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Key Points: 20 

● Long term trends in atmospheric circulation are emerging across different regions and 21 

seasons with some attributed to human activities. 22 

● Many circulation signals have been linked to dynamical mechanisms involving 23 

thermodynamic changes, although discrepancies remain. 24 

● Emerging signals in combination with new tools promise considerable progress in 25 

understanding the dynamical response in the coming decade.  26 
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Abstract 27 

The circulation response to climate change shapes regional climate and extremes. Over the last 28 

decade an increasing number of atmospheric circulation signals have been documented, with 29 

some attributed to human activities. The circulation signals represent an exciting opportunity for 30 

improving our understanding of dynamical mechanisms, testing our theories and reducing 31 

uncertainties. The signals have also presented puzzles that represent an opportunity for better 32 

understanding the circulation response to climate change, its contribution to climate extremes, 33 

interactions with moisture, and connection to thermodynamic discrepancies. The next decade is 34 

likely to be a golden age for dynamics with many advances possible. 35 

Plain Language Summary 36 

Regional climate change signals in atmospheric circulation (wind and pressure) have been 37 

documented in many regions. Some of the signals are expected and have been attributed to 38 

human activities whereas others are not. The next decade represents an exciting time to better 39 

understand the dynamical mechanisms underlying these signals and their relationship to 40 

thermodynamic signals with the goal of improving regional climate prediction. 41 

1 Introduction 42 

The emergence and attribution of thermodynamic signals in response to anthropogenic climate 43 

change is well appreciated. Indeed global-mean warming over land and ocean, amplified 44 

warming in the tropical upper troposphere, rising of the tropopause, cooling of the stratosphere, 45 

regional land warming, and Arctic amplification of surface warming have all been attributed to 46 

human activities (IPCC 2021). Thermodynamically driven changes in regional hot extremes, 47 

heavy precipitation and drought have also been confidently attributed to human activities in 48 

some regions (IPCC 2021, Fig. SPM.3). This progress on thermodynamic signals has been 49 

achieved through a multi-pronged approach: detection of observed signals, attribution to human 50 

activities, and understanding of the underlying mechanisms using climate model simulations that 51 

exhibit fidelity in the signal and mechanisms. 52 

Atmospheric circulation is well-known to affect regional climate through changes in 53 

fluid-dynamic variables, including atmospheric wind, pressure. These changes can subsequently 54 

influence moisture, clouds and radiation. Many generations of climate models have predicted 55 

robust circulation responses to climate change by the end of the century, including an upward 56 

shift and acceleration of the subtropical jet streams, weakening and expansion of the Hadley 57 

circulation, poleward shifts of the eddy-driven jet streams, strengthening of the storm tracks in 58 



manuscript submitted to AGU Advances 

 

the Southern Hemisphere and seasonally varying storm track responses in the Northern 59 

Hemisphere. In general, circulation signals are more uncertain as compared to thermodynamic 60 

ones, especially at the regional scale, due to large internal variability and the lack of sufficiently 61 

strong constraints on atmospheric dynamics (Shepherd, 2014). Furthermore, competing 62 

influences on dynamics in a changing climate, e.g. Arctic versus tropical warming, cloud 63 

shortwave versus longwave responses, aerosol cooling versus greenhouse gas warming, etc also 64 

can lead to a weak net dynamical response (Perlwitz 2012, Shaw et al., 2016). Hence dynamic 65 

variables are considered to have a lower signal-to-noise ratio, which has cascading impacts on 66 

hydrological cycle signals (Elbaum et al 2022). 67 

Over the last decade an increasing number of atmospheric circulation signals, here 68 

defined as statistically significant linear trends over the satellite era or longer, have been 69 

documented in the literature. These signals are part of a growing number of regional climate 70 

change signals, some of which exhibit discrepancies with model predictions (Shaw et al. 2024). 71 

Here we focus specifically on atmospheric circulation signals that have been documented in the 72 

literature since recent assessments (IPCC 2021, Shepherd 2014). We specifically highlight 73 

signals that have emerged and been attributed to human activities; discuss progress on 74 

understanding dynamical mechanisms underlying the signals; and describe remaining puzzles, 75 

including the role of internal variability versus the forced response versus observational 76 

uncertainty, model-observation discrepancies and the impact of mean state biases. We discuss 77 

the importance of linking statistical analysis and understanding of dynamic and thermodynamic 78 

signals. In particular, some thermodynamic signals exhibit discrepancies with model predictions, 79 

e.g. the “pattern effect” of SST trends, and are potentially linked to the atmospheric circulation, 80 

e.g. via thermodynamic gradients and cloud radiative effects. Finally, we highlight how 81 

circulation signals, along with existing and emerging tools, represent an exciting opportunity for 82 

making progress in the next few decades on understanding the dynamical mechanisms behind the 83 

circulation response to climate change. 84 

2 Circulation signals  85 

The number of atmospheric circulation signals reported in the literature across different regions, 86 

hemispheres, and seasons has grown significantly in recent years (Table 1). Some are zonal-87 

mean signals (8 out of 20) but many are regional (12 out of 20).  For example, increased sea-88 



manuscript submitted to AGU Advances 

 

level pressure near South-West Western Australia is associated with recent drying trends in this 89 

region (Fig. 1a,c,e; Hope et al 2006). Furthermore, many Southern Hemisphere signals are 90 

zonally symmetric, leading to similar impacts across longitudinal regions (Kang et al. 2024).  91 

In some cases the signals have been detected and attributed to human activities (see 92 

below and Table 1). In other cases the role of internal variability and/or reanalysis biases still 93 

needs to be assessed.  In many cases the sign of the signal is consistent with model predictions, 94 

however in some cases there is a discrepancy between observations and models. In still other 95 

cases, expected regional signals, like reduced precipitation in the Central and Western 96 

Mediterranean associated with higher sea-level pressure, will take more time to emerge (Fig. 97 

1b,d,f) (Seager et al. 2024).  98 

One of the earliest examples of an atmospheric circulation signal being formally 99 

attributed to human activities involved ozone depletion (Gillett et al., 2013).  The circulation 100 

signals include an increase in the strength of the winds in the southern hemisphere stratosphere, 101 

an associated delay of the spring-time breakdown of the stratospheric polar vortex, and a 102 

poleward shift of the eddy-driven tropospheric jet stream (Fig. 2) and southern Hadley cell edge 103 

in austral summer (Thompson et al. 2011, Lee & Feldstein 2013, WMO 2018). Since the 2000s, 104 

ozone recovery, which opposes the influence of greenhouse gas increases on the circulation, has 105 

been associated with reduced SH circulation trends (Banerjee et al 2020, Zambri et al. 2021), 106 

though these are sensitive to end points (Fig. 2).  107 

In recent years several more atmospheric circulation signals have been attributed to 108 

human activities (Table 1), including greenhouse gas emissions, but also with ozone depletion or 109 

aerosol emissions either in isolation or in combination (e.g. Gillett et al., 2016). In the Northern 110 

Hemisphere the combination of anthropogenic greenhouse gas and aerosol emissions have 111 

weakened the summertime circulation as measured by the zonal-mean storm tracks (eddy kinetic 112 

energy, Chemke & Coumou 2024), zonal-mean jet stream, and regional surface cyclone activity 113 

(mean sea level pressure, Kang et al. 2024b). Improved estimates of anthropogenic aerosol 114 

forcing were important for the improved Northern Hemisphere summertime storm track signals 115 

in CMIP5 versus CMIP6 (Chemke & Coumou 2024). The weakening of the East Asian 116 
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summertime jet stream has been attributed exclusively to anthropogenic aerosol emissions (Dong 117 

et al. 2022).  118 

The weakening of the annual-mean Northern Hemisphere Hadley cell has also been 119 

attributed to anthropogenic greenhouse gas and aerosol emissions (Chemke & Yuval 2023, 120 

Lionello et al. 2024). The poleward shift of the Southern Hemisphere Hadley cell edge has been 121 

attributed to ozone depletion and anthropogenic greenhouse gas emissions (Grise et al. 2019; 122 

Lionello et al. 2024).  123 

3 Progress in understanding mechanisms 124 

Many dynamical mechanisms have been proposed to explain atmospheric circulation responses 125 

to anthropogenic forcing that have been robustly predicted by generations of climate models 126 

(Thompson et al. 2011, Vallis et al. 2015, Hoskins & Woollings 2015, Shaw, 2019, Wills et al. 127 

2019). Here we highlight progress on understanding mechanisms underlying the response to 128 

ozone depletion, greenhouse gas and aerosol forcing as they relate to the circulation signals listed 129 

in Table 1. 130 

 131 

3.1 Ozone depletion 132 

Ozone depletion reduces the shortwave absorption of ultraviolet radiation, cooling the lower 133 

stratosphere. This cooling induces an increase of the meridional temperature gradient and a 134 

strengthening of the stratospheric zonal wind consistent with thermal wind balance. Imposing a 135 

cooling of the lower stratosphere in idealized model simulations leads to a poleward shift of the 136 

tropospheric eddy-driven jet (Polvani & Kushner 2002, Kushner & Polvani 2004, Butler et al. 137 

2010). However, the tropospheric response to stratospheric forcing is sensitive to the state of the 138 

troposphere (Chan & Plumb, 2009; Garfinkel et al. 2013). A mechanism proposed to explain the 139 

poleward shift of the eddy-driven jet stream in the lower atmosphere links the change in 140 

stratospheric winds to a modification of the eastward propagation of tropospheric eddies thereby 141 

affecting the momentum flux (Chen & Held 2007). At this time, there is still not a complete 142 

mechanistic understanding that connects the ozone hole to the shift of the jet stream and Hadley 143 

cell edge (Thompson et al. 2011, Kidston et al. 2015).  This lack of understanding may in part be 144 



manuscript submitted to AGU Advances 

 

due to the complex dynamical interactions that are found to be crucial for a downward impact 145 

(Kidston et al. 2015).  146 

 147 

3.2 Greenhouse gas forcing 148 

Greenhouse gas increases lead to tropical upper tropospheric warming consistent with moist 149 

adiabatic adjustment (Manabe & Wetherald, 1975, Held 1993). This response increases the 150 

meridional temperature gradient near the tropopause, strengthening the subtropical jet and shear 151 

via thermal wind balance (Allen & Sherwood, 2008; Lee et al., 2019). This direct impact of the 152 

tropics on the atmospheric circulation is confirmed by a CO2 increase only in the tropics in 153 

model simulations (Shaw & Tan 2018, Shaw, 2019).  154 

 The shift of the jet stream and Hadley cell in response to greenhouse gas increases have 155 

been argued to be connected to this tropical warming response (Lorenz & DeWeaver, 2007; Lu 156 

et al. 2007; Lu et al., 2014; Butler et al., 2010). However the poleward shift of the midlatitude 157 

near-surface jet and Hadley cell edge and the strengthening of the subtropical jet happen on 158 

distinct timescales (compare red and blue lines in Fig. 3), suggesting the shifts are driven by 159 

different mechanisms (Chemke & Polvani, 2019, 2021; Menzel et al., 2019). Recent studies 160 

suggest midlatitude processes including local moisture gradient, latent heat release, vertical 161 

temperature gradient (static stability), and cloud changes are more important than tropical 162 

changes (Shaw & Voigt, 2016, Voigt & Shaw, 2016, Chemke & Polvani 2019, 2021, Garfinkel 163 

et al., 2024; Lachmy, 2022; Tamarin-Brodsky & Kaspi, 2017; Tan & Shaw, 2020; Voigt et al., 164 

2021). The importance of moisture and clouds has been revealed by advancing theory to 165 

incorporate moisture (e.g., Tamarin-Brodsky & Kaspi, 2017; Shaw et al. 2018, Lachmy, 2022) 166 

and simulations across the model hierarchy (Garfinkel et al 2024; Ghosh et al., 2024, Tan & 167 

Shaw 2020, Ceppi & Hartmann, 2016; Voigt & Shaw, 2015).  168 

 The signal of Northern Hemisphere summertime circulation weakening has been linked 169 

to a weakening of the near-surface temperature gradient due to Arctic amplification (Coumou et 170 

al. 2015), however recent work shows the contribution of Arctic sea ice loss and Arctic 171 

amplification to the circulation signal is negligible (Blackport et al, 2019; Blackport & Screen, 172 

2021; Kang et al. 2023). Instead the weakening signal is related to high latitude warming over 173 

land (not ocean or sea ice) induced by greenhouse gas and aerosol forcing (Dong et al., 2022; 174 

Chemke & Coumou 2024, Kang et al., 2024b).  175 
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The strengthening of the Southern Hemisphere wintertime storm tracks, which occurs 176 

robustly across all longitudes, has been connected to several mechanisms: An increase in mean 177 

available potential energy due to increased latitudinal temperature gradients aloft (O’Gorman 178 

2010); increased surface flux trends that reflect equatorward ocean energy transport and 179 

Southern Ocean cooling (Shaw et al. 2022); and changes in the vertical structure of the jet stream 180 

(Chemke et al. 2022). 181 

 Mechanisms explaining regional signals are related to stationary wave changes. The 182 

strengthening summertime Northern Hemisphere stationary wave signal has been connected to a 183 

teleconnection from the tropical Pacific (Sun et al. 2022) and soil moisture deficits (Teng et al. 184 

2022). A related signal is the increase in extratropical heatwaves in summertime (e.g., Russo & 185 

Domeisen, 2023, Domeisen et al. 2023), which have been suggested to be related to increased 186 

“waviness” of the jet stream and the increased occurrence of so-called resonance events 187 

(Kornhuber et al., 2017; Mann et al., 2018), often associated with double jets (Rousi et al., 2022). 188 

However the quantitative mechanism underlying this link has not been established. Instead, 189 

anthropogenic aerosol forcing has been argued to be important for regional heat wave signals 190 

(Schumacher et al. 2024).  191 

 During wintertime the strengthening high over the Mediterranean has been connected to 192 

the large-scale upper-tropospheric circulation and land-sea contrast response, and specifically to 193 

a less rapid warming of the Mediterranean sea than of the surrounding land (Tuel & Eltahir 194 

2020). The large-scale tropospheric circulation response consists of an eastward shift of 195 

wintertime stationary waves associated with strengthened eastward subtropical upper-level jet 196 

(Simpson et al., 2016; Wills et al 2019). This eastward shift is associated with uncertainty in 197 

regional climate change in e.g., Western North America (Simpson et al., 2016). Finally, the 198 

pattern of sea surface temperature warming can modify regional circulation and subtropical 199 

precipitation responses to greenhouse gas forcing (Zappa et al 2020).  200 

 201 

3.3 Aerosol forcing 202 

The mechanism proposed to explain the regional circulation signals in response to aerosol 203 

forcing involves the aerosol direct effect (aerosol-radiation interactions). Regions with 204 

reductions in aerosol optical depth, e.g. Eurasia and Eastern North America, show increases in 205 

clear-sky surface shortwave radiation (unmasking effect) whereas regions with increases in 206 
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aerosol optical depth, e.g. South and East Asia, show a decrease in clear-sky surface shortwave 207 

radiation.  The surface radiation signals weaken the meridional surface temperature gradient 208 

from the tropics to the extratropics, which following thermal wind balance weakens the 209 

summertime Eurasian jet. The shortwave radiation signals are coupled via the longitudinal 210 

circulation to the downstream ocean leading to a weakening of the storm tracks (Kang et al. 211 

2024b).   212 

Other studies have proposed additional mechanisms linked to the indirect influence of 213 

aerosols on clouds. For example, sulfate aerosols may brighten clouds which reflect more 214 

radiation to space, leading to a change in radiative balance that promotes poleward heat transport 215 

by the atmosphere and ocean (Needham & Randall, 2023). 216 

 217 

4 Puzzles 218 

4.1 Model-observation discrepancies 219 

The lengthening observational record has provided some “puzzles” where there are apparent 220 

discrepancies between observed and modeled signals (Shaw et al. 2024). There are several well-221 

known thermodynamic discrepancies, including opposite signed SST trends in observations and 222 

models in the tropical Pacific (Lee et al., 2022; Seager et al. 2022; Wills et al., 2022) and 223 

Southern Ocean (Wills et al., 2022; Kang et al., 2023).  224 

In addition, important circulation discrepancies have been identified. In particular, the 225 

Walker circulation trend is toward a strengthening in observations but a weakening in models 226 

(Chung et al., 2019). Also, there is a strengthening of the Northern Hemisphere Hadley cell in 227 

reanalysis data but a weakening in models, though there is evidence that the reanalysis trends are 228 

artificial (Chemke & Polvani 2019b).  229 

Similar to thermodynamic discrepancies, there are also cases where models capture the 230 

signal but it is underestimated as compared to reanalysis trends even after accounting for internal 231 

variability: increased Southern Hemisphere storminess trends (Chemke et al., 2022; Shaw et al., 232 

2022) and North Atlantic lower-tropospheric jet strength trend (Blackport & Fyfe 2022, compare 233 

model distributions in colors to black line representing reanalysis in Fig. 4). In other cases the 234 

models overestimate the trends (strengthening of the upper-tropospheric jet stream; Woollings et 235 

al., 2023). 236 
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The relationship between thermodynamic and dynamic discrepancies is an active area of 237 

research. Recent papers show SST trend discrepancies impact Southern Hemisphere storminess 238 

and midlatitude jet trends (Yang et al., 2021; Kang et al., 2024), and heatwave trends over 239 

Europe are underestimated in models due to a discrepancy in the dynamical contribution 240 

(compare black dots representing models to colored lines representing observations in Fig. 5), 241 

although the details of this circulation trend discrepancy are not well understood and remain to 242 

be investigated (Vautard et al., 2023).  243 

An important limitation of atmospheric circulation signals that needs to be taken into 244 

account when comparing model and observed signals is that atmospheric circulation signals rely 245 

heavily on reanalysis products. Such datasets can exhibit drifts and jumps due to changes in the 246 

underlying data sources (SPARC, 2022). In the Southern Hemisphere there is considerable 247 

spread in circulation signals across these products (Martineau et al. 2024, Kang et al. 2024). In 248 

the Northern Hemisphere, diabatic heating biases in reanalysis products have been shown to 249 

impact Hadley cell signals (Chemke & Polvani 2019). Surface pressure observations have been 250 

used to resolve the discrepancy in Hadley cell signals (Chemke & Yuval 2023). 251 

 252 

4.2 Disentangling forced response from internal variability 253 

One of the major challenges in comparing observed and model circulation signals is the 254 

confounding factors of internal variability, which can mask or exacerbate forced trends in the 255 

climate system, and observational uncertainty.  For example, recent work for the Brewer-Dobson 256 

circulation trends shows that observational uncertainty can be large enough to account for the 257 

discrepancy with simulated Brewer-Dobson circulation trends in the middle stratosphere (Garny 258 

et al, submitted to RoG).  259 

One way to separate the forced response from internal variability is using single forcing 260 

simulations. For example, if the signal is present in response to greenhouse gas or aerosol forcing 261 

only, and observational and model uncertainty is low, then it is likely a forced response. If the 262 

signal is present in the experiments without anthropogenic forcing (e.g. the preindustrial control 263 

experiment), then one cannot rule out the role of internal variability. Another way to quantify the 264 

role of internal variability is using large ensemble simulations with identical external forcing and 265 

slightly different initial conditions (Deser et al., 2020; Maher et al., 2021). The two approaches 266 

are combined in single-forcing large ensembles, which have been used to reconcile some 267 
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discrepancies (by accounting for internal variability), such as the poleward expansion of the 268 

Hadley cell edge documented in the late 2000s (Grise et al., 2019) or cold winters over subpolar 269 

Eurasia from 1998 to 2012 (Garfinkel et al 2017; Outten et al 2022).  However, given the 270 

relatively large magnitude of internal variability at regional scales (particularly in the 271 

extratropics during wintertime) and potential model errors, acknowledging a range of plausible 272 

future circulation trends (“storylines”) is necessary for impacts planning (Zappa & Shepherd, 273 

2017; Mindlin et al., 2020; Schmidt & Grise, 2021; Williams et al., 2024). 274 

While large ensembles can help disentangle the signal from the noise, recent work has 275 

highlighted a signal-to-noise issue in coupled models suggesting that models may not properly 276 

represent the magnitude of forced signals relative to internal variability. This “signal-to-noise 277 

paradox” manifests most clearly when the ensemble-mean signal correlates better with 278 

observations of the real world than with individual members of the initialized model forecast 279 

ensemble (Weisheimer et al. 2024).  280 

 281 

4.3 Role of mean state biases/spread for future change 282 

The spread in model climatologies has been used to constrain thermodynamic climate change 283 

signals, e.g. the snow-ice albedo feedback (Hall and Qu 2006), through emergent constraints. 284 

Emergent constraints are statistical relationships between a model’s representation of a particular 285 

physical process in the current climate and its future projection. Emergent constraints are most 286 

robust when they are supported by a plausible physical mechanism. 287 

Several emergent constraints have been proposed for circulation signals (Simpson et al., 288 

2021): for example, the Southern Hemisphere eddy-driven jet position (Kidston & Gerber, 289 

2010), and the wintertime stationary wave response over the North Pacific (Simpson et al., 290 

2016). In both cases, a mechanism was proposed to explain the emergent constraint: fluctuation 291 

dissipation theorem for jet position, and jet stream strength affecting stationary wavelength. 292 

Unfortunately, some dynamical emergent constraints are not robust across CMIP versions (Wu et 293 

al., 2019; Curtis et al., 2020; Karpechko et al. 2024). Furthermore, the Southern Hemisphere jet 294 

position constraint, which is only robust in wintertime (Simpson & Polvani, 2016), appears to be 295 

an artifact of the zonal mean (Breul et al., 2023).  296 

Mean state model biases can have important implications for the forced response. For 297 

example, even if a model accurately simulates the observed circulation response to climate 298 
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change (e.g., a poleward shift of the eddy-driven jet stream), if the circulation feature does not 299 

have the correct location or magnitude in the present-day climate, then the model’s projected 300 

future climate change signal may be biased in terms of location and/or magnitude (Maraun et al., 301 

2017; Grise, 2022).  Systematically addressing this issue globally is challenging and requires a 302 

detailed understanding of the circulation features for all relevant regions.   303 

5 Opportunities for progress 304 

Understanding the emerging circulation signals and unraveling the puzzles they present provide 305 

exciting opportunities for making progress in understanding the dynamical response to climate 306 

change. Some opportunities for future research are: 307 

 308 

5.1 Investigate signals across the seasonal cycle 309 

Almost all of the dynamical signals in Table 1 are for the winter and summer seasons. 310 

Investigating signals in other seasons such as autumn and spring as well as seasonal transitions is 311 

important. During these seasons some signals may be stronger (Watt-Meyer et al., 2019) because 312 

there potentially exist fewer competing thermodynamic signals.  313 

It is also unclear how climate change affects the seasonal cycle of dynamical features 314 

beyond the monsoons, which exhibit a well-documented delay in response to climate change 315 

(e.g., Seth et al., 2013) and the stratospheric polar vortex, which is projected to form earlier and 316 

decay later in the future (Ayarzaguena et al., 2020; Rao and Garfinkel 2021). Quantifying and 317 

understanding the seasonality of dynamical changes has important implications for impacts such 318 

as severe weather, ecosystems, forest fires, and agriculture. 319 

 320 

5.2 Move beyond the longitudinal and time mean 321 

Almost all of the dynamical signals in Table 1 reflect the time-mean. Circulation extremes have 322 

received only limited attention beyond blocking. Yet, recent work suggests the signal of climate 323 

change may be larger in the tails of the circulation distribution (Shaw & Miyawaki, 2024). It is 324 

also important to understand how circulation trends affect trends in other variables such as heat 325 

waves (Vautard et al., 2023). 326 

Along similar lines, for a wide range of extremes and processes, there is much work to be 327 

done to understand how the dynamical response to climate change varies across different 328 
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regions. For example, insights have been gained into recent trends by defining the Hadley Cell 329 

for different regional sectors (Nguyen et al., 2018; Staten et al., 2019; Hoskins et al., 2020; 330 

Gillett et al., 2021). The well-known model-observation discrepancy in tropical SST trends 331 

(Wills et al. 2022, Seager et al. 2022) represents an opportunity for understanding how tropical 332 

climate change affects regional circulation trends and this should be investigated further. 333 

Ultimately, teleconnections bridging different regions will change due to mean state changes 334 

under climate change and more work is needed to understand how.  335 

 336 

5.3 Use signals to test mechanisms and model fidelity 337 

Now that circulation signals are emerging, the dynamical mechanisms underlying the circulation 338 

trends can be compared to theoretical expectations and model predictions. Applying the 339 

numerous theoretical frameworks that have been proposed to explain dynamical responses to 340 

climate change (Vallis et al. 2015, Hoskins & Woollings 2015, Shaw, 2019, Wills et al. 2019) 341 

offers great potential for progress. Large ensemble, single forcing simulations (Smith et al. 2022) 342 

can also be leveraged to attribute observed circulation changes, to investigate whether internal 343 

variability involves dynamical mechanisms that are distinct from the forced response to 344 

anthropogenic climate change, to clarify the relative importance of different anthropogenic 345 

forcings, to showcase examples where models lack fidelity, to isolate and potentially correct 346 

signal-to-noise biases (section 4.2), and to directly examine how climate forcings affect the tails 347 

of the distribution (e.g. section 5.2). 348 

 349 

5.4 Leverage the power of existing and emerging tools 350 

Existing tools such as idealized models (Schemm & Röthlisberger, 2024; Jiménez-Esteve & 351 

Domeisen, 2022; Jiménez-Esteve et al, 2022), model hierarchies (Maher et al, 2019), mechanism 352 

denial experiments targeted toward understanding circulation signals and nudging (Hitchcock et 353 

al. 2022) are all powerful for understanding mechanisms and unraveling the relationship between 354 

circulation signals and other trends, or to understand the role of mean-state biases in the 355 

atmospheric circulation (e.g. Friesen et al., 2022). The impacts of known thermodynamic biases, 356 

e.g. SST trend biases, can be understood and quantified through targeted model experiments, e.g. 357 

using pacemaker simulations with coupled models (Kang et al. 2024).  358 
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 Several new tools have emerged in the last decade that can be leveraged for making 359 

progress. Subseasonal to seasonal (S2S) forecasting models has emerged as a more widespread 360 

tool, with large ensembles of S2S forecasts that can be leveraged for understanding dynamical 361 

mechanisms and model-observation discrepancies. By pooling different ensemble members and 362 

different initializations for a given target forecast, and by assuming that atmospheric initial 363 

conditions are lost within the first month, tens of thousands of potential realizations of climate 364 

can be created (e.g. Kelder et al., 2020; Kolstad et al., 2022). This method could be exploited to 365 

improve mechanistic understanding of data-limited dynamical processes such as teleconnections. 366 

S2S ensemble forecasts can additionally be used to diagnose common model biases that also 367 

exist on climate timescales (L’Heureux et al., 2022; Garfinkel et al 2022; Lawrence et al, 2022; 368 

Beverley et al., 2023; Randall & Emanuel, 2024).   369 

The use of AI/ML methods has exploded in the last few years. Physics-informed and 370 

explainable AI has the potential to advance our understanding of circulation signals (Connolly et 371 

al. 2023). In particular, these methods may be able to “learn” the source of discrepancies 372 

between models and observations, and structural uncertainties across different models.  373 

Finally, high resolution global models going down to kilometer scale resolution present 374 

an exciting opportunity for understanding how large- and small-scale dynamics interact. In order 375 

to answer outstanding questions, carefully designed mechanistic model experiments across the 376 

model hierarchy are still crucial, which should be informed by results from new high-resolution 377 

(or large ensemble) model experiments. High resolution models also have the potential to reveal 378 

where model-observation discrepancies are the result of not properly representing small-scale 379 

dynamics in both the atmosphere and ocean.  380 

A new era of climate change research is upon us, one where atmospheric circulation 381 

signals are emerging, attribution is becoming possible and puzzles and discrepancies are 382 

accumulating. There is an opportunity to embrace these signals and the puzzles they present, 383 

including cases where there is a lack of consensus, and use the signals as an opportunity to 384 

further advance our understanding of the climate system and improve predictions of regional 385 

climate change. 386 

 387 
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 388 

Figure 1: Regional circulation signals for JJA (left) and DJF (right). (a,b) Spatial structure of 389 

SLP trends [hPa/decade] from 1950-2019 in observations with stippling indicating statistically 390 

significant linear trends at the 0.05 level. Time series of (c) SLP [hPa] and (e) precipitation 391 

[mm/month] anomalies in observations (red line, HadSLPv2 for SLP, and CRU TS v4.07 for 392 

precipitation) over South-West Australia (black box in a) during JJA. (d,f) DJF SLP and 393 

precipitation over Mediterranean regions (black box in b) defined in Tuel and Eltahir (2020).  394 

Mean (blue line) and range (blue shading) of the 15-member historical-GHG only simulation in 395 

CESM2 of SLP and precipitation (Simpson et al 2023). All time series have been smoothed with 396 

a 10-year running mean. 397 

 398 
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 399 

Figure 2: SH mid-latitude jet stream position response to ozone depletion. Jet position in DJF 400 

from ERA5, reproducing Banerjee et al. 2020, for years 1980/81-2017/18 (black lines), and 401 

extended time series to 2023/24 (red lines). Trends are fitted by continuous piecewise linear 402 

regression (following Banerjee et al), and trend values are -0.5°/dec for the ozone depletion 403 

period (1980/81 to 2000/01), and 0.0°/dec for 2000/01-2017/18. For the extended time series, 404 

trend values are -0.4°/dec for both ozone depletion and recovery periods, emphasizing the 405 

sensitivity of trend estimates from short records to end points. 406 

 407 

 408 

 409 
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 410 

Figure 3: Time series of southern hemispheric response in model years to quadrupling 411 

atmospheric CO2 for (a) the Hadley cell (HC) edge (red) and strength (orange) and the 412 

subtropical jet (STJ) location (green) and strength (blue). For each plot, shading represents the 413 

95% confidence interval of model spread. Taken from Menzel et al. (2019). 414 

 415 

 416 

Figure 4: Trends in North Atlantic lower-tropospheric (700 hPa)  jet stream strength from 1951-417 

2014 in reanalysis data (ERA5) and across coupled (CMIP6) climate model ensemble, and low 418 

(LR) and high (HR) resolution HighResMIP climate model ensemble. The box represents upper 419 

and lower quartile ranges, and the whiskers represent the minimum and maximum 420 

from all ensemble members. The lines in the boxes indicate the median from all 421 

ensembles, and the crosses represent the multimodel mean. The two numbers at the bottom 422 
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indicate the total number of models (left) and total number of ensemble members (right) from 423 

each experiment. Taken from Blackport & Fyfe (2022). 424 

 425 

Figure 5: Dynamical (a) and thermodynamical (b) contributions to the summer TXx (summer 426 

maximum of maximal daily temperature) trends from ERA5 ECMWF Reanalysis (red line), E-427 

OBS observation (orange line), and the 170 CMIP6 model simulations 428 

(names in ordinate) that were available (black dots) averaged over Western Europe. 429 

The thermodynamical contributions are simply calculated as residual by subtracting 430 

the dynamical trend from the total trend. For reference, the red bar 431 

at the bottom of (a) represents the 95% confidence interval of the estimate of the ERA5 TXx 432 

dynamical trend, estimated with a Gaussian assumption, i. e. the interval 433 

is calculated as plus or minus 2* the standard deviation (STD) of the error estimate 434 

on the trend coefficient. This confidence range describes the uncertainty related to 435 

the internal variability. This shows that this confidence range, calculated with the 436 

single realization of the observation, is consistent with the uncertainty range calculated 437 

from simulation members (respective standard deviations for observed 438 

trend and simulated trends of 0.28 and 0.25). Taken from Vautaurd et al. (2023). 439 
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Signal Region  Season Reference Detected Attributed 

Increased 

wind shear 

(zonal wind) 

North Atlantic  Annual mean Lee et al. (2019)   

Upper-troposphere 

jet strengthening 

(zonal wind) 

Zonal-mean 

 

DJF Woollings et al. 

(2023), Franzke & 

Harnik (2023) 

  

Lower-troposphere 

jet strengthening 

(zonal wind, mean 

sea level pressure) 

North Atlantic 

 

DJF Blackport & Fyfe 

(2022), Wills et al. 

(2022) 

  

Lower-troposphere 

jet poleward shift 

(zonal wind) 

Zonal-mean DJF Lee & Feldstein 

(2013), Woollings et 

al. (2023) 

x x 

Mid-troposphere jet 

weakening 

(zonal wind) 

N. Hemisphere 

Zonal-mean 

JJA Coumou et al. 

(2015), Kang et al. 

(2024b) 

x x 

Upper-troposphere 

jet weakening 

(zonal wind) 

Eurasia JJA Dong et al. (2022) x x 

Storm track 

weakening 

(eddy kinetic 

energy) 

N. Hemisphere 

Zonal-mean 

JJA Coumou et al. (2015, 

Chang et al. (2016), 

Gertler & O’Gorman 

(2019), Kang et al. 

(2023), Cox et al. 

(2024), Chemke & 

Coumou (2024) 

x x 

Extratropical 

cyclone activity 

weakening 

(mean sea level 
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CESM2 N: 15 -2.2±1.1mm/month/decade

(f) Mediterranean [30-45N, 20-40E], DJF(e) SW Australia [35-30S, 115-120E], JJA

(d) Mediterranean [32-48N, 0-30E], DJF(c) SW Australia [35-30S, 115-120E], JJA

CESM2:  -3.3 ± 1.4mm/month/decade

HadSLP2: 0.33 ± 0.25hPa/decade

CRU TS:   -0.68 ± 1.9mm/month/decadeCRU TS:   -2.8 ± 2.1mm/month/decade
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CESM2:  -2.2 ± 1.1mm/month/decade

CESM2: 0.29 ± 0.096hPa/decadeCESM2: 0.19 ± 0.067hPa/decade
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