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Abstract

Phytoplankton communities in the open ocean are high-dimensional, sparse, and spatiotemporally heterogeneous. The advent

of automated imaging systems has enabled high-resolution observation of these communities, but the amounts of data and their

statistical properties make analysis with traditional approaches challenging. Spatiotemporal topic models offer an unsupervised

and interpretable approach to dimensionality reduction of sparse, high-dimensional categorical data. Here we use topic modeling

to analyze neural-network-classified phytoplankton imagery taken in and around a retentive eddy during the 2021 North Atlantic

EXport Processes in the Ocean from Remote Sensing (EXPORTS) field campaign. We investigate the role physical-biological

interactions play in altering plankton community composition within the eddy. Analysis of a water mass mixing framework

suggests that storm-driven surface advection and stirring were major drivers of the progression of the eddy plankton community

away from a diatom bloom over the course of the cruise.
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Key Points:10

• Topic models provide a robust alternative to traditional statistical techniques11

for analysis of sparse, high-dimensional categorical data.12

• We perform topic model analyses of machine-classified plankton images taken13

near a retentive eddy during the 2021 EXPORTS NA field campaign.14

• Surface advection and stirring during storms controlled the surface plankton15

community of the eddy as it transitioned out of a diatom bloom.16
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Abstract17

Phytoplankton communities in the open ocean are high-dimensional, sparse, and18

spatiotemporally heterogeneous. The advent of automated imaging systems has en-19

abled high-resolution observation of these communities, but the amounts of data and20

their statistical properties make analysis with traditional approaches challenging. Spa-21

tiotemporal topic models offer an unsupervised and interpretable approach to dimen-22

sionality reduction of sparse, high-dimensional categorical data. Here we use topic mod-23

eling to analyze neural-network-classified phytoplankton imagery taken in and around24

a retentive eddy during the 2021 North Atlantic EXport Processes in the Ocean from25

Remote Sensing (EXPORTS) field campaign. We investigate the role physical-biological26

interactions play in altering plankton community composition within the eddy. Anal-27

ysis of a water mass mixing framework suggests that storm-driven surface advection28

and stirring were major drivers of the progression of the eddy plankton community29

away from a diatom bloom over the course of the cruise.30

Plain Language Summary31

Plankton communities in the ocean can have many different species, with large32

differences in their abundance and patchy distributions in space. Automated imag-33

ing systems allow for high-resolution observation of these plankton communities, but34

many traditional statistical techniques fail to capture their full complexity. Spatiotem-35

poral topic models, a kind of statistical model designed to work directly with cate-36

gorical data, can effectively represent this kind of information. In this work, we use37

topic models to analyze plankton images taken near an eddy in the spring of 2021 and38

classified into 50 different kinds of plankton with an automated algorithm. We inves-39

tigate how interactions between ocean physics and biology can change the plankton40

community inside the eddy. Analysis suggests that storms in the area moved surface41

water carrying a different plankton community into the eddy.42

1 Introduction and background43

Marine plankton communities are highly dynamic (Ryther, 1969), with impacts44

from short- (Mahadevan, 2016) and long-scale (Raitsos et al., 2014) ocean physics,45

weather (Fiorendino et al., 2021) and climate (Henson et al., 2021), chemical pres-46

ence (Ianora et al., 2011) and nutrient availability (Barcelos e Ramos et al., 2017),47

and biological interactions (Banse, 1994). In turn, plankton populations have major48

impacts on the entire marine food web (Frederiksen et al., 2006), commercial fishing49

and aquaculture (Brown et al., 2020), and ocean carbon fluxes (Guidi et al., 2016).50

Understanding how plankton communities respond to external disturbance is there-51

fore crucial for economic and climate forecasting efforts.52

In the Northeast Atlantic, which has a strong and energetic eddy field and ex-53

periences vigorous wintertime convection, ocean physics plays an important role in54

mediating phytoplankton community dynamics on a wide range of spatiotemporal scales.55

Interannually, the North Atlantic Oscillation may impact the community balance be-56

tween diatoms and dinoflagellates (Henson et al., 2012; Allen et al., 2020). Season-57

ally, the onset of spring diatom blooms has been linked to a shutdown of wintertime58

convection (Taylor & Ferrari, 2011) along with solar- (Sverdrup, 1953) and eddy-induced59

(Mahadevan et al., 2010, 2012) restratification. In addition to temporal changes, the60

existence of an energetic eddy field creates horizontal heterogeneity and patchiness61

in phytoplankton productivity and type (Martin, 2003; Lévy & Martin, 2013).62

Many approaches for characterizing plankton communities are too low-resolution63

— either spatiotemporally or in terms of the compositional information acquired —64
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to fully resolve important internal and external dynamics in marine ecosystems. Ge-65

nomic data from seawater sampled via bottle casts on a ship is limited by the deploy-66

ment frequency of the sampling rosette (hours). Conversely, bulk property sensor de-67

ployments such as fluorometers on profiling moorings can provide high-frequency mea-68

surements but lack fine plankton composition resolution.69

In contrast, automated imaging techniques can sample at high temporal reso-70

lution, with enough detail to resolve relevant taxonomic distinctions. The Imaging71

FlowCytobot (IFCB) (Olson & Sosik, 2007) uses flow cytometry integrated with video72

imaging to detect phytoplankton cells in seawater samples. The IFCB typically sam-73

ples automatically two to three times per hour, generating thousands of plankton im-74

ages per sample. Due to the high temporal resolution and information density, full75

manual review of IFCB datasets is impractical. Instead, classification typically pro-76

ceeds with machine learning-based classifiers. Ecologically relevant classification of77

IFCB images with machine learning algorithms such as convolutional neural networks78

(CNNs) has been well documented (Olson & Sosik, 2007; Olson et al., 2017; Camp-79

bell et al., 2010; Catlett et al., 2023; Peacock et al., 2014).80

The plankton community composition dynamics which generate image time se-81

ries are nonlinear, with high-dimensional and spatially heterogeneous (patchy) com-82

munities. These properties make data analysis challenging. Statistical tools such as83

Principal Component Analysis (PCA) and (non-)metric Multidimensional Scaling (NMDS84

and MDS) greatly reduce the dimensionality of the data while preserving part of the85

higher-dimensional structures and patterns. But some of these tools make unrealistic86

assumptions about how data are generated. For example, PCA assumes that obser-87

vations decompose into real-valued weightings of orthogonal eigenvectors, but actual88

underlying trends in communities need not be orthogonal. Other tools, like (N)MDS,89

may not make any generative assumptions at all, and provide a purely descriptive ap-90

proach to dimensionality reduction.91

Topic models offer an approximate but robust and interpretable alternative to92

classical dimensionality reduction approaches. Topic models are a class of Bayesian93

graphical model that factor the distribution of categorical observations with latent94

”topics”, which themselves represent distributions over observation categories. A key95

early topic model, the Latent Dirichlet Allocation model (David M. Blei et al., 2003),96

was originally used to model text documents. With a Bayesian inference algorithm,97

the Latent Dirichlet Allocation model converges on topics with semantic meaning, or-98

ganized by co-occuring clusters of words. The Real-time Online Spatiotemporal Topic99

(ROST) model extends the Latent Dirichlet Allocation model to operate on data with100

an associated spatiotemporal context (Girdhar et al., 2014). ROST alters inference101

so that the topic distribution at a particular point in spacetime incorporates infor-102

mation from nearby points (Girdhar & Dudek, 2015). This allows learned models to103

generate realistic spatiotemporal distributions for topics. The ROST model has been104

used to model distributions of corals and seafloor types from robotic surveys of coral105

reefs (Jamieson et al., 2021), and topics learned from a ROST model have been pre-106

viously shown to capture meaningful co-occurrence relationships from phytoplankton107

observation data (Kalmbach et al., 2017).108

Compared to standard dimensionality reduction based community modeling ap-109

proaches such as PCA and NMDS, topic models are more directly interpretable. PCA110

components are eigenvectors of the covariance matrix, and loadings for a given vari-111

able and component represent the correlation between them. But component weights112

for each observation may be arbitrary positive or negative real numbers. In fact, the113

location of data in the lower-dimensional space will only be a rotation and flattening114

of the high-dimensional data. NMDS embeddings are even less directly interpretable115

than PCA components. NMDS embedding dimensions do not directly correspond to116

any variables, and the values produced are non-quantitative. Further clustering anal-117
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ysis on NMDS embeddings can identify similar data points, but relationships between118

observed variables are still not directly encoded and must be inferred. In contrast,119

topic models produce both a distribution of topics over (space-)time, and a distribu-120

tion of variables within each topic. The distribution of variables within each topic is121

a valid categorical probability distribution, and the probabilities can be understood122

as relative abundances of a particular variable within a given community.123

In this paper, we use a Bayesian topic modeling approach to characterize sur-124

face plankton community variability, and uncover mechanisms by which disturbance125

influences that variability. We highlight how topic modeling augments a more tradi-126

tional NMDS-based approach to link specific co-occurrence patterns to observed sim-127

ilarities in data. With a pseudo passive tracer approach, we show that the learned topic128

model agrees with a storm-driven surface advection hypothesis for explaining plank-129

ton community variability inside a coherent North Atlantic eddy.130

2 Methods131

2.1 Survey site and timeline132

The Porcupine Abyssal Plain (PAP) sits near the transition zone between the133

North Atlantic subpolar and subtropical gyres (Henson et al., 2012; Chaudhuri et al.,134

2011; Eden & Willebrand, 2001). The presence of a long-term observatory at PAP,135

as well as continuous plankton recorder surveys across the region, provide a long his-136

tory of community level plankton data. This site was chosen for study in the EXport137

Processes in the Ocean from Remote Sensing (EXPORTS) 2021 spring campaign, which138

was focused on characterizing the processes controlling carbon flux in the vicinity of139

a mesoscale eddy (Johnson et al., 2023). An extensive eddy tracking campaign pre-140

ceded a three ship adaptive sampling effort, allowing for coordinated deployments of141

instruments and resolution of O(100 m) spatial variability.142

2.2 Data collection143

From May 5-21 2021, the R/V Sarmiento de Gamboa conducted sampling of a144

targeted retentive eddy (Figure 1a). With an Imaging FlowCytobot (McLane Reseearch145

Laboratories, Inc.) plankton imaging system sampling from the Sarmiento’s under-146

way seawater pump, images of surface plankton were taken approximately every 20147

minutes. These images were classified with a CNN to produce a time series of 50 dif-148

ferent plankton taxa concentrations. Niskin bottle samples from CTD casts were also149

run through an IFCB imaging system, but as the temporal resolution of these data150

is coarse (about 1 to 2 profiles per day), we do not analyze them in this paper.151

The EXPORTS field program targeted sampling within and around a single mesoscale152

eddy east of the PAP observatory (Johnson et al., 2023). Sophisticated real-time eddy153

tracking (Erickson et al., 2023) allowed data to be collected in an “eddy center” ref-154

erence frame, with multiple vessels and assets aimed at characterizing both the eddy155

center and the variability across the eddy.156

Temporal sampling was designed around three epochs of 7 to 10 day duration.157

These epochs were punctuated by four major storms that passed through the study158

site. This work will focus on data collected while the R/V Sarmiento de Gamboa was159

on site, which include epoch 1 and 2 and storms on May 7-11 and May 14-16. These160

two storms limited the ability of the three ships to sample near the target eddy at those161

times. Major analyses of temporal trends in community composition around the eddy162

are therefore structured around the impacts of these storms (Figure 1c).163

The North Atlantic is characterized by warm salty waters from the south and164

cold fresh waters from the north. The energetic eddy field stirs these waters, creat-165
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ing sharp variations in temperature and salinity around the eddy edges. Three sur-166

face water masses were identified near the survey site, distinguished primarily by spice167

(e.g. a measure of the temperature and salinity along density surfaces (McDougall et168

al., 2021)) and density. A surface core water mass is defined as water within 15km of169

the eddy center (hereafter referred to as core waters). For surface waters outside of170

the eddy, cold-fresh and warm-salty water masses are distinguished by a spice thresh-171

old of 2.1. A particularly relevant source of horizontal variability is a warm/salty (high172

spice) filament to the south east that is wrapped around the eddy periphery by the173

geostrophic flow; hereafter referred to as the “filament” (see Figure 1b). Further de-174

tails about water mass classification are given in Johnson et al. (2023). Johnson et175

al. showed that storm driven Ekman currents caused exchange between core water176

and surrounding water classes. In this work we focus on how that exchange impacted177

phytoplankton communities in the core waters of the eddy.178
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Figure 1. As part of the May 2021 EXPORTS North Atlantic field program, the R/V

Sarmiento de Gamboa performed extensive oceanographic sampling in and around a retentive

eddy in the northeast Atlantic ocean. (a) R/V Sarmiento de Gamboa cruise track, with date

indicated in color. Two clear deviations from the sampling plan reflect the ship’s avoiding of

a pair of storms during the cruise. The rectangle indicates the region pictured in Figure 1b.

(b) Satellite-derived sea surface temperature and sea surface height in the vicinity of the quasi-

retentive eddy, 13 May 2021. Gray stars represent all daily post-processed eddy centers during

May 2021, while the yellow star represents the eddy center on May 13. (c) The two main sam-

pling periods planned in advance of the cruise (Epoch 1, May 1-10, and Epoch 2, May 11-20)

were interrupted by storm activity.

2.3 Plankton images and classification179

Regions of Interest (ROIs) extracted from IFCB images were classified with a180

CNN-based classifier. The CNN sorted each ROI into one of 50 different classes dis-181

tinguished morphologically (Orenstein et al., 2015). Of these taxa, two (bead and bub-182

ble) are grouped into the “artifacts” category, and five (detritus, detritus transparent,183
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detritus theca fragment, fecal pellet, and fiber) are grouped into ”Other not alive”.184

ROIs classified into these categories were removed from the data prior to analysis. An185

additional taxon, nanoplankton mix, contained ROIs of miscellaneous nanoplankton.186

Topic models learned with miscellaneous nanoplankton excluded tended to infer more187

distinguishable topics. In the interest of improving community composition analysis188

with topic models, these data were also excluded from further analysis.189

2.4 NMDS embeddings190

NMDS analyses were run with three different dissimilarity matrices. Bray-Curtis191

dissimilarity was used with direct plankton count data, and KL divergence was used192

on plankton relative abundance data and ROST model topic proportions. The scikit-learn193

python package’s NMDS ordination algorithm was used to calculate lower-dimensional194

embeddings. Three initialization strategies were compared: random initialization, ge-195

ographic initialization, PCA initialization, and higher-dimensional NMDS initializa-196

tion. Initialization of the embeddings with principle coordinates from a PCA analy-197

sis resulted in the lowest stress of all strategies, and was used for all further analyses198

in this paper. NMDS ordinations were used to generate 2D embeddings, to facilitate199

visualization and further analysis.200

2.5 Topic modeling201

A ROST model was trained to produce four topics from plankton relative abun-202

dance data. Training was done using the rost-cli command line program for 1000203

epochs, with Dirichlet hyperparameters α = 0.001 and β = 0.001. Most values of204

Dirichlet hyperparameters below 1.0 produced qualitatively similar results, so no rig-205

orous hyperparameter search was performed. The most important hyperparameter206

for model quality was the number of topics, K. We chose four topics for the analy-207

sis in the rest of the paper, as it effectively captures much of the increase in model208

accuracy over the bulk of the cruise without including too many negligible communi-209

ties. Specifically, four topics is the largest number for which each topic has a distinct210

dominant taxon (plurality relative abundance). With 5 or more topics, the ROST model211

consistently identified at least 2 topics with a shared dominant taxon. By choosing212

four topics, the ROST model is forced to identify the primary co-occurrence pattern213

associated with each of the most common taxa, instead of spreading co-occurrence214

patterns among multiple topics which causes identifiability issues.215

The ROST model (Figure 2) assumes data are produced by a generative pro-
cess linking each categorical observation of a single plankton to latent (unobserved)
assemblages or communities of taxa. Every location in space-time is associated with
a particular distribution over communities. To generate an observation, first a com-
munity is randomly chosen for that observation. Then, that community’s relative abun-
dances are used as probabilities to choose the observed taxon. As both community
relative abundances and the spatiotemporal distributions of communities are jointly
learned by the model, we infer an effective relative abundance of all plankton taxa
at every location containing observations. By comparing this inferred relative abun-
dance to the actual relative abundances, we can quantify the accuracy of a set of learned
communities. The Kullbach-Liebler (KL) divergence measures the difference between
two probability distributions. Formally, the KL divergence is the expected log like-
lihood ratio between two distributions P and Q, if an observation is actually drawn
from P :

DKL(P ||Q) = Ex∼P

[
log

(
P (x)

Q(x)

)]
For absolute and relative abundance data, Bray-Curtis dissimilarity provides a quan-
tifiable measure of the difference between observations. In terms of the relative abun-
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Figure 2. A spatiotemporal topic model factors the distribution of categorical observations

in spacetime into a pair of latent distributions. One latent distribution, the “community model”,

represents a series of communities or topics, each of which is itself a distribution over observa-

tion types. The other latent distribution, the spatiotemporal model, represents the probability

of finding each topic at any point in spacetime. By multiplying the spatiotemporal model by the

matrix community model, we can recover a spatiotemporal distribution over observation types

with significantly fewer parameters and desirable structural properties such as sparseness and

robustness to rare observation types.

dance, we can calculate it as follows:

DBC(P ||Q) = 1−
∑
x

min (P (x), Q(x))

Bray-Curtis dissimilarity is bounded to be between zero and one, and unlike DKL it216

is symmetric. We primarily use DKL to compare probability distributions. However,217

for calculation of dissimilarity matrices as an initial step in other analyses, we also218

use DBC .219

2.6 Water mass mixing220

To quantify the extent to which storm events caused surface water mass mix-221

ing, we consider the observed plankton concentrations to be ideal (passive) tracers222

and calculate how close a given sample is to a sample from a mixture of the water masses.223

First, we take the mean concentration of each taxon in each water mass sampled be-224

fore the first storm. These are mixed in varying ratios, and normalized to produce a225

mean mixture relative abundance, representing the hypothetical community of a mix-226

ture of the mean of each water mass. At each point between the two storms when the227

eddy water mass is sampled, we calculate the mean mixture relative abundance with228

the lowest KL divergence to the observed relative abundance. Zero KL divergence im-229

plies that a sampled point’s community can be perfectly represented as a mixture of230

the mean communities seen before the storm. High KL divergence implies that a mix-231

ture model is a poor fit for the data, and the observed community variability likely232

has another mechanism (such as vertical mixing or biological dynamics).233
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3 Results234

3.1 NMDS embedding of observed plankton taxa235

NMDS embeddings from a Bray-Curtis dissimilarity matrix calculated with plank-236

ton taxon relative abundance data (Figure 3) highlight how the eddy becomes more237

similar to the filament water mass after the first storm. Separating the observations238

by epoch and water mass (Figure 3a) identifies a tight cluster of observations for the239

core water mass in epoch 1. From epoch 1 to epoch 2, the core water mass cluster cen-240

troid becomes more negative along the x component, and more positive along the y241

component. Additionally, the core surface waters get saltier over the same timespan242

(Figure 3b). This also represents a mean shift of the eddy towards the filament. These243

results support a mixing/advective source of plankton variability in the core. This is244

consistent with results from Johnson et al. (2023), which suggests wind driven Ek-245

man transport advected warm salty water from the filament into the 15 km radius246

around the eddy center.247
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Figure 3. (a) Two-dimensional NMDS embedding of plankton relative abundance data. (b)

Temperature-salinity diagram. Stars mark group means for the water mass/epoch combinations

listed in the legend. The grey arrow indicates the change in the eddy water mass mean from

epoch 1 to epoch 2.

3.2 Community variability inferred by ROST model248

Topic models represent co-occurrence patterns as a topic, i.e. a probability dis-249

tribution over observation categories. These topics are directly interpretable as rep-250

resenting a hypothetical relative abundance matching the co-occurrence pattern, with251

real observations being drawn from a mixture of these hypothetical abundances. Look-252

ing at these patterns temporally (Figure 4) highlights the high variability of commu-253

nity 1. Community 1’s relative abundance varies from more than 60% at the peak dur-254

ing epoch 1, to completely absent a few days later during the first storm. This corre-255

sponds to a Pseudo-nitzschia-dominated community (Figure 5) highly present inside256

–8–



manuscript submitted to JGR: Oceans

the eddy, especially during epoch 1, but relatively low-proportion far away from it.257

We proceed by breaking out the community relative abundances in both space and258

time (Figure 6 and Table 1), in order to characterize broad patterns in community259

distributions during the cruise.260

Community 1 can be identified with initial Pseudo-nitzschia bloom conditions261

inside the eddy. From the initial high proportion in the eddy, community 1 propor-262

tions decrease with distance before the first storm and sharply decreases with time263

after the first storm inside the eddy.264

Community 2, dominated by Dinophyceae morphotype3, starts at a low 4% rel-265

ative abundance inside the eddy, and increases throughout the cruise, ending at a mean266

eddy relative abundance of 13%. The concentration of this community peaks at 81%267

far away from the eddy during the first storm excursion.268

Community 3 contains a plurality of Dinophyceae. Its relative abundance inside269

the eddy increases throughout the cruise, from about 10% at the start to about 45%270

at the end. However, these are strictly lower than the abundances seen far from the271

eddy. The highest abundances of this community are seen far from the eddy at all times.272

Community 4 has the highest relative abundance of the pennate taxon. Inside273

the eddy, this community has three distinct relative abundances before, between, and274

after the two storms, with the mean peaking between the two storms. The distribu-275

tion is similar just outside the eddy, with lower proportions than inside the eddy. The276

highest relative abundances of this community are seen during the first storm excur-277

sion, as well as inside the eddy between the storms. These peaks are just under 20%,278

however.279

These communities learned by the topic model are highly informative about the280

water masses sampled, but do not match the water masses exactly. This suggests that281

water mass variability is linked to (but not the only driver of) plankton community282

variability in the region surveyed.283

Overall, the communities seen in the eddy shift markedly over time, transition-284

ing from a Pseudo-nitzschia dominated diatom bloom to a more mixed community.285

Community 1 (the only community with a significant proportion of Pseudo-nitzschia)286

makes up 84% of the mean community proportions seen in the core in epoch 1, but287

in epoch 2 it decreases to 42%. All other communities increase in the core from epoch288

1 to epoch 2, with communities 2 and 4 reaching a maximum between the storms and289

community 3 increasing throughout the cruise.290

3.3 Topic models decompose compositonal impacts of water mass mix-291

ing292

The ROST communities inferred in the eddy after the first storm resemble a mix-293

ture of the communities in the eddy and filament before the first storm (Figure 3a),294

further supporting the notion that mixing and/or advection during the storm are pri-295

mary drivers of plankton variability in the eddy. In epoch 1, the eddy is dominated296

by the Pseudo-nitzschia bloom of community 1 (Figure 7b), while the filament is dom-297

inated by community 3, which is primarily Dinophyceae morphotype3 (Figure 7a). Later298

in the cruise, the community distribution in the eddy shifts to be less dominated by299

community 1 (the bloom community). Instead, the community distribution represents300

more of a mixture of the community distribution in the eddy and the filament from301

epoch 1 (Figure 7c). Johnson et al. (2023) showed that Ekman currents during storm302

1 flushed approximately 73% of the surface core waters that were replaced with warm/salty303

waters outside the eddy.304
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Figure 4. The relative abundance of topics (“communities”) inferred by the ROST model

versus time over the cruise.
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Figure 6. Sptial distribution of proportions for (a-e) Community 1, (f-j): Community 2, (k-o):

Community 3 proportions,and (p-t) Community 4 proportions. All panels aggregate data from

one of five time periods indicated in Figure 1c and presented left-to-right: Before the first storm,

during the first storm, between the two storms, during the second storm, and after the second

storm. The mean eddy center and extent (15 km boundary) are marked with a red cross and a

circle, respectively. Due to wide deviations in the cruise track during the storms, the second and
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Table 1. Mean community proportions by time and location

Cruise period Location Com. 1 Com. 2 Com. 3 Com. 4

Before storm 1a Insidef 0.840351 0.039149 0.102889 0.017611
Nearg 0.651984 0.177954 0.135293 0.034770
Farh 0.141668 0.114440 0.679642 0.064251

Storm 1b Nearg 0.451712 0.225081 0.216624 0.106584
Farh 0.082952 0.081422 0.658297 0.177329

Between stormsc Insidef 0.422649 0.081400 0.336334 0.159617
Nearg 0.250780 0.085952 0.532940 0.130328
Farh 0.030553 0.217530 0.681103 0.070815

Storm 2d Farh 0.034290 0.225775 0.662466 0.077469

After storm 2e Insidef 0.320021 0.133385 0.468161 0.078433
Nearg 0.116105 0.103529 0.701524 0.078842
Farh 0.021195 0.155310 0.766571 0.056924

aMay 5-7 bMay 8-12 cMay 13-14 dMay 15-17 eMay 18-20 f<15 km g15-45 km h>45 km

To better highlight the role mixing plays in altering plankton community struc-305

ture, we considered an end-member mixing scenario in which the three water masses306

(core/eddy, warm_salty/filament, and cold_fresh) are mixed in proportions adding307

to one. Mean plankton concentrations observed before the first storm are treated as308

ideal (passive) tracers, and the mixed concentrations are normalized to produce an309

ideally mixed community. For each set of observations taken inside the eddy between310

the two storms (i.e., after the first storm but before the second storm), the mixture311

community with the smallest Kullback-Leibler divergence to the observed community312

at that time was determined (Figure 7d).313

The mixing analysis suggests that surface advection drives the warm-salty wa-314

ter mass into the waters above the eddy core. Plankton taxon distributions in the north-315

west of the eddy seen after the first storm (Figure 7e) closely resemble the mean warm-316

salty water mass community seen before the storm. East and north-east of the eddy317

center, post-storm observations resemble none of the pre-storm mean communities.318

Observations near the eddy center, as well as north and south of it, closely resemble319

mixtures of pre-storm communities in all water masses.320

Analysis of shifts in eddy and filament plankton community composition sug-321

gest that water mass mixing may be a significant driver of plankton community vari-322

ability specifically inside the eddy. Before the first storm, the eddy is dominated by323

a Pseudo-nitzschia bloom, which the topic model represents as a single community324

dominating over 80% of the eddy plankton community composition. After the first325

storm, the eddy has a significantly lower proportion of that community, especially near326

the northwestern edge. There the bloom community is partially succeeded by com-327

munity 4. Water mass mixing results show that those points with the highest frac-328

tion of the warm/salty water mass have the highest proportion of community 3, with329

the linear fit (Figure 7f) having an r2 of 0.986.330
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Figure 7. (a-c) The proportions of each community in the filament during epoch 1, the eddy

during epoch 1, and the eddy during epoch 2 respectively. Colors indicate the same communities

as in Figure 4. (d) A water mass mixing analysis, where the closest water mass mixture to each

observation taken in the eddy during epoch 2 is plotted on a 3-component simplex. The three

coordinates on the simplex are x (the eddy water mass fraction), y (the filament water mass

fraction), and 1 − x − y (the cold-fresh water mass fraction). (e) Observations made in the eddy

during epoch 2. (f) The relative abundance of community 3 versus the fraction of the warm/salty

water mass assigned to each point in the eddy in epoch 2. A linear fit has an r2 of 0.986. In (d-

f), color indicates the KL divergence between the observed plankton distribution in epoch 2 and

the lowest KL-divergence distribution of all possible water mass mixtures in epoch 1. Red circles

indicate points with a filament fraction above 0.8.
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4 Discussion331

4.1 Topic models provide a quantitative and interpretable decompo-332

sition333

The NMDS analysis (Figure 3a) suggests that after the first storm, the eddy sur-334

face plankton community became more like the epoch 1 filament community. How-335

ever, the abstract nature of the NMDS embedding precludes an immediate deeper anal-336

ysis of the nature of that change. We could, for example, find correlations between337

the NMDS components and plankton concentrations for various taxa. But NMDS em-338

bedding magnitudes and distances do not have any intrinsic meaning. Instead of quan-339

titative analysis, an ordination technique such as NMDS would generally be followed340

by a qualitative study of correlation with other variables or clustering within the em-341

beddings (Clapham, 2011).342

In contrast, topic models directly support quantitative claims about changes in343

plankton relative abundance. The topic model’s communities represent point estimates344

of relative abundances for each plankton taxon considered in the model. We can there-345

fore inspect spatiotemporal distributions of each community (Figure 6), analyze trends346

in mean community proportions (Table 1), and model linear relationships between347

these communities and other hypothetical relative abundance distributions (Figure348

7f). The inherent interpretability of topic models also allows for more immediate di-349

agnosing of the nature of major trends seen in data. Consider the temporal distribu-350

tion of community 1 (Figure 4), along with its associated taxon probabilities (Figure351

5). We can immediately spot that community 1 represents a high Pseudo-nitzschia352

abundance, and by looking at its spatial distribution (Figure 6a-e) we conclude that353

a major source of plankton variability during the cruise was a Pseudo-nitzschia bloom354

in the eddy that dissipated somewhat after the first storm. These kinds of inferences355

are not possible solely with ordination techniques like NMDS; at a minimum, further356

processing and analysis of the NMDS output is required.357

4.2 Rapid bloom dissipation points to extreme event358

Friedland et al. (2018) found that dominant seasonal phytoplankton blooms last359

on the order of weeks to months across the globe. However, the rather dramatic shift360

in eddy plankton community composition (from a community dominated by Pseudo-361

nitzschia to a richer community with higher concentrations of other diatoms) occurred362

over several days of stormy weather. The speed with which the eddy shifted away from363

a bloom state suggests that the driver of the change may have been an extreme event364

not well represented by the predominant bloom dissipation mechanisms previously365

described.366

4.3 Upwelling hypothesis and trends in surface chlorophyll367

Painter et al. (2016) use a particular North Atlantic storm to highlight how storms368

structure post-storm plankton communities by enhancing upwelling. This enhanced369

upwelling brings nutrients to the euphotic zone, setting up conditions for a bloom.370

Liu and Tang (2018) suggest that this mechanism is responsible for observed post-371

typhoon chlorophyll fluorescence increases in anti-cyclonic eddies in the South China372

Sea. In contrast, we found a decrease in chlorophyll fluorescence, with high statisti-373

cal significance (although low r2) over the course of the cruise (Figure 8a). If the sur-374

face was already in the middle of a bloom, we might not expect an increase in pro-375

ductivity. But the observed decrease in chlorophyll fluorescence goes against bloom376

dynamics being controlled primarily by storm-driven upwelling. Additionally, the mixed377

layer in the eddy deepened during the storm (Figure 8c). While this points to enhanced378

vertical mixing, the upper water column has fairly high relative abundance of Pseudo-379
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Figure 8. (a) Eddy surface chlorophyll fluorescence versus time during the cruise. Black tri-

angles indicate mean of a color, and the black lines indicate one standard deviation. The line of

best fit for all data is indicated in black. (b) Distance to eddy center (km, log scale) versus day

of month, with Pseudo-nitzschia relative abundance in color. (c) CTD cast Niskin bottle depth

(m) with 1D model eddy mixed layer depth (m), with Pseudo-nitzschia relative abundance in

color.

nitzschia in the eddy before the first storm. Simple dilution through the mixed layer380

would not account for the observed decrease in Pseudo-nitzschia relative abundance.381

4.4 Storm-driven advection and stirring control plankton variability382

We previously argued that the speed with which the eddy transitioned away from383

the Pseudo-nitzschia bloom community is uncharacteristic of traditional plankton bloom384

dynamical timescales (section 4.2). We also found evidence against a vertical mixing385

mechanism for the observed changes in eddy plankton community composition. In-386

stead, our results suggest that horizontal stirring and advection were a major mech-387

anism driving changes in the eddy community. Several observations taken inside the388

eddy during epoch 2 have plankton communities closely linked to the filament water-389

mass (Figures 7d and 7e). These observations, which have among the lowest kl di-390

vergence to the closest water mass mixture of all the observations made during epoch391

2, likely represent storm-driven advection of filament water into the northwest corner392

of the eddy. Some data points in the north, center, and south of the eddy are also fairly393

well represented as mixtures, with most of the lowest KL-divergence observations found394

at or near the eddy-filament mixture line (Figure 7d). We can infer that advection395

likely carried filament plankton communities into the eddy, displacing the bloom com-396

munity there before the storms. This aligns with Johnson et al. (2023), who found397

that surface advection and stirring during the storms altered eddy surface tempera-398

ture and salinity.399
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4.5 Limitations and future work400

This work serves as a demonstration of the successful use of topic modeling for401

marine plankton ecology, but we do not make any quantitative contrasts between topic402

models and more traditional dimensionality reduction approaches. The different na-403

ture of the outputs of different methods (probability distributions in topic models ver-404

sus real numbers in NMDS/PCA/etc.) makes direct comparison and evaluation dif-405

ficult, even though they operate on similar kinds of data. Some of these alternative406

dimensionality reduction and ordination techniques may offer more quantitative or407

interpretable outputs.408

Our analysis of topic modeling on its own similarly does not quantitatively ex-409

plore the impacts of the different ROST hyperparameters on the quality or fit of the410

resulting embeddings. As with other dimensionality reduction techniques, increasing411

the number of dimensions (topics) in the model improves the fit at the expense of model412

interpretability and simplicity. The other two hyperparameters control the shape of413

the prior distribution, and given enough time their impact is washed out in the in-414

ferred posterior. The structure of the data likely play a role in determining the im-415

portance of all of these hyperparameters, and particularly the sensitivity to the prior416

distribution. We found that for the plankton data presented here, the prior hyperpa-417

rameters did not meaningfully impact the visual quality or KL divergence of the re-418

sulting community distributions when varied over several orders of magnitude.419

Understanding the full scope of spatiotemporal variability requires better reso-420

lution of subsurface plankton communities, as well as decoupling surface spatial and421

temporal observations. IFCBs onboard the other two ships in the field campaign col-422

lected surface and CTD cast plankton imagery.423

5 Conclusion424

In this paper, we demonstrated the power of topic modeling as a tool for un-425

covering community variability in marine plankton. The 2021 North Atlantic EXPORTS426

field campaign produced a large quantity of high-resolution phytoplankton image data427

which allow for the resolution of fine-scale spatiotemporal variability in surface phy-428

toplankton communities. By using topic models to infer latent plankton co-occurrence429

patterns, we discovered that storm-driven advection was a likely source of surface vari-430

ability in community structure. Notwithstanding the extreme simplification of treat-431

ing plankton as pseudo passive tracers, we found strong correlations between a par-432

ticular co-occurring plankton community and advection of warm, salty water into the433

eddy. These findings highlight the power of topic modeling as a tool for ecological anal-434

ysis, particularly in the face of large amounts of spatiotemporally-distributed cate-435

gorical data. As the resolution and processing power of in-situ imaging systems con-436

tinues to grow, we foresee an important role for topic models in improving our un-437

derstanding of marine ecological variability.438

Acronyms439

IFCB Imaging Flow Cytobot, a high-throughput plankton imaging system that uses440

flow cytometry and microfluidics to take pictures of phytoplankton precisely441

when they are in focus of a camera lens442

ROST Real-time Online Spatiotemporal Topic model, a Bayesian model for the dis-443

tribution of categorical information in space-time444

CNN Convolutional Neural Network, a neural network architecture which pools data445

spatially and has been widely applied to image classification tasks446

PCA Principal Component Analysis, a statistical technique where a data matrix is447

decomposed into its eigenvectors to capture major sources of variation448
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NMDS Non-metric Multi-Dimensional Scaling, a statistical technique for dimension-449

ality reduction which attempts to preserve structural relationships from high450

dimensions in lower-dimensional embeddings451

PAP Porcupine Abyssal Plain, a region of the seafloor in the northeast Atlantic south-452

west of Ireland453

EXPORTS EXport Processes in the Ocean from Remote Sensing, a NASA field cam-454

paign to study carbon export in the Earth’s oceans455

ROI Region of Interest, a portion of an image extracted for further classification456

KL Divergence Kullback-Liebler Divergence, a statistical measure of the difference457

between two probability distributions458

Open Research Section459

Raw data and products from the NASA EXPORTS program can be found at460

https://seabass.gsfc.nasa.gov/. IFCB images and machine learning labels can461

be found at https://ifcb-data.whoi.edu/. The code for ROST can be found at https://462

gitlab.com/warplab/rostpy.463
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Lévy, M., & Martin, A. P. (2013). The influence of mesoscale and submesoscale het-573

erogeneity on ocean biogeochemical reactions. Global Biogeochemical Cycles,574

27 (4), 1139–1150.575

Liu, F., & Tang, S. (2018). Influence of the Interaction Between Typhoons and576

Oceanic Mesoscale Eddies on Phytoplankton Blooms. Journal of Geophysical577

Research: Oceans, 123 (4), 2785–2794. doi: 10.1029/2017JC013225578

Mahadevan, A. (2016). The impact of submesoscale physics on primary productiv-579

ity of plankton. Annual Review of Marine Science, 8 (1), 161-184. Retrieved580

from https://doi.org/10.1146/annurev-marine-010814-015912 (PMID:581

26394203) doi: 10.1146/annurev-marine-010814-015912582

Mahadevan, A., D’Asaro, E., Lee, C., & Perry, M. J. (2012, July). Eddy-Driven583

Stratification Initiates North Atlantic Spring Phytoplankton Blooms. Science,584

337 (6090), 54–58. Retrieved 2022-11-10, from https://www.science.org/585

doi/10.1126/science.1218740 doi: 10.1126/science.1218740586

Mahadevan, A., Tandon, A., & Ferrari, R. (2010). Rapid changes in mixed587

layer stratification driven by submesoscale instabilities and winds. Jour-588

nal of Geophysical Research: Oceans, 115 (C3). Retrieved from https://589

agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2008JC005203 doi:590

https://doi.org/10.1029/2008JC005203591

Martin, A. (2003). Phytoplankton patchiness: the role of lateral stirring and mixing.592

Progress in oceanography , 57 (2), 125–174.593

McDougall, T. J., Barker, P. M., & Stanley, G. J. (2021). Spice variables594

and their use in physical oceanography. Journal of Geophysical Re-595

search: Oceans, 126 (2), e2019JC015936. Retrieved from https://596

agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019JC015936597

(e2019JC015936 2019JC015936) doi: https://doi.org/10.1029/2019JC015936598

Olson, R. J., Shalapyonok, A., Kalb, D. J., Graves, S. W., & Sosik, H. M. (2017).599

Imaging flowcytobot modified for high throughput by in-line acoustic focusing600

of sample particles. Limnology and Oceanography: Methods, 15 (10), 867-874.601

Retrieved from https://aslopubs.onlinelibrary.wiley.com/doi/abs/602

10.1002/lom3.10205 doi: https://doi.org/10.1002/lom3.10205603

Olson, R. J., & Sosik, H. M. (2007, June). A submersible imaging-in-flow instrument604

to analyze nano-and microplankton: Imaging FlowCytobot: In situ imaging605

of nano- and microplankton. Limnology and Oceanography: Methods, 5 (6),606

–19–



manuscript submitted to JGR: Oceans

195–203. Retrieved 2022-11-02, from http://doi.wiley.com/10.4319/607

lom.2007.5.195 doi: 10.4319/lom.2007.5.195608

Orenstein, E. C., Beijbom, O., Peacock, E. E., & Sosik, H. M. (2015). WHOI-609

Plankton- A Large Scale Fine Grained Visual Recognition Benchmark Dataset610

for Plankton Classification (Tech. Rep.). Retrieved from https://arxiv.org/611

abs/1510.00745 doi: 10.48550/ARXIV.1510.00745612

Painter, S. C., Finlay, M., Hemsley, V. S., & Martin, A. P. (2016, March). Season-613

ality, phytoplankton succession and the biogeochemical impacts of an autumn614

storm in the northeast Atlantic Ocean. Progress in Oceanography , 142 , 72–615

104. doi: 10.1016/j.pocean.2016.02.001616

Peacock, E., Sosik, H., & Olson, R. (2014, 04). Parasitic infection of the diatom617

guinardia delicatula, a recurrent and ecologically important phenomenon618

on the new england shelf. Marine Ecology Progress Series, 503 , 1-10. doi:619

10.3354/meps10784620

Raitsos, D. E., Pradhan, Y., Lavender, S. J., Hoteit, I., McQuatters-Gollop, A.,621

Reid, P. C., & Richardson, A. J. (2014). From silk to satellite: half a century622

of ocean colour anomalies in the northeast atlantic. Global Change Biology ,623

20 (7), 2117-2123. Retrieved from https://onlinelibrary.wiley.com/doi/624

abs/10.1111/gcb.12457 doi: https://doi.org/10.1111/gcb.12457625

Ryther, J. H. (1969). Photosynthesis and fish production in the sea. Science,626

166 (3901), 72-76. Retrieved from https://www.science.org/doi/abs/627

10.1126/science.166.3901.72 doi: doi:10.1126/science.166.3901.72628

Sverdrup, H. U. (1953, 01). On Conditions for the Vernal Blooming of Phy-629

toplankton. ICES Journal of Marine Science, 18 (3), 287-295. Retrieved630

from https://doi.org/10.1093/icesjms/18.3.287 doi: 10.1093/icesjms/631

18.3.287632

Taylor, J. R., & Ferrari, R. (2011). Shutdown of turbulent convection as a new crite-633

rion for the onset of spring phytoplankton blooms. Limnology and Oceanogra-634

phy , 56 (6), 2293–2307.635

–20–



manuscript submitted to JGR: Oceans

Spatiotemporal Topic Modeling Reveals Storm-Driven1

Advection and Stirring Control Plankton Community2

Variability in an Open Ocean Eddy3

John E. San Soucie1,3, Yogesh Girdhar1, Leah Johnson4, Emily E. Peacock2,4

Alexei Shalapyonok2, Heidi M. Sosik2
5

1Woods Hole Oceanographic Institution, Applied Ocean Physics and Engineering Department6
2Woods Hole Oceanographic Institution, Biology Department7

3Massachusetts Institute of Technology, Department of Mechanical Engineering8
4University of Washington, Applied Physics Laboratory9

Key Points:10

• Topic models provide a robust alternative to traditional statistical techniques11

for analysis of sparse, high-dimensional categorical data.12

• We perform topic model analyses of machine-classified plankton images taken13

near a retentive eddy during the 2021 EXPORTS NA field campaign.14

• Surface advection and stirring during storms controlled the surface plankton15

community of the eddy as it transitioned out of a diatom bloom.16

Corresponding author: John E. San Soucie, jsansoucie@whoi.edu

–1–



manuscript submitted to JGR: Oceans

Abstract17

Phytoplankton communities in the open ocean are high-dimensional, sparse, and18

spatiotemporally heterogeneous. The advent of automated imaging systems has en-19

abled high-resolution observation of these communities, but the amounts of data and20

their statistical properties make analysis with traditional approaches challenging. Spa-21

tiotemporal topic models offer an unsupervised and interpretable approach to dimen-22

sionality reduction of sparse, high-dimensional categorical data. Here we use topic mod-23

eling to analyze neural-network-classified phytoplankton imagery taken in and around24

a retentive eddy during the 2021 North Atlantic EXport Processes in the Ocean from25

Remote Sensing (EXPORTS) field campaign. We investigate the role physical-biological26

interactions play in altering plankton community composition within the eddy. Anal-27

ysis of a water mass mixing framework suggests that storm-driven surface advection28

and stirring were major drivers of the progression of the eddy plankton community29

away from a diatom bloom over the course of the cruise.30

Plain Language Summary31

Plankton communities in the ocean can have many different species, with large32

differences in their abundance and patchy distributions in space. Automated imag-33

ing systems allow for high-resolution observation of these plankton communities, but34

many traditional statistical techniques fail to capture their full complexity. Spatiotem-35

poral topic models, a kind of statistical model designed to work directly with cate-36

gorical data, can effectively represent this kind of information. In this work, we use37

topic models to analyze plankton images taken near an eddy in the spring of 2021 and38

classified into 50 different kinds of plankton with an automated algorithm. We inves-39

tigate how interactions between ocean physics and biology can change the plankton40

community inside the eddy. Analysis suggests that storms in the area moved surface41

water carrying a different plankton community into the eddy.42

1 Introduction and background43

Marine plankton communities are highly dynamic (Ryther, 1969), with impacts44

from short- (Mahadevan, 2016) and long-scale (Raitsos et al., 2014) ocean physics,45

weather (Fiorendino et al., 2021) and climate (Henson et al., 2021), chemical pres-46

ence (Ianora et al., 2011) and nutrient availability (Barcelos e Ramos et al., 2017),47

and biological interactions (Banse, 1994). In turn, plankton populations have major48

impacts on the entire marine food web (Frederiksen et al., 2006), commercial fishing49

and aquaculture (Brown et al., 2020), and ocean carbon fluxes (Guidi et al., 2016).50

Understanding how plankton communities respond to external disturbance is there-51

fore crucial for economic and climate forecasting efforts.52

In the Northeast Atlantic, which has a strong and energetic eddy field and ex-53

periences vigorous wintertime convection, ocean physics plays an important role in54

mediating phytoplankton community dynamics on a wide range of spatiotemporal scales.55

Interannually, the North Atlantic Oscillation may impact the community balance be-56

tween diatoms and dinoflagellates (Henson et al., 2012; Allen et al., 2020). Season-57

ally, the onset of spring diatom blooms has been linked to a shutdown of wintertime58

convection (Taylor & Ferrari, 2011) along with solar- (Sverdrup, 1953) and eddy-induced59

(Mahadevan et al., 2010, 2012) restratification. In addition to temporal changes, the60

existence of an energetic eddy field creates horizontal heterogeneity and patchiness61

in phytoplankton productivity and type (Martin, 2003; Lévy & Martin, 2013).62

Many approaches for characterizing plankton communities are too low-resolution63

— either spatiotemporally or in terms of the compositional information acquired —64
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to fully resolve important internal and external dynamics in marine ecosystems. Ge-65

nomic data from seawater sampled via bottle casts on a ship is limited by the deploy-66

ment frequency of the sampling rosette (hours). Conversely, bulk property sensor de-67

ployments such as fluorometers on profiling moorings can provide high-frequency mea-68

surements but lack fine plankton composition resolution.69

In contrast, automated imaging techniques can sample at high temporal reso-70

lution, with enough detail to resolve relevant taxonomic distinctions. The Imaging71

FlowCytobot (IFCB) (Olson & Sosik, 2007) uses flow cytometry integrated with video72

imaging to detect phytoplankton cells in seawater samples. The IFCB typically sam-73

ples automatically two to three times per hour, generating thousands of plankton im-74

ages per sample. Due to the high temporal resolution and information density, full75

manual review of IFCB datasets is impractical. Instead, classification typically pro-76

ceeds with machine learning-based classifiers. Ecologically relevant classification of77

IFCB images with machine learning algorithms such as convolutional neural networks78

(CNNs) has been well documented (Olson & Sosik, 2007; Olson et al., 2017; Camp-79

bell et al., 2010; Catlett et al., 2023; Peacock et al., 2014).80

The plankton community composition dynamics which generate image time se-81

ries are nonlinear, with high-dimensional and spatially heterogeneous (patchy) com-82

munities. These properties make data analysis challenging. Statistical tools such as83

Principal Component Analysis (PCA) and (non-)metric Multidimensional Scaling (NMDS84

and MDS) greatly reduce the dimensionality of the data while preserving part of the85

higher-dimensional structures and patterns. But some of these tools make unrealistic86

assumptions about how data are generated. For example, PCA assumes that obser-87

vations decompose into real-valued weightings of orthogonal eigenvectors, but actual88

underlying trends in communities need not be orthogonal. Other tools, like (N)MDS,89

may not make any generative assumptions at all, and provide a purely descriptive ap-90

proach to dimensionality reduction.91

Topic models offer an approximate but robust and interpretable alternative to92

classical dimensionality reduction approaches. Topic models are a class of Bayesian93

graphical model that factor the distribution of categorical observations with latent94

”topics”, which themselves represent distributions over observation categories. A key95

early topic model, the Latent Dirichlet Allocation model (David M. Blei et al., 2003),96

was originally used to model text documents. With a Bayesian inference algorithm,97

the Latent Dirichlet Allocation model converges on topics with semantic meaning, or-98

ganized by co-occuring clusters of words. The Real-time Online Spatiotemporal Topic99

(ROST) model extends the Latent Dirichlet Allocation model to operate on data with100

an associated spatiotemporal context (Girdhar et al., 2014). ROST alters inference101

so that the topic distribution at a particular point in spacetime incorporates infor-102

mation from nearby points (Girdhar & Dudek, 2015). This allows learned models to103

generate realistic spatiotemporal distributions for topics. The ROST model has been104

used to model distributions of corals and seafloor types from robotic surveys of coral105

reefs (Jamieson et al., 2021), and topics learned from a ROST model have been pre-106

viously shown to capture meaningful co-occurrence relationships from phytoplankton107

observation data (Kalmbach et al., 2017).108

Compared to standard dimensionality reduction based community modeling ap-109

proaches such as PCA and NMDS, topic models are more directly interpretable. PCA110

components are eigenvectors of the covariance matrix, and loadings for a given vari-111

able and component represent the correlation between them. But component weights112

for each observation may be arbitrary positive or negative real numbers. In fact, the113

location of data in the lower-dimensional space will only be a rotation and flattening114

of the high-dimensional data. NMDS embeddings are even less directly interpretable115

than PCA components. NMDS embedding dimensions do not directly correspond to116

any variables, and the values produced are non-quantitative. Further clustering anal-117
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ysis on NMDS embeddings can identify similar data points, but relationships between118

observed variables are still not directly encoded and must be inferred. In contrast,119

topic models produce both a distribution of topics over (space-)time, and a distribu-120

tion of variables within each topic. The distribution of variables within each topic is121

a valid categorical probability distribution, and the probabilities can be understood122

as relative abundances of a particular variable within a given community.123

In this paper, we use a Bayesian topic modeling approach to characterize sur-124

face plankton community variability, and uncover mechanisms by which disturbance125

influences that variability. We highlight how topic modeling augments a more tradi-126

tional NMDS-based approach to link specific co-occurrence patterns to observed sim-127

ilarities in data. With a pseudo passive tracer approach, we show that the learned topic128

model agrees with a storm-driven surface advection hypothesis for explaining plank-129

ton community variability inside a coherent North Atlantic eddy.130

2 Methods131

2.1 Survey site and timeline132

The Porcupine Abyssal Plain (PAP) sits near the transition zone between the133

North Atlantic subpolar and subtropical gyres (Henson et al., 2012; Chaudhuri et al.,134

2011; Eden & Willebrand, 2001). The presence of a long-term observatory at PAP,135

as well as continuous plankton recorder surveys across the region, provide a long his-136

tory of community level plankton data. This site was chosen for study in the EXport137

Processes in the Ocean from Remote Sensing (EXPORTS) 2021 spring campaign, which138

was focused on characterizing the processes controlling carbon flux in the vicinity of139

a mesoscale eddy (Johnson et al., 2023). An extensive eddy tracking campaign pre-140

ceded a three ship adaptive sampling effort, allowing for coordinated deployments of141

instruments and resolution of O(100 m) spatial variability.142

2.2 Data collection143

From May 5-21 2021, the R/V Sarmiento de Gamboa conducted sampling of a144

targeted retentive eddy (Figure 1a). With an Imaging FlowCytobot (McLane Reseearch145

Laboratories, Inc.) plankton imaging system sampling from the Sarmiento’s under-146

way seawater pump, images of surface plankton were taken approximately every 20147

minutes. These images were classified with a CNN to produce a time series of 50 dif-148

ferent plankton taxa concentrations. Niskin bottle samples from CTD casts were also149

run through an IFCB imaging system, but as the temporal resolution of these data150

is coarse (about 1 to 2 profiles per day), we do not analyze them in this paper.151

The EXPORTS field program targeted sampling within and around a single mesoscale152

eddy east of the PAP observatory (Johnson et al., 2023). Sophisticated real-time eddy153

tracking (Erickson et al., 2023) allowed data to be collected in an “eddy center” ref-154

erence frame, with multiple vessels and assets aimed at characterizing both the eddy155

center and the variability across the eddy.156

Temporal sampling was designed around three epochs of 7 to 10 day duration.157

These epochs were punctuated by four major storms that passed through the study158

site. This work will focus on data collected while the R/V Sarmiento de Gamboa was159

on site, which include epoch 1 and 2 and storms on May 7-11 and May 14-16. These160

two storms limited the ability of the three ships to sample near the target eddy at those161

times. Major analyses of temporal trends in community composition around the eddy162

are therefore structured around the impacts of these storms (Figure 1c).163

The North Atlantic is characterized by warm salty waters from the south and164

cold fresh waters from the north. The energetic eddy field stirs these waters, creat-165
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ing sharp variations in temperature and salinity around the eddy edges. Three sur-166

face water masses were identified near the survey site, distinguished primarily by spice167

(e.g. a measure of the temperature and salinity along density surfaces (McDougall et168

al., 2021)) and density. A surface core water mass is defined as water within 15km of169

the eddy center (hereafter referred to as core waters). For surface waters outside of170

the eddy, cold-fresh and warm-salty water masses are distinguished by a spice thresh-171

old of 2.1. A particularly relevant source of horizontal variability is a warm/salty (high172

spice) filament to the south east that is wrapped around the eddy periphery by the173

geostrophic flow; hereafter referred to as the “filament” (see Figure 1b). Further de-174

tails about water mass classification are given in Johnson et al. (2023). Johnson et175

al. showed that storm driven Ekman currents caused exchange between core water176

and surrounding water classes. In this work we focus on how that exchange impacted177

phytoplankton communities in the core waters of the eddy.178
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Figure 1. As part of the May 2021 EXPORTS North Atlantic field program, the R/V

Sarmiento de Gamboa performed extensive oceanographic sampling in and around a retentive

eddy in the northeast Atlantic ocean. (a) R/V Sarmiento de Gamboa cruise track, with date

indicated in color. Two clear deviations from the sampling plan reflect the ship’s avoiding of

a pair of storms during the cruise. The rectangle indicates the region pictured in Figure 1b.

(b) Satellite-derived sea surface temperature and sea surface height in the vicinity of the quasi-

retentive eddy, 13 May 2021. Gray stars represent all daily post-processed eddy centers during

May 2021, while the yellow star represents the eddy center on May 13. (c) The two main sam-

pling periods planned in advance of the cruise (Epoch 1, May 1-10, and Epoch 2, May 11-20)

were interrupted by storm activity.

2.3 Plankton images and classification179

Regions of Interest (ROIs) extracted from IFCB images were classified with a180

CNN-based classifier. The CNN sorted each ROI into one of 50 different classes dis-181

tinguished morphologically (Orenstein et al., 2015). Of these taxa, two (bead and bub-182

ble) are grouped into the “artifacts” category, and five (detritus, detritus transparent,183
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detritus theca fragment, fecal pellet, and fiber) are grouped into ”Other not alive”.184

ROIs classified into these categories were removed from the data prior to analysis. An185

additional taxon, nanoplankton mix, contained ROIs of miscellaneous nanoplankton.186

Topic models learned with miscellaneous nanoplankton excluded tended to infer more187

distinguishable topics. In the interest of improving community composition analysis188

with topic models, these data were also excluded from further analysis.189

2.4 NMDS embeddings190

NMDS analyses were run with three different dissimilarity matrices. Bray-Curtis191

dissimilarity was used with direct plankton count data, and KL divergence was used192

on plankton relative abundance data and ROST model topic proportions. The scikit-learn193

python package’s NMDS ordination algorithm was used to calculate lower-dimensional194

embeddings. Three initialization strategies were compared: random initialization, ge-195

ographic initialization, PCA initialization, and higher-dimensional NMDS initializa-196

tion. Initialization of the embeddings with principle coordinates from a PCA analy-197

sis resulted in the lowest stress of all strategies, and was used for all further analyses198

in this paper. NMDS ordinations were used to generate 2D embeddings, to facilitate199

visualization and further analysis.200

2.5 Topic modeling201

A ROST model was trained to produce four topics from plankton relative abun-202

dance data. Training was done using the rost-cli command line program for 1000203

epochs, with Dirichlet hyperparameters α = 0.001 and β = 0.001. Most values of204

Dirichlet hyperparameters below 1.0 produced qualitatively similar results, so no rig-205

orous hyperparameter search was performed. The most important hyperparameter206

for model quality was the number of topics, K. We chose four topics for the analy-207

sis in the rest of the paper, as it effectively captures much of the increase in model208

accuracy over the bulk of the cruise without including too many negligible communi-209

ties. Specifically, four topics is the largest number for which each topic has a distinct210

dominant taxon (plurality relative abundance). With 5 or more topics, the ROST model211

consistently identified at least 2 topics with a shared dominant taxon. By choosing212

four topics, the ROST model is forced to identify the primary co-occurrence pattern213

associated with each of the most common taxa, instead of spreading co-occurrence214

patterns among multiple topics which causes identifiability issues.215

The ROST model (Figure 2) assumes data are produced by a generative pro-
cess linking each categorical observation of a single plankton to latent (unobserved)
assemblages or communities of taxa. Every location in space-time is associated with
a particular distribution over communities. To generate an observation, first a com-
munity is randomly chosen for that observation. Then, that community’s relative abun-
dances are used as probabilities to choose the observed taxon. As both community
relative abundances and the spatiotemporal distributions of communities are jointly
learned by the model, we infer an effective relative abundance of all plankton taxa
at every location containing observations. By comparing this inferred relative abun-
dance to the actual relative abundances, we can quantify the accuracy of a set of learned
communities. The Kullbach-Liebler (KL) divergence measures the difference between
two probability distributions. Formally, the KL divergence is the expected log like-
lihood ratio between two distributions P and Q, if an observation is actually drawn
from P :

DKL(P ||Q) = Ex∼P

[
log

(
P (x)

Q(x)

)]
For absolute and relative abundance data, Bray-Curtis dissimilarity provides a quan-
tifiable measure of the difference between observations. In terms of the relative abun-
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Figure 2. A spatiotemporal topic model factors the distribution of categorical observations

in spacetime into a pair of latent distributions. One latent distribution, the “community model”,

represents a series of communities or topics, each of which is itself a distribution over observa-

tion types. The other latent distribution, the spatiotemporal model, represents the probability

of finding each topic at any point in spacetime. By multiplying the spatiotemporal model by the

matrix community model, we can recover a spatiotemporal distribution over observation types

with significantly fewer parameters and desirable structural properties such as sparseness and

robustness to rare observation types.

dance, we can calculate it as follows:

DBC(P ||Q) = 1−
∑
x

min (P (x), Q(x))

Bray-Curtis dissimilarity is bounded to be between zero and one, and unlike DKL it216

is symmetric. We primarily use DKL to compare probability distributions. However,217

for calculation of dissimilarity matrices as an initial step in other analyses, we also218

use DBC .219

2.6 Water mass mixing220

To quantify the extent to which storm events caused surface water mass mix-221

ing, we consider the observed plankton concentrations to be ideal (passive) tracers222

and calculate how close a given sample is to a sample from a mixture of the water masses.223

First, we take the mean concentration of each taxon in each water mass sampled be-224

fore the first storm. These are mixed in varying ratios, and normalized to produce a225

mean mixture relative abundance, representing the hypothetical community of a mix-226

ture of the mean of each water mass. At each point between the two storms when the227

eddy water mass is sampled, we calculate the mean mixture relative abundance with228

the lowest KL divergence to the observed relative abundance. Zero KL divergence im-229

plies that a sampled point’s community can be perfectly represented as a mixture of230

the mean communities seen before the storm. High KL divergence implies that a mix-231

ture model is a poor fit for the data, and the observed community variability likely232

has another mechanism (such as vertical mixing or biological dynamics).233
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3 Results234

3.1 NMDS embedding of observed plankton taxa235

NMDS embeddings from a Bray-Curtis dissimilarity matrix calculated with plank-236

ton taxon relative abundance data (Figure 3) highlight how the eddy becomes more237

similar to the filament water mass after the first storm. Separating the observations238

by epoch and water mass (Figure 3a) identifies a tight cluster of observations for the239

core water mass in epoch 1. From epoch 1 to epoch 2, the core water mass cluster cen-240

troid becomes more negative along the x component, and more positive along the y241

component. Additionally, the core surface waters get saltier over the same timespan242

(Figure 3b). This also represents a mean shift of the eddy towards the filament. These243

results support a mixing/advective source of plankton variability in the core. This is244

consistent with results from Johnson et al. (2023), which suggests wind driven Ek-245

man transport advected warm salty water from the filament into the 15 km radius246

around the eddy center.247
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Figure 3. (a) Two-dimensional NMDS embedding of plankton relative abundance data. (b)

Temperature-salinity diagram. Stars mark group means for the water mass/epoch combinations

listed in the legend. The grey arrow indicates the change in the eddy water mass mean from

epoch 1 to epoch 2.

3.2 Community variability inferred by ROST model248

Topic models represent co-occurrence patterns as a topic, i.e. a probability dis-249

tribution over observation categories. These topics are directly interpretable as rep-250

resenting a hypothetical relative abundance matching the co-occurrence pattern, with251

real observations being drawn from a mixture of these hypothetical abundances. Look-252

ing at these patterns temporally (Figure 4) highlights the high variability of commu-253

nity 1. Community 1’s relative abundance varies from more than 60% at the peak dur-254

ing epoch 1, to completely absent a few days later during the first storm. This corre-255

sponds to a Pseudo-nitzschia-dominated community (Figure 5) highly present inside256
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the eddy, especially during epoch 1, but relatively low-proportion far away from it.257

We proceed by breaking out the community relative abundances in both space and258

time (Figure 6 and Table 1), in order to characterize broad patterns in community259

distributions during the cruise.260

Community 1 can be identified with initial Pseudo-nitzschia bloom conditions261

inside the eddy. From the initial high proportion in the eddy, community 1 propor-262

tions decrease with distance before the first storm and sharply decreases with time263

after the first storm inside the eddy.264

Community 2, dominated by Dinophyceae morphotype3, starts at a low 4% rel-265

ative abundance inside the eddy, and increases throughout the cruise, ending at a mean266

eddy relative abundance of 13%. The concentration of this community peaks at 81%267

far away from the eddy during the first storm excursion.268

Community 3 contains a plurality of Dinophyceae. Its relative abundance inside269

the eddy increases throughout the cruise, from about 10% at the start to about 45%270

at the end. However, these are strictly lower than the abundances seen far from the271

eddy. The highest abundances of this community are seen far from the eddy at all times.272

Community 4 has the highest relative abundance of the pennate taxon. Inside273

the eddy, this community has three distinct relative abundances before, between, and274

after the two storms, with the mean peaking between the two storms. The distribu-275

tion is similar just outside the eddy, with lower proportions than inside the eddy. The276

highest relative abundances of this community are seen during the first storm excur-277

sion, as well as inside the eddy between the storms. These peaks are just under 20%,278

however.279

These communities learned by the topic model are highly informative about the280

water masses sampled, but do not match the water masses exactly. This suggests that281

water mass variability is linked to (but not the only driver of) plankton community282

variability in the region surveyed.283

Overall, the communities seen in the eddy shift markedly over time, transition-284

ing from a Pseudo-nitzschia dominated diatom bloom to a more mixed community.285

Community 1 (the only community with a significant proportion of Pseudo-nitzschia)286

makes up 84% of the mean community proportions seen in the core in epoch 1, but287

in epoch 2 it decreases to 42%. All other communities increase in the core from epoch288

1 to epoch 2, with communities 2 and 4 reaching a maximum between the storms and289

community 3 increasing throughout the cruise.290

3.3 Topic models decompose compositonal impacts of water mass mix-291

ing292

The ROST communities inferred in the eddy after the first storm resemble a mix-293

ture of the communities in the eddy and filament before the first storm (Figure 3a),294

further supporting the notion that mixing and/or advection during the storm are pri-295

mary drivers of plankton variability in the eddy. In epoch 1, the eddy is dominated296

by the Pseudo-nitzschia bloom of community 1 (Figure 7b), while the filament is dom-297

inated by community 3, which is primarily Dinophyceae morphotype3 (Figure 7a). Later298

in the cruise, the community distribution in the eddy shifts to be less dominated by299

community 1 (the bloom community). Instead, the community distribution represents300

more of a mixture of the community distribution in the eddy and the filament from301

epoch 1 (Figure 7c). Johnson et al. (2023) showed that Ekman currents during storm302

1 flushed approximately 73% of the surface core waters that were replaced with warm/salty303

waters outside the eddy.304
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Figure 4. The relative abundance of topics (“communities”) inferred by the ROST model

versus time over the cruise.
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Figure 6. Sptial distribution of proportions for (a-e) Community 1, (f-j): Community 2, (k-o):

Community 3 proportions,and (p-t) Community 4 proportions. All panels aggregate data from

one of five time periods indicated in Figure 1c and presented left-to-right: Before the first storm,

during the first storm, between the two storms, during the second storm, and after the second

storm. The mean eddy center and extent (15 km boundary) are marked with a red cross and a

circle, respectively. Due to wide deviations in the cruise track during the storms, the second and

fourth columns each have their own latitude and longitude bounds. The first, third, and fifth

columns share the same latitude and longitude bounds.
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Table 1. Mean community proportions by time and location

Cruise period Location Com. 1 Com. 2 Com. 3 Com. 4

Before storm 1a Insidef 0.840351 0.039149 0.102889 0.017611
Nearg 0.651984 0.177954 0.135293 0.034770
Farh 0.141668 0.114440 0.679642 0.064251

Storm 1b Nearg 0.451712 0.225081 0.216624 0.106584
Farh 0.082952 0.081422 0.658297 0.177329

Between stormsc Insidef 0.422649 0.081400 0.336334 0.159617
Nearg 0.250780 0.085952 0.532940 0.130328
Farh 0.030553 0.217530 0.681103 0.070815

Storm 2d Farh 0.034290 0.225775 0.662466 0.077469

After storm 2e Insidef 0.320021 0.133385 0.468161 0.078433
Nearg 0.116105 0.103529 0.701524 0.078842
Farh 0.021195 0.155310 0.766571 0.056924

aMay 5-7 bMay 8-12 cMay 13-14 dMay 15-17 eMay 18-20 f<15 km g15-45 km h>45 km

To better highlight the role mixing plays in altering plankton community struc-305

ture, we considered an end-member mixing scenario in which the three water masses306

(core/eddy, warm_salty/filament, and cold_fresh) are mixed in proportions adding307

to one. Mean plankton concentrations observed before the first storm are treated as308

ideal (passive) tracers, and the mixed concentrations are normalized to produce an309

ideally mixed community. For each set of observations taken inside the eddy between310

the two storms (i.e., after the first storm but before the second storm), the mixture311

community with the smallest Kullback-Leibler divergence to the observed community312

at that time was determined (Figure 7d).313

The mixing analysis suggests that surface advection drives the warm-salty wa-314

ter mass into the waters above the eddy core. Plankton taxon distributions in the north-315

west of the eddy seen after the first storm (Figure 7e) closely resemble the mean warm-316

salty water mass community seen before the storm. East and north-east of the eddy317

center, post-storm observations resemble none of the pre-storm mean communities.318

Observations near the eddy center, as well as north and south of it, closely resemble319

mixtures of pre-storm communities in all water masses.320

Analysis of shifts in eddy and filament plankton community composition sug-321

gest that water mass mixing may be a significant driver of plankton community vari-322

ability specifically inside the eddy. Before the first storm, the eddy is dominated by323

a Pseudo-nitzschia bloom, which the topic model represents as a single community324

dominating over 80% of the eddy plankton community composition. After the first325

storm, the eddy has a significantly lower proportion of that community, especially near326

the northwestern edge. There the bloom community is partially succeeded by com-327

munity 4. Water mass mixing results show that those points with the highest frac-328

tion of the warm/salty water mass have the highest proportion of community 3, with329

the linear fit (Figure 7f) having an r2 of 0.986.330
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Figure 7. (a-c) The proportions of each community in the filament during epoch 1, the eddy

during epoch 1, and the eddy during epoch 2 respectively. Colors indicate the same communities

as in Figure 4. (d) A water mass mixing analysis, where the closest water mass mixture to each

observation taken in the eddy during epoch 2 is plotted on a 3-component simplex. The three

coordinates on the simplex are x (the eddy water mass fraction), y (the filament water mass

fraction), and 1 − x − y (the cold-fresh water mass fraction). (e) Observations made in the eddy

during epoch 2. (f) The relative abundance of community 3 versus the fraction of the warm/salty

water mass assigned to each point in the eddy in epoch 2. A linear fit has an r2 of 0.986. In (d-

f), color indicates the KL divergence between the observed plankton distribution in epoch 2 and

the lowest KL-divergence distribution of all possible water mass mixtures in epoch 1. Red circles

indicate points with a filament fraction above 0.8.
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4 Discussion331

4.1 Topic models provide a quantitative and interpretable decompo-332

sition333

The NMDS analysis (Figure 3a) suggests that after the first storm, the eddy sur-334

face plankton community became more like the epoch 1 filament community. How-335

ever, the abstract nature of the NMDS embedding precludes an immediate deeper anal-336

ysis of the nature of that change. We could, for example, find correlations between337

the NMDS components and plankton concentrations for various taxa. But NMDS em-338

bedding magnitudes and distances do not have any intrinsic meaning. Instead of quan-339

titative analysis, an ordination technique such as NMDS would generally be followed340

by a qualitative study of correlation with other variables or clustering within the em-341

beddings (Clapham, 2011).342

In contrast, topic models directly support quantitative claims about changes in343

plankton relative abundance. The topic model’s communities represent point estimates344

of relative abundances for each plankton taxon considered in the model. We can there-345

fore inspect spatiotemporal distributions of each community (Figure 6), analyze trends346

in mean community proportions (Table 1), and model linear relationships between347

these communities and other hypothetical relative abundance distributions (Figure348

7f). The inherent interpretability of topic models also allows for more immediate di-349

agnosing of the nature of major trends seen in data. Consider the temporal distribu-350

tion of community 1 (Figure 4), along with its associated taxon probabilities (Figure351

5). We can immediately spot that community 1 represents a high Pseudo-nitzschia352

abundance, and by looking at its spatial distribution (Figure 6a-e) we conclude that353

a major source of plankton variability during the cruise was a Pseudo-nitzschia bloom354

in the eddy that dissipated somewhat after the first storm. These kinds of inferences355

are not possible solely with ordination techniques like NMDS; at a minimum, further356

processing and analysis of the NMDS output is required.357

4.2 Rapid bloom dissipation points to extreme event358

Friedland et al. (2018) found that dominant seasonal phytoplankton blooms last359

on the order of weeks to months across the globe. However, the rather dramatic shift360

in eddy plankton community composition (from a community dominated by Pseudo-361

nitzschia to a richer community with higher concentrations of other diatoms) occurred362

over several days of stormy weather. The speed with which the eddy shifted away from363

a bloom state suggests that the driver of the change may have been an extreme event364

not well represented by the predominant bloom dissipation mechanisms previously365

described.366

4.3 Upwelling hypothesis and trends in surface chlorophyll367

Painter et al. (2016) use a particular North Atlantic storm to highlight how storms368

structure post-storm plankton communities by enhancing upwelling. This enhanced369

upwelling brings nutrients to the euphotic zone, setting up conditions for a bloom.370

Liu and Tang (2018) suggest that this mechanism is responsible for observed post-371

typhoon chlorophyll fluorescence increases in anti-cyclonic eddies in the South China372

Sea. In contrast, we found a decrease in chlorophyll fluorescence, with high statisti-373

cal significance (although low r2) over the course of the cruise (Figure 8a). If the sur-374

face was already in the middle of a bloom, we might not expect an increase in pro-375

ductivity. But the observed decrease in chlorophyll fluorescence goes against bloom376

dynamics being controlled primarily by storm-driven upwelling. Additionally, the mixed377

layer in the eddy deepened during the storm (Figure 8c). While this points to enhanced378

vertical mixing, the upper water column has fairly high relative abundance of Pseudo-379
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Figure 8. (a) Eddy surface chlorophyll fluorescence versus time during the cruise. Black tri-

angles indicate mean of a color, and the black lines indicate one standard deviation. The line of

best fit for all data is indicated in black. (b) Distance to eddy center (km, log scale) versus day

of month, with Pseudo-nitzschia relative abundance in color. (c) CTD cast Niskin bottle depth

(m) with 1D model eddy mixed layer depth (m), with Pseudo-nitzschia relative abundance in

color.

nitzschia in the eddy before the first storm. Simple dilution through the mixed layer380

would not account for the observed decrease in Pseudo-nitzschia relative abundance.381

4.4 Storm-driven advection and stirring control plankton variability382

We previously argued that the speed with which the eddy transitioned away from383

the Pseudo-nitzschia bloom community is uncharacteristic of traditional plankton bloom384

dynamical timescales (section 4.2). We also found evidence against a vertical mixing385

mechanism for the observed changes in eddy plankton community composition. In-386

stead, our results suggest that horizontal stirring and advection were a major mech-387

anism driving changes in the eddy community. Several observations taken inside the388

eddy during epoch 2 have plankton communities closely linked to the filament water-389

mass (Figures 7d and 7e). These observations, which have among the lowest kl di-390

vergence to the closest water mass mixture of all the observations made during epoch391

2, likely represent storm-driven advection of filament water into the northwest corner392

of the eddy. Some data points in the north, center, and south of the eddy are also fairly393

well represented as mixtures, with most of the lowest KL-divergence observations found394

at or near the eddy-filament mixture line (Figure 7d). We can infer that advection395

likely carried filament plankton communities into the eddy, displacing the bloom com-396

munity there before the storms. This aligns with Johnson et al. (2023), who found397

that surface advection and stirring during the storms altered eddy surface tempera-398

ture and salinity.399
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4.5 Limitations and future work400

This work serves as a demonstration of the successful use of topic modeling for401

marine plankton ecology, but we do not make any quantitative contrasts between topic402

models and more traditional dimensionality reduction approaches. The different na-403

ture of the outputs of different methods (probability distributions in topic models ver-404

sus real numbers in NMDS/PCA/etc.) makes direct comparison and evaluation dif-405

ficult, even though they operate on similar kinds of data. Some of these alternative406

dimensionality reduction and ordination techniques may offer more quantitative or407

interpretable outputs.408

Our analysis of topic modeling on its own similarly does not quantitatively ex-409

plore the impacts of the different ROST hyperparameters on the quality or fit of the410

resulting embeddings. As with other dimensionality reduction techniques, increasing411

the number of dimensions (topics) in the model improves the fit at the expense of model412

interpretability and simplicity. The other two hyperparameters control the shape of413

the prior distribution, and given enough time their impact is washed out in the in-414

ferred posterior. The structure of the data likely play a role in determining the im-415

portance of all of these hyperparameters, and particularly the sensitivity to the prior416

distribution. We found that for the plankton data presented here, the prior hyperpa-417

rameters did not meaningfully impact the visual quality or KL divergence of the re-418

sulting community distributions when varied over several orders of magnitude.419

Understanding the full scope of spatiotemporal variability requires better reso-420

lution of subsurface plankton communities, as well as decoupling surface spatial and421

temporal observations. IFCBs onboard the other two ships in the field campaign col-422

lected surface and CTD cast plankton imagery.423

5 Conclusion424

In this paper, we demonstrated the power of topic modeling as a tool for un-425

covering community variability in marine plankton. The 2021 North Atlantic EXPORTS426

field campaign produced a large quantity of high-resolution phytoplankton image data427

which allow for the resolution of fine-scale spatiotemporal variability in surface phy-428

toplankton communities. By using topic models to infer latent plankton co-occurrence429

patterns, we discovered that storm-driven advection was a likely source of surface vari-430

ability in community structure. Notwithstanding the extreme simplification of treat-431

ing plankton as pseudo passive tracers, we found strong correlations between a par-432

ticular co-occurring plankton community and advection of warm, salty water into the433

eddy. These findings highlight the power of topic modeling as a tool for ecological anal-434

ysis, particularly in the face of large amounts of spatiotemporally-distributed cate-435

gorical data. As the resolution and processing power of in-situ imaging systems con-436

tinues to grow, we foresee an important role for topic models in improving our un-437

derstanding of marine ecological variability.438

Acronyms439

IFCB Imaging Flow Cytobot, a high-throughput plankton imaging system that uses440

flow cytometry and microfluidics to take pictures of phytoplankton precisely441

when they are in focus of a camera lens442

ROST Real-time Online Spatiotemporal Topic model, a Bayesian model for the dis-443

tribution of categorical information in space-time444

CNN Convolutional Neural Network, a neural network architecture which pools data445

spatially and has been widely applied to image classification tasks446

PCA Principal Component Analysis, a statistical technique where a data matrix is447

decomposed into its eigenvectors to capture major sources of variation448
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NMDS Non-metric Multi-Dimensional Scaling, a statistical technique for dimension-449

ality reduction which attempts to preserve structural relationships from high450

dimensions in lower-dimensional embeddings451

PAP Porcupine Abyssal Plain, a region of the seafloor in the northeast Atlantic south-452

west of Ireland453

EXPORTS EXport Processes in the Ocean from Remote Sensing, a NASA field cam-454

paign to study carbon export in the Earth’s oceans455

ROI Region of Interest, a portion of an image extracted for further classification456

KL Divergence Kullback-Liebler Divergence, a statistical measure of the difference457

between two probability distributions458

Open Research Section459

Raw data and products from the NASA EXPORTS program can be found at460

https://seabass.gsfc.nasa.gov/. IFCB images and machine learning labels can461

be found at https://ifcb-data.whoi.edu/. The code for ROST can be found at https://462

gitlab.com/warplab/rostpy.463
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