0.91 and testing was 0.89, KGE for calibration/training was 0.85, validation was 0.93 and 639 

testing was 0.85, KGEʹ for calibration/training was 0.83, validation was 0.94 and testing was 640 

0.90 and PBIAS for calibration/training was -11.81, validation was 2.76 and testing was 7.12. 641 

While, Niamey sub-catchment, the values of NSE for calibration/training was 0.64, validation 642 

was 0.82 and testing was 0.83, KGE for calibration/training was 0.73, validation was 0.90 and 643 

testing was 0.83, KGEʹ for calibration/training was 0.69, validation was 0.91 and testing was 644 

0.87 and PBIAS for calibration/training was -23.56, validation was -2.12 and testing was 5.35.   645 
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 646 

Table 7: Streamflow Evaluation Metrics for LSTM and SWAT+ Model 647 

Streamflow Model Subbasin NSE KGE' KGE PBIAS 

(%) 

R2 RMSE 

Calibration/Training SWAT+ Lokoja 0.71 0.85 0.85 4.23 0.71 3242.91 

 Bi-LSTM Lokoja 0.94 0.97 0.96 -1.75 0.94 1417.71 

  Niamey 0.64 0.69 0.73 -23.56 0.64 374.10 

  Jiderebode 0.81 0.83 0.85 -11.81 0.81 352.32 

Validation SWAT+ Lokoja 0.72 0.83 0.81 8.74 0.72 3762.55 

 Bi-LSTM Lokoja 0.93 0.90 0.85 10.01 0.93 1988.38 

  Niamey 0.82 0.91 0.90 -2.12 0.82 261.04 

  Jiderebode 0.91 0.94 0.93 2.76 0.91 280.44 

Testing Bi-LSTM Lokoja 0.86 0.90 0.87 -7.52 0.86 1994.96 

  Niamey 0.83 0.87 0.83 5.35 0.83 319.91 

  Jiderebode 0.89 0.90 0.85 7.12 0.89 349.64 

 648 

The high performance of NQT-API-LSTMs at all sub-catchments (Jiderebode, Lokoja, 649 

Niamey) also showed that NQT-API-LSTM can be classified as very good models for simulating 650 

and forecasting daily streamflow in large regional basins with heterogeneous climatic, 651 

topographic and geological conditions. Also, NQT-API-LSTM outperformed SWAT+ model and 652 

exhibited expert skills in predicting the influence of regulated upstream flows in downstream 653 

catchments of the basin, due to presence of dams and the hydrological settings of the Inland 654 

Delta. 655 

The hydrographs of simulated and observed daily streamflow characteristics by SWAT 656 

model for the period 2010 to 2020 and NQT-API-LSTM models for the period 2010 to 2021 for 657 

Lokoja gauging station is shown in Figure 3 while, a subset of the simulated and observed daily 658 

streamflow characteristics for Jiderebode and Niamey gauging stations simulated by NQT-API-659 

LSTM models for the period 2010 to 2019 is displayed in Figure 4. The daily simulated 660 

streamflow hydrograph at Lokoja station of NRB showed that SWAT model underestimated low 661 

flows, overestimated peak flows slightly, and observed peak flow lagged behind the simulated 662 

peak flow. NQT-API-LSTM was able to capture the underlying streamflow behaviour and 663 

pattern more accurately, and showed superior performance in estimating low flow but  664 
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 665 
Figure 4: Hydrograph of Simulated Streamflow at Lokoja gauging station for the period 2010 to 666 

2020: (a) SWAT model; (b) NQT-API-LSTM. 667 

 668 

 669 

 670 

 671 

 672 

 673 

 674 
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675 
Figure 5: Hydrograph of NQT-API-LSTM Simulated Streamflow for the period 2004 to 2019: 676 

(a) Niamey station, Sahelian flooding depicted in red while Guinean flooding is indicated in 677 

blue; (b) Jiderebode station, Sudan flooding depicted in red, and Guinean flooding is indicated in 678 

blue. 679 

 680 

underestimated peak flow slightly at Lokoja watershed. NQT-API-LSTM ensemble showed very 681 

high performance in simulating the streamflow pattern at Jiderebode sub-catchment, and showed 682 

very good skills in estimating low flow but underestimated peak flow. The NQT-API-LSTM 683 

model displayed expert skills in simulating the two flood events at Jiderebode station which 684 

include: the Guinean Flood (black flood) and; the Sudan Flood (white flood). The NQT-API-685 

LSTM underestimated the white flood peak but showed better performance in simulating the 686 

black flood peak at Jiderebode sub-catchment. NQT-API-LSTM showed very good skills in 687 

simulating the streamflow pattern of the black flood and red flood events at Niamey sub-688 

catchment, and also showed very good performance in estimating low flow. The NQT-API-689 

LSTM underestimated the Sahelian peak (red flood) but showed better performance in 690 

simulating the Guinean peak (black flood) at Niamey sub-catchment. 691 
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4.2 Discussion 692 

Generally, SWAT+ and NQT-API-LSTM models accurately reproduced the streamflow, 693 

with the SWAT+ model slightly overestimating peak flows. It has been reported that SWAT+ 694 

model’s peak-flow inefficiency may be attributed to model formulation (Jimeno-Sáez et al, 695 

2018). However, NQT-API-LSTM ensemble estimations were more accurate and closely 696 

matched the observed streamflow, which was reflected in the lower RMSE in 697 

calibration/training, validation and test phases. The varying performance of NQT-API-LSTMs 698 

across the various gauging stations may be attributed to differences in surface and extremely 699 

heterogenous climatic conditions from the hyper-arid region of Sahara Desert at the Northern 700 

NRB to the humid region of the Guinean Niger Basin at Lokoja. The observed and simulated 701 

discharge (> 2000 m3/s) during the dry season, provide additional evidence of a link between 702 

groundwater return flow and streamflow, and would suggest that “Variable Source Areas 703 

Concept” is applicable at Lokoja catchment, hence the success of NQT-API-LSTM ensemble. In 704 

addition, there was also influence of regulated flows from more than 260 Dams and Reservoirs 705 

within the upstream sections of the basin. However, due to data limitations and model 706 

complexity, management or decision variables (such as reservoir storage, release schedule, 707 

volume, principal and emergency spillway as well as irrigation extraction rates) were not 708 

included in NQT-API-LSTM model formulation. 709 

A cursory glance at Figure 3 reveals a very good fit, and identical pattern of both 710 

simulated and observed streamflow in all phases of the hydrograph at Lokoja sub-catchment, 711 

which underscores the efficacy of NQT-API-LSTMs in learning the causal relationships of the 712 

climatic drivers influencing streamflow in the watershed. An additional reason for the better 713 

performance of NQT-API-LSTM model at Lokoja watershed may be attributed to the surface 714 

attributes and humid climatic condition. Discharge of rivers in humid regions are less sensitive to 715 

climate input due to higher runoff and lower infiltration rate. The results showed that NQT-API-716 

LSTM can help reduce streamflow overestimation which was inherent in SWAT+ model, 717 

although it was slightly underestimated by NQT-API-LSTM. Machine learning models tends to 718 

predict values closer to the mean of the distribution better than values at the extremes (high and 719 

lows). A possible reason for this discrepancy might be that peaks with high values are scarce, 720 

when compared with values of average peaks in the training data sets, and the LSTM model 721 

assigns relatively more importance to the average values rather than the high values extremes. 722 

These findings suggest a need for extreme caution in applying NQT-API-LSTMs for 723 

extrapolating beyond the bounds of the historically observed training data range, especially in 724 

anomaly detection and studies on extreme flood events. Results obtained by Jimeno-Sáez et al. 725 

(2018); Minns & Hall (1996) are consistent with our findings. The rolling total rainfall (Rn) and 726 

API, a proxy for catchment wetness, accounts for infiltration and groundwater dynamics at 727 

watershed-scale. Considering the remarkably strong regional heterogeneity in rainfall 728 

distribution, temperature dynamics, aridity and surface properties across the structure of the 729 

basin. NQT-API-LSTM ensemble outshined with its simplified ability to approximate the 730 

streamflow at the arid (Niamey), semi-arid (Jiderebode) and humid (Lokoja) environments. 731 

Though, input data acquisition (such as meteorological variables) and, preprocessing is 732 

comparatively easier for NQT-API-LSTMs, the limitations of both NQT-API-LSTMs and 733 

SWAT+ for basin-scale modeling framework are increasingly apparent. The study basin is very 734 

large and sparsely gauged, which significantly increases the difficulty in acquiring the necessary 735 

meteorological and topography data to parameterize a physically-based model. In addition, the 736 

setup and calibration for SWAT+ model is computationally more expensive and takes 737 
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considerably more time than NQT-API-LSTM. Conversely, obtaining a consistent timeseries of 738 

in-situ meteorological and hydrological data to calibrate a data-driven model is very challenging 739 

in West Africa. Since, the study area is a large regional basin, watershed delineation, data 740 

preprocessing and spatial averaging of meteorological variables incurs additional computational 741 

cost. NQT-API-LSTMs function as black-box models, and they do not provide information on 742 

the water balance and its constituent components. However, relying solely on precipitation and 743 

temperature as input variables for the models, represents a constraint in the case of NQT-API-744 

LSTM ensemble because the interaction between rainfall and runoff is influenced by various 745 

biophysical parameters. Which confers an advantage to SWAT+ when exploring a number of 746 

scenarios concerning the basin’s response to land use and land management. The general picture 747 

emerging from the results of this study is that both SWAT+ and NQT-API-LSTM models are 748 

suitable for simulating streamflow in large basins. However, it is recommended to use NQT-749 

API-LSTMs for studies on extreme hydrologic events (such as floods), hydrological 750 

management (low-flow events) and developing scenarios for climate change impact on the 751 

hydrological processes. While, SWAT+ model is advisable for assessing the hydrological 752 

response of the watershed to land use/land cover (LULC) changes. 753 

NQT-API-LSTM was able to capture the Guinean and Sahelian flood events at Niamey 754 

station however, the Guinean Flood was more accurately reproduced than the Sahelian Flood. 755 

These findings are less surprising if we consider the strong influence of the headwaters of the 756 

Niger River from the humid Guineo-Congolian region in Guinea, associated with higher runoff 757 

and lower infiltration rate on one hand and, the hydrological settings within the vast wetlands of 758 

the Inland Delta, leading to delay in arrival of the black flood at Niamey. This can be explained 759 

by the 90-day history window, which enabled NQT-API-LSTM to effectively understand the 760 

seasonal correlation between historical and future streamflow patterns while, considering the 3-761 

month streamflow delay due to groundwater recharge in the aquifer system of the Inland Delta. 762 

The results confirm the findings of Aich et al. (2014), which posits that the hydrological 763 

conditions in the upstream region of the Sahelian NRB significantly influence the Guinean 764 

Flood. However, the Sahelian flooding has a shorter duration with inconsistent Peak flow that is 765 

not easily identified in some years thus, making it difficult for NQT-API-LSTM to learn its 766 

distribution and, therefore assign relatively more importance to the Guinean flood. An additional 767 

reason for lower accuracy in predicting the Sahelian flooding may be attributed to increased 768 

complexity in modeling the hydrological responses of arid and semi-arid regions, which are more 769 

sensitive to climate inputs, due to high infiltration and evapotranspiration rates and also limited 770 

and / or irregular precipitation. There are also uncertainties in the meteorological reanalysis 771 

whose deficiency could most easily reflect on the model’s performance in arid and semi-arid 772 

regions. 773 

NQT-API-LSTM was also able to capture both the Guinean and Sudan Flood events at 774 

Jiderebode station, but reproduced the Sudan Flood (white flood) more accurately than the 775 

Guinean Flood (black flood). A possible reason for this discrepancy might be that the delayed 776 

arrival of the black flood at Jiderebode in the dry season due to hydrometeorological dynamics at 777 

the Inland Delta and the upstream Sahelian basin constituted additional difficulty for the model. 778 

It might seem counterintuitive that NQT-API-LSTM ensemble reproduced the white flood more 779 

accurately than the black flood at Jiderebode station, but considering the fact that the white flood 780 

occurs during the wet season due to surface runoff and groundwater dynamics. NQT-API-LSTM 781 

was able to capture the influence of seasonal climate, catchment seasonality and wetness on 782 

monsoon streamflow. In Seasonal climates, increased rainfall during the wet season, followed by 783 
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recharge and increased groundwater storage, results to elevated increase in the regional water 784 

table, which is seasonally dynamic and may vary in relation to rainfall variation and its climatic 785 

drivers (Davie & Quinn, 2019). An interesting side finding was that precipitation within the 786 

Saharan region was indirectly influencing the downstream flow at the Sudan region through the 787 

Continental Terminal of the Iullemeden. Since, the data preprocessing was applied to the entire 788 

upstream catchment from the Saharan to the Sudan regions of the basin. NQT-API-LSTM was 789 

able to learn the synergistic contributions of all climatic regions to streamflow. Overall, results of 790 

this study provide support for the validity of NQT-API-LSTM approach for simulating and 791 

forecasting streamflow in large watersheds due to its simplified model formulation requiring 792 

only meteorological variables and minimal computational resources, with the possibilities of 793 

exploring other hydrological processes including water quality and water levels, as reported in 794 

some studies (Chen et al., 2022; Cho et al., 2023; Pyo et al., 2023; Vizi et al., 2023). 795 

 796 

5 Conclusions 797 

In this study, we proposed a novel framework; a climate data-driven NQT-API-LSTM 798 

ensemble, and compared the performance with SWAT+, a quasi-physically based model, for 799 

daily streamflow forecasting. To validate their competency, they were applied in NRB, the 800 

largest transboundary river basin in West Africa, consisting of hyper-arid, arid, semi-arid, dry-801 

subhumid and humid climatic conditions. The combination of API and LSTM for multivariate 802 

time series forecasting leverage on the synergy of API and deep learning techniques in surface 803 

water modeling. This approach exploits LSTMs sophisticated capability to capture complex 804 

temporal and seasonal dependencies while taking into consideration the inherent strengths of API 805 

in estimating catchment wetness, particularly in NRB where streamflow is strongly influenced 806 

by soil water or groundwater. The rolling total rainfall (Rn) also accounted for catchment wetness 807 

while, LASSO was used for selection of input variables which was transformed to a Gaussian 808 

distribution using NQT. The SWAT+ model was calibrated with daily streamflow observations 809 

using the Latin hypercube algorithm. The results indicated that NQT-API-LSTM ensemble 810 

showed better performance in simulating streamflow at Lokoja watershed and was able to 811 

reproduce the influence of rainfall and temperature variations and its climatic drivers adequately. 812 

While LSTM approach was superior to SWAT+ methods as shown in this study, SWAT+ can be 813 

used as an alternative hydrological model, especially to assess the basin’s response to land 814 

use/land cover changes. In light of the very good performance of NQT-API-LSTM, few 815 

conclusions can be drawn from the results of this study: Streamflow at the Middle and Lower 816 

Niger River Basin is heavily influenced by climate and regional groundwater dynamics at the 817 

upstream sections of the basin; the Saharan section of the basin is hydrologically active and its 818 

rainfall and temperature variations influences the seasonal dynamics of the regional groundwater 819 

table; the Black Flood was more accurately reproduced than the Red Flood at Niamey; the White 820 

Flood was simulated with greater precision than the Black Flood at Jiderebode; the model was 821 

able to predict regulated flows accurately in downstream catchments and; NQT-API-LSTM is 822 

suitable for studies on extreme events (such as floods), hydrological management (low flow 823 

events e.g. hydropower generation) and climate change impact on hydrological processes. The 824 

major advantages of the NQT-API-LSTMs are its ability to learn the basin’s response to climate 825 

change and variability remotely, without the need for spatially-explicit biophysical 826 

characteristics of the watershed. In this study, only precipitation and temperature inputs were 827 

considered. Therefore, the current study could be improved by including additional input 828 
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variables that influences streamflow and, exploring the neural search space to discover more 829 

sophisticated deep learning architectures and hyperparameters. 830 
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