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Abstract

While rising global temperatures have altered global drought risk and are projected to continue to change large-scale hydrocli-

mate, it has proved difficult to detect the influence of warming on drought-relevant variables at regional scales. In addition to

the inherent difficulty in identifying signals in noisy data, detection and attribution studies generally rely on general circulation

models, which may fail to accurately capture the characteristics of naturally forced and internal hydroclimate variability. Here,

we use a long tree-ring based paleoclimate record of drought to estimate pre-industrial variability in the Palmer Drought Sever-

ity Index (PDSI), a commonly used metric of drought risk. Using a Bayesian framework, we estimate the temporal and spatial

characteristics of hydroclimate variability prior to 1850. We assess whether observed twenty-first century PDSI is compatible

with this pre-industrial variability or is better explained by a forced response that depends on global mean temperature. Our

ressults suggest that global warming likely contributed to dry PDSI in Eastern Europe, the Mediterranean, and Arctic Russia

and to wet PDSI in Northern Europe, East-central Asia, and Tibet.
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Key Points:6

• We present a flexible Bayesian modeling framework for detecting regional hydro-7

climate responses to rising temperatures.8

• We learn the spatiotemporal characteristics of internal variability from tree-ring9

based paleoclimate records in the pre-industrial era.10

• We find that the influence of global warming is likely present in the twenty-first11

century hydroclimate of many regions.12
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Abstract13

While rising global temperatures have altered global drought risk and are projected to14

continue to change large-scale hydroclimate, it has proved difficult to detect the influ-15

ence of warming on drought-relevant variables at regional scales. In addition to the in-16

herent difficulty in identifying signals in noisy data, detection and attribution studies gen-17

erally rely on general circulation models, which may fail to accurately capture the char-18

acteristics of naturally forced and internal hydroclimate variability. Here, we use a long19

tree-ring based paleoclimate record of drought to estimate pre-industrial variability in20

the Palmer Drought Severity Index (PDSI), a commonly used metric of drought risk. Us-21

ing a Bayesian framework, we estimate the temporal and spatial characteristics of hy-22

droclimate variability prior to 1850. We assess whether observed twenty-first century PDSI23

is compatible with this pre-industrial variability or is better explained by a forced re-24

sponse that depends on global mean temperature. Our ressults suggest that global warm-25

ing likely contributed to dry PDSI in Eastern Europe, the Mediterranean, and Arctic26

Russia and to wet PDSI in Northern Europe, East-central Asia, and Tibet.27

Plain Language Summary28

Are twenty-first century drought conditions due to global warming, or can they just29

as well be explained by natural climate cycles? Data from tree rings gives us a record30

of previous drought conditions that stretches all the way back to the year 1000 CE. We31

use this long paleoclimate record to learn the complex structure of natural climate vari-32

ability before the Industrial Revolution. Recent conditions in many regions are not well33

explained by previous patterns of natural variability, but are compatible with an exter-34

nal factor: the influence of rising global temperatures.35

1 Introduction36

As the planet warms, the risk of drought is expected to change in many regions (Seneviratne37

et al., 2023; B. I. Cook et al., 2020). Previous studies have identified the influence of ris-38

ing temperatures on global drought patterns (Marvel et al., 2019; Bonfils et al., 2017)39

and regional droughts of particular severity, including the 2000-2022 southwest US megadrought40

(Swain et al., 2014; Williams et al., 2015, 2020). But the identification of novel or un-41

precedented drought conditions, as well as attribution to specific drivers, usually depends42

on the use of coupled general circulation models (GCMs). GCMs are used to identify43

fingerprints of external forcing (e.g. N. Gillett et al. (2002); Hegerl et al. (1996); Allen44

and Stott (2003); Tett et al. (2002); Stott et al. (2000); Santer, Painter, Bonfils, et al.45

(2013)) as well as to simulate and quantify pre-industrial climate variability (Santer et46

al., 2011; Santer, Painter, Mears, et al., 2013). However, the state-of-the-art GCMs par-47

ticipating in the Coupled Model Intercomparison Project, Phase 6 (CMIP6, Eyring et48

al. (2016)) exhibit many biases in their representation of global (Tokarska et al., 2020;49

Hausfather et al., 2022) and regional (Richter & Tokinaga, 2020) temperature, precip-50

itation (Yazdandoost et al., 2021), extremes (Kim et al., 2020), and land surface prop-51

erties that may affect the credibility of their estimates of pre-industrial variability. More-52

over, while GCM projections of the future appear coherent over some regions, there is53

great uncertainty in the magnitude or even sign of future changes in drought risk in some54

regions (B. I. Cook et al., 2020; Marvel et al., 2021).55

In the case of drought risk, we can circumvent many of the challenges associated56

with the GCMs by drawing upon long reconstructions of last-millennium hydroclimate57

derived from tree ring measurements. These “drought atlases” provide a record of in-58

ternal and naturally forced climate variability that stretch back centuries. They allow59

us to learn about the spatial and temporal properties of this natural variability and pro-60

vide a GCM-independent means of identifying unusual or unprecedented states or pat-61

terns in the present day (e.g. Marvel and Cook (2022)).62
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Here, we present a flexible, extendable Bayesian method for learning about past63

and present drought conditions. We use this framework to demonstrate that in many re-64

gions, it is likely that rising global temperatures have affected drought conditions. The65

paper is structured as follows: in section 2, we discuss the data and methods used. We66

show how the drought atlases may be used to “learn” the parameters of the spatial co-67

variance (i.e., how different regions naturally change in relation to one another) and the68

temporal autocorrelation (how much drought risk in a particular region depends on pre-69

vious years). We describe a simple model for recent hydroclimate variability, and show70

how Bayesian posterior predictive distributions can be used to separate the signal of a71

forced response to global warming from the noise of pre-industrial variability. In section72

3 we present results for the spatiotemporal structure of pre-industrial variability, the fin-73

gerprint of regional response to global temperature, and attribution results. In section74

4 we discuss the limitations of this method and possible future extensions.75

2 Methods76

2.1 Drought atlas description77

We use the new Great Eurasian Drought Atlas (GEDA, B. Cook et al. (2024)), a78

tree-ring based reconstruction of past hydroclimate variability that updates existing drought79

atlases (E. R. Cook et al., 2010, 2015, 2020). The GEDA, which targets summer (JJA)80

self-calibrating Palmer Drought Severity Index (PDSI, Wells et al. (2004)), spans the 1,021-81

year period 1000CE-2020CE. Tree-ring based reconstructions are used from 1000–198982

CE and instrumental observations from the University of East Anglia Climate Research83

Unit (CRU) (van der Schrier et al., 2013) based on the CRU TS gridded dataset (Harris84

et al., 2020) are used from 1990-2020. Full details on the development and validation of85

the GEDA can be found in B. Cook et al. (2024).86

We average the GEDA spatially over land regions used in the IPCC Sixth Assess-87

ment Report (hereafter AR6, Iturbide et al. (2020)). The GEDA provides full coverage88

over all European and Asian regions with the exception of Southeast Asia (SEA), where89

coverage extends over only the northern half of the region (Figure 1.) We split the GEDA90

into “preindustrial” (1000-1849) and recent (1850-2020) components. 1850 is chosen as91

the dividing line because all Coupled Model Intercomparison Project (CMIP) “histor-92

ical” simulations begin on this date (Eyring et al., 2016). We standardize PDSI in all93

regions by subtracting the pre-industrial mean and dividing by the pre-industrial stan-94

dard deviation.95

2.2 Bayesian methods96

Bayesian methodology has long been applied to the problem of climate change de-97

tection and attribution (e.g. (Annan, 2010; Katzfuss et al., 2017; Berliner et al., 2000))98

as well as other problems in climate science (e.g. (Sherwood et al., 2020; Tierney et al.,99

2020)). In this section, we describe the basics of the Bayesian methodology used in our100

analysis. Suppose we have data D that we wish to interpret using a model character-101

ized by a set of parameters Θ. If we begin with a set of prior beliefs P (Θ) about these102

parameters, we can use Bayes’ Theorem to update these beliefs in light of the evidence103

D:104

P (Θ|D) =
P (D|Θ)P (Θ)

P (D)
. (1)

Here, P (Θ|D) is the posterior distribution, which can be thought of as representing our105

updated knowledge about the parameters given the evidence. The term P (D|Θ) is the106

likelihood of observing the evidence given some value of the parameters. The denomi-107

nator P (D) is a normalization constant that makes the posterior a true probability dis-108

tribution.109
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Figure 1. Tree-ring based reconstructions: spatial extent and regions. Self-

calibrating summer (JJA) average Palmer Drought Severity Index for 1500CE from the GEDA,

along with selected AR6 regions.

The goal of a Bayesian analysis is to use available evidence to update our priors110

(Gelman et al., 1995). But what, exactly, are those parameters? The answer depends111

on the model we use to interpret the evidence. Here, we will use “GCM” to refer to com-112

plex general circulation models and reserve the term “model” for this interpretive frame-113

work. It is important to clearly specify this model, as we do in the next section.114

2.3 Modeling the preindustrial period115

In this section, we will show how the Bayesian framework described above can be116

applied to pre-industrial drought variability as represented by the GEDA. The interpre-117

tive model we specify will determine the parameters we fit and the inferences we can make.118

For example, if we believe pre-industrial variability in PDSI to be pure white noise whose119

standard deviation is independent of location, then our model would contain a single pa-120

rameter: the standard deviation σ. Of course, we know that this is not likely to be a very121

good model for pre-industrial variability: summer soil moisture is known to exhibit strong122

year-to-year persistence (B. I. Cook et al., 2022). The PDSI in a given year depends on123

the PDSI in the year before, and perhaps in years prior to that. Moreover, we know that124

certain modes of internal variability cause PDSI in different regions to co-vary positively125

or negatively with one another (Baek et al., 2017). This means we should use a more com-126

plex model to interpret the pre-idustrial period that takes into account the spatio-temporal127

structure of natural variability.128

Here, we assume that pre-industrial regional PDSI in one year depends on regional129

PDSI in the nlag previous years. We also assume that the spatial relationships between130

r different AR6 regions are described by a r× r covariance matrix Σ. We assume the131

r-dimensional vector of regional PDSI at time t, D(t), is drawn from a multivariate nor-132

mal distribution :133

D(t) ∼ MN(µ,Σ) (2)

–4–
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where the mean depends on the time-varying response to external forcing F (t) and the
value of D in the nlag previous years:

µ(t) = F(t) +

nlag∑
j=1

ℓjD(t− j).

That is, the PDSI in any given region depends in some unknown way on what happened134

in that region in previous years, while the overall PDSI pattern is constrained by (un-135

known) covariance relationships between different spatial regions. The model allows for136

nlag lagged correlation coefficients ℓj , calculated separately for each lagged region.137

We assume the forced response F (t) = 0 in the pre-industrial period. This neglects138

volcanic and solar forcing known to have been present and influencing climate prior to139

1850 (e.g. (Schmidt et al., 2011; Schurer et al., 2013; Lücke et al., 2023; Jungclaus et al.,140

2017)). However, this has the effect of inflating the estimated covariance parameters, and141

therefore may render our subsequent detection analysis more conservative.142

The parameters in this model are Θ = (ℓj ,Σ), where ℓj are the nlag × r lag co-143

efficients and Σ the r×r covariance matrix. By fitting the Cholesky decomposition of144

the covariance matrix145

Σ = LLT , (3)

where L is a lower-triangular matrix, we can reduce the number of parameters in the co-146

variance matrix to r(r−1)/2. The model (Eq. 2) specifies the likelihood of observing147

the data D(t) given values of these parameters:148

P (D(t)|Θ) = (2π)−r/2det(Σ)−1/2 exp

(
−1

2
[D(t)− µ(t)]

T
Σ−1[D(t)− µ(t)]

)
(4)

where µ is given by Eq. 2.3.149

Now, we must specify prior beliefs P (Θ) about these parameters. Adopting a lag-
2 model (nlag = 2), we place Gaussian priors on each lag coefficient:

ℓj ∼ N(0, 1).

We use the Lewandowsi-Kurowicka-Joe (LKJ,(Lewandowski et al., 2009)) prior for the150

spatial correlation matrix. Combined with priors on the standard deviations (which we151

set as Exponential(1.0), this yields a prior for the Cholesky matrix L (from which we can152

recover the full covariance matrix Σ). We can then use Markov Chain Monte Carlo (MCMC)153

sampling to estimate the posterior distributions for all parameters (Abril-Pla et al., 2023).154

These are presented in Sections 3.1 and 3.2.155

2.4 Modeling recent variability156

We consider two different models for recent (post-1850) PDSI variability in the GEDA.157

• Model A, in which the recent variability is identical to pre-industrial variability158

and there is no forced response.159

• Model B, in which recent PDSI variability is modeled as pre-industrial variabil-160

ity plus a nonzero, time-dependent forced response F(t) that differs across each161

region.162

Model A is as described in Section 2.3. In Model B, the data at time t is:163

D(t) ∼ MN(µF (t),Σ) (5)

where164

µ(t) = F(t) +

nlag∑
j=1

ℓjD(t− j) (6)

–5–



manuscript submitted to AGU Advances

and the covariance matrix Σ and the lagged coefficients ℓj are as in Eq. 2.3.165

We now require a model for the forced response F(t) in each region over time. Here,
we use

F(t) = βT (t)

where T (t) is the global mean temperature anomaly relative to the 1850-1900 average.166

β is a vector of scaling constants which are assumed to differ regionally: rising global tem-167

peratures may make some regions wetter, some drier, and have no effect on others.168

2.5 Hierarchical modeling: incorporating uncertainty in ∆T169

The global temperature anomaly T (t) is well-constrained but not precisely known.170

There is substantial agreement among multiple datasets (e.g. HadCRUT (Morice et al.,171

2021), Berkeley Earth (Rohde & Hausfather, 2020), and GISTEMP (Lenssen et al., 2019),172

Figure 2(a)), but they do not match one another exactly. Moreover, the uncertainty in173

T depends on time: temperatures earlier in the post-industrial period are less well-measured174

than more recent anomalies. While we expect the uncertainty in T to be a minor com-175

ponent of our analysis, we still would like our results to incorporate the fact that we do176

not exactly know the global mean temperature anomaly.177

One of the major advantages to a Bayesian framework is that it is relatively sim-178

ple to incorporate and propagate uncertainties through a hierarchy of sub-models. Here,179

we use a random-effects model (see, e.g. (Gronau et al., 2021)) to estimate the “true”180

global mean temperature anomaly from three observational datasets and their reported181

uncertainties. We assume the reported temperature anomaly time series from dataset182

k, denoted T̂k, differs from the (latent) true temperature anomaly Tk for that dataset,183

and that all dataset anomalies Tk are drawn from a normal distribution whose mean is184

the underlying real-world temperature anomaly T and whose spread is controlled by an185

inter-dataset homogeneity parameter τ . In the special case where τ = 0, this reduces186

to a “fixed effect” model, in which all datasets are assumed to differ only because of sam-187

pling error. If τ is allowed to be positive definite, then this becomes a “random effects”188

model, in which uncertainty due to possible inhomogeneity between datasets is taken into189

account. Here, we use such a random effects model, which can be written as190

T̂k ∼ MN(Tk,Σk)

Tk ∼ N(T, τ)

T ∼ g(.)

τ ∼ h(.)

where g(.) and h(.) are priors on the true real-world temperature anomaly T and the inter-191

dataset spread τ , respectively, which we set to N(0, 10) and HalfNormal(10). The dataset192

covariance matrices are Σk = diag(σ2
1 . . . σ

2
t ), where σt is the reported standard devi-193

ation at time t.194

Figure 2(b) shows the resulting 95% highest posterior density interval for T . This195

is the (uncertain) real-world temperature anomaly upon which our assumed forcing βT196

depends. By incorporating this sub-model within a Bayesian hierarchical structure, we197

can easily take unto account the uncertainty in the global temperature anomaly and prop-198

agate this uncertainty through our results. The inter-dataset spread parameter τ is small199

relative to the rise in global average temperatures (Figure 2 c), reflecting the high de-200

gree of agreement between datasets.201

2.6 Detecting the influence of global warming202

In frequentist detection and attribution, a “fingerprint” (Hegerl et al., 1996) of the203

expected response to external forcing is generally multiplied by a scaling factor β (e.g.204

–6–
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Figure 2. Estimating the real-world temperature response and its uncertainties.

(a): Global mean temperature relative to 1850-1900 (1880-1900 for GISTEMP) in three observed

datasets. Shading represents the reported 95% confidence intervals. (b): Posterior distribution

for the “true”, real-world temperature anomaly T . Shown is the 95% highest posterior density

interval. (c): Posterior for the inter-dataset spread parameter τ .

(N. P. Gillett et al., 2021)). The goal of the analysis is to calculate the true underlying205

value of the scaling parameter β and its uncertainty. If β is shown to be incompatible206

with 0 in a statistical sense, the fingerprint it multiplies is said to have been “detected”.207

If β is compatible with 1, the observations are said to be attributable to external forc-208

ing.209

From a Bayesian perspective, there is no such thing as a true value of β. The scal-210

ing parameter is just that: a parameter in our model about which we hold some prior211

beliefs based on previous information. Given the evidence, we can update these priors212

to arrive at a posterior that expresses our confidence in the possible range of β. Hence,213

we do not base claims of detection or attribution on the value of β.214

Moreover, the detection of any external influences is complicated by the temporal215

structure of pre-industrial variability. In Model B, the scaling parameter multiplies the216

global mean temperature change, and βT (t) is an addition to the expectation value of217

the PDSI D(t) at every time step. But if the PDSI in any given year depends on the PDSI218

in the previous year (or before), then a small wetting or drying arising due to random219

chance will make the next year more likely to be wet or dry, which will in turn affect the220

next year, and so on. We must identify the extent to which a persistent trend can be ex-221

plained by an external driver as opposed to the natural “memory” of the system, as re-222

flected in the temporal autocorrelation.223

Instead, we consider two explanatory models for 1850-2020 PDSI variability in the224

GEDA (Figure 3). In Model A, recent variability is explained by natural variability, as225

parameterized by ΘA = (ℓ1, ℓ2,Σ) inferred from the pre-industrial (1000-1849) GEDA.226

In Model B, recent variability is explained by this pre-industrial variability plus a227

forced response that depends on the (uncertain) global mean temperature T , itself es-228

timated from multiple observational datasets with spread τ . Model B therefore has more229

parameters than Model A: ΘB = (ℓ1, ℓ2,Σ, β, T, τ).230

In statistical modeling, we balance two competing imperatives. On one hand, we231

want to avoid over-fitting with too many parameters. On the other, we want a model232

that explains the data well. This means adding parameters to a model is “worth it” only233

if those parameters have additional explanatory power. In our analysis, detection is a234

question of model comparison. Does Model B, in which recent variability is explained235

–7–



manuscript submitted to AGU Advances
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T
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~
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~

Normal

HadCRUT
~

Normal

τ
~

HalfNormal

GISTEMP
~
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ℓ
~

Normal
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~

MvNormal
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MvNormal

β
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L
~
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~
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~
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Model A: Pre-industrial variability only

Model B: Pre-industrial variability and global temperature response

Figure 3. Comparing two models of recent PDSI variability. Summary graphs of

Model A, in which recent PDSI is assumed to be explained by pre-industrial variability, and

Model B, in which it is explained by pre-industrial variability plus a forcing term that depends

on the global mean temperature anomaly T . Model A is parameterized by the temporal lag co-

efficients ℓ and the Cholesky decompostion L of the spatial covariance matrix Σ. Model B is a

hierarchical model, in which the global mean temperature T is estimated from three observa-

tional datasets with spread τ and the forced response is βT. Variables labeled “Deterministic”

are functions of random variables estimated by the models. Shaded ovals are the observed data

(GEDA and the global temperature datsets). Because GISTEMP begins in 1880 while HadCRUT

and Berkeley Earth begin in 1850, we model 1850-1880 GISTEMP as unobserved values.
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(a): Lag-1 coefficient (posterior mean) (b): Lag-2 coefficient (posterior mean)

Figure 4. Year-to-year persistence in PDSI. (a) Lag-1 coefficients (posterior mean of ℓ1)

for each region. (b): As in (a), but for lag-2 coefficients ℓ2

by pre-industrial variability plus a temperature-dependent response, fit the data better236

than Model A, in which it is explained by pre-industrial variability alone? And to what237

extent?238

To answer these questions, we use posterior predictive distributions (PPDs), which239

allow us to predict out-of-sample data using the posterior distributions for the param-240

eters of each model (Gelman et al., 1995). If D(t) is the PDSI in the r regions at time241

t and the PDSI at previous times D(t− 1),D(t− 2) . . .D(t = 0) are known, then242

P (D(t)|D(t− 1),D(t− 2) . . .D(t = 0)) =

∫
P (Θ|D)P (Θ)dΘ. (7)

The posterior predictive distribution depends on the parameters Θ, which are set by the243

model. To compare Model A and Model B, we draw samples from the posteriors for each244

model P (ΘA|D) and P (ΘB |D) and use them to “predict” the PDSI in each recent year245

as if we had never seen it before. Comparing the PPD for the no-forcing model to PPD246

for the model with a temperature-dependent term allows us to calculate how regional247

PDSI trends differ, and hence to “attribute” observed trends to natural variability or re-248

gional forcing. Essentially, we are asking: is it “worth it”, in terms of predictive power,249

to include the influence of global warming? Using this framework, we can then quantify250

the extent to which global mean temperature change influences regional PDSI while tak-251

ing into account the natural persistence of the system.252

3 Results253

3.1 Temporal autocorrelation in reconstructed PDSI254

Figure 4 shows the posterior mean lag-1 (ℓ1) and 2 (ℓ2) coefficients for each region.255

There is substantial one-year “memory” in each region, with the lag-1 autocorrelation256

largest in Siberia and smallest in western central Asia. Posteriors for the lag-2 autocor-257

relation in many regions are not strongly shifted away from zero, indicating weak or no258

dependence of PDSI on its value two years before. However, in the Arabian Peninsula,259

West Central Asia, and East Asia, over 98% of the posterior density for ℓ2 is greater than260

zero, suggesting that PDSI in these regions is correlated with its value two years before.261

In western Siberia and south-east Asia, the PDSI in year t appears to be anti-correlated262

with PDSI two years prior.263

3.2 Spatial covariance in reconstructed PDSI264

Figure 5 shows the posterior mean of the spatial covariance matrix Σ. For visual265

clarity, we have excluded terms on the diagonal matrix: that is, we do not show the vari-266

ance of PDSI in each region. Because the PDSI has been standardized, in the absence267

–9–
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Figure 5. The spatial covariance structure of pre-industrial variability. Posterior

mean covariance matrix Σ for the drought atlas data. Redder colors indicate the PDSI in two

regions co-varies with one another, while bluer colors indicate the PDSI in two regions is anti-

correlated. Also shown are the posterior distributions for the covariance between Northern Euro-

pean PDSI and all other regions.

of temporal autocorrelation these terms would be equal to 1. The larger the autocorre-268

lation, the smaller the diagonal term in the covariance matrix, since more variability is269

explained by PDSI in prior years. For example, the fact that PDSI in Northern Europe270

in any given year is positively correlated with PDSI in the year before means that the271

non-lagged variance is estimated to be less than unity (top left distribution, Figure 5).272

The posterior for Σ represents the spatial covariance structure beween regions. For ex-273

ample, if PDSI in Northern Europe decreases, PDSI in West Central Europe does too,274

while PDSI in the Mediterranean increases. This reflects the well-understood hydrocli-275

mate response to the North Atlantic Oscillation (NAO) (E. R. Cook et al., 2015).276

To compare our results with more standard methods of covariance estimation, we277

calculate the eigenvector of Σ (posterior mean, shown in Figure 6(b)) associated with278

the largest eigenvalue. We also calculate the leading EOF (EOF1) of the preindustrial279

GEDA (Figure 6(b)). The eigenvector for the posterior mean Σ resembles EOF1 in many280

regions: the covariance between European regions is particularly strong in both. Differ-281

ences in sign or magnitude are likely related to the fact that Σ is estimated from a method282

that takes temporal covariance into account, whereas EOF1 does not. This is one ad-283

vantage of our Bayesian approach; other perks include a full estimation of uncertainties284

in the covariance matrix, as well as avoiding the arbitrary truncation in representing the285

covariance matrix with a smaller number of EOFs.286

–10–
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(b): GEDA EOF1(a): Leading eigenvector of Σ

Figure 6. Comparing methods of covariance estimation. (a): Leading eigenvector of

the posterior mean covariance matrix Σ. (b): EOF1 calculated from 1000-1849 drought atlas

data.

Figure 7. The sign of PDSI change with global warming.“Fingerprint” of regional

PDSI response to global temperature rise, defined as the posterior mean of the parameter β.

When temperature rises, the model predicts

3.3 Fingerprints of temperature increase287

The posterior mean for the regional scaling parameters β is shown in Figure 7. Here,288

β represents the estimated sign and magnitude of any regional PDSI change that scales289

with global mean temperature, and can be thought of as the calculated “fingerprint” of290

global warming on regional PDSI. According to this model, northern Europe, Tibet, East291

Central Asia get wetter as the planet warms; Eastern Europe, Arctic Russia, the Ara-292

bian Peninsula and the Mediterranean get drier, and changes are smaller in other regions.293

3.4 Comparing with preindustrial drought atlas variability294

Temporally autocorrelated and spatially correlated variability is capable of explain-295

ing some wetting or drying trends. If a region is dry in any given year, it is more likely296

to be dry the next year, and so on. And long-term wetting or drying trends in some re-297

gions are associated with trends in other regions because of teleconnections arising from298

known modes of variability. Natural variability is not pure white noise, in which long-299

term trends would be extremely unlikely; we expect to see (and, indeed, we do see, in300
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Figure 8. What difference does global warming make? This plot shows the mean dif-

ference (as a function of time) between the posterior predictive distributions for the Global T

model, in which drought responses are assumed to depend on T , and AR2, a model in which they

are represented by preindustrial variability alone.
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Figure 9. How well do different statistical models explain 21st century PDSI?

Light blue distributions show the posterior predictive distribution for regional 2000-2020 mean

PDSI assuming it is explained by natural variability inferred from the 1000-1849 drought atlas.

Dark blue distributions show the PPD for regional 2000-2020 mean PDSI assuming it is ex-

plained by natural variability plus a global temperature-dependent forced response. Black lines

indicate quartiles. Orange dots represent the 2000-2020 mean PDSI in the GEDA.

the preindustrial GEDA) multi-decadal trends in PDSI even in the absence of external301

forcing. The attribution question is then: to what extent does adding a temperature-302

dependent forcing to this complex natural variability increase a model’s explanatory power?303

Figure 8 shows the mean difference between the posterior predictive distribution304

for Model B (which incorporates a the global temperature response) and the PPD for305

Model A (in which recent variability is modeled as pre-industrial variability) as a func-306

tion of time. This represents the mean wetting or drying explained by the inclusion of307

a T -dependent forced response relative to the wetting or drying that can be explained308

by natural variability (as inferred from the preindustrial GEDA) alone.309

Figure 8 does not incorporate the uncertainty, a crucial step for confident detec-310

tion or attribution. To illustrate the full posteriors, we compare twenty-first century (2000-311

2020) mean regional PDSI in both models. The light blue distributions in Figure 9 show312

the PPD for 21st century PDSI assuming Model A. These reflect the ability of natural313

variability (as inferred from the preindustrial GEDA) to explain 21st century mean PDSI314

anomalies. Consider, for example, Eastern Europe (EEU). Pre-industrial variability alone315

can explain a dry anomaly of a certain magnitude; three-quarters of the PPD mass lies316

below zero. However, the observed twenty-first century EEU PDSI (orange dot) lies in317

the tail of the light-blue PPD, indicating that such a large dry anomaly is difficult to ex-318

plain with natural variability alone. The dark blue distributions in Figure 9 show the319

PPD for 21st century PDSI assuming Model B. The 21st century EEU anomaly lies near320

the center of the PPD for Model B, indicating that a temperature-dependent forced re-321

sponse is useful for explaining the observed PDSI.322

By contrast, both Model A and Model B appear to be about equally as able to cap-323

ture the 21st century mean PDSI in East Asia (EAS), indicating that an additional temperature-324

dependent forced response is not necessarily required to explain the dry PDSI in this re-325

gion.326
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Figure 10. Attributing twenty-first century PDSI to global warming. The mean

difference between the posterior predictive distribution assuming a temperature-dependent forced

response and the PPD assuming natural variability for 2000-2020 mean regional PDSI. Boxes

show the quartiles, while whiskers show the “likely” (13-83%) range.

3.5 Where have rising global temperatures likely affected drought?327

We summarize the attribution analysis in Figure 10. The box-and-whisker plots328

show the difference between the Model B PPD and the Model A PPD for 21st century329

mean regional PDSI. The observed 21st century PDSI for Eastern Europe appears to lie330

directly at the center of the relevant box, indicating that a temperature-dependent re-331

sponse explains essentially all of the recent drying in this region. The IPCC defines “likely”332

as within the 66% confidence interval; in our Bayesian framework we will define a “likely”333

contribution from global warming as one in which the 66% highest-posterior density in-334

terval excludes zero. Using this terminology, we assess that global warming likely con-335

tributed to dry PDSI in Eastern Europe, the Mediterranean, and Arctic Russia and to336

wet PDSI in Northern Europe, East-central Asia, and Tibet.337

In most regions, the inferred contribution from the temperature-dependent forced338

response (or at least, the posterior mean) is of the same sign as the observed 21st cen-339

tury mean PDSI. The exceptions are Southeast Asia (SEA), West Central Asia (WCE),340

and the Russian Far East (RFE), indicating that natural variability is more able to ex-341

plain the observed PDSI than the inferred T -dependent response.342

4 Discussion and Conclusions343

All detection and attribution studies are model-dependent, and ours is no excep-344

tion. Although we do not rely on coupled atmosphere-ocean general circulation models,345

we use simple models to interpret and characterize pre-industrial variability, to estimate346

the global mean temperature from multiple datasets, and to explain recent PDSI vari-347

ations. We treat detection and attribution in a unified framework of model comparison:348

which of these models best explains the observed data? Our results suggest that a temperature-349

dependent forcing term better explains recent variability in many regions than pre-industrial350

variability, at least as characterized by our spatiotemporal model. Thus, we conclude that351

global warming is likely making eastern and southern Europe drier, while it is making352

northern Europe and parts of Asia wetter. This result is contingent on the two models353
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we compare: it may be that some other model is better able to both characterize pre-354

industrial variability and explain recent trends. Still, we can be confident in stating that355

given a choice between pre-industrial variability alone and variability added to the in-356

fluence of global warming, twenty-first century PDSI in many regions is best explained357

by the latter.358

The flexibility of Bayesian methods opens up the possibilities of many future anal-359

yses. The number of sub-models in a Bayesian hierarchy is unlimited, which allows for360

attribution on multiple levels. For example, one might further model the global mean361

temperature T as a response to natural and anthropogenic forcing agents, and trace the362

influence of anthropogenic forcing to regional PDSI via its impact on global mean tem-363

perature. Other, more complex models for the PDSI response are also possible: we might364

go beyond the global mean temperature to consider the effects of, for example, differ-365

ent SST patterns. Finally, the properties of reconstructed pre-industrial hydroclimate366

variability might be used to evaluate and constrain the output of GCMS, leading to more367

confident attribution and more coherent projections.368

These results reinforce that regional drought risk is, to a certain extent, predictable.369

The year-to-year persistence in soil moisture is an important source of predictability even370

in the absence of anthropogenic forcing. We show that, in many regions, another, stronger371

source of predictability is already emerging: the rising global temperature. In the ab-372

sence of drastic emission cuts, the planet will continue to warm, and this will become373

an even more important determinant of drought risk. Our statistical analysis highlights374

the urgent necessity to understand the underlying physical drivers shaping this relation-375

ship, as well as the need for action to adapt to altered drought risk in a warmer world.376

5 Open Research377

The Great Eurasian Drought Atlas is available at378

https://zenodo.org/records/11059894.379

Global mean temperature datasets and uncertainties may be downloaded at the380

following links:381

• GISTEMP: https://data.giss.nasa.gov/gistemp/uncertainty/382

• HadCRUT: https://www.metoffice.gov.uk/hadobs/hadcrut5/data/HadCRUT383

.5.0.2.0/download.html384

• Berkeley Earth: https://berkeley-earth-temperature.s3.us-west-1.amazonaws385

.com/Global/Land and Ocean summary.txt386

Analysis was performed with the PyMC probabilistic programming environment387

available at https://www.pymc.io/. Code to reproduce all figures and analyses is avail-388

able at https://github.com/netzeroasap/GEDA BAYES/.389
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Key Points:6

• We present a flexible Bayesian modeling framework for detecting regional hydro-7

climate responses to rising temperatures.8

• We learn the spatiotemporal characteristics of internal variability from tree-ring9

based paleoclimate records in the pre-industrial era.10

• We find that the influence of global warming is likely present in the twenty-first11

century hydroclimate of many regions.12
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Abstract13

While rising global temperatures have altered global drought risk and are projected to14

continue to change large-scale hydroclimate, it has proved difficult to detect the influ-15

ence of warming on drought-relevant variables at regional scales. In addition to the in-16

herent difficulty in identifying signals in noisy data, detection and attribution studies gen-17

erally rely on general circulation models, which may fail to accurately capture the char-18

acteristics of naturally forced and internal hydroclimate variability. Here, we use a long19

tree-ring based paleoclimate record of drought to estimate pre-industrial variability in20

the Palmer Drought Severity Index (PDSI), a commonly used metric of drought risk. Us-21

ing a Bayesian framework, we estimate the temporal and spatial characteristics of hy-22

droclimate variability prior to 1850. We assess whether observed twenty-first century PDSI23

is compatible with this pre-industrial variability or is better explained by a forced re-24

sponse that depends on global mean temperature. Our ressults suggest that global warm-25

ing likely contributed to dry PDSI in Eastern Europe, the Mediterranean, and Arctic26

Russia and to wet PDSI in Northern Europe, East-central Asia, and Tibet.27

Plain Language Summary28

Are twenty-first century drought conditions due to global warming, or can they just29

as well be explained by natural climate cycles? Data from tree rings gives us a record30

of previous drought conditions that stretches all the way back to the year 1000 CE. We31

use this long paleoclimate record to learn the complex structure of natural climate vari-32

ability before the Industrial Revolution. Recent conditions in many regions are not well33

explained by previous patterns of natural variability, but are compatible with an exter-34

nal factor: the influence of rising global temperatures.35

1 Introduction36

As the planet warms, the risk of drought is expected to change in many regions (Seneviratne37

et al., 2023; B. I. Cook et al., 2020). Previous studies have identified the influence of ris-38

ing temperatures on global drought patterns (Marvel et al., 2019; Bonfils et al., 2017)39

and regional droughts of particular severity, including the 2000-2022 southwest US megadrought40

(Swain et al., 2014; Williams et al., 2015, 2020). But the identification of novel or un-41

precedented drought conditions, as well as attribution to specific drivers, usually depends42

on the use of coupled general circulation models (GCMs). GCMs are used to identify43

fingerprints of external forcing (e.g. N. Gillett et al. (2002); Hegerl et al. (1996); Allen44

and Stott (2003); Tett et al. (2002); Stott et al. (2000); Santer, Painter, Bonfils, et al.45

(2013)) as well as to simulate and quantify pre-industrial climate variability (Santer et46

al., 2011; Santer, Painter, Mears, et al., 2013). However, the state-of-the-art GCMs par-47

ticipating in the Coupled Model Intercomparison Project, Phase 6 (CMIP6, Eyring et48

al. (2016)) exhibit many biases in their representation of global (Tokarska et al., 2020;49

Hausfather et al., 2022) and regional (Richter & Tokinaga, 2020) temperature, precip-50

itation (Yazdandoost et al., 2021), extremes (Kim et al., 2020), and land surface prop-51

erties that may affect the credibility of their estimates of pre-industrial variability. More-52

over, while GCM projections of the future appear coherent over some regions, there is53

great uncertainty in the magnitude or even sign of future changes in drought risk in some54

regions (B. I. Cook et al., 2020; Marvel et al., 2021).55

In the case of drought risk, we can circumvent many of the challenges associated56

with the GCMs by drawing upon long reconstructions of last-millennium hydroclimate57

derived from tree ring measurements. These “drought atlases” provide a record of in-58

ternal and naturally forced climate variability that stretch back centuries. They allow59

us to learn about the spatial and temporal properties of this natural variability and pro-60

vide a GCM-independent means of identifying unusual or unprecedented states or pat-61

terns in the present day (e.g. Marvel and Cook (2022)).62
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Here, we present a flexible, extendable Bayesian method for learning about past63

and present drought conditions. We use this framework to demonstrate that in many re-64

gions, it is likely that rising global temperatures have affected drought conditions. The65

paper is structured as follows: in section 2, we discuss the data and methods used. We66

show how the drought atlases may be used to “learn” the parameters of the spatial co-67

variance (i.e., how different regions naturally change in relation to one another) and the68

temporal autocorrelation (how much drought risk in a particular region depends on pre-69

vious years). We describe a simple model for recent hydroclimate variability, and show70

how Bayesian posterior predictive distributions can be used to separate the signal of a71

forced response to global warming from the noise of pre-industrial variability. In section72

3 we present results for the spatiotemporal structure of pre-industrial variability, the fin-73

gerprint of regional response to global temperature, and attribution results. In section74

4 we discuss the limitations of this method and possible future extensions.75

2 Methods76

2.1 Drought atlas description77

We use the new Great Eurasian Drought Atlas (GEDA, B. Cook et al. (2024)), a78

tree-ring based reconstruction of past hydroclimate variability that updates existing drought79

atlases (E. R. Cook et al., 2010, 2015, 2020). The GEDA, which targets summer (JJA)80

self-calibrating Palmer Drought Severity Index (PDSI, Wells et al. (2004)), spans the 1,021-81

year period 1000CE-2020CE. Tree-ring based reconstructions are used from 1000–198982

CE and instrumental observations from the University of East Anglia Climate Research83

Unit (CRU) (van der Schrier et al., 2013) based on the CRU TS gridded dataset (Harris84

et al., 2020) are used from 1990-2020. Full details on the development and validation of85

the GEDA can be found in B. Cook et al. (2024).86

We average the GEDA spatially over land regions used in the IPCC Sixth Assess-87

ment Report (hereafter AR6, Iturbide et al. (2020)). The GEDA provides full coverage88

over all European and Asian regions with the exception of Southeast Asia (SEA), where89

coverage extends over only the northern half of the region (Figure 1.) We split the GEDA90

into “preindustrial” (1000-1849) and recent (1850-2020) components. 1850 is chosen as91

the dividing line because all Coupled Model Intercomparison Project (CMIP) “histor-92

ical” simulations begin on this date (Eyring et al., 2016). We standardize PDSI in all93

regions by subtracting the pre-industrial mean and dividing by the pre-industrial stan-94

dard deviation.95

2.2 Bayesian methods96

Bayesian methodology has long been applied to the problem of climate change de-97

tection and attribution (e.g. (Annan, 2010; Katzfuss et al., 2017; Berliner et al., 2000))98

as well as other problems in climate science (e.g. (Sherwood et al., 2020; Tierney et al.,99

2020)). In this section, we describe the basics of the Bayesian methodology used in our100

analysis. Suppose we have data D that we wish to interpret using a model character-101

ized by a set of parameters Θ. If we begin with a set of prior beliefs P (Θ) about these102

parameters, we can use Bayes’ Theorem to update these beliefs in light of the evidence103

D:104

P (Θ|D) =
P (D|Θ)P (Θ)

P (D)
. (1)

Here, P (Θ|D) is the posterior distribution, which can be thought of as representing our105

updated knowledge about the parameters given the evidence. The term P (D|Θ) is the106

likelihood of observing the evidence given some value of the parameters. The denomi-107

nator P (D) is a normalization constant that makes the posterior a true probability dis-108

tribution.109
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Figure 1. Tree-ring based reconstructions: spatial extent and regions. Self-

calibrating summer (JJA) average Palmer Drought Severity Index for 1500CE from the GEDA,

along with selected AR6 regions.

The goal of a Bayesian analysis is to use available evidence to update our priors110

(Gelman et al., 1995). But what, exactly, are those parameters? The answer depends111

on the model we use to interpret the evidence. Here, we will use “GCM” to refer to com-112

plex general circulation models and reserve the term “model” for this interpretive frame-113

work. It is important to clearly specify this model, as we do in the next section.114

2.3 Modeling the preindustrial period115

In this section, we will show how the Bayesian framework described above can be116

applied to pre-industrial drought variability as represented by the GEDA. The interpre-117

tive model we specify will determine the parameters we fit and the inferences we can make.118

For example, if we believe pre-industrial variability in PDSI to be pure white noise whose119

standard deviation is independent of location, then our model would contain a single pa-120

rameter: the standard deviation σ. Of course, we know that this is not likely to be a very121

good model for pre-industrial variability: summer soil moisture is known to exhibit strong122

year-to-year persistence (B. I. Cook et al., 2022). The PDSI in a given year depends on123

the PDSI in the year before, and perhaps in years prior to that. Moreover, we know that124

certain modes of internal variability cause PDSI in different regions to co-vary positively125

or negatively with one another (Baek et al., 2017). This means we should use a more com-126

plex model to interpret the pre-idustrial period that takes into account the spatio-temporal127

structure of natural variability.128

Here, we assume that pre-industrial regional PDSI in one year depends on regional129

PDSI in the nlag previous years. We also assume that the spatial relationships between130

r different AR6 regions are described by a r× r covariance matrix Σ. We assume the131

r-dimensional vector of regional PDSI at time t, D(t), is drawn from a multivariate nor-132

mal distribution :133

D(t) ∼ MN(µ,Σ) (2)
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where the mean depends on the time-varying response to external forcing F (t) and the
value of D in the nlag previous years:

µ(t) = F(t) +

nlag∑
j=1

ℓjD(t− j).

That is, the PDSI in any given region depends in some unknown way on what happened134

in that region in previous years, while the overall PDSI pattern is constrained by (un-135

known) covariance relationships between different spatial regions. The model allows for136

nlag lagged correlation coefficients ℓj , calculated separately for each lagged region.137

We assume the forced response F (t) = 0 in the pre-industrial period. This neglects138

volcanic and solar forcing known to have been present and influencing climate prior to139

1850 (e.g. (Schmidt et al., 2011; Schurer et al., 2013; Lücke et al., 2023; Jungclaus et al.,140

2017)). However, this has the effect of inflating the estimated covariance parameters, and141

therefore may render our subsequent detection analysis more conservative.142

The parameters in this model are Θ = (ℓj ,Σ), where ℓj are the nlag × r lag co-143

efficients and Σ the r×r covariance matrix. By fitting the Cholesky decomposition of144

the covariance matrix145

Σ = LLT , (3)

where L is a lower-triangular matrix, we can reduce the number of parameters in the co-146

variance matrix to r(r−1)/2. The model (Eq. 2) specifies the likelihood of observing147

the data D(t) given values of these parameters:148

P (D(t)|Θ) = (2π)−r/2det(Σ)−1/2 exp

(
−1

2
[D(t)− µ(t)]

T
Σ−1[D(t)− µ(t)]

)
(4)

where µ is given by Eq. 2.3.149

Now, we must specify prior beliefs P (Θ) about these parameters. Adopting a lag-
2 model (nlag = 2), we place Gaussian priors on each lag coefficient:

ℓj ∼ N(0, 1).

We use the Lewandowsi-Kurowicka-Joe (LKJ,(Lewandowski et al., 2009)) prior for the150

spatial correlation matrix. Combined with priors on the standard deviations (which we151

set as Exponential(1.0), this yields a prior for the Cholesky matrix L (from which we can152

recover the full covariance matrix Σ). We can then use Markov Chain Monte Carlo (MCMC)153

sampling to estimate the posterior distributions for all parameters (Abril-Pla et al., 2023).154

These are presented in Sections 3.1 and 3.2.155

2.4 Modeling recent variability156

We consider two different models for recent (post-1850) PDSI variability in the GEDA.157

• Model A, in which the recent variability is identical to pre-industrial variability158

and there is no forced response.159

• Model B, in which recent PDSI variability is modeled as pre-industrial variabil-160

ity plus a nonzero, time-dependent forced response F(t) that differs across each161

region.162

Model A is as described in Section 2.3. In Model B, the data at time t is:163

D(t) ∼ MN(µF (t),Σ) (5)

where164

µ(t) = F(t) +

nlag∑
j=1

ℓjD(t− j) (6)
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and the covariance matrix Σ and the lagged coefficients ℓj are as in Eq. 2.3.165

We now require a model for the forced response F(t) in each region over time. Here,
we use

F(t) = βT (t)

where T (t) is the global mean temperature anomaly relative to the 1850-1900 average.166

β is a vector of scaling constants which are assumed to differ regionally: rising global tem-167

peratures may make some regions wetter, some drier, and have no effect on others.168

2.5 Hierarchical modeling: incorporating uncertainty in ∆T169

The global temperature anomaly T (t) is well-constrained but not precisely known.170

There is substantial agreement among multiple datasets (e.g. HadCRUT (Morice et al.,171

2021), Berkeley Earth (Rohde & Hausfather, 2020), and GISTEMP (Lenssen et al., 2019),172

Figure 2(a)), but they do not match one another exactly. Moreover, the uncertainty in173

T depends on time: temperatures earlier in the post-industrial period are less well-measured174

than more recent anomalies. While we expect the uncertainty in T to be a minor com-175

ponent of our analysis, we still would like our results to incorporate the fact that we do176

not exactly know the global mean temperature anomaly.177

One of the major advantages to a Bayesian framework is that it is relatively sim-178

ple to incorporate and propagate uncertainties through a hierarchy of sub-models. Here,179

we use a random-effects model (see, e.g. (Gronau et al., 2021)) to estimate the “true”180

global mean temperature anomaly from three observational datasets and their reported181

uncertainties. We assume the reported temperature anomaly time series from dataset182

k, denoted T̂k, differs from the (latent) true temperature anomaly Tk for that dataset,183

and that all dataset anomalies Tk are drawn from a normal distribution whose mean is184

the underlying real-world temperature anomaly T and whose spread is controlled by an185

inter-dataset homogeneity parameter τ . In the special case where τ = 0, this reduces186

to a “fixed effect” model, in which all datasets are assumed to differ only because of sam-187

pling error. If τ is allowed to be positive definite, then this becomes a “random effects”188

model, in which uncertainty due to possible inhomogeneity between datasets is taken into189

account. Here, we use such a random effects model, which can be written as190

T̂k ∼ MN(Tk,Σk)

Tk ∼ N(T, τ)

T ∼ g(.)

τ ∼ h(.)

where g(.) and h(.) are priors on the true real-world temperature anomaly T and the inter-191

dataset spread τ , respectively, which we set to N(0, 10) and HalfNormal(10). The dataset192

covariance matrices are Σk = diag(σ2
1 . . . σ

2
t ), where σt is the reported standard devi-193

ation at time t.194

Figure 2(b) shows the resulting 95% highest posterior density interval for T . This195

is the (uncertain) real-world temperature anomaly upon which our assumed forcing βT196

depends. By incorporating this sub-model within a Bayesian hierarchical structure, we197

can easily take unto account the uncertainty in the global temperature anomaly and prop-198

agate this uncertainty through our results. The inter-dataset spread parameter τ is small199

relative to the rise in global average temperatures (Figure 2 c), reflecting the high de-200

gree of agreement between datasets.201

2.6 Detecting the influence of global warming202

In frequentist detection and attribution, a “fingerprint” (Hegerl et al., 1996) of the203

expected response to external forcing is generally multiplied by a scaling factor β (e.g.204
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Figure 2. Estimating the real-world temperature response and its uncertainties.

(a): Global mean temperature relative to 1850-1900 (1880-1900 for GISTEMP) in three observed

datasets. Shading represents the reported 95% confidence intervals. (b): Posterior distribution

for the “true”, real-world temperature anomaly T . Shown is the 95% highest posterior density

interval. (c): Posterior for the inter-dataset spread parameter τ .

(N. P. Gillett et al., 2021)). The goal of the analysis is to calculate the true underlying205

value of the scaling parameter β and its uncertainty. If β is shown to be incompatible206

with 0 in a statistical sense, the fingerprint it multiplies is said to have been “detected”.207

If β is compatible with 1, the observations are said to be attributable to external forc-208

ing.209

From a Bayesian perspective, there is no such thing as a true value of β. The scal-210

ing parameter is just that: a parameter in our model about which we hold some prior211

beliefs based on previous information. Given the evidence, we can update these priors212

to arrive at a posterior that expresses our confidence in the possible range of β. Hence,213

we do not base claims of detection or attribution on the value of β.214

Moreover, the detection of any external influences is complicated by the temporal215

structure of pre-industrial variability. In Model B, the scaling parameter multiplies the216

global mean temperature change, and βT (t) is an addition to the expectation value of217

the PDSI D(t) at every time step. But if the PDSI in any given year depends on the PDSI218

in the previous year (or before), then a small wetting or drying arising due to random219

chance will make the next year more likely to be wet or dry, which will in turn affect the220

next year, and so on. We must identify the extent to which a persistent trend can be ex-221

plained by an external driver as opposed to the natural “memory” of the system, as re-222

flected in the temporal autocorrelation.223

Instead, we consider two explanatory models for 1850-2020 PDSI variability in the224

GEDA (Figure 3). In Model A, recent variability is explained by natural variability, as225

parameterized by ΘA = (ℓ1, ℓ2,Σ) inferred from the pre-industrial (1000-1849) GEDA.226

In Model B, recent variability is explained by this pre-industrial variability plus a227

forced response that depends on the (uncertain) global mean temperature T , itself es-228

timated from multiple observational datasets with spread τ . Model B therefore has more229

parameters than Model A: ΘB = (ℓ1, ℓ2,Σ, β, T, τ).230

In statistical modeling, we balance two competing imperatives. On one hand, we231

want to avoid over-fitting with too many parameters. On the other, we want a model232

that explains the data well. This means adding parameters to a model is “worth it” only233

if those parameters have additional explanatory power. In our analysis, detection is a234

question of model comparison. Does Model B, in which recent variability is explained235

–7–



manuscript submitted to AGU Advances

lags (2) x region (15)

time_recent (169) x region (15)
region (15) x cross_region (15)

time_pi (848) x region (15)

time_recent (169)

200 x 169

28200 5600

region (15)

120

15 x 15 15

θ_GISTEMP
~

Normal

GISTEMP_observed
~

Normal

GISTEMP_unobserved
~

Normal

T
~

Normal

θ_Berkeley Earth
~

Normal

θ_HadCRUT
~

Normal

forced_response
~

Deterministic

Berkeley Earth
~

Normal

HadCRUT
~

Normal

τ
~

HalfNormal

GISTEMP
~

Deterministic

ℓ
~

Normal

obs_recent
~

MvNormal

obs_pi
~

MvNormal

β
~

Normal

L
~

_LKJCholeskyCov

L_corr
~

Deterministic

L_stds
~

Deterministic

Σ
~

Deterministic

Model A: Pre-industrial variability only
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Figure 3. Comparing two models of recent PDSI variability. Summary graphs of

Model A, in which recent PDSI is assumed to be explained by pre-industrial variability, and

Model B, in which it is explained by pre-industrial variability plus a forcing term that depends

on the global mean temperature anomaly T . Model A is parameterized by the temporal lag co-

efficients ℓ and the Cholesky decompostion L of the spatial covariance matrix Σ. Model B is a

hierarchical model, in which the global mean temperature T is estimated from three observa-

tional datasets with spread τ and the forced response is βT. Variables labeled “Deterministic”

are functions of random variables estimated by the models. Shaded ovals are the observed data

(GEDA and the global temperature datsets). Because GISTEMP begins in 1880 while HadCRUT

and Berkeley Earth begin in 1850, we model 1850-1880 GISTEMP as unobserved values.
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(a): Lag-1 coefficient (posterior mean) (b): Lag-2 coefficient (posterior mean)

Figure 4. Year-to-year persistence in PDSI. (a) Lag-1 coefficients (posterior mean of ℓ1)

for each region. (b): As in (a), but for lag-2 coefficients ℓ2

by pre-industrial variability plus a temperature-dependent response, fit the data better236

than Model A, in which it is explained by pre-industrial variability alone? And to what237

extent?238

To answer these questions, we use posterior predictive distributions (PPDs), which239

allow us to predict out-of-sample data using the posterior distributions for the param-240

eters of each model (Gelman et al., 1995). If D(t) is the PDSI in the r regions at time241

t and the PDSI at previous times D(t− 1),D(t− 2) . . .D(t = 0) are known, then242

P (D(t)|D(t− 1),D(t− 2) . . .D(t = 0)) =

∫
P (Θ|D)P (Θ)dΘ. (7)

The posterior predictive distribution depends on the parameters Θ, which are set by the243

model. To compare Model A and Model B, we draw samples from the posteriors for each244

model P (ΘA|D) and P (ΘB |D) and use them to “predict” the PDSI in each recent year245

as if we had never seen it before. Comparing the PPD for the no-forcing model to PPD246

for the model with a temperature-dependent term allows us to calculate how regional247

PDSI trends differ, and hence to “attribute” observed trends to natural variability or re-248

gional forcing. Essentially, we are asking: is it “worth it”, in terms of predictive power,249

to include the influence of global warming? Using this framework, we can then quantify250

the extent to which global mean temperature change influences regional PDSI while tak-251

ing into account the natural persistence of the system.252

3 Results253

3.1 Temporal autocorrelation in reconstructed PDSI254

Figure 4 shows the posterior mean lag-1 (ℓ1) and 2 (ℓ2) coefficients for each region.255

There is substantial one-year “memory” in each region, with the lag-1 autocorrelation256

largest in Siberia and smallest in western central Asia. Posteriors for the lag-2 autocor-257

relation in many regions are not strongly shifted away from zero, indicating weak or no258

dependence of PDSI on its value two years before. However, in the Arabian Peninsula,259

West Central Asia, and East Asia, over 98% of the posterior density for ℓ2 is greater than260

zero, suggesting that PDSI in these regions is correlated with its value two years before.261

In western Siberia and south-east Asia, the PDSI in year t appears to be anti-correlated262

with PDSI two years prior.263

3.2 Spatial covariance in reconstructed PDSI264

Figure 5 shows the posterior mean of the spatial covariance matrix Σ. For visual265

clarity, we have excluded terms on the diagonal matrix: that is, we do not show the vari-266

ance of PDSI in each region. Because the PDSI has been standardized, in the absence267
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Figure 5. The spatial covariance structure of pre-industrial variability. Posterior

mean covariance matrix Σ for the drought atlas data. Redder colors indicate the PDSI in two

regions co-varies with one another, while bluer colors indicate the PDSI in two regions is anti-

correlated. Also shown are the posterior distributions for the covariance between Northern Euro-

pean PDSI and all other regions.

of temporal autocorrelation these terms would be equal to 1. The larger the autocorre-268

lation, the smaller the diagonal term in the covariance matrix, since more variability is269

explained by PDSI in prior years. For example, the fact that PDSI in Northern Europe270

in any given year is positively correlated with PDSI in the year before means that the271

non-lagged variance is estimated to be less than unity (top left distribution, Figure 5).272

The posterior for Σ represents the spatial covariance structure beween regions. For ex-273

ample, if PDSI in Northern Europe decreases, PDSI in West Central Europe does too,274

while PDSI in the Mediterranean increases. This reflects the well-understood hydrocli-275

mate response to the North Atlantic Oscillation (NAO) (E. R. Cook et al., 2015).276

To compare our results with more standard methods of covariance estimation, we277

calculate the eigenvector of Σ (posterior mean, shown in Figure 6(b)) associated with278

the largest eigenvalue. We also calculate the leading EOF (EOF1) of the preindustrial279

GEDA (Figure 6(b)). The eigenvector for the posterior mean Σ resembles EOF1 in many280

regions: the covariance between European regions is particularly strong in both. Differ-281

ences in sign or magnitude are likely related to the fact that Σ is estimated from a method282

that takes temporal covariance into account, whereas EOF1 does not. This is one ad-283

vantage of our Bayesian approach; other perks include a full estimation of uncertainties284

in the covariance matrix, as well as avoiding the arbitrary truncation in representing the285

covariance matrix with a smaller number of EOFs.286
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(b): GEDA EOF1(a): Leading eigenvector of Σ

Figure 6. Comparing methods of covariance estimation. (a): Leading eigenvector of

the posterior mean covariance matrix Σ. (b): EOF1 calculated from 1000-1849 drought atlas

data.

Figure 7. The sign of PDSI change with global warming.“Fingerprint” of regional

PDSI response to global temperature rise, defined as the posterior mean of the parameter β.

When temperature rises, the model predicts

3.3 Fingerprints of temperature increase287

The posterior mean for the regional scaling parameters β is shown in Figure 7. Here,288

β represents the estimated sign and magnitude of any regional PDSI change that scales289

with global mean temperature, and can be thought of as the calculated “fingerprint” of290

global warming on regional PDSI. According to this model, northern Europe, Tibet, East291

Central Asia get wetter as the planet warms; Eastern Europe, Arctic Russia, the Ara-292

bian Peninsula and the Mediterranean get drier, and changes are smaller in other regions.293

3.4 Comparing with preindustrial drought atlas variability294

Temporally autocorrelated and spatially correlated variability is capable of explain-295

ing some wetting or drying trends. If a region is dry in any given year, it is more likely296

to be dry the next year, and so on. And long-term wetting or drying trends in some re-297

gions are associated with trends in other regions because of teleconnections arising from298

known modes of variability. Natural variability is not pure white noise, in which long-299

term trends would be extremely unlikely; we expect to see (and, indeed, we do see, in300
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Figure 8. What difference does global warming make? This plot shows the mean dif-

ference (as a function of time) between the posterior predictive distributions for the Global T

model, in which drought responses are assumed to depend on T , and AR2, a model in which they

are represented by preindustrial variability alone.
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Figure 9. How well do different statistical models explain 21st century PDSI?

Light blue distributions show the posterior predictive distribution for regional 2000-2020 mean

PDSI assuming it is explained by natural variability inferred from the 1000-1849 drought atlas.

Dark blue distributions show the PPD for regional 2000-2020 mean PDSI assuming it is ex-

plained by natural variability plus a global temperature-dependent forced response. Black lines

indicate quartiles. Orange dots represent the 2000-2020 mean PDSI in the GEDA.

the preindustrial GEDA) multi-decadal trends in PDSI even in the absence of external301

forcing. The attribution question is then: to what extent does adding a temperature-302

dependent forcing to this complex natural variability increase a model’s explanatory power?303

Figure 8 shows the mean difference between the posterior predictive distribution304

for Model B (which incorporates a the global temperature response) and the PPD for305

Model A (in which recent variability is modeled as pre-industrial variability) as a func-306

tion of time. This represents the mean wetting or drying explained by the inclusion of307

a T -dependent forced response relative to the wetting or drying that can be explained308

by natural variability (as inferred from the preindustrial GEDA) alone.309

Figure 8 does not incorporate the uncertainty, a crucial step for confident detec-310

tion or attribution. To illustrate the full posteriors, we compare twenty-first century (2000-311

2020) mean regional PDSI in both models. The light blue distributions in Figure 9 show312

the PPD for 21st century PDSI assuming Model A. These reflect the ability of natural313

variability (as inferred from the preindustrial GEDA) to explain 21st century mean PDSI314

anomalies. Consider, for example, Eastern Europe (EEU). Pre-industrial variability alone315

can explain a dry anomaly of a certain magnitude; three-quarters of the PPD mass lies316

below zero. However, the observed twenty-first century EEU PDSI (orange dot) lies in317

the tail of the light-blue PPD, indicating that such a large dry anomaly is difficult to ex-318

plain with natural variability alone. The dark blue distributions in Figure 9 show the319

PPD for 21st century PDSI assuming Model B. The 21st century EEU anomaly lies near320

the center of the PPD for Model B, indicating that a temperature-dependent forced re-321

sponse is useful for explaining the observed PDSI.322

By contrast, both Model A and Model B appear to be about equally as able to cap-323

ture the 21st century mean PDSI in East Asia (EAS), indicating that an additional temperature-324

dependent forced response is not necessarily required to explain the dry PDSI in this re-325

gion.326
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Figure 10. Attributing twenty-first century PDSI to global warming. The mean

difference between the posterior predictive distribution assuming a temperature-dependent forced

response and the PPD assuming natural variability for 2000-2020 mean regional PDSI. Boxes

show the quartiles, while whiskers show the “likely” (13-83%) range.

3.5 Where have rising global temperatures likely affected drought?327

We summarize the attribution analysis in Figure 10. The box-and-whisker plots328

show the difference between the Model B PPD and the Model A PPD for 21st century329

mean regional PDSI. The observed 21st century PDSI for Eastern Europe appears to lie330

directly at the center of the relevant box, indicating that a temperature-dependent re-331

sponse explains essentially all of the recent drying in this region. The IPCC defines “likely”332

as within the 66% confidence interval; in our Bayesian framework we will define a “likely”333

contribution from global warming as one in which the 66% highest-posterior density in-334

terval excludes zero. Using this terminology, we assess that global warming likely con-335

tributed to dry PDSI in Eastern Europe, the Mediterranean, and Arctic Russia and to336

wet PDSI in Northern Europe, East-central Asia, and Tibet.337

In most regions, the inferred contribution from the temperature-dependent forced338

response (or at least, the posterior mean) is of the same sign as the observed 21st cen-339

tury mean PDSI. The exceptions are Southeast Asia (SEA), West Central Asia (WCE),340

and the Russian Far East (RFE), indicating that natural variability is more able to ex-341

plain the observed PDSI than the inferred T -dependent response.342

4 Discussion and Conclusions343

All detection and attribution studies are model-dependent, and ours is no excep-344

tion. Although we do not rely on coupled atmosphere-ocean general circulation models,345

we use simple models to interpret and characterize pre-industrial variability, to estimate346

the global mean temperature from multiple datasets, and to explain recent PDSI vari-347

ations. We treat detection and attribution in a unified framework of model comparison:348

which of these models best explains the observed data? Our results suggest that a temperature-349

dependent forcing term better explains recent variability in many regions than pre-industrial350

variability, at least as characterized by our spatiotemporal model. Thus, we conclude that351

global warming is likely making eastern and southern Europe drier, while it is making352

northern Europe and parts of Asia wetter. This result is contingent on the two models353
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we compare: it may be that some other model is better able to both characterize pre-354

industrial variability and explain recent trends. Still, we can be confident in stating that355

given a choice between pre-industrial variability alone and variability added to the in-356

fluence of global warming, twenty-first century PDSI in many regions is best explained357

by the latter.358

The flexibility of Bayesian methods opens up the possibilities of many future anal-359

yses. The number of sub-models in a Bayesian hierarchy is unlimited, which allows for360

attribution on multiple levels. For example, one might further model the global mean361

temperature T as a response to natural and anthropogenic forcing agents, and trace the362

influence of anthropogenic forcing to regional PDSI via its impact on global mean tem-363

perature. Other, more complex models for the PDSI response are also possible: we might364

go beyond the global mean temperature to consider the effects of, for example, differ-365

ent SST patterns. Finally, the properties of reconstructed pre-industrial hydroclimate366

variability might be used to evaluate and constrain the output of GCMS, leading to more367

confident attribution and more coherent projections.368

These results reinforce that regional drought risk is, to a certain extent, predictable.369

The year-to-year persistence in soil moisture is an important source of predictability even370

in the absence of anthropogenic forcing. We show that, in many regions, another, stronger371

source of predictability is already emerging: the rising global temperature. In the ab-372

sence of drastic emission cuts, the planet will continue to warm, and this will become373

an even more important determinant of drought risk. Our statistical analysis highlights374

the urgent necessity to understand the underlying physical drivers shaping this relation-375

ship, as well as the need for action to adapt to altered drought risk in a warmer world.376

5 Open Research377

The Great Eurasian Drought Atlas is available at378

https://zenodo.org/records/11059894.379

Global mean temperature datasets and uncertainties may be downloaded at the380

following links:381

• GISTEMP: https://data.giss.nasa.gov/gistemp/uncertainty/382

• HadCRUT: https://www.metoffice.gov.uk/hadobs/hadcrut5/data/HadCRUT383

.5.0.2.0/download.html384

• Berkeley Earth: https://berkeley-earth-temperature.s3.us-west-1.amazonaws385

.com/Global/Land and Ocean summary.txt386

Analysis was performed with the PyMC probabilistic programming environment387

available at https://www.pymc.io/. Code to reproduce all figures and analyses is avail-388

able at https://github.com/netzeroasap/GEDA BAYES/.389
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