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Abstract

Geophysical observations indicate that iron enrichment of various spatial scales may be present in the lowermost mantle. Various

mechanisms have been proposed to explain the process of iron infiltration from the core to the mantle, though each with its

own inherent limitations. Grain boundary (GB) diffusion significantly outpaces bulk diffusion within crystal interiors, and may

facilitate iron transport across the core-mantle boundary (CMB). In this study, we investigate diffusion in two symmetric tilt

GBs in ferropericlase using large-scale molecular dynamics simulations. The GB diffusivities of Mg and O of periclase as well

as their temperature dependence agree well with previous studies. In addition, we study the GB diffusion of Fe in (Mg,Fe)O

GBs for the first time. The results suggest that GB diffusion of Fe is likely to be sluggish near the CMB, and thus may not be

an effective mechanism to transport iron from the core to the mantle.
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Abstract13

Geophysical observations indicate that iron enrichment of various spatial scales may be present14
in the lowermost mantle. Various mechanisms have been proposed to explain the process of iron15
infiltration from the core to the mantle, though each with its own inherent limitations. Grain boundary16
(GB) diffusion significantly outpaces bulk diffusion within crystal interiors, and may facilitate iron17
transport across the core-mantle boundary (CMB). In this study, we investigate diffusion in two18
symmetric tilt GBs in ferropericlase using large-scale molecular dynamics simulations. The GB19
diffusivities of Mg and O of periclase as well as their temperature dependence agree well with20
previous studies. In addition, we study the GB diffusion of Fe in (Mg,Fe)O GBs for the first time.21
The results suggest that GB diffusion of Fe is likely to be sluggish near the CMB, and thus may not22
be an effective mechanism to transport iron from the core to the mantle.23

Plain Language Summary24

Seismic observations suggest the existence of regions rich in iron of scales from a few hundred25
meters to thousands of kilometers above the Earth’s core-mantle boundary. The Earth’s core, com-26
posed primarily of liquid iron, may interact with the mantle rocks and transport iron into the mantle.27
The diffusion of atoms along the boundaries of different grains of mantle rocks has been proposed as28
a possible mechanism for the core-mantle interaction. We performed atomistic simulations of one of29
the dominant mineral phases at the core-mantle boundary, (Mg,Fe)O ferropericlase to calculate the30
diffusion rates of magnesium, iron, and oxygen within grain boundary regions. The results suggest31
that, on the time scale of the Earth’s history, the distance of the grain boundary diffusion of iron is32
likely to be very limited and insufficient to explain any iron enrichment phenomena at the bottom of33
the lower mantle.34

1 Introduction35

As the sharpest compositional discontinuity in the Earth’s interior, the core-mantle boundary36
(CMB) at the depth of 2889 km exhibits strong complexity and has a significant impact on the37
chemical evolution of the Earth (Young & Lay, 1987). The interaction between the solid silicate38
mantle and the liquid iron core may cause extensive enrichment of iron at the lowermost mantle,39
which is supported by multiple geophysical observations. First, two continent-sized large low shear40
velocity provinces (LLSVPs) extend up to 1200 km above the CMB (Garnero et al., 2016) and can be41
explained by iron-enriched materials (Vilella et al., 2021; Yuan et al., 2023). They exhibit electrical42
conductivity anomalies (Nagao et al., 2003; Ohta et al., 2010) which may also be associated with43
iron. Second, the 5–40 km thick patches right above the core with unusually low seismic velocities,44
known as ultralow-velocity zones (ULVZs) (Williams & Garnero, 1996), may be attributed to local45
iron enrichment (Wicks et al., 2010). Third, a ∼200-m-thick high conductance layer above the core46
has been inferred from Earth’s nutations (Buffett, 1992; Buffett et al., 2002) and may comprise47
metallic FeO (Knittle & Jeanloz, 1986; Sherman, 1989).48

Various hypotheses have been proposed to explain this putative iron enrichment above the CMB.49
The thickness of the iron-enriched layer caused by capillary rise is only < 20 m (Poirier et al., 1998).50
Alternative hypotheses suggest that pressure gradients caused by the dynamic topography at the51
CMB may drive iron upwards into the lower mantle (Kanda & Stevenson, 2006). Additionally, iron52
infiltration can be caused by the sedimentation of the liquid outer core (Buffett et al., 2000). However,53
both of them are sensitive to the viscosity of the lowermost mantle, which is subject to considerable54
uncertainty (Rudolph et al., 2015). Otsuka and Karato (2012) proposed that the penetration of iron55
into the mantle can be caused by a morphological instability, which is a mechanism independent of56
viscosity, but the effective diffusivity used to calculate iron infiltration thickness is extrapolated from57
low-pressure experimental data and remains controversial (J. Deng et al., 2019; Yoshino, 2019).58

Grain boundaries (GBs) are regions that separate different grains in a polycrystalline material.59
Due to the more disordered atomistic structure at the interface compared to the crystalline lattice,60
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atomic diffusion along GBs is typically orders of magnitude faster than its lattice counterpart (Joesten,61
1991; Dohmen & Milke, 2010). Therefore, GB diffusion strongly affects physical properties in62
the Earth’s materials, including the viscosity (Mantisi et al., 2017), electrical conductivity (ten63
Grotenhuis et al., 2004), and seismic attenuation (Jackson et al., 2002). It is suggested that GB64
diffusion provides an efficient mechanism to exchange carbon and siderophile elements between the65
mantle and the core (Hayden & Watson, 2007, 2008), and may effectively modify the tungsten and66
helium isotopic compositions of the plume-source mantle (Yoshino et al., 2020; Ferrick & Korenaga,67
2023). The diffusion of iron along GBs may be another potential mechanism for iron infiltration68
from the outer core to the lower mantle.69

Previous experimental and theoretical studies have explored the GB diffusion in MgO periclase70
(McKenzie et al., 1971; Van Orman et al., 2003; Karki et al., 2015; Landuzzi et al., 2015; Riet et71
al., 2021). However, most of these results do not account explicitly for pressure and temperature72
conditions near the CMB, and the GB diffusion in (Mg,Fe)O, one of the most abundant phases at73
the CMB (X. Deng et al., 2023), remains poorly understood. In addition, recent results have shown74
that the structure of a GB is far from unique, and is not simply determined by the misorientation75
between the grains. In particular, GB structures evolve when interacting with vacancy complexes,76
resulting in significant changes in GB properties Hirel et al. (2022). In this study, we investigate the77
GB diffusion of Mg, Fe, and O along GB in (Mg,Fe)O bicrystals under the CMB conditions using78
large-scale molecular dynamics (MD) simulations. Bicrystals of high compaction, expected to be79
most favourable in high-pressure conditions of the CMB, are constructed (Hirel et al., 2019). We80
explore the dependence of the GB diffusion coefficient on defect concentration and temperature. The81
results are used to examine the efficiency of transporting iron from the core to the mantle through82
GB diffusion of (Mg,Fe)O ferropericlase.83

2 Methods84

2.1 Interatomic potential85

There are two main methods to describe the interaction of atoms in MD simulations: ab86
initio method based on density functional theory and the force field approach. The ab initio87
method is considered more accurate because it calculates the electronic structure of material quantum88
mechanically, in principle, without relying on empirical parameters. However, this method is89
computationally demanding, limiting simulations to smaller systems and shorter times. On the90
other hand, the force field approach uses simplified force parameters, allowing for less intensive91
computations and enabling longer simulations of larger systems, which is crucial for simulating92
polycrystalline systems and reducing statistical error. Therefore, in this study, we choose the force93
field approach and use a new rigid-ion potential developed by Pedone et al. (2006). This approach94
incorporates long-range Coulomb interactions, a Morse function for short-range interactions, and95
a repulsive term similar to the Lennard-Jones function. The parameters were calibrated using96
experimental measurements, including lattice dimensions, elasticity values, both high-frequency and97
static dielectric constants, lattice energies, piezoelectric constants, and phonon frequencies observed98
in binary oxides. This potential demonstrates high reliability and applicability in modeling lattice99
defects, diffusion, and GBs in forsterite (Hirel et al., 2021; Furstoss et al., 2022). Hirel et al. (2021)100
highlight its ability to accurately reproduce various properties across a pressure range of 0 to 12101
GPa, while Furstoss et al. (2022) further confirm its effectiveness through its good agreement with102
ab initio calculations in terms of GB atomistic structures, energies, and excess volumes in forsterite.103
To further verify the reliability of this potential for simulating (Mg,Fe)O GBs, we calculated the104
formation enthalpy of MgO GBs across pressure conditions of nearly the entire mantle (Figure105
S1). The results are in good agreement with Hirel et al. (2019), supporting the applicability of this106
potential to the periclase system at elevated pressures.107

2.2 Molecular Dynamics Simulations108

The GBs used in this study are symmetric tilt GBs where grains are rotated by opposite109
angles around the same [001] axis. Our focus is on structures with high-angle GBs as they are110
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more common in polycrystalline MgO (Saylor et al., 2003), likely more pertinent to understanding111
GB diffusion within the Earth’s interior, and also more convenient to study (Riet et al., 2021).112
Bicrystals are constructed with Atomsk (Hirel, 2015). Two crystals of MgO are rotated by opposite113
angles (±𝛼/2), cut and then stacked together. We apply translation to one of the two symmetrical114
single crystals along the GB, and compute relative energies of different configurations, which yields115
several energy minima. Configurations corresponding to these minima can be called “complexions”.116
As demonstrated earlier, at the high pressures reigning in the Earth’s mantle, the most compact117
complexions are energetically most favourable (Hirel et al., 2019), and is used as a starting point.118
Such a compact complexion can interact with vacancy complexes, thus transforming its atomic119
configuration further (Hirel et al., 2022). In the following two symmetric tilt GB are modelled,120
corresponding to two different misorientation angles: 𝛼 = 36.8◦ where the two crystals meet with121
{310} planes, and 𝛼 = 29.5◦ where the GB plane does not correspond to any high-symmetry crystal122
plane. Mg-O vacancy pairs are randomly introduced within a region approximately 1 nm wide123
adjacent to the GB of the complexion to obtain the initial configuration of MgO bicrystals for the124
following MD simulations. The vacancy concentration 𝐶vac is defined as the ratio between the125
number of MgO units removed and the number of MgO units in the 1-nm GB region. Following126
Ammann et al. (2010), the vacancy concentrations considered in this study range from 0.4 at% to127
8.0 at%, which are estimated from experimental results (Holzapfel et al., 2003; Yamazaki & Irifune,128
2003). The structure of (Mg,Fe)O is generated by the random substitution of Mg with different129
contents of Fe in the aforementioned MgO structure.130

To ensure a genuine depiction of real material, (Mg,Fe)O single crystal must be of adequate131
size so that its inner structure mimics that of large grains (Glišović et al., 2015) in the lower mantle.132
We construct bicrystal systems containing over 50,000 atoms, resulting in an average distance of133
over 20 nm between the centers of adjacent grains. Each GB operates independently from others,134
ensuring that atoms involved in one boundary do not interact with any other boundaries throughout135
the simulation. A supercell with larger GB area has also been simulated and yields similar GB136
diffusion coefficients, confirming the size convergence of our systems (Figure S3).137

All MD simulations are conducted using LAMMPS (Plimpton, 1995) under periodic boundary138
conditions. The systems are first equilibrated in isothermal-isobaric conditions (NPT) for 100 ps139
at a series of temperatures, under two pressures of 0 GPa and 140 GPa for MgO and (Mg,Fe)O,140
respectively. The resulting structures are then used as the initial configurations to set up the MD141
simulations for 5 ns under an canonical ensemble (NVT) with the Nosé-Hoover thermostat (Hoover,142
1985), in order to evolve the GB structure to reach a steady state. Subsequently, we perform long143
NVT simulations for 5 to 10 ns, from which the GB diffusion is investigated. The timestep of all144
simulations is 1 fs.145

2.3 Trajectory analysis146

Due to the spatially heterogeneous diffusion in polycrystalline systems, a direct analysis of the147
MD trajectory of the entire system would mask the distinct characteristics of the crystal interiors and148
GBs. Following Riet et al. (2021), we employed an advanced local ionic environment analysis to149
extract the atomic properties within the GB regions from the bulk system. The first post-processing150
step is an energy minimization to map instantaneous MD configurations (sampling at 1-ns intervals)151
to their nearest local energy minima. Through this, we remove the thermal vibrational displacement152
of atoms and thereby obtain a more distinct representation of the GBs. Subsequently, we examine153
the distribution of nearest neighbors of all atoms at the energy minima to identify which atoms have154
complete coordination with the six nearest neighbors and which ones are undercoordinated. The155
undercoordinated atoms are associated with the GB regions (Riet et al., 2018). This analysis is156
realized through the nearest neighbor search using the MDAnalysis package (Michaud-Agrawal et157
al., 2011). Consistent with Riet et al. (2018) and Riet et al. (2021), the fraction of undercoordinated158
atoms at the GBs, denoted as 𝑔, remains relatively constant through a single MD trajectory. This159
insight allowed us to apply the modified Hart equation (Hart, 1957; Dohmen & Milke, 2010; Riet et160
al., 2021) to compute the GB diffusion coefficient:161

𝐷total = 𝑔𝐷GB + (1 − 𝑔)𝐷vol, (1)162

–4–



manuscript submitted to Geophysical Research Letters

(b)(a)

z

y

x

Figure 1. The local ionic environment analysis of MgO at 0 GPa and 2000 K. The results are derived from
a snapshot of the MD simulation at 6 ns. The energy minimization is applied to remove the thermal vibration
of atoms. (a) The color mapping of the distances from a central ion to its 6th closest neighbor. The view is
perpendicular to the rotation angle of the grain boundaries. The atoms enclosed by the white frame are zoomed
in to show details. (b) Distributions of distances from a central ion to its 6th closest neighbor. The orange curve
is the smoothed histogram using the Savitzky-Golay filter (Savitzky & Golay, 1964), and its minimum value
between the two peaks is used to determine the cutoff distance.

where 𝐷total, 𝐷GB, and 𝐷vol are the overall diffusion coefficient, GB diffusion coefficient, and163
volume diffusion coefficient within the single crystal interiors, respectively. Since our analysis of164
atoms within crystal interiors showed negligible diffusion, we assume 𝐷vol ≈ 0. Thus, the GB165
diffusion coefficient is approximated by:166

𝐷GB =
𝐷total
𝑔

(2)167

𝐷total can be easily derived as the slope of mean square displacement (MSD) using the Einstein168
diffusion relation169

𝐷total = lim
𝑡→∞

MSD
6𝑡

= lim
𝑡→∞

〈
[®𝑟 (𝑡 + 𝑡0) − ®𝑟 (𝑡0)]2

〉
𝛼

6𝑡
, (3)170

where ®𝑟 (𝑡) is the particle trajectories continuous in Cartesian space, and ⟨· · · ⟩𝛼 represents an average171
over atoms of species 𝛼 (Mg, Fe, O) and over time with different origins (Karki, 2015). Only when172
the MSD is a linear function of time do we intercept the segment of MSD and calculate the diffusion173
coefficient by linear fitting. The temperature-dependent diffusion coefficient can be fitted using the174
Arrhenius equation,175

𝐷 = 𝐷0e−
Δ𝐻
𝑅𝑇 , (4)176

where 𝐷0 is the pre-exponential factor, 𝑅 is the ideal gas constant, and Δ𝐻 is the activation enthalpy.177

3 Results and Discussion178

3.1 Identification of grain boundary atoms179

In this study, we analyze the structure of the GB and identify the GB atoms by examining the180
local ionic environments following Riet et al. (2021). In the ferropericlase or magnesiowüstite phase181
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of (Mg,Fe)O, ions within the grain typically have six equidistant nearest neighbors. In contrast, ions182
at the GB exhibit a non-crystalline local environment with varying distances to neighboring ions183
and often less than six nearest neighbors. Figure 1a shows the color mapping of the distances from184
a central ion to its sixth-closest neighbor in a snapshot of the MD trajectory of MgO at 0 GPa and185
2000 K, in which the atoms associated with the GB region are clearly presented (i.e., atoms that are186
not colored purple). The distribution of distances from a central ion to its sixth-closest ion at energy187
minima structures is shown in Figure 1b, which exhibits a bimodal pattern. The first peak in this188
distribution indicates ions with six neighbors, characteristic of atoms within a single crystal, not in a189
GB. The adjacent shoulder on this peak represents atoms near the GB, where relaxation can lead to190
slightly longer bond distances compared to the crystal interior. The second peak signifies ions that191
are undercoordinated, typically having five or fewer neighbors, and are located in the GB region. We192
set the minimum point between the first and second peaks as the cutoff distance for each system to193
differentiate between internal and GB ions following Riet et al. (2021).194

3.2 Grain boundary diffusivity195

In this section, we discuss the GB diffusion coefficients in MgO at ambient pressure, and in196
(Mg,Fe)O at 140 GPa, calculated using Equation 2 and Equation 3. The MSD data from all the197
simulations in this study can be found in Figure S4 in Supporting Information. Taking pure MgO as198
an example, we explore how the GB diffusion coefficients of Mg and O vary with 𝐶vac, system size,199
and the misorientation angle of the GB (see Text S1 in Supporting Information). This preliminary200
study allowed us to determine that fully converged results are obtained when 𝐶vac reaches 3.2 at% or201
above, hence, only the diffusivity data at this concentration are presented in the following.202

3.2.1 MgO at 0 GPa203

Figure 2 summarizes the GB diffusion coefficients of MgO as a function of temperature at204
ambient pressure. To ensure convergence, we adopt a defect concentration of 3.2 at% to constrain205
the upper bound of the diffusivity (see Text S1 in Supporting Information). Our results generally206
agree well with previous theoretical studies using molecular dynamics simulations, and fall between207
the results of Riet et al. (2021) and Landuzzi et al. (2015) for both Mg and O. McKenzie et al. (1971)208
experimentally obtained 𝛿𝐷GB√

𝐷vol
for oxygen diffusion in periclase at around 2000 K, where 𝛿 is the209

GB width. However, since the value of 𝐷vol in MgO remains poorly constrained, it is difficult to210
directly compare experimentally inferred GB diffusivity with our simulation outcomes. Riet et al.211
(2021) estimated that 𝛿𝐷GB of oxygen lies between 4 × 10−23 m3 s−1 and 2 × 10−21 m3 s−1, based212
on the highest and lowest 𝐷vol values reported in the literature (Oishi & Kingery, 1960; Yang &213
Flynn, 1994) and experimental measurements (McKenzie et al., 1971). Our result for 𝐶vac = 3.2214
at% is ∼ 4 × 10−21 m3 s−1, slightly higher than this range. However, the 𝐶vac in pure MgO is215
significantly lower compared to (Mg,Fe)O due to the absence of multivalent ions (Van Orman et216
al., 2003; Ammann et al., 2010). Considering lower vacancy concentrations of 𝐶vac < 0.8 at%, our217
simulation results fall within the range of experimental estimates.218

The GB diffusion coefficients increase significantly with temperature, and can be well fitted by219
Equation 4 (dashed lines in Fig. 2). The activation enthalpies for Mg and O are 229(±10) kJ mol−1220
and 217(±64) kJ mol−1, respectively. The only experimental results of the activation enthalpy221
for GB diffusion of O is 230 kJ mol−1 (measured at 1380–1800 K, Passmore et al., 1966), which222
our simulations match closely. Karki et al. (2015) reported the activation enthalpies for Mg (221223
kJ mol−1) and O (212 kJ mol−1) migration along the {410} symmetric boundaries of MgO bicrystals224
at 0 GPa using ab initio calculations. Similar results were obtained by Harris et al. (1997) using225
MD simulations with empirical potentials. Our simulation results also align very well with these226
theoretical predictions that assumed ad hoc diffusion pathways. It is noteworthy that in the bulk227
crystal of periclase, the diffusion activation enthalpy of Mg is smaller than that of O (Ammann et228
al., 2010), while in the GB, they are quite similar and the activation enthalpy of O is slightly smaller.229
This may be related to the markedly different chemical environments at the GBs compared to the230
interior of the crystal. In summary, the GB diffusion properties of MgO at ambient pressure obtained231
from this study are consistent with previous theoretical and experimental data.232
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Figure 2. Grain boundary diffusion coefficients of Mg (left) and O (right) as a function of reciprocal
temperature (1700 K, 1800 K, and 2000 K) in MgO with a 𝐶vac of 3.2 at% at ambient pressure. The error bars
are estimated from the error bars in Figure S2, assuming the same relative standard deviation for each element.
Results from previous theoretical studies are plotted in open symbols for comparison (Riet et al., 2021; Landuzzi
et al., 2015). Dashed lines are fitted Arrhenius functions (Equation 4).
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Figure 3. Grain boundary diffusion coefficients as a function of reciprocal temperature (4000 K, 4500 K,
and 5000 K) in (Mg0.9Fe0.1)O (solid squares) and (Mg0.16Fe0.84)O (open circles) with a 𝐶vac of 3.2 at% at
140 GPa. The diffusivity of Mg, Fe, and O are shown in blue, orange, and green, respectively. The error bars
represent 2SD of the diffusion coefficients calculated from four 5-ns-long MD trajectories. Dashed lines are
fitted Arrhenius functions (Equation 4).

3.2.2 (Mg,Fe)O at 140 GPa233

The high-pressure diffusion coefficients of Mg, Fe, and O in (Mg,Fe)O with two different iron234
contents are shown in Figure 3. For (Mg0.9Fe0.1)O ferropericlase, the simulation temperatures are235
set between 4000 to 5000 K, corresponding to the upper bounds of the estimated CMB temperatures236
throughout the Earth’s thermal evolution (Andrault et al., 2016). (Mg0.16Fe0.84)O magnesiowüstite237
is taken as a prototype Fe-rich material that has been suggested to be the main constituent of ULVZs238
(Wicks et al., 2010, 2017) and the high conductance layer (Buffett, 1992; Knittle & Jeanloz, 1986),239
and consequently it may serve as an important medium for the iron transport from the outer core240
to the lower mantle. Recent studies suggest that the melting point of FeO wüstite under CMB241
pressure conditions reaches up to 4140 K (Dobrosavljevic et al., 2023), indicating that our simulation242
temperature of 4000 K for (Mg0.16Fe0.84)O is below its solidus. Overall, the diffusion coefficients243
slightly increase with iron content, and the order of diffusion coefficients for the three elements follows244
𝐷Fe

GB ≈> 𝐷
Mg
GB > 𝐷O

GB. We find that the diffusion coefficient of Mg is about an order of magnitude245
larger than that of O, closely aligning with the results of Riet et al. (2021). Furthermore, Fe and Mg246
have similar diffusion coefficients, both significantly larger than O, which is consistent with the MD247
data for GB diffusion in olivine (Mantisi et al., 2017). This suggests that the relative magnitudes248
of GB diffusion coefficients for different elements are, to a large extent, controlled by ionic radii,249
considering that the ionic radii of Fe2+, Mg2+, and O2− are 75, 86, and 126 pm, respectively (Slater,250
1964). Due to the steric effect (Nalwa, 2001), smaller ions are better suited to move through available251
space to facilitate diffusion. We find that the uncertainty of the diffusion coefficients at 5000 K is252
much smaller than at lower temperatures, which may be due to the more stable premelting state of253
the GBs at higher temperatures, reducing the variation in diffusivity. Regarding the temperature254
dependence, the diffusion activation enthalpies for Mg, Fe, and O are 448(±63) kJ mol−1, 328(±37)255
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Figure 4. Length scale of iron transport from the core to the mantle compared to length scales of high
conductance layer and ULVZs. Different iron infiltration mechanisms are shown for comparison (Poirier et al.,
1998; Buffett et al., 2000; Kanda & Stevenson, 2006; Otsuka & Karato, 2012).

kJ mol−1, and 479(±97) kJ mol−1, respectively. Due to the pressure effect on diffusion, they are256
significantly higher than the activation enthalpies for MgO under ambient pressure.257

4 Implications258

To explore the upper limit of the efficiency of iron transport via the GB diffusion mechanism,259
we consider the maximum diffusivity of iron in Figure 3 (2.1 × 10−11 m2 s−1) for the subsequent260
calculations. The effective diffusion coefficient for a polycrystalline material can be estimated using261
this equation (Balluffi et al., 2005):262

𝐷Fe
eff = 𝐷Fe

vol +
3𝛿
𝑑
𝐷Fe

GB, (5)263

where 𝛿 is the GB width (∼1 nm) and 𝑑 is the grain size (0.01–10 mm, Glišović et al., 2015) in the264
lower mantle. For pure MgO periclase, the 𝐷vol values of Mg and O under the CMB conditions265
are very small and can be negligible (less than 10−20 m2 s−1, Ita & Cohen, 1998), while in the266
presence of Fe, higher vacancy concentrations might lead to faster lattice diffusion of Mg, O, and Fe267
(Ammann et al., 2010). We extract the actual contribution of GB diffusion to the effective diffusion268
coefficient by setting 𝐷Fe

vol = 0, and obtain the characteristic length scale of the iron transport through269
GB diffusion:270

𝐿eff
GB =

√︂
3𝛿
𝑑
𝐷Fe

GB𝑡, (6)271

where the time scale 𝑡 is set to the age of the Earth (4.54 Gyr, Dalrymple, 2001). The result of 𝐿eff
GB272

does not exceed 30 m, as shown in Figure 4. Other iron infiltration mechanisms proposed by previous273
studies, including capillary rise (Poirier et al., 1998), suction (Kanda & Stevenson, 2006), upward274
sedimentation of outer core alloys (Buffett et al., 2000), and morphological instability (Otsuka &275
Karato, 2012) are also plotted for comparison. The results indicate that the effective transport276
distance of Fe through GB diffusion in (Mg,Fe)O is likely to be quite small, considering the transport277
distances of other mechanisms and the spatial scales of ULVZs and the high conductance layer. To278
further validate this finding, we solve Fick’s second law of diffusion to calculate the concentration279
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profile of iron in the mantle:280
𝜕𝐶

𝜕𝑡
= −3𝛿

𝑑
𝐷Fe

GB∇
2𝐶 (7)281

Assuming that the core always maintains a composition of pure iron, and considering an initial282
condition of zero Fe concentration in the mantle, we obtained the concentration distribution of iron283
in the mantle after the GB diffusion of 4.54 Gyr. The total mass of Fe that has been transported284
to the mantle is 5.1 × 1019 kg, which can only account for less than 20 wt% of the ∼200-m-high285
conductance layer.286

At the CMB, not only (Mg,Fe)O but also silicate minerals such as bridgmanite and post-287
perovskite are present. Given that lattice diffusion of elements in silicate perovskite is much slower288
than in ferropericlase (Ammann et al., 2010; Holzapfel et al., 2003, 2005), we argue that GB diffusion289
is unlikely to be an effective mechanism to transport Fe from the core to the lower mantle. Considering290
that some siderophile elements (e.g., W) have larger atomic radii and mass than Fe, we speculate291
that their GB diffusion coefficients in (Mg,Fe)O might be even smaller than that of Fe. So far the292
only data available for comparison are experimental results under relatively low pressures (Hayden293
& Watson, 2007; Yoshino et al., 2020). Therefore, more studies are needed to accurately quantify294
the efficiency of GB diffusion in exchanging siderophile elements across the CMB to elucidate the295
scale and extent of the core-mantle interaction.296

5 Open Research297

Data used in this study are available at Peng and Deng (2024). The software LAMMPS used in298
this study is developed openly at https://github.com/lammps/lammps and available at Plimpton299
et al. (2021).300
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Abstract13

Geophysical observations indicate that iron enrichment of various spatial scales may be present14
in the lowermost mantle. Various mechanisms have been proposed to explain the process of iron15
infiltration from the core to the mantle, though each with its own inherent limitations. Grain boundary16
(GB) diffusion significantly outpaces bulk diffusion within crystal interiors, and may facilitate iron17
transport across the core-mantle boundary (CMB). In this study, we investigate diffusion in two18
symmetric tilt GBs in ferropericlase using large-scale molecular dynamics simulations. The GB19
diffusivities of Mg and O of periclase as well as their temperature dependence agree well with20
previous studies. In addition, we study the GB diffusion of Fe in (Mg,Fe)O GBs for the first time.21
The results suggest that GB diffusion of Fe is likely to be sluggish near the CMB, and thus may not22
be an effective mechanism to transport iron from the core to the mantle.23

Plain Language Summary24

Seismic observations suggest the existence of regions rich in iron of scales from a few hundred25
meters to thousands of kilometers above the Earth’s core-mantle boundary. The Earth’s core, com-26
posed primarily of liquid iron, may interact with the mantle rocks and transport iron into the mantle.27
The diffusion of atoms along the boundaries of different grains of mantle rocks has been proposed as28
a possible mechanism for the core-mantle interaction. We performed atomistic simulations of one of29
the dominant mineral phases at the core-mantle boundary, (Mg,Fe)O ferropericlase to calculate the30
diffusion rates of magnesium, iron, and oxygen within grain boundary regions. The results suggest31
that, on the time scale of the Earth’s history, the distance of the grain boundary diffusion of iron is32
likely to be very limited and insufficient to explain any iron enrichment phenomena at the bottom of33
the lower mantle.34

1 Introduction35

As the sharpest compositional discontinuity in the Earth’s interior, the core-mantle boundary36
(CMB) at the depth of 2889 km exhibits strong complexity and has a significant impact on the37
chemical evolution of the Earth (Young & Lay, 1987). The interaction between the solid silicate38
mantle and the liquid iron core may cause extensive enrichment of iron at the lowermost mantle,39
which is supported by multiple geophysical observations. First, two continent-sized large low shear40
velocity provinces (LLSVPs) extend up to 1200 km above the CMB (Garnero et al., 2016) and can be41
explained by iron-enriched materials (Vilella et al., 2021; Yuan et al., 2023). They exhibit electrical42
conductivity anomalies (Nagao et al., 2003; Ohta et al., 2010) which may also be associated with43
iron. Second, the 5–40 km thick patches right above the core with unusually low seismic velocities,44
known as ultralow-velocity zones (ULVZs) (Williams & Garnero, 1996), may be attributed to local45
iron enrichment (Wicks et al., 2010). Third, a ∼200-m-thick high conductance layer above the core46
has been inferred from Earth’s nutations (Buffett, 1992; Buffett et al., 2002) and may comprise47
metallic FeO (Knittle & Jeanloz, 1986; Sherman, 1989).48

Various hypotheses have been proposed to explain this putative iron enrichment above the CMB.49
The thickness of the iron-enriched layer caused by capillary rise is only < 20 m (Poirier et al., 1998).50
Alternative hypotheses suggest that pressure gradients caused by the dynamic topography at the51
CMB may drive iron upwards into the lower mantle (Kanda & Stevenson, 2006). Additionally, iron52
infiltration can be caused by the sedimentation of the liquid outer core (Buffett et al., 2000). However,53
both of them are sensitive to the viscosity of the lowermost mantle, which is subject to considerable54
uncertainty (Rudolph et al., 2015). Otsuka and Karato (2012) proposed that the penetration of iron55
into the mantle can be caused by a morphological instability, which is a mechanism independent of56
viscosity, but the effective diffusivity used to calculate iron infiltration thickness is extrapolated from57
low-pressure experimental data and remains controversial (J. Deng et al., 2019; Yoshino, 2019).58

Grain boundaries (GBs) are regions that separate different grains in a polycrystalline material.59
Due to the more disordered atomistic structure at the interface compared to the crystalline lattice,60
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atomic diffusion along GBs is typically orders of magnitude faster than its lattice counterpart (Joesten,61
1991; Dohmen & Milke, 2010). Therefore, GB diffusion strongly affects physical properties in62
the Earth’s materials, including the viscosity (Mantisi et al., 2017), electrical conductivity (ten63
Grotenhuis et al., 2004), and seismic attenuation (Jackson et al., 2002). It is suggested that GB64
diffusion provides an efficient mechanism to exchange carbon and siderophile elements between the65
mantle and the core (Hayden & Watson, 2007, 2008), and may effectively modify the tungsten and66
helium isotopic compositions of the plume-source mantle (Yoshino et al., 2020; Ferrick & Korenaga,67
2023). The diffusion of iron along GBs may be another potential mechanism for iron infiltration68
from the outer core to the lower mantle.69

Previous experimental and theoretical studies have explored the GB diffusion in MgO periclase70
(McKenzie et al., 1971; Van Orman et al., 2003; Karki et al., 2015; Landuzzi et al., 2015; Riet et71
al., 2021). However, most of these results do not account explicitly for pressure and temperature72
conditions near the CMB, and the GB diffusion in (Mg,Fe)O, one of the most abundant phases at73
the CMB (X. Deng et al., 2023), remains poorly understood. In addition, recent results have shown74
that the structure of a GB is far from unique, and is not simply determined by the misorientation75
between the grains. In particular, GB structures evolve when interacting with vacancy complexes,76
resulting in significant changes in GB properties Hirel et al. (2022). In this study, we investigate the77
GB diffusion of Mg, Fe, and O along GB in (Mg,Fe)O bicrystals under the CMB conditions using78
large-scale molecular dynamics (MD) simulations. Bicrystals of high compaction, expected to be79
most favourable in high-pressure conditions of the CMB, are constructed (Hirel et al., 2019). We80
explore the dependence of the GB diffusion coefficient on defect concentration and temperature. The81
results are used to examine the efficiency of transporting iron from the core to the mantle through82
GB diffusion of (Mg,Fe)O ferropericlase.83

2 Methods84

2.1 Interatomic potential85

There are two main methods to describe the interaction of atoms in MD simulations: ab86
initio method based on density functional theory and the force field approach. The ab initio87
method is considered more accurate because it calculates the electronic structure of material quantum88
mechanically, in principle, without relying on empirical parameters. However, this method is89
computationally demanding, limiting simulations to smaller systems and shorter times. On the90
other hand, the force field approach uses simplified force parameters, allowing for less intensive91
computations and enabling longer simulations of larger systems, which is crucial for simulating92
polycrystalline systems and reducing statistical error. Therefore, in this study, we choose the force93
field approach and use a new rigid-ion potential developed by Pedone et al. (2006). This approach94
incorporates long-range Coulomb interactions, a Morse function for short-range interactions, and95
a repulsive term similar to the Lennard-Jones function. The parameters were calibrated using96
experimental measurements, including lattice dimensions, elasticity values, both high-frequency and97
static dielectric constants, lattice energies, piezoelectric constants, and phonon frequencies observed98
in binary oxides. This potential demonstrates high reliability and applicability in modeling lattice99
defects, diffusion, and GBs in forsterite (Hirel et al., 2021; Furstoss et al., 2022). Hirel et al. (2021)100
highlight its ability to accurately reproduce various properties across a pressure range of 0 to 12101
GPa, while Furstoss et al. (2022) further confirm its effectiveness through its good agreement with102
ab initio calculations in terms of GB atomistic structures, energies, and excess volumes in forsterite.103
To further verify the reliability of this potential for simulating (Mg,Fe)O GBs, we calculated the104
formation enthalpy of MgO GBs across pressure conditions of nearly the entire mantle (Figure105
S1). The results are in good agreement with Hirel et al. (2019), supporting the applicability of this106
potential to the periclase system at elevated pressures.107

2.2 Molecular Dynamics Simulations108

The GBs used in this study are symmetric tilt GBs where grains are rotated by opposite109
angles around the same [001] axis. Our focus is on structures with high-angle GBs as they are110
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more common in polycrystalline MgO (Saylor et al., 2003), likely more pertinent to understanding111
GB diffusion within the Earth’s interior, and also more convenient to study (Riet et al., 2021).112
Bicrystals are constructed with Atomsk (Hirel, 2015). Two crystals of MgO are rotated by opposite113
angles (±𝛼/2), cut and then stacked together. We apply translation to one of the two symmetrical114
single crystals along the GB, and compute relative energies of different configurations, which yields115
several energy minima. Configurations corresponding to these minima can be called “complexions”.116
As demonstrated earlier, at the high pressures reigning in the Earth’s mantle, the most compact117
complexions are energetically most favourable (Hirel et al., 2019), and is used as a starting point.118
Such a compact complexion can interact with vacancy complexes, thus transforming its atomic119
configuration further (Hirel et al., 2022). In the following two symmetric tilt GB are modelled,120
corresponding to two different misorientation angles: 𝛼 = 36.8◦ where the two crystals meet with121
{310} planes, and 𝛼 = 29.5◦ where the GB plane does not correspond to any high-symmetry crystal122
plane. Mg-O vacancy pairs are randomly introduced within a region approximately 1 nm wide123
adjacent to the GB of the complexion to obtain the initial configuration of MgO bicrystals for the124
following MD simulations. The vacancy concentration 𝐶vac is defined as the ratio between the125
number of MgO units removed and the number of MgO units in the 1-nm GB region. Following126
Ammann et al. (2010), the vacancy concentrations considered in this study range from 0.4 at% to127
8.0 at%, which are estimated from experimental results (Holzapfel et al., 2003; Yamazaki & Irifune,128
2003). The structure of (Mg,Fe)O is generated by the random substitution of Mg with different129
contents of Fe in the aforementioned MgO structure.130

To ensure a genuine depiction of real material, (Mg,Fe)O single crystal must be of adequate131
size so that its inner structure mimics that of large grains (Glišović et al., 2015) in the lower mantle.132
We construct bicrystal systems containing over 50,000 atoms, resulting in an average distance of133
over 20 nm between the centers of adjacent grains. Each GB operates independently from others,134
ensuring that atoms involved in one boundary do not interact with any other boundaries throughout135
the simulation. A supercell with larger GB area has also been simulated and yields similar GB136
diffusion coefficients, confirming the size convergence of our systems (Figure S3).137

All MD simulations are conducted using LAMMPS (Plimpton, 1995) under periodic boundary138
conditions. The systems are first equilibrated in isothermal-isobaric conditions (NPT) for 100 ps139
at a series of temperatures, under two pressures of 0 GPa and 140 GPa for MgO and (Mg,Fe)O,140
respectively. The resulting structures are then used as the initial configurations to set up the MD141
simulations for 5 ns under an canonical ensemble (NVT) with the Nosé-Hoover thermostat (Hoover,142
1985), in order to evolve the GB structure to reach a steady state. Subsequently, we perform long143
NVT simulations for 5 to 10 ns, from which the GB diffusion is investigated. The timestep of all144
simulations is 1 fs.145

2.3 Trajectory analysis146

Due to the spatially heterogeneous diffusion in polycrystalline systems, a direct analysis of the147
MD trajectory of the entire system would mask the distinct characteristics of the crystal interiors and148
GBs. Following Riet et al. (2021), we employed an advanced local ionic environment analysis to149
extract the atomic properties within the GB regions from the bulk system. The first post-processing150
step is an energy minimization to map instantaneous MD configurations (sampling at 1-ns intervals)151
to their nearest local energy minima. Through this, we remove the thermal vibrational displacement152
of atoms and thereby obtain a more distinct representation of the GBs. Subsequently, we examine153
the distribution of nearest neighbors of all atoms at the energy minima to identify which atoms have154
complete coordination with the six nearest neighbors and which ones are undercoordinated. The155
undercoordinated atoms are associated with the GB regions (Riet et al., 2018). This analysis is156
realized through the nearest neighbor search using the MDAnalysis package (Michaud-Agrawal et157
al., 2011). Consistent with Riet et al. (2018) and Riet et al. (2021), the fraction of undercoordinated158
atoms at the GBs, denoted as 𝑔, remains relatively constant through a single MD trajectory. This159
insight allowed us to apply the modified Hart equation (Hart, 1957; Dohmen & Milke, 2010; Riet et160
al., 2021) to compute the GB diffusion coefficient:161

𝐷total = 𝑔𝐷GB + (1 − 𝑔)𝐷vol, (1)162
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Figure 1. The local ionic environment analysis of MgO at 0 GPa and 2000 K. The results are derived from
a snapshot of the MD simulation at 6 ns. The energy minimization is applied to remove the thermal vibration
of atoms. (a) The color mapping of the distances from a central ion to its 6th closest neighbor. The view is
perpendicular to the rotation angle of the grain boundaries. The atoms enclosed by the white frame are zoomed
in to show details. (b) Distributions of distances from a central ion to its 6th closest neighbor. The orange curve
is the smoothed histogram using the Savitzky-Golay filter (Savitzky & Golay, 1964), and its minimum value
between the two peaks is used to determine the cutoff distance.

where 𝐷total, 𝐷GB, and 𝐷vol are the overall diffusion coefficient, GB diffusion coefficient, and163
volume diffusion coefficient within the single crystal interiors, respectively. Since our analysis of164
atoms within crystal interiors showed negligible diffusion, we assume 𝐷vol ≈ 0. Thus, the GB165
diffusion coefficient is approximated by:166

𝐷GB =
𝐷total
𝑔

(2)167

𝐷total can be easily derived as the slope of mean square displacement (MSD) using the Einstein168
diffusion relation169

𝐷total = lim
𝑡→∞

MSD
6𝑡

= lim
𝑡→∞

〈
[®𝑟 (𝑡 + 𝑡0) − ®𝑟 (𝑡0)]2

〉
𝛼

6𝑡
, (3)170

where ®𝑟 (𝑡) is the particle trajectories continuous in Cartesian space, and ⟨· · · ⟩𝛼 represents an average171
over atoms of species 𝛼 (Mg, Fe, O) and over time with different origins (Karki, 2015). Only when172
the MSD is a linear function of time do we intercept the segment of MSD and calculate the diffusion173
coefficient by linear fitting. The temperature-dependent diffusion coefficient can be fitted using the174
Arrhenius equation,175

𝐷 = 𝐷0e−
Δ𝐻
𝑅𝑇 , (4)176

where 𝐷0 is the pre-exponential factor, 𝑅 is the ideal gas constant, and Δ𝐻 is the activation enthalpy.177

3 Results and Discussion178

3.1 Identification of grain boundary atoms179

In this study, we analyze the structure of the GB and identify the GB atoms by examining the180
local ionic environments following Riet et al. (2021). In the ferropericlase or magnesiowüstite phase181
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of (Mg,Fe)O, ions within the grain typically have six equidistant nearest neighbors. In contrast, ions182
at the GB exhibit a non-crystalline local environment with varying distances to neighboring ions183
and often less than six nearest neighbors. Figure 1a shows the color mapping of the distances from184
a central ion to its sixth-closest neighbor in a snapshot of the MD trajectory of MgO at 0 GPa and185
2000 K, in which the atoms associated with the GB region are clearly presented (i.e., atoms that are186
not colored purple). The distribution of distances from a central ion to its sixth-closest ion at energy187
minima structures is shown in Figure 1b, which exhibits a bimodal pattern. The first peak in this188
distribution indicates ions with six neighbors, characteristic of atoms within a single crystal, not in a189
GB. The adjacent shoulder on this peak represents atoms near the GB, where relaxation can lead to190
slightly longer bond distances compared to the crystal interior. The second peak signifies ions that191
are undercoordinated, typically having five or fewer neighbors, and are located in the GB region. We192
set the minimum point between the first and second peaks as the cutoff distance for each system to193
differentiate between internal and GB ions following Riet et al. (2021).194

3.2 Grain boundary diffusivity195

In this section, we discuss the GB diffusion coefficients in MgO at ambient pressure, and in196
(Mg,Fe)O at 140 GPa, calculated using Equation 2 and Equation 3. The MSD data from all the197
simulations in this study can be found in Figure S4 in Supporting Information. Taking pure MgO as198
an example, we explore how the GB diffusion coefficients of Mg and O vary with 𝐶vac, system size,199
and the misorientation angle of the GB (see Text S1 in Supporting Information). This preliminary200
study allowed us to determine that fully converged results are obtained when 𝐶vac reaches 3.2 at% or201
above, hence, only the diffusivity data at this concentration are presented in the following.202

3.2.1 MgO at 0 GPa203

Figure 2 summarizes the GB diffusion coefficients of MgO as a function of temperature at204
ambient pressure. To ensure convergence, we adopt a defect concentration of 3.2 at% to constrain205
the upper bound of the diffusivity (see Text S1 in Supporting Information). Our results generally206
agree well with previous theoretical studies using molecular dynamics simulations, and fall between207
the results of Riet et al. (2021) and Landuzzi et al. (2015) for both Mg and O. McKenzie et al. (1971)208
experimentally obtained 𝛿𝐷GB√

𝐷vol
for oxygen diffusion in periclase at around 2000 K, where 𝛿 is the209

GB width. However, since the value of 𝐷vol in MgO remains poorly constrained, it is difficult to210
directly compare experimentally inferred GB diffusivity with our simulation outcomes. Riet et al.211
(2021) estimated that 𝛿𝐷GB of oxygen lies between 4 × 10−23 m3 s−1 and 2 × 10−21 m3 s−1, based212
on the highest and lowest 𝐷vol values reported in the literature (Oishi & Kingery, 1960; Yang &213
Flynn, 1994) and experimental measurements (McKenzie et al., 1971). Our result for 𝐶vac = 3.2214
at% is ∼ 4 × 10−21 m3 s−1, slightly higher than this range. However, the 𝐶vac in pure MgO is215
significantly lower compared to (Mg,Fe)O due to the absence of multivalent ions (Van Orman et216
al., 2003; Ammann et al., 2010). Considering lower vacancy concentrations of 𝐶vac < 0.8 at%, our217
simulation results fall within the range of experimental estimates.218

The GB diffusion coefficients increase significantly with temperature, and can be well fitted by219
Equation 4 (dashed lines in Fig. 2). The activation enthalpies for Mg and O are 229(±10) kJ mol−1220
and 217(±64) kJ mol−1, respectively. The only experimental results of the activation enthalpy221
for GB diffusion of O is 230 kJ mol−1 (measured at 1380–1800 K, Passmore et al., 1966), which222
our simulations match closely. Karki et al. (2015) reported the activation enthalpies for Mg (221223
kJ mol−1) and O (212 kJ mol−1) migration along the {410} symmetric boundaries of MgO bicrystals224
at 0 GPa using ab initio calculations. Similar results were obtained by Harris et al. (1997) using225
MD simulations with empirical potentials. Our simulation results also align very well with these226
theoretical predictions that assumed ad hoc diffusion pathways. It is noteworthy that in the bulk227
crystal of periclase, the diffusion activation enthalpy of Mg is smaller than that of O (Ammann et228
al., 2010), while in the GB, they are quite similar and the activation enthalpy of O is slightly smaller.229
This may be related to the markedly different chemical environments at the GBs compared to the230
interior of the crystal. In summary, the GB diffusion properties of MgO at ambient pressure obtained231
from this study are consistent with previous theoretical and experimental data.232
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Figure 2. Grain boundary diffusion coefficients of Mg (left) and O (right) as a function of reciprocal
temperature (1700 K, 1800 K, and 2000 K) in MgO with a 𝐶vac of 3.2 at% at ambient pressure. The error bars
are estimated from the error bars in Figure S2, assuming the same relative standard deviation for each element.
Results from previous theoretical studies are plotted in open symbols for comparison (Riet et al., 2021; Landuzzi
et al., 2015). Dashed lines are fitted Arrhenius functions (Equation 4).
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Figure 3. Grain boundary diffusion coefficients as a function of reciprocal temperature (4000 K, 4500 K,
and 5000 K) in (Mg0.9Fe0.1)O (solid squares) and (Mg0.16Fe0.84)O (open circles) with a 𝐶vac of 3.2 at% at
140 GPa. The diffusivity of Mg, Fe, and O are shown in blue, orange, and green, respectively. The error bars
represent 2SD of the diffusion coefficients calculated from four 5-ns-long MD trajectories. Dashed lines are
fitted Arrhenius functions (Equation 4).

3.2.2 (Mg,Fe)O at 140 GPa233

The high-pressure diffusion coefficients of Mg, Fe, and O in (Mg,Fe)O with two different iron234
contents are shown in Figure 3. For (Mg0.9Fe0.1)O ferropericlase, the simulation temperatures are235
set between 4000 to 5000 K, corresponding to the upper bounds of the estimated CMB temperatures236
throughout the Earth’s thermal evolution (Andrault et al., 2016). (Mg0.16Fe0.84)O magnesiowüstite237
is taken as a prototype Fe-rich material that has been suggested to be the main constituent of ULVZs238
(Wicks et al., 2010, 2017) and the high conductance layer (Buffett, 1992; Knittle & Jeanloz, 1986),239
and consequently it may serve as an important medium for the iron transport from the outer core240
to the lower mantle. Recent studies suggest that the melting point of FeO wüstite under CMB241
pressure conditions reaches up to 4140 K (Dobrosavljevic et al., 2023), indicating that our simulation242
temperature of 4000 K for (Mg0.16Fe0.84)O is below its solidus. Overall, the diffusion coefficients243
slightly increase with iron content, and the order of diffusion coefficients for the three elements follows244
𝐷Fe

GB ≈> 𝐷
Mg
GB > 𝐷O

GB. We find that the diffusion coefficient of Mg is about an order of magnitude245
larger than that of O, closely aligning with the results of Riet et al. (2021). Furthermore, Fe and Mg246
have similar diffusion coefficients, both significantly larger than O, which is consistent with the MD247
data for GB diffusion in olivine (Mantisi et al., 2017). This suggests that the relative magnitudes248
of GB diffusion coefficients for different elements are, to a large extent, controlled by ionic radii,249
considering that the ionic radii of Fe2+, Mg2+, and O2− are 75, 86, and 126 pm, respectively (Slater,250
1964). Due to the steric effect (Nalwa, 2001), smaller ions are better suited to move through available251
space to facilitate diffusion. We find that the uncertainty of the diffusion coefficients at 5000 K is252
much smaller than at lower temperatures, which may be due to the more stable premelting state of253
the GBs at higher temperatures, reducing the variation in diffusivity. Regarding the temperature254
dependence, the diffusion activation enthalpies for Mg, Fe, and O are 448(±63) kJ mol−1, 328(±37)255
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Figure 4. Length scale of iron transport from the core to the mantle compared to length scales of high
conductance layer and ULVZs. Different iron infiltration mechanisms are shown for comparison (Poirier et al.,
1998; Buffett et al., 2000; Kanda & Stevenson, 2006; Otsuka & Karato, 2012).

kJ mol−1, and 479(±97) kJ mol−1, respectively. Due to the pressure effect on diffusion, they are256
significantly higher than the activation enthalpies for MgO under ambient pressure.257

4 Implications258

To explore the upper limit of the efficiency of iron transport via the GB diffusion mechanism,259
we consider the maximum diffusivity of iron in Figure 3 (2.1 × 10−11 m2 s−1) for the subsequent260
calculations. The effective diffusion coefficient for a polycrystalline material can be estimated using261
this equation (Balluffi et al., 2005):262

𝐷Fe
eff = 𝐷Fe

vol +
3𝛿
𝑑
𝐷Fe

GB, (5)263

where 𝛿 is the GB width (∼1 nm) and 𝑑 is the grain size (0.01–10 mm, Glišović et al., 2015) in the264
lower mantle. For pure MgO periclase, the 𝐷vol values of Mg and O under the CMB conditions265
are very small and can be negligible (less than 10−20 m2 s−1, Ita & Cohen, 1998), while in the266
presence of Fe, higher vacancy concentrations might lead to faster lattice diffusion of Mg, O, and Fe267
(Ammann et al., 2010). We extract the actual contribution of GB diffusion to the effective diffusion268
coefficient by setting 𝐷Fe

vol = 0, and obtain the characteristic length scale of the iron transport through269
GB diffusion:270

𝐿eff
GB =

√︂
3𝛿
𝑑
𝐷Fe

GB𝑡, (6)271

where the time scale 𝑡 is set to the age of the Earth (4.54 Gyr, Dalrymple, 2001). The result of 𝐿eff
GB272

does not exceed 30 m, as shown in Figure 4. Other iron infiltration mechanisms proposed by previous273
studies, including capillary rise (Poirier et al., 1998), suction (Kanda & Stevenson, 2006), upward274
sedimentation of outer core alloys (Buffett et al., 2000), and morphological instability (Otsuka &275
Karato, 2012) are also plotted for comparison. The results indicate that the effective transport276
distance of Fe through GB diffusion in (Mg,Fe)O is likely to be quite small, considering the transport277
distances of other mechanisms and the spatial scales of ULVZs and the high conductance layer. To278
further validate this finding, we solve Fick’s second law of diffusion to calculate the concentration279
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profile of iron in the mantle:280
𝜕𝐶

𝜕𝑡
= −3𝛿

𝑑
𝐷Fe

GB∇
2𝐶 (7)281

Assuming that the core always maintains a composition of pure iron, and considering an initial282
condition of zero Fe concentration in the mantle, we obtained the concentration distribution of iron283
in the mantle after the GB diffusion of 4.54 Gyr. The total mass of Fe that has been transported284
to the mantle is 5.1 × 1019 kg, which can only account for less than 20 wt% of the ∼200-m-high285
conductance layer.286

At the CMB, not only (Mg,Fe)O but also silicate minerals such as bridgmanite and post-287
perovskite are present. Given that lattice diffusion of elements in silicate perovskite is much slower288
than in ferropericlase (Ammann et al., 2010; Holzapfel et al., 2003, 2005), we argue that GB diffusion289
is unlikely to be an effective mechanism to transport Fe from the core to the lower mantle. Considering290
that some siderophile elements (e.g., W) have larger atomic radii and mass than Fe, we speculate291
that their GB diffusion coefficients in (Mg,Fe)O might be even smaller than that of Fe. So far the292
only data available for comparison are experimental results under relatively low pressures (Hayden293
& Watson, 2007; Yoshino et al., 2020). Therefore, more studies are needed to accurately quantify294
the efficiency of GB diffusion in exchanging siderophile elements across the CMB to elucidate the295
scale and extent of the core-mantle interaction.296
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Data used in this study are available at Peng and Deng (2024). The software LAMMPS used in298
this study is developed openly at https://github.com/lammps/lammps and available at Plimpton299
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Text S1.8

We take pure MgO as an example to explore how the grain boundary (GB) diffusion coeffi-9

cients vary with vacancy concentration (Cvac), system size, and the misorientation angle of the10

GB.11

At ambient pressure with Cvac ≥ 3.2 at%, the GB diffusivities in MgO for different Cvac show12

similar values within the error bars (Figure S2). Moreover, the misorientation angle likely only13

marginally affects the GB diffusivity (Figure S2), and the diffusivities are not sensitive to the14

size of the simulation system (Figure S3). We note that the present results are based on only15

two high-symmetry tilt GBs and other types of GB, like twist GB remain to be investigated.16

The diffusivity as a function of Cvac at high pressure is presented in Figure S5. Similar to the17

diffusion of Mg and O in MgO single crystals (e.g., Ammann et al., 2010), the diffusion coeffi-18

cient shows a near-linear positive correlation with Cvac when Cvac is relatively low (Cvac ≤ 1.619

at%). However, for Cvac ≥ 3.2 at%, its facilitation effect on diffusion tends to saturate, resulting20

in the nearly constant GB diffusivity. Additionally, we observed that in all the systems studied,21

atomic diffusion occurs only within a GB region approximately 1 nm wide. Over the simulation22

timescale of 10–20 ns, these vacancies do not migrate into the crystal interior, thereby demon-23

strating strong anisotropy aligning with the findings of Riet, Van Orman, and Lacks (2018).24

Specifically, diffusion parallel to the GB direction (x-z plane) is the most significant (Figure25

S5b). Figure S6 shows the MD trajectories of Mg in the MgO GB at 4000 K and 140 GPa.26

It can be observed that within the 1-nm-wide GB region, some atoms no longer occupy spe-27

cific crystallographic sites but show liquid-like motion. The GB transitions into a liquid-like,28

thermodynamically stable nanoscale film, even though the simulation temperature is below the29
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melting point. This order-disorder transition is termed GB premelting (Torabi Rad et al., 2020)30

and has been observed in many materials (e.g., Glicksman & Vold, 1972; Dillon & Harmer,31

2007; Frolov et al., 2013). Similar to the findings of Riet, Van Orman, and Lacks (2021) and32

Mantisi, Sator, and Guillot (2017), the GB in this quasi-liquid state exhibits considerable disor-33

der nature and transport properties close to those of a supercooled liquid. To further investigate34

the evolution of the atomic structure of GBs with Cvac, we compare snapshots of MgO GBs35

at various Cvac values during MD simulations (Figure S7). We capture the transition of the GB36

structure from ordered to disordered as Cvac increased. The disorder upon reaching the limit may37

correspond to the saturation effect observed in the GB diffusivity. This indicates that vacancies38

within the crystal can influence the structure (Hirel et al., 2022) and diffusion characteristics of39

the GB. However, once the GB structure stabilizes, diffusion becomes almost independent of40

the number of vacancies in the single crystal.41
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Figure S1. The formation enthalpy of [001] symmetric tilt grain boundaries in MgO as a function

of the misorientation angle at 0 GPa (black open circles), 30 GPa (green open triangles), 60 GPa (blue

crosses), 90 GPa (magenta open squares), and 120 GPa (red diamonds). The data from Hirel et al.

(2019) are shown in light symbols for comparison.
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Figure S2. Grain boundary diffusion coefficients of Mg (a) and O (b) as a function of vacancy

concentration for two different misorientation angles (α) at 2000 K and 0 GPa. The error bars for

α = 36.8◦ are the 2SD values for the diffusivity data with different vacancy concentrations.
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of the grain boundary in the simulation box at 2000 K and 0 GPa. The larger supercell (grain boundary

area: 4398.5 Å2) is obtained by duplicating the smaller supercell (grain boundary area: 2199.3 Å2)

along the z-axis twice. The error bars are given by the differences of the results from two 5-ns trajecto-

ries.

April 8, 2024, 7:50pm



: X - 7

0 2 4
0

2

4

6
M

S
D

 (Å
2 )

MgO, 1700 K, 0 GPa
Cvac = 3.2 at%

0 2 4

MgO, 1800 K, 0 GPa
Cvac = 3.2 at%

0 2 4

MgO, 2000 K, 0 GPa
Cvac = 3.2 at%

= 36.8 °

0 2 4

MgO, 2000 K, 0 GPa
Cvac = 4.8 at%

= 36.8 °

0 2 4
0

5

10

M
S

D
 (Å

2 )

MgO, 2000 K, 0 GPa
Cvac = 6.4 at%

= 36.8 °

0 2 4

MgO, 2000 K, 0 GPa
Cvac = 3.2 at%

= 29.5 °

0 2 4

MgO, 2000 K, 0 GPa
Cvac = 6.4 at%

= 29.5 °

0 2 4

MgO, 2000 K, 0 GPa
Cvac = 3.2 at%
Double size

0 2 4
0.00

0.25

0.50

M
S

D
 (Å

2 )

MgO, 4000 K, 140 GPa
Cvac = 0 at%

0.0 2.5 5.0

MgO, 4000 K, 140 GPa
Cvac = 0.4 at%

0.0 2.5 5.0

MgO, 4000 K, 140 GPa
Cvac = 0.8 at%

0.0 2.5 5.0

MgO, 4000 K, 140 GPa
Cvac = 1.6 at%

0 2 4
0.0

0.5

1.0

M
S

D
 (Å

2 )

MgO, 4000 K, 140 GPa
Cvac = 3.2 at%

0 2 4

MgO, 4000 K, 140 GPa
Cvac = 4.8 at%

0 2 4

MgO, 4000 K, 140 GPa
Cvac = 6.4 at%

0 2 4

MgO, 4000 K, 140 GPa
Cvac = 8.0 at%

0 2 4
Time (ns)

0.0

2.5

5.0

7.5

M
S

D
 (Å

2 )

Mg0.9Fe0.1O
4000 K, 140 GPa
Cvac = 3.2 at%

0 2 4
Time (ns)

Mg0.16Fe0.84O
4000 K, 140 GPa
Cvac = 3.2 at%

0 2 4
Time (ns)

Mg0.9Fe0.1O
4500 K, 140 GPa
Cvac = 3.2 at%

0 2 4
Time (ns)

Mg0.9Fe0.1O
5000 K, 140 GPa
Cvac = 3.2 at%

O Mg Fe

Figure S4. The mean square displacements (MSDs) as a function of simulation time for all diffusion

coefficients calculated in this study. The chemical composition, temperature (T ), pressure (P), and

vacancy concentration (Cvac) are listed for all systems. The misorientation angle (α) is listed for systems

in Figure S2. Average MSDs are shown for systems with multiple trajectories. Thick lines represent

the sections used for linear fitting.
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Figure S5. (a) The grain boundary diffusion coefficients of Mg (red) and O (purple) as a function

of vacancy concentration for MgO at 140 GPa and 4000 K. (b, c) The anisotropy of grain boundary

diffusion of Mg (b) and O (c) shown by plotting diffusion coefficients along three axes, x (blue), y

(orange), and z (green).
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Figure S6. Color mapping of the trajectories of Mg over time in polycrystalline MgO (Cvac = 3.2 at%)

at 4000 K and 140 GPa. As the simulation time increases from 0 ns to 10 ns, the color of the trajectory

changes along the visible spectrum.
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Figure S7. The evolution of grain boundary structure of MgO as a function of vacancy concentration

at 4000 K and 140 GPa. The colors of atoms are obtained by mapping the distance from each atom to

its 6th nearest neighbor. All snapshots are taken at 1 ns of the MD simulations and relaxed by energy

minimization.
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