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Abstract

This study introduces five linear regression models developed to accurately predict proton intensities in the critical energy range

of 92.2 keV to 159.7 keV. To achieve this task we utilized 14 years of data sourced from the Cluster’s RAPID experiment and

NASA’s OMNI database. This data was then aligned with the Solar wind-Magnetosphere-Ionosphere Link Explorer (SMILE)

mission’s trajectory, to increase model accuracy in the relevant regions. Our approach diverges from existing methodologies

by offering a user-friendly model that doesn’t require specialized software, making it accessible for broader applications in

satellite mission planning and risk assessment. The research segregates the dataset into four distinct regions, each analyzed for

proton intensity dynamics. In the outer regions (|YGSE| [?] 6 Re) there is a pronounced dependence on radial distance and

solar wind speed. In contrast, the inner regions (|YGSE| [?] 6 Re) demonstrate a significant dependence of proton intensities

on the absolute value of the z-coordinate and the magnetic field line topology. Our models achieved a Spearman correlation

ranging from 0.57 to 0.72 on the test set, indicating good predictive capabilities. The findings emphasize the role of regional

characteristics in space weather prediction and underscore the potential for tailored approaches in future research.
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Key Points:6

• Developed models predict proton intensities impacting satellites, aiding space weather7

forecasting and mission planning.8

• Different regions in space showcase distinct relations between proton intensities9

and predicting parameters.10

• Study findings highlight the importance of tailored approaches in space weather11

prediction.12
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Abstract13

This study introduces five linear regression models developed to accurately predict pro-14

ton intensities in the critical energy range of 92.2 keV to 159.7 keV. To achieve this task15

we utilized 14 years of data sourced from the Cluster’s RAPID experiment and NASA’s16

OMNI database. This data was then aligned with the Solar wind-Magnetosphere-Ionosphere17

Link Explorer (SMILE) mission’s trajectory, to increase model accuracy in the relevant18

regions. Our approach diverges from existing methodologies by offering a user-friendly19

model that doesn’t require specialized software, making it accessible for broader appli-20

cations in satellite mission planning and risk assessment. The research segregates the dataset21

into four distinct regions, each analyzed for proton intensity dynamics. In the outer re-22

gions (|YGSE| ≥ 6Re) there is a pronounced dependence on radial distance and solar23

wind speed. In contrast, the inner regions (|YGSE| ≤ 6Re) demonstrate a significant24

dependence of proton intensities on the absolute value of the z-coordinate and the mag-25

netic field line topology. Our models achieved a Spearman correlation ranging from 0.5726

to 0.72 on the test set, indicating good predictive capabilities. The findings emphasize27

the role of regional characteristics in space weather prediction and underscore the po-28

tential for tailored approaches in future research.29

Plain Language Summary30

We developed a new model to predict space weather, specifically focusing on pro-31

ton intensities, which can impact how well satellites work in space. We used 14 years of32

space observations to create five easy-to-use numerical models. These models are designed33

to help with planning and protecting future satellite missions, such as the upcoming SMILE34

mission, from space weather effects. In our study, we looked closely at different areas in35

space around Earth. We found that in the outer areas (|YGSE| ≥ 6Re), the distance36

from Earth and the speed of the solar wind are important for understanding proton be-37

havior. However, in areas (|YGSE| ≤ 6Re), the height above Earth (measured along38

the z-direction) and the type of magnetic field lines play a more significant role. This39

shows us that different areas in space around Earth can be affected by space weather in40

different ways. Our models did a good job of predicting these effects, showing that choos-41

ing a tailored approach can be useful when forecasting proton intensities.42

1 Introduction43

Space weather events, driven by solar activities pose significant challenges to satel-44

lite operations and measurements. Notable examples include the European Space Agency’s45

(ESA) Cluster and X-ray Multi-Mirror (XMM-Newton) missions. The Cluster mission,46

particularly its Research with Adaptive Particle Imaging Detector (RAPID)/Imaging47

Electron Spectrometer (IES), has encountered challenges due to high proton intensities48

leading to measurement contamination (Wilken et al., 1997; Kronberg et al., 2016; Kro-49

nberg, Daly, et al., 2021). Similarly, the X-ray telescope aboard the XMM-Newton space-50

craft experienced significant operational disruptions, with approximately 40% of its ob-51

servation time compromised due to background contamination (Walsh et al., 2014). Fur-52

thermore, investigations into the XMM-Newton telescope’s susceptibility to soft protons53

highlight proton intensities in the sub-100 to 300 keV range, particularly around 100 keV,54

as the most damaging, leading to significant operational challenges and data contam-55

ination, see (Fioretti et al., 2016) and references therein.56

The upcoming European-Chinese Solar wind-Magnetosphere-Ionosphere Link Ex-57

plorer (SMILE) mission (Branduardi-Raymont et al., 2018), slated for launch in 2025,58

aspires to deepen our understanding of the Sun-Earth interaction, decoding space weather59

hazards and understanding energy entry into Earth’s magnetosphere. While missions like60

ATHENA (Advanced Telescope for High Energy Astrophysics), which will maintain an61

orbit around the L2 Lagrange point with a continuously large distance to Earth, are ex-62
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pected to face minimal threats from soft protons (Perinati et al., 2024), SMILE with its63

highly inclined elliptical orbit around earth, akin to that of Cluster and XMM-Newton,64

will navigate through diverse magnetospheric regions, making it susceptible to soft pro-65

ton radiation. Particularly its Soft X-ray Imager (SXI) telescope, presents challenges con-66

cerning radiation exposure (Raab et al., 2016; Branduardi-Raymont & Wang, 2022). There-67

fore a critical component of achieving SMILE’s objectives is the accurate prediction of68

proton radiation levels, which significantly affect the Total Ionizing Dose (TID) and To-69

tal Non-Ionizing Dose (TNID) absorbed by the Charge-Coupled Devices (CCDs) of the70

Soft X-ray Imager (SXI) (Hubbard et al., 2024). In recent discussions (M. Hubbard, per-71

sonal communication, 2023) the necessity for models that accurately estimate radiation72

levels was emphasized, particularly in critical energy ranges below 300 keV, crucial for73

the SMILE mission’s success. A strong preference for models that are not only accurate74

but also straightforward and interpretable was expressed.75

To meet these needs, our study adopts a distinct approach compared to existing76

research, which is based on machine learning black box models, such as the works of Kronberg77

et al. (2020) and Kronberg, Hannan, et al. (2021). We aim to develop a simple, user-friendly78

linear regression model leveraging data from the Cluster mission and NASA’s OMNI database79

(King & Papitashvili, 2005). Our model’s simplicity and ease of use make it accessible80

to a broader range of users, not requiring specialized software or extensive computational81

resources. This approach not only contributes to the scientific understanding of space82

weather phenomena but also offers practical tools for satellite mission planning and risk83

assessment.84

2 Data Analysis and Processing85

2.1 Data Preparation: Adapting CLUSTER’s Dataset for the SMILE86

Mission’s Trajectory87

The proton intensity data for this research was taken from the Cluster’s RAPID88

experiment, ranging from 2001 to 2015. The experiment captures 3-D energetic electron89

and ion fluxes above approximately 30 keV using the Imaging Electron Spectrometer (IES)90

and the Imaging Ion Mass Spectrometer (IIMS) instruments. Situated in the SCENIC91

detector head, the IIMS instrument identifies ion energies and species. The methodol-92

ogy involves using start and stop signals produced from electrons emitted by an initial93

thin foil on the solid-state detector’s surface. The time-of-flight (TOF) between these94

signals, combined with the known energy, discerns the species and energy channel (Daly95

& Kronberg, 2023). This study specifically uses data from the p3 channel, targeting pro-96

ton intensities between 92.2 keV and 159.7 keV. As predicting parameters for solar, so-97

lar wind and geomagnetic activity we used variables from the OMNI database(https://98

omniweb.gsfc.nasa.gov/), see also King and Papitashvili (2005).99

Aiming for a model tailored to the SMILE mission’s trajectory (see Figure 1), data100

filtering was imperative. Points not adhering to the following spatial parameters were101

excluded: −10.5Re ≤ x ≤ 11.2Re; −10.8Re ≤ y ≤ 11.5Re; z ≤ 18.5Re;
√

x2 + y2 ≤102

11.6Re;
√
x2 + z2 ≤ 19.8Re;

√
z2 + y2 ≤ 20.0Re. These constraints were chosen by103

rounding the maxima and minima of the spatial parameters to the nearest tenth. As a104

result, we were left with a trimmed dataset, reduced from 1,172,923 to 462,615 data points.105

Though compact, this dataset is centered on the space region significant for SMILE, promis-106

ing heightened model accuracy. It’s noteworthy that negative z-values weren’t excluded,107

considering the SMILE mission’s highly inclined, elliptical orbit, which dips to -3.5 Re.108

Omitting these would disregard vital data, especially since the Cluster’s trajectory spent109

a notable amount of time in the southern hemisphere.110
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Figure 1. SMILE mission’s trajectory. Distinct colors represent individual years with Earth,

having a radius of 6,731 km, at the center.

2.2 Predictor Introduction111

The spacecraft’s location in the Geocentric Solar Ecliptic (GSE) coordinate sys-112

tem is defined by x, y, and z in Earth radii (Re). The variable rdist denotes the satel-113

lite’s radial distance from Earth. The magnetic field line type, termed as ”Foot Type”,114

indicates the connectivity of the IMF field lines to Earth, calculated using the Tsyganenko115

(1995) model. The initial definition stated by Kronberg et al. (2020) is as follows: the116

interplanetary magnetic field lines (IMF) with no connection to Earth have Foot Type117

0, open magnetic field lines with one connection to Earth have Foot Type 1, and closed118

field lines with both ends connected to Earth have Foot Type 2. It was, however, decided119

to redefine the IMF to 1 and open field lines to 0, to achieve a stronger linear relation-120

ship between Foot Type and the target variable, as discussed in chapter 2.3.2.121

The Disturbance storm time index (Dst index) characterizes geomagnetic storms122

in the unit nT (Banerjee et al., 2012). The Auroral Electrojet (AE index) quantifies mag-123

netic activity in the auroral zone, also denoted in nT. The 10.7 cm solar radio flux (F10.7)124

with unit sfu serves as a solar activity level indicator and a proxy for solar emissions (Tapping,125

2013).126

The IMF direction is described by its components BimfxGSE, BimfyGSE, and BimfzGSE127

in the GSE system in nT. The IMF direction at the magnetopause determines if recon-128

nection happens on the dayside (Crooker et al., 1979; Luhmann et al., 1984; Koga et al.,129

2019). Plasma properties of the solar wind are described by Solar wind speed (VSW) in130

km/s, proton density (NpSW) in cm−3, and temperature (Temp) in K. The direction of the131

solar wind velocity is described by VxSW GSE, VySW GSE, and VzSW GSE. The solar wind132

dynamic pressure, Pdyn (nPa), can be represented as:133

–4–
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Pdyn = NpSW ∗ VSW2 ∗ 1.67 ∗ 10−6 (1)

2.3 Exploratory Data Analysis134

2.3.1 Spatial Proton Intensity Distribution135

To analyze the proton intensity distribution in relation to the spacecraft’s trajec-136

tory, we combined the y and z coordinates to produce a radial distance variable, termed137

yz axis. We introduced this variable because Cluster’s trajectory is predominantly in138

the southern hemisphere, contrasted with SMILE’s expected northern trajectory. The139

yz axis is computed by
√
y2 + z2, offering a simplified yet informative perspective on140

proton intensity’s spatial distribution. Figure 2 depicts the spatial distribution of pro-141

ton intensities in the x,
√
y2 + z2 coordinate system. The color gradient represents the142

percentage of measurements that exceed 2, the mean value of log10(proton intensities)143

rounded to one significant digit, highlighting regions with prolonged high proton inten-144

sities. The central black void indicates missing measurements. This gap arises from our145

deliberate exclusion of data points with radial distances (rdist) below 6 Earth radii (Re)146

in order to emphasize regions beyond the radiation belts. Historically, proton intensi-147

ties surge in zones under 6 Re, which encompass the ring current and radiation belt re-148

gions. Our focus shifts to lesser-studied areas, with their generally lower intensities out-149

side of the radiation belts, mainly because the SXI telescope on the SMILE mission is150

equipped with a shutter mechanism, protecting its Charge Coupled Devices (CCD) from151

intense radiation within the radiation belt. The decline in proton intensities with increased152

distance from Earth is observed, irrespective of whether it’s along the x axis or the y-153

z plane. This observation aligns with subsequent feature plots and correlation matrix154

analyses. Moreover, this analysis reveals areas along closed magnetic field lines with height-155

ened proton intensities, as well as sparser regions corresponding to open magnetic field156

lines over the polar cap, demonstrating a clear spatial correlation between magnetic field157

line configuration and proton intensity distribution.158
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Figure 2. (Left) Heatmap of proton intensities against the x-coordinate and
√

y2 + z2. The

color gradient represents the percentage of measurements where log10(proton intensity) > 2,

which is the mean value rounded to one significant digit. (Right) Data point density for each bin,

with the blue line representing the magnetopause, derived using Shue et al. (1997). Both plots

incorporate the 462,615 data points post-reshaping for the SMILE mission.

2.3.2 Cross-Correlation and Feature Plot Analysis159

Cross-correlation matrices, employing the Pearson coefficient, are used in feature160

selection for linear regression models. The coefficient quantifies the linear relationship161
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strength and direction between two variables, spanning from -1 (perfect negative rela-162

tionship) to 1 (perfect positive relationship), with 0 indicating no linear correlation. Such163

analyses illuminate potential multicollinearity issues in datasets, which can adversely af-164

fect regression coefficient stability and model interpretability (Raschka et al., 2022; James165

et al., 2013).166

Analyzing the cross-correlation matrix (Figure 3), we observed:167

• FootType: The feature plot in Figure 4 highlighted a clear potential for refining168

the correlation between FootType and p3. The initial positive correlation of 0.24169

with p3 was improved to 0.41 upon redefining the foot type as mentioned in sec-170

tion 2.2.171

• AE index: While the correlation was weak (0.07), the feature plot identified AE172

values surpassing 2600 nT as possible outliers.173

• F10.7 solar radio flux index: Given its correlation coefficient of -0.20, the feature174

plot shows a predominantly monotonically decreasing relationship between F10.7175

and the target variable.176

• VxSW GSE: The feature plot demonstrated that proton intensity increases with higher177

absolute wind speeds up to 950 km/s. Values exceeding this were considered as178

potential outliers.179

• Distance variables: While z showed a positive correlation of 0.21, its relationship180

with proton intensities displayed a clear maximum around 0 on the feature plot.181

This insight led to the introduction of |z| as an improved predictor.182

• Other Variables: The strong negative correlations of rdist and yz axis with p3183

were supported by the feature plot’s linear regression lines, emphasizing their im-184

portance as predictors.185

Analysis of the proton intensity histogram identified two extreme outliers exceed-186

ing 100,000 1/cm2/s/sr/keV (see Figure A1). Removing these and other above-identified187

outliers from different predictors did not improve model performance, justifying their re-188

tention. Further analysis revealed 606 F10.7 measurements above 900, deemed unreal-189

istic and consequently removed.190

2.4 Data Split and Data Scaling191

This section outlines the additional processing steps applied to the data set, already192

reshaped for the SMILE mission as detailed in section 2.1. These steps include splitting193

the data into training and testing sets, transforming the target variable, and scaling fea-194

tures.195

Records before December 31, 2012, were allocated to the training set, while records196

from January 1, 2013, onwards formed the test set. This temporal division results in an197

approximate 75% to 25% split between the training and test datasets. The training set,198

was then later further divided into training and validation sets by the use of five-fold cross-199

validation, where the dataset is divided into five parts, with each part being used as a200

validation set while the remaining four parts are used as training data201

The proton intensities recorded in channel 3 (p3), our target values, display a wide202

spectrum. We therefore transformed these values using a base 10 logarithmic function.203

Addressing the challenge of logging zero values, all such occurrences in p3 were substi-204

tuted with 0.5. However, this introduces potential pitfalls as we expect an artificial pop-205

ulation with the same values, a concern later revisited during model evaluation (Bellégo206

et al., 2021).207

Optimizing gradient descent requires careful attention to feature scaling (Raschka208

et al., 2022). In our polynomial regression model, we employed a double-scaling tech-209
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Figure 3. Pearson coefficient-based correlation matrix for the predictors and the proton inten-

sity post-data reshaping for the SMILE mission.

nique to ensure numerical stability and facilitate the optimization process. Initially, the210

original features were scaled to zero mean and unit variance using the StandardScaler()211

method, aligning with the desired outcomes (Pedregosa et al., 2011). Subsequently, poly-212

nomial features were generated from these scaled features. To further enhance the model’s213

robustness, these polynomial features were subjected to a second round of scaling using214

the same StandardScaler() method.215

By scaling both the original and polynomial features, we ensure that the coefficients216

are directly comparable in terms of their contribution to the model and that all features217

display a mean and unit variance of zero.218

3 Methodology219

3.1 Linear Regression Model220

The choice of employing linear regression models in this study is underpinned by221

several reasons. First and foremost, linear regression models offer a simple and interpretable222

framework for understanding how input variables affect the output. Furthermore, the223

methodology allows for the transformation of input variables to enhance their predic-224

tive capabilities, such as the introduction of polynomial terms and interaction effects (Hastie225

et al., 2001).226
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Figure 4. Mean of the logarithmically scaled proton intensities from the p3 channel against

potential predictors. Vertical lines depict the standard 95% confidence level, while horizontal
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The Ordinary Least Squares (OLS) model serves as the foundational approach, fo-227

cusing on minimizing the sum of squared differences between observed and predicted val-228

ues (James et al., 2013; Galton, 1886). To tackle the possible issue of multicollinearity,229

Ridge Regression can be utilized, which incorporates an L2 penalty term into the loss230

function (Kutner et al., 2005; Hoerl & Kennard, 1970). Lasso Regression is employed when231

feature selection is essential, as it uses an L1 penalty to drive certain coefficients to zero,232

effectively eliminating them from the model (Santosa & Symes, 1986). Lastly, Elastic233

Net Regression can be used to combine the strengths of both L1 and L2 penalties, pro-234

viding a balanced approach that can handle both multicollinearity and feature selection235

(Pedregosa et al., 2011). Multiple models were trained using the scikit-learn library in236

Python (Pedregosa et al., 2011).237

3.2 Model Selection and Optimization238

For model evaluation, we utilized a set of metrics, including Mean Squared Error239

(MSE), Mean Absolute Error (MAE), R2 (coefficient of determination), Pearson corre-240

lation, and Spearman correlation. Model selection was primarily guided by the perfor-241

mance of R2 and Spearman correlation on the validation set. To ensure a robust and gen-242

eralizable evaluation, five-fold cross-validation with the help of the KFold function from243

sklearn.model selection was applied to the training set. Given the time-series nature244

of our dataset, the shuffle parameter within the cross-validation procedure was inten-245

tionally set to false. Subsequently, the evaluation metrics were computed as the aver-246

age values derived from the five cross-validation folds, thereby offering a more reliable247

measure of the model’s true performance.248

3.2.1 Simple OLS, Lasso, Ridge and Elastic Net249

Following the initial selection of linear regression models, two distinct approaches250

were undertaken to optimize model performance. The first approach involved the ap-251

plication of various linear regression techniques, including OLS, Lasso, Ridge, and Elas-252

tic Net. This approach, however, did not yield satisfactory results. The maximum R2
253

value on the validation set was only 0.02, and the highest Spearman correlation coeffi-254

cient was 0.43.255

3.2.2 Introduction of Polynomial Terms256

To improve upon this, the second approach incorporated polynomial terms into a257

standard Lasso model from sklearn.linear. The model was optimized for the regu-258

larization parameter α using five-fold cross-validation. The optimal α was determined259

using LassoCV with a maximum iteration of 10,000 and a tolerance of 1× 10−5. This260

approach significantly improved the model performance, achieving an R2 value of 0.22261

and a Spearman correlation coefficient of 0.51 on the validation set.262

3.2.3 Heuristic-based Feature Selection Technique263

However, this model included 52 predictors, making it complex and potentially prone264

to overfitting. Further work was needed to develop a more parsimonious model with a265

maximum of 25 predictors while maintaining acceptable performance. To reduce the num-266

ber of predictors while maintaining model performance, we adopted a heuristic-based fea-267

ture selection strategy. For this strategy the Stochastic Gradient Descent (SGD) frame-268

work was employed, with the algorithm configured as follows: the regularization term269

(α) was set to the optimal value identified through cross-validation. The learning rate270

was set to a constant value, initialized at η0 = 1 × 10−5. The hyperparameter defin-271

ing the loss function was set to the squared error loss. An L1 penalty term was incor-272
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porated for feature selection. The algorithm was set to terminate when the tolerance reached273

1× 10−5, with a maximum of 100 iterations for convergence.274
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Figure 5. Plot of Average Mean Squared Error (MSE) against the regularization parameter

α. The curve exhibits an ”elbow” point at 13 predictors, indicating a minimal but acceptable loss

in model performance. A noticeable increase in MSE is observed when the number of predictors

is reduced from 13 to 12, suggesting that all 13 predictors left, display significant importance for

the model. This ”elbow” point serves as the basis for selecting an optimal α value and, conse-

quently, the number of predictors for the final model.

Unlike earlier approaches that solely aimed to minimize the Mean Squared Error275

(MSE), this method also considers the number of predictors in the final model. We tested276

a range of regularization parameters (α) and sought to identify a ”knee” or ”elbow” in277

the plot of MSE versus α. This point represents a compromise between model perfor-278

mance and complexity.279

To enhance the robustness of the feature selection process, we employed K-Fold cross-280

validation with the shuffle parameter set to True. This approach allows for a more rep-281

resentative sampling of the training data across each fold. Specifically, we aimed to iden-282

tify the most stable set of predictors corresponding to the ”elbow” point for the regu-283

larization parameter α. By enabling shuffling during cross-validation, we increase the like-284

lihood that the predictor set extracted from one of the folds offers a more comprehen-285

sive representation of the entire training dataset. The α range chosen was from 0.03 to286

0.17, which covered all models with the amount of non-zero predictors ranging from 28287

to 4.288

Upon employing this approach, we identified a subset of 13 predictors by analyz-289

ing the MSE vs α plot in Figure 5. Importantly, we operate under the assumption that290

all predictors remaining after the feature selection process are relevant to the outcome.291

Therefore, penalizing these predictors, as Lasso does, could introduce an unwanted bias292

into the model. Given this consideration, an OLS model was chosen for the final train-293

ing rather than a Lasso regression model.294
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Table 1. Average performance metrics for different models resulting from five-fold cross-

validation and the number of data points N train used for training.

Model MSE MAE R2 Pearson Spearman Predictors N train

Basic OLS 0.92 0.76 0.02 0.43 0.43 9 353,660
Poly Lasso 0.73 0.68 0.22 0.51 0.51 52 353,660
Heuristic Poly OLS 0.78 0.71 0.17 0.47 0.47 13 353,660
Split Poly Part1 0.58 0.60 0.24 0.53 0.53 5 60,961
Split Poly Part2 0.82 0.73 0.09 0.50 0.50 19 145,952
Split Poly Part3 0.79 0.72 0.19 0.46 0.46 15 70,137
Split Poly Part4 0.65 0.64 0.29 0.55 0.55 6 76,610

Although the resulting model exhibits lower performance on the validation set, as295

evidenced by Table 1, it better aligns with the study’s objectives of interpretability and296

usability compared to the Lasso model with 52 predictors. This heuristic-based feature297

selection strategy aligns well with the principle of Occam’s razor, suggesting that sim-298

pler models are preferable when performance is comparable. Therefore, this approach299

effectively strikes a balance between the number of predictors and model performance,300

thereby enhancing the model’s interpretability and practical utility.301

3.2.4 Data Split302

An in-depth analysis of the relationship between the y and p3 variables revealed303

that the data could be divided into four distinct parts, each characterized by an increas-304

ing or decreasing slope, see Figure 4 (d). This lead to the decision to split the dataset305

into four separate parts based on specific conditions, as described below:306

• Part 1: y ≤ -6.6 Re307

• Part 2: -6.6 Re ≤ y ≤ 2.3 Re308

• Part 3: 2.3 Re ≤ y ≤ 6 Re309

• Part 4: y ≥ 6 Re310

Upon splitting the data, separate models were built for each part, using the same311

heuristic-based predictor selection technique previously described. These outperformed312

the non-split OLS model in the Spearman correlation coefficient and the R2 metric for313

three out of the four subsets (see Table 1), all while maintaining low model complexity.314

4 Results315

This chapter presents the empirical results obtained from the evaluation of vari-316

ous OLS models on the unseen test set. The models are compared based on a set of eval-317

uation metrics and feature importances.318

4.1 Presentation of Final Models319

In this section, we present the final forms of our linear regression models developed320

for predicting proton intensities. Each model is displayed with its coefficients in basic,321

unscaled units, offering a clear view of the relative impact of each predictor variable. These322

models encapsulate our findings and are ready for practical application.323
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Heuristic Poly OLS:324

log10(p3) = 2.1× 10−2 · y − 3.0× 10−1 · |z| − 1.7× 10−1 · rdist + 1.1 · FootType325

− 2.0× 10−3 ·VxSW GSE + 6.2× 10−8 · Pdyn− 1.1× 10−3 · F107326

+ 3.7× 10−4 ·AE index + 8.3× 10−4 · x · |z|+ 1.8× 10−2 · |z| · rdist327

− 7.4× 10−2 · rdist · FootType + 7.7× 10−4 · rdist · F107328

− 3.1× 10−5 · F1072 + 2.3 (2)329
330

Split Poly Part1:331

log10(p3) = −5.9× 10−1 · rdist + 8.4× 10−1 · FootType− 2.5× 10−3 ·VxSW GSE332

+ 2.0× 10−2 · rdist2 − 5.0× 10−2 · rdist · FootType + 4.2 (3)333
334

Split Poly Part2:335

log10(p3) = −6.2× 10−1 · |z|+ 2.3× 10−1 · rdist + 7.5× 10−1 · FootType336

+ 7.8× 10−4 ·VxSW GSE + 1.3× 10−7 · Pdyn + 3.0× 10−4 ·AE index337

+ 3.4× 10−3 · x · |z|+ 3.4× 10−5 · x ·VxSW GSE− 5.3× 10−4 · y · rdist338

+ 5.1× 10−2 · |z| · rdist− 3.7× 10−2 · rdist2 − 7.2× 10−2 · rdist · FootType339

− 2.5× 10−4 · rdist ·VxSW GSE + 6.0× 10−4 · rdist · F107340

+ 1.8× 10−1 · FootType2 − 5.7× 10−8 · FootType · Pdyn341

+ 9.2× 10−14 · Temp · Pdyn − 1.9× 10−16 · Pdyn2 − 2.3× 10−5 · F1072 + 1.9
(4)

342

343

Split Poly Part3:344

log10(p3) = 3.6× 10−1 · y − 2.8× 10−1 · |z| − 5.7× 10−2 · rdist + 1.1 · FootType345

− 1.7× 10−3 ·VxSW GSE + 2.5× 10−7 · Temp + 5.2× 10−8 · Pdyn346

− 1.3× 10−3 · F107 + 4.6× 10−4 ·AE index + 2.5× 10−3 · x · |z|347

− 2.8× 10−2 · y · rdist + 1.4× 10−2 · |z| · rdist− 8.2× 10−2 · rdist · FootType348

+ 8.2× 10−4 · rdist · F107− 3.1× 10−5 · F1072 + 1.2 (5)349
350

Split Poly Part4:351

log10(p3) = −5.1× 10−2 · |z| − 1.6× 10−1 · rdist + 2.2× 10−1 · FootType352

− 2.6× 10−3 ·VxSW GSE− 1.9× 10−3 · F107 + 7.4× 10−4 ·AE index + 2.7
(6)

353

354

4.2 Performance on the Test Set355

In the Heuristic Poly OLS model, the hexagonal bins largely align with the ideal356

fit line (see Figure 6), which is indicative of good predictive performance. However, this357

model exhibits a tendency to underestimate observed values, notably at higher proton358

intensities. A significant peak at log(0.5) in the histogram of observed values is associ-359

ated with an overestimation in the Heuristic Poly OLS model’s predictions. This peak360

stems from the substitution of zero values in the target variable p3 before applying the361

logarithmic transformation. This overestimation at log(0.5) potentially skews the model’s362

learning process, causing it to adjust its predictions downward to minimize the overall363

loss. While this adjustment mitigates the error for overestimated values, it concurrently364

introduces a bias leading to the underestimation of other observed values. This behav-365
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(a) Heuristic Poly OLS model
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(b) Split Poly Part1
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(c) Split Poly Part2
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(d) Split Poly Part3
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(e) Split Poly Part4

Figure 6. Jointplots comparing observed and predicted values of proton intensities, of the test

set for the different OLS models. The red lines represent ideal fits where observed values equal

predicted values. Color bars indicate the number of samples in each hexagonal bin. Histograms

at the top and right margins show the distributions of observed and predicted values for each

model.
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Table 2. Performance metrics of the final models on test data.

Model MSE MAE R2 Pearson Spearman Predictors

Heuristic Poly OLS 0.74 0.71 0.22 0.56 0.57 13
Split Poly Part1 0.46 0.54 0.38 0.62 0.61 5
Split Poly Part2 0.83 0.74 0.11 0.56 0.57 19
Split Poly Part3 0.77 0.73 0.24 0.61 0.62 15
Split Poly Part4 0.47 0.56 0.50 0.72 0.72 6

ior is consistently observable across all models, particularly those focusing on specific re-366

gions. As an alternative to zero substitution, we also explored the removal of these zero367

values. While this approach enhanced performance on the training set, it consistently368

led to diminished performance on the validation set. Consequently, despite its limita-369

tions, the zero substitution technique was retained to ensure better generalization to un-370

seen data.371

Turning our attention to Split Poly Part1 and Split Poly Part4, these models ex-372

hibit the most well-centered distribution around the ideal fit line in their respective heatmaps.373

This observation is consistent with their performance metrics as recorded in Table 2, show-374

casing R2 values of 0.38 and 0.50 and Spearman coefficients of 0.61 and 0.72 for the test375

set. Notably, these models also maintain low complexity, employing only 5 and 6 pre-376

dictors, respectively.377

Conversely, Split Poly Part2, with its high complexity due to having 19 predictors,378

exhibits subpar performance despite an acceptable Spearman coefficient. Significantly,379

with an R2 value of only 0.11, this model is the sole split variant that exhibits notably380

inferior performance compared to the unsplit Heuristic Poly OLS model in the test set.381

The more inhomogeneous distribution of hexagonal bins in its heatmap is indicative of382

this weaker performance. On the other hand, Split Poly Part3 shows a modest improve-383

ment over the unsplit model. This is evident not only in the performance metrics but384

also in a more concentrated distribution in its heatmap, compared to Split Poly Part2.385

4.3 Feature Importance386

In order to derive feature importance in a linear regression model, one can exam-387

ine the coefficients of the model. The magnitude of the coefficients indicates the rela-388

tive importance of the corresponding feature in predicting the target variable. A larger389

absolute value of a coefficient suggests a stronger influence of the associated feature on390

the outcome. The features are scaled appropriately by scaling the features once before391

the creation of the polynomials and once afterward. Scaling ensures that all features are392

on a comparable scale, which prevents features with larger values from dominating those393

with smaller values in the model. The feature importance for each model was plotted394

in figure 7.395

The variations in feature importance across the different models offer insights into396

the underlying mechanisms affecting proton intensities in various regions. For the Heuris-397

tic Poly OLS model and models corresponding to the inner regions (Split Poly -Part2398

and Split Poly Part3), the absolute value of z (|z|) emerges as the most significant pre-399

dictor, next to Foottype and VxSW GSE. The Split Poly -Part2 model additionally iden-400

tifies the polynomial terms |z| rdist and rdist2 as significant features. The similar-401

ity between the models for the inner part and the model trained on the full data is most402

likely partially influenced by the fact that the inner regions contain 61% of the total data403

points. The models tailored to the outer regions (Split Poly Part1 and Split Poly Part4)404
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Figure 7. Feature importance plots for five different OLS models: Each plot presents the

absolute values of the model coefficients, serving as indicators of feature importance. Accompa-

nying error bars represent the standard errors, providing a measure of the coefficient’s reliability.

The plots collectively offer insights into the relative significance of each predictor across different

models.
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prioritize rdist, VxSW GSE, and Foottype as their top predictors, in that order. A no-405

table distinction from the inner region models is the elevated significance of VxSW GSE.406

5 Discussion407

The most critical predictor for our Heuristic Poly OLS Model, which utilizes the408

full dataset, is the absolute value of z, denoted as |z|. The model reveals a negative cor-409

relation between |z| and the proton intensities, indicating that as |z| increases, the pro-410

ton intensity declines. This trend can be primarily attributed to the circulation of pro-411

tons in Earth’s magnetic field. Most ions are concentrated at the equatorial plane dur-412

ing their drift trajectories on the closed magnetic field lines. At higher latitudes where413

open magnetic field lines dominate, the proton intensities are expected to drop with |z|414

distance. Consequently, the proton intensities reduce with an increase in |z|.415

The predictor FootType categorizes magnetic field line types and ranks as the sec-416

ond most influential factor. Closed field lines, known for the highest proton intensities,417

trap charged particle populations. The importance of this parameter aligns with the stud-418

ies by Walsh et al. (2014) and Kronberg et al. (2020). In contrast, open field line regions419

typically correlate with lower particle energies outside the soft proton (SP) range, result-420

ing in weaker count rates as detailed in (Kronberg et al., 2020). IMF regions show slightly421

higher count rates since particles can experience acceleration in the bow shock region,422

especially quasi-parallel bow shock configurations (normal to the shock is parallel to the423

IMF direction) (Blandford & Ostriker, 1978; Kronberg et al., 2009; Sundberg et al., 2016).424

The high importance of solar wind speed in the X-direction is consistent with the425

analysis of the feature plot in figure 4. Kronberg, Hannan, et al. (2021) also found that426

VxSW GSE displays ”the most substantial linear dependence of the proton intensities among427

the OMNI parameters.” The solar wind speed, directly correlated to its electric field as428

E = Vx×Bz, is crucial for magnetospheric dynamics as it determines the rate of mag-429

netic reconnection on Earth’s dayside (Dorelli, 2019), and consequently magnetic recon-430

nection at the night side. A surge in solar wind speed correlates with an increased rate431

of magnetic reconnection. Additionally, magnetic reconnection events, which can accel-432

erate charged particles, also impact soft proton intensities significantly, as noted by (Read433

& Ponman, 2003). Research by Gonzalez et al. (1994), Milan et al. (2012)), and Wang434

et al. (2014) further elucidates this concept, indicating that a variety of solar wind-magnetosphere435

energy transfer models are dependent on the velocity of the solar wind.436

6 Conclusion437

In this study, we developed five user-friendly linear regression models to predict pro-438

ton intensities in the energy range of 92.2 keV to 159.7 keV with a Spearmen correla-439

tion ranging from 0.57 to 0.72 on the test data. Utilizing data from the Cluster’s RAPID440

experiment, supplemented with solar, solar wind, and geomagnetic data from the OMNI441

database, the study focused on aligning the models with the anticipated spatial area cov-442

ered by the upcoming SMILE-mission.443

Segmenting the data into four distinct regions based on the y coordinate with thresh-444

olds -6.6 RE , 2.3 RE and 6 RE , resulted in enhanced model performance for three of the445

four segments, surpassing the main model’s performance. The primary predictors in these446

outer regions were identified as radial distance and the radial solar wind speed. Conversely,447

the inner region models and the comprehensive main model demonstrated a significant448

dependence on the absolute value of z and the type of magnetic field lines.449

The redefinition of the FootType variable and the incorporation of the absolute value450

of z as key model features significantly improved the model compared to previous rel-451

evant studies. This study suggests that the development of more accurate predictive mod-452
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els for space weather phenomena may not solely rely on novel algorithms, but also on453

crafting tailored models, each addressing distinct regions with their specific character-454

istics.455
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Appendix A : Histogram of Proton Intensities456
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Figure A1. Histogram of the proton intensities measured by channel 3.
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Key Points:6

• Developed models predict proton intensities impacting satellites, aiding space weather7

forecasting and mission planning.8

• Different regions in space showcase distinct relations between proton intensities9

and predicting parameters.10

• Study findings highlight the importance of tailored approaches in space weather11

prediction.12
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Abstract13

This study introduces five linear regression models developed to accurately predict pro-14

ton intensities in the critical energy range of 92.2 keV to 159.7 keV. To achieve this task15

we utilized 14 years of data sourced from the Cluster’s RAPID experiment and NASA’s16

OMNI database. This data was then aligned with the Solar wind-Magnetosphere-Ionosphere17

Link Explorer (SMILE) mission’s trajectory, to increase model accuracy in the relevant18

regions. Our approach diverges from existing methodologies by offering a user-friendly19

model that doesn’t require specialized software, making it accessible for broader appli-20

cations in satellite mission planning and risk assessment. The research segregates the dataset21

into four distinct regions, each analyzed for proton intensity dynamics. In the outer re-22

gions (|YGSE| ≥ 6Re) there is a pronounced dependence on radial distance and solar23

wind speed. In contrast, the inner regions (|YGSE| ≤ 6Re) demonstrate a significant24

dependence of proton intensities on the absolute value of the z-coordinate and the mag-25

netic field line topology. Our models achieved a Spearman correlation ranging from 0.5726

to 0.72 on the test set, indicating good predictive capabilities. The findings emphasize27

the role of regional characteristics in space weather prediction and underscore the po-28

tential for tailored approaches in future research.29

Plain Language Summary30

We developed a new model to predict space weather, specifically focusing on pro-31

ton intensities, which can impact how well satellites work in space. We used 14 years of32

space observations to create five easy-to-use numerical models. These models are designed33

to help with planning and protecting future satellite missions, such as the upcoming SMILE34

mission, from space weather effects. In our study, we looked closely at different areas in35

space around Earth. We found that in the outer areas (|YGSE| ≥ 6Re), the distance36

from Earth and the speed of the solar wind are important for understanding proton be-37

havior. However, in areas (|YGSE| ≤ 6Re), the height above Earth (measured along38

the z-direction) and the type of magnetic field lines play a more significant role. This39

shows us that different areas in space around Earth can be affected by space weather in40

different ways. Our models did a good job of predicting these effects, showing that choos-41

ing a tailored approach can be useful when forecasting proton intensities.42

1 Introduction43

Space weather events, driven by solar activities pose significant challenges to satel-44

lite operations and measurements. Notable examples include the European Space Agency’s45

(ESA) Cluster and X-ray Multi-Mirror (XMM-Newton) missions. The Cluster mission,46

particularly its Research with Adaptive Particle Imaging Detector (RAPID)/Imaging47

Electron Spectrometer (IES), has encountered challenges due to high proton intensities48

leading to measurement contamination (Wilken et al., 1997; Kronberg et al., 2016; Kro-49

nberg, Daly, et al., 2021). Similarly, the X-ray telescope aboard the XMM-Newton space-50

craft experienced significant operational disruptions, with approximately 40% of its ob-51

servation time compromised due to background contamination (Walsh et al., 2014). Fur-52

thermore, investigations into the XMM-Newton telescope’s susceptibility to soft protons53

highlight proton intensities in the sub-100 to 300 keV range, particularly around 100 keV,54

as the most damaging, leading to significant operational challenges and data contam-55

ination, see (Fioretti et al., 2016) and references therein.56

The upcoming European-Chinese Solar wind-Magnetosphere-Ionosphere Link Ex-57

plorer (SMILE) mission (Branduardi-Raymont et al., 2018), slated for launch in 2025,58

aspires to deepen our understanding of the Sun-Earth interaction, decoding space weather59

hazards and understanding energy entry into Earth’s magnetosphere. While missions like60

ATHENA (Advanced Telescope for High Energy Astrophysics), which will maintain an61

orbit around the L2 Lagrange point with a continuously large distance to Earth, are ex-62
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pected to face minimal threats from soft protons (Perinati et al., 2024), SMILE with its63

highly inclined elliptical orbit around earth, akin to that of Cluster and XMM-Newton,64

will navigate through diverse magnetospheric regions, making it susceptible to soft pro-65

ton radiation. Particularly its Soft X-ray Imager (SXI) telescope, presents challenges con-66

cerning radiation exposure (Raab et al., 2016; Branduardi-Raymont & Wang, 2022). There-67

fore a critical component of achieving SMILE’s objectives is the accurate prediction of68

proton radiation levels, which significantly affect the Total Ionizing Dose (TID) and To-69

tal Non-Ionizing Dose (TNID) absorbed by the Charge-Coupled Devices (CCDs) of the70

Soft X-ray Imager (SXI) (Hubbard et al., 2024). In recent discussions (M. Hubbard, per-71

sonal communication, 2023) the necessity for models that accurately estimate radiation72

levels was emphasized, particularly in critical energy ranges below 300 keV, crucial for73

the SMILE mission’s success. A strong preference for models that are not only accurate74

but also straightforward and interpretable was expressed.75

To meet these needs, our study adopts a distinct approach compared to existing76

research, which is based on machine learning black box models, such as the works of Kronberg77

et al. (2020) and Kronberg, Hannan, et al. (2021). We aim to develop a simple, user-friendly78

linear regression model leveraging data from the Cluster mission and NASA’s OMNI database79

(King & Papitashvili, 2005). Our model’s simplicity and ease of use make it accessible80

to a broader range of users, not requiring specialized software or extensive computational81

resources. This approach not only contributes to the scientific understanding of space82

weather phenomena but also offers practical tools for satellite mission planning and risk83

assessment.84

2 Data Analysis and Processing85

2.1 Data Preparation: Adapting CLUSTER’s Dataset for the SMILE86

Mission’s Trajectory87

The proton intensity data for this research was taken from the Cluster’s RAPID88

experiment, ranging from 2001 to 2015. The experiment captures 3-D energetic electron89

and ion fluxes above approximately 30 keV using the Imaging Electron Spectrometer (IES)90

and the Imaging Ion Mass Spectrometer (IIMS) instruments. Situated in the SCENIC91

detector head, the IIMS instrument identifies ion energies and species. The methodol-92

ogy involves using start and stop signals produced from electrons emitted by an initial93

thin foil on the solid-state detector’s surface. The time-of-flight (TOF) between these94

signals, combined with the known energy, discerns the species and energy channel (Daly95

& Kronberg, 2023). This study specifically uses data from the p3 channel, targeting pro-96

ton intensities between 92.2 keV and 159.7 keV. As predicting parameters for solar, so-97

lar wind and geomagnetic activity we used variables from the OMNI database(https://98

omniweb.gsfc.nasa.gov/), see also King and Papitashvili (2005).99

Aiming for a model tailored to the SMILE mission’s trajectory (see Figure 1), data100

filtering was imperative. Points not adhering to the following spatial parameters were101

excluded: −10.5Re ≤ x ≤ 11.2Re; −10.8Re ≤ y ≤ 11.5Re; z ≤ 18.5Re;
√

x2 + y2 ≤102

11.6Re;
√
x2 + z2 ≤ 19.8Re;

√
z2 + y2 ≤ 20.0Re. These constraints were chosen by103

rounding the maxima and minima of the spatial parameters to the nearest tenth. As a104

result, we were left with a trimmed dataset, reduced from 1,172,923 to 462,615 data points.105

Though compact, this dataset is centered on the space region significant for SMILE, promis-106

ing heightened model accuracy. It’s noteworthy that negative z-values weren’t excluded,107

considering the SMILE mission’s highly inclined, elliptical orbit, which dips to -3.5 Re.108

Omitting these would disregard vital data, especially since the Cluster’s trajectory spent109

a notable amount of time in the southern hemisphere.110
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Figure 1. SMILE mission’s trajectory. Distinct colors represent individual years with Earth,

having a radius of 6,731 km, at the center.

2.2 Predictor Introduction111

The spacecraft’s location in the Geocentric Solar Ecliptic (GSE) coordinate sys-112

tem is defined by x, y, and z in Earth radii (Re). The variable rdist denotes the satel-113

lite’s radial distance from Earth. The magnetic field line type, termed as ”Foot Type”,114

indicates the connectivity of the IMF field lines to Earth, calculated using the Tsyganenko115

(1995) model. The initial definition stated by Kronberg et al. (2020) is as follows: the116

interplanetary magnetic field lines (IMF) with no connection to Earth have Foot Type117

0, open magnetic field lines with one connection to Earth have Foot Type 1, and closed118

field lines with both ends connected to Earth have Foot Type 2. It was, however, decided119

to redefine the IMF to 1 and open field lines to 0, to achieve a stronger linear relation-120

ship between Foot Type and the target variable, as discussed in chapter 2.3.2.121

The Disturbance storm time index (Dst index) characterizes geomagnetic storms122

in the unit nT (Banerjee et al., 2012). The Auroral Electrojet (AE index) quantifies mag-123

netic activity in the auroral zone, also denoted in nT. The 10.7 cm solar radio flux (F10.7)124

with unit sfu serves as a solar activity level indicator and a proxy for solar emissions (Tapping,125

2013).126

The IMF direction is described by its components BimfxGSE, BimfyGSE, and BimfzGSE127

in the GSE system in nT. The IMF direction at the magnetopause determines if recon-128

nection happens on the dayside (Crooker et al., 1979; Luhmann et al., 1984; Koga et al.,129

2019). Plasma properties of the solar wind are described by Solar wind speed (VSW) in130

km/s, proton density (NpSW) in cm−3, and temperature (Temp) in K. The direction of the131

solar wind velocity is described by VxSW GSE, VySW GSE, and VzSW GSE. The solar wind132

dynamic pressure, Pdyn (nPa), can be represented as:133
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Pdyn = NpSW ∗ VSW2 ∗ 1.67 ∗ 10−6 (1)

2.3 Exploratory Data Analysis134

2.3.1 Spatial Proton Intensity Distribution135

To analyze the proton intensity distribution in relation to the spacecraft’s trajec-136

tory, we combined the y and z coordinates to produce a radial distance variable, termed137

yz axis. We introduced this variable because Cluster’s trajectory is predominantly in138

the southern hemisphere, contrasted with SMILE’s expected northern trajectory. The139

yz axis is computed by
√
y2 + z2, offering a simplified yet informative perspective on140

proton intensity’s spatial distribution. Figure 2 depicts the spatial distribution of pro-141

ton intensities in the x,
√
y2 + z2 coordinate system. The color gradient represents the142

percentage of measurements that exceed 2, the mean value of log10(proton intensities)143

rounded to one significant digit, highlighting regions with prolonged high proton inten-144

sities. The central black void indicates missing measurements. This gap arises from our145

deliberate exclusion of data points with radial distances (rdist) below 6 Earth radii (Re)146

in order to emphasize regions beyond the radiation belts. Historically, proton intensi-147

ties surge in zones under 6 Re, which encompass the ring current and radiation belt re-148

gions. Our focus shifts to lesser-studied areas, with their generally lower intensities out-149

side of the radiation belts, mainly because the SXI telescope on the SMILE mission is150

equipped with a shutter mechanism, protecting its Charge Coupled Devices (CCD) from151

intense radiation within the radiation belt. The decline in proton intensities with increased152

distance from Earth is observed, irrespective of whether it’s along the x axis or the y-153

z plane. This observation aligns with subsequent feature plots and correlation matrix154

analyses. Moreover, this analysis reveals areas along closed magnetic field lines with height-155

ened proton intensities, as well as sparser regions corresponding to open magnetic field156

lines over the polar cap, demonstrating a clear spatial correlation between magnetic field157

line configuration and proton intensity distribution.158
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Figure 2. (Left) Heatmap of proton intensities against the x-coordinate and
√

y2 + z2. The

color gradient represents the percentage of measurements where log10(proton intensity) > 2,

which is the mean value rounded to one significant digit. (Right) Data point density for each bin,

with the blue line representing the magnetopause, derived using Shue et al. (1997). Both plots

incorporate the 462,615 data points post-reshaping for the SMILE mission.

2.3.2 Cross-Correlation and Feature Plot Analysis159

Cross-correlation matrices, employing the Pearson coefficient, are used in feature160

selection for linear regression models. The coefficient quantifies the linear relationship161

–5–



manuscript submitted to Space Weather

strength and direction between two variables, spanning from -1 (perfect negative rela-162

tionship) to 1 (perfect positive relationship), with 0 indicating no linear correlation. Such163

analyses illuminate potential multicollinearity issues in datasets, which can adversely af-164

fect regression coefficient stability and model interpretability (Raschka et al., 2022; James165

et al., 2013).166

Analyzing the cross-correlation matrix (Figure 3), we observed:167

• FootType: The feature plot in Figure 4 highlighted a clear potential for refining168

the correlation between FootType and p3. The initial positive correlation of 0.24169

with p3 was improved to 0.41 upon redefining the foot type as mentioned in sec-170

tion 2.2.171

• AE index: While the correlation was weak (0.07), the feature plot identified AE172

values surpassing 2600 nT as possible outliers.173

• F10.7 solar radio flux index: Given its correlation coefficient of -0.20, the feature174

plot shows a predominantly monotonically decreasing relationship between F10.7175

and the target variable.176

• VxSW GSE: The feature plot demonstrated that proton intensity increases with higher177

absolute wind speeds up to 950 km/s. Values exceeding this were considered as178

potential outliers.179

• Distance variables: While z showed a positive correlation of 0.21, its relationship180

with proton intensities displayed a clear maximum around 0 on the feature plot.181

This insight led to the introduction of |z| as an improved predictor.182

• Other Variables: The strong negative correlations of rdist and yz axis with p3183

were supported by the feature plot’s linear regression lines, emphasizing their im-184

portance as predictors.185

Analysis of the proton intensity histogram identified two extreme outliers exceed-186

ing 100,000 1/cm2/s/sr/keV (see Figure A1). Removing these and other above-identified187

outliers from different predictors did not improve model performance, justifying their re-188

tention. Further analysis revealed 606 F10.7 measurements above 900, deemed unreal-189

istic and consequently removed.190

2.4 Data Split and Data Scaling191

This section outlines the additional processing steps applied to the data set, already192

reshaped for the SMILE mission as detailed in section 2.1. These steps include splitting193

the data into training and testing sets, transforming the target variable, and scaling fea-194

tures.195

Records before December 31, 2012, were allocated to the training set, while records196

from January 1, 2013, onwards formed the test set. This temporal division results in an197

approximate 75% to 25% split between the training and test datasets. The training set,198

was then later further divided into training and validation sets by the use of five-fold cross-199

validation, where the dataset is divided into five parts, with each part being used as a200

validation set while the remaining four parts are used as training data201

The proton intensities recorded in channel 3 (p3), our target values, display a wide202

spectrum. We therefore transformed these values using a base 10 logarithmic function.203

Addressing the challenge of logging zero values, all such occurrences in p3 were substi-204

tuted with 0.5. However, this introduces potential pitfalls as we expect an artificial pop-205

ulation with the same values, a concern later revisited during model evaluation (Bellégo206

et al., 2021).207

Optimizing gradient descent requires careful attention to feature scaling (Raschka208

et al., 2022). In our polynomial regression model, we employed a double-scaling tech-209
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Figure 3. Pearson coefficient-based correlation matrix for the predictors and the proton inten-

sity post-data reshaping for the SMILE mission.

nique to ensure numerical stability and facilitate the optimization process. Initially, the210

original features were scaled to zero mean and unit variance using the StandardScaler()211

method, aligning with the desired outcomes (Pedregosa et al., 2011). Subsequently, poly-212

nomial features were generated from these scaled features. To further enhance the model’s213

robustness, these polynomial features were subjected to a second round of scaling using214

the same StandardScaler() method.215

By scaling both the original and polynomial features, we ensure that the coefficients216

are directly comparable in terms of their contribution to the model and that all features217

display a mean and unit variance of zero.218

3 Methodology219

3.1 Linear Regression Model220

The choice of employing linear regression models in this study is underpinned by221

several reasons. First and foremost, linear regression models offer a simple and interpretable222

framework for understanding how input variables affect the output. Furthermore, the223

methodology allows for the transformation of input variables to enhance their predic-224

tive capabilities, such as the introduction of polynomial terms and interaction effects (Hastie225

et al., 2001).226
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Figure 4. Mean of the logarithmically scaled proton intensities from the p3 channel against

potential predictors. Vertical lines depict the standard 95% confidence level, while horizontal

lines indicate bin half-widths. Linear regression lines in red are shown for rdist, yz axis, and

F10.7.
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The Ordinary Least Squares (OLS) model serves as the foundational approach, fo-227

cusing on minimizing the sum of squared differences between observed and predicted val-228

ues (James et al., 2013; Galton, 1886). To tackle the possible issue of multicollinearity,229

Ridge Regression can be utilized, which incorporates an L2 penalty term into the loss230

function (Kutner et al., 2005; Hoerl & Kennard, 1970). Lasso Regression is employed when231

feature selection is essential, as it uses an L1 penalty to drive certain coefficients to zero,232

effectively eliminating them from the model (Santosa & Symes, 1986). Lastly, Elastic233

Net Regression can be used to combine the strengths of both L1 and L2 penalties, pro-234

viding a balanced approach that can handle both multicollinearity and feature selection235

(Pedregosa et al., 2011). Multiple models were trained using the scikit-learn library in236

Python (Pedregosa et al., 2011).237

3.2 Model Selection and Optimization238

For model evaluation, we utilized a set of metrics, including Mean Squared Error239

(MSE), Mean Absolute Error (MAE), R2 (coefficient of determination), Pearson corre-240

lation, and Spearman correlation. Model selection was primarily guided by the perfor-241

mance of R2 and Spearman correlation on the validation set. To ensure a robust and gen-242

eralizable evaluation, five-fold cross-validation with the help of the KFold function from243

sklearn.model selection was applied to the training set. Given the time-series nature244

of our dataset, the shuffle parameter within the cross-validation procedure was inten-245

tionally set to false. Subsequently, the evaluation metrics were computed as the aver-246

age values derived from the five cross-validation folds, thereby offering a more reliable247

measure of the model’s true performance.248

3.2.1 Simple OLS, Lasso, Ridge and Elastic Net249

Following the initial selection of linear regression models, two distinct approaches250

were undertaken to optimize model performance. The first approach involved the ap-251

plication of various linear regression techniques, including OLS, Lasso, Ridge, and Elas-252

tic Net. This approach, however, did not yield satisfactory results. The maximum R2
253

value on the validation set was only 0.02, and the highest Spearman correlation coeffi-254

cient was 0.43.255

3.2.2 Introduction of Polynomial Terms256

To improve upon this, the second approach incorporated polynomial terms into a257

standard Lasso model from sklearn.linear. The model was optimized for the regu-258

larization parameter α using five-fold cross-validation. The optimal α was determined259

using LassoCV with a maximum iteration of 10,000 and a tolerance of 1× 10−5. This260

approach significantly improved the model performance, achieving an R2 value of 0.22261

and a Spearman correlation coefficient of 0.51 on the validation set.262

3.2.3 Heuristic-based Feature Selection Technique263

However, this model included 52 predictors, making it complex and potentially prone264

to overfitting. Further work was needed to develop a more parsimonious model with a265

maximum of 25 predictors while maintaining acceptable performance. To reduce the num-266

ber of predictors while maintaining model performance, we adopted a heuristic-based fea-267

ture selection strategy. For this strategy the Stochastic Gradient Descent (SGD) frame-268

work was employed, with the algorithm configured as follows: the regularization term269

(α) was set to the optimal value identified through cross-validation. The learning rate270

was set to a constant value, initialized at η0 = 1 × 10−5. The hyperparameter defin-271

ing the loss function was set to the squared error loss. An L1 penalty term was incor-272
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porated for feature selection. The algorithm was set to terminate when the tolerance reached273

1× 10−5, with a maximum of 100 iterations for convergence.274
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Figure 5. Plot of Average Mean Squared Error (MSE) against the regularization parameter

α. The curve exhibits an ”elbow” point at 13 predictors, indicating a minimal but acceptable loss

in model performance. A noticeable increase in MSE is observed when the number of predictors

is reduced from 13 to 12, suggesting that all 13 predictors left, display significant importance for

the model. This ”elbow” point serves as the basis for selecting an optimal α value and, conse-

quently, the number of predictors for the final model.

Unlike earlier approaches that solely aimed to minimize the Mean Squared Error275

(MSE), this method also considers the number of predictors in the final model. We tested276

a range of regularization parameters (α) and sought to identify a ”knee” or ”elbow” in277

the plot of MSE versus α. This point represents a compromise between model perfor-278

mance and complexity.279

To enhance the robustness of the feature selection process, we employed K-Fold cross-280

validation with the shuffle parameter set to True. This approach allows for a more rep-281

resentative sampling of the training data across each fold. Specifically, we aimed to iden-282

tify the most stable set of predictors corresponding to the ”elbow” point for the regu-283

larization parameter α. By enabling shuffling during cross-validation, we increase the like-284

lihood that the predictor set extracted from one of the folds offers a more comprehen-285

sive representation of the entire training dataset. The α range chosen was from 0.03 to286

0.17, which covered all models with the amount of non-zero predictors ranging from 28287

to 4.288

Upon employing this approach, we identified a subset of 13 predictors by analyz-289

ing the MSE vs α plot in Figure 5. Importantly, we operate under the assumption that290

all predictors remaining after the feature selection process are relevant to the outcome.291

Therefore, penalizing these predictors, as Lasso does, could introduce an unwanted bias292

into the model. Given this consideration, an OLS model was chosen for the final train-293

ing rather than a Lasso regression model.294
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Table 1. Average performance metrics for different models resulting from five-fold cross-

validation and the number of data points N train used for training.

Model MSE MAE R2 Pearson Spearman Predictors N train

Basic OLS 0.92 0.76 0.02 0.43 0.43 9 353,660
Poly Lasso 0.73 0.68 0.22 0.51 0.51 52 353,660
Heuristic Poly OLS 0.78 0.71 0.17 0.47 0.47 13 353,660
Split Poly Part1 0.58 0.60 0.24 0.53 0.53 5 60,961
Split Poly Part2 0.82 0.73 0.09 0.50 0.50 19 145,952
Split Poly Part3 0.79 0.72 0.19 0.46 0.46 15 70,137
Split Poly Part4 0.65 0.64 0.29 0.55 0.55 6 76,610

Although the resulting model exhibits lower performance on the validation set, as295

evidenced by Table 1, it better aligns with the study’s objectives of interpretability and296

usability compared to the Lasso model with 52 predictors. This heuristic-based feature297

selection strategy aligns well with the principle of Occam’s razor, suggesting that sim-298

pler models are preferable when performance is comparable. Therefore, this approach299

effectively strikes a balance between the number of predictors and model performance,300

thereby enhancing the model’s interpretability and practical utility.301

3.2.4 Data Split302

An in-depth analysis of the relationship between the y and p3 variables revealed303

that the data could be divided into four distinct parts, each characterized by an increas-304

ing or decreasing slope, see Figure 4 (d). This lead to the decision to split the dataset305

into four separate parts based on specific conditions, as described below:306

• Part 1: y ≤ -6.6 Re307

• Part 2: -6.6 Re ≤ y ≤ 2.3 Re308

• Part 3: 2.3 Re ≤ y ≤ 6 Re309

• Part 4: y ≥ 6 Re310

Upon splitting the data, separate models were built for each part, using the same311

heuristic-based predictor selection technique previously described. These outperformed312

the non-split OLS model in the Spearman correlation coefficient and the R2 metric for313

three out of the four subsets (see Table 1), all while maintaining low model complexity.314

4 Results315

This chapter presents the empirical results obtained from the evaluation of vari-316

ous OLS models on the unseen test set. The models are compared based on a set of eval-317

uation metrics and feature importances.318

4.1 Presentation of Final Models319

In this section, we present the final forms of our linear regression models developed320

for predicting proton intensities. Each model is displayed with its coefficients in basic,321

unscaled units, offering a clear view of the relative impact of each predictor variable. These322

models encapsulate our findings and are ready for practical application.323
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Heuristic Poly OLS:324

log10(p3) = 2.1× 10−2 · y − 3.0× 10−1 · |z| − 1.7× 10−1 · rdist + 1.1 · FootType325

− 2.0× 10−3 ·VxSW GSE + 6.2× 10−8 · Pdyn− 1.1× 10−3 · F107326

+ 3.7× 10−4 ·AE index + 8.3× 10−4 · x · |z|+ 1.8× 10−2 · |z| · rdist327

− 7.4× 10−2 · rdist · FootType + 7.7× 10−4 · rdist · F107328

− 3.1× 10−5 · F1072 + 2.3 (2)329
330

Split Poly Part1:331

log10(p3) = −5.9× 10−1 · rdist + 8.4× 10−1 · FootType− 2.5× 10−3 ·VxSW GSE332

+ 2.0× 10−2 · rdist2 − 5.0× 10−2 · rdist · FootType + 4.2 (3)333
334

Split Poly Part2:335

log10(p3) = −6.2× 10−1 · |z|+ 2.3× 10−1 · rdist + 7.5× 10−1 · FootType336

+ 7.8× 10−4 ·VxSW GSE + 1.3× 10−7 · Pdyn + 3.0× 10−4 ·AE index337

+ 3.4× 10−3 · x · |z|+ 3.4× 10−5 · x ·VxSW GSE− 5.3× 10−4 · y · rdist338

+ 5.1× 10−2 · |z| · rdist− 3.7× 10−2 · rdist2 − 7.2× 10−2 · rdist · FootType339

− 2.5× 10−4 · rdist ·VxSW GSE + 6.0× 10−4 · rdist · F107340

+ 1.8× 10−1 · FootType2 − 5.7× 10−8 · FootType · Pdyn341

+ 9.2× 10−14 · Temp · Pdyn − 1.9× 10−16 · Pdyn2 − 2.3× 10−5 · F1072 + 1.9
(4)

342

343

Split Poly Part3:344

log10(p3) = 3.6× 10−1 · y − 2.8× 10−1 · |z| − 5.7× 10−2 · rdist + 1.1 · FootType345

− 1.7× 10−3 ·VxSW GSE + 2.5× 10−7 · Temp + 5.2× 10−8 · Pdyn346

− 1.3× 10−3 · F107 + 4.6× 10−4 ·AE index + 2.5× 10−3 · x · |z|347

− 2.8× 10−2 · y · rdist + 1.4× 10−2 · |z| · rdist− 8.2× 10−2 · rdist · FootType348

+ 8.2× 10−4 · rdist · F107− 3.1× 10−5 · F1072 + 1.2 (5)349
350

Split Poly Part4:351

log10(p3) = −5.1× 10−2 · |z| − 1.6× 10−1 · rdist + 2.2× 10−1 · FootType352

− 2.6× 10−3 ·VxSW GSE− 1.9× 10−3 · F107 + 7.4× 10−4 ·AE index + 2.7
(6)

353

354

4.2 Performance on the Test Set355

In the Heuristic Poly OLS model, the hexagonal bins largely align with the ideal356

fit line (see Figure 6), which is indicative of good predictive performance. However, this357

model exhibits a tendency to underestimate observed values, notably at higher proton358

intensities. A significant peak at log(0.5) in the histogram of observed values is associ-359

ated with an overestimation in the Heuristic Poly OLS model’s predictions. This peak360

stems from the substitution of zero values in the target variable p3 before applying the361

logarithmic transformation. This overestimation at log(0.5) potentially skews the model’s362

learning process, causing it to adjust its predictions downward to minimize the overall363

loss. While this adjustment mitigates the error for overestimated values, it concurrently364

introduces a bias leading to the underestimation of other observed values. This behav-365
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(a) Heuristic Poly OLS model
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(b) Split Poly Part1
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(c) Split Poly Part2
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(d) Split Poly Part3
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(e) Split Poly Part4

Figure 6. Jointplots comparing observed and predicted values of proton intensities, of the test

set for the different OLS models. The red lines represent ideal fits where observed values equal

predicted values. Color bars indicate the number of samples in each hexagonal bin. Histograms

at the top and right margins show the distributions of observed and predicted values for each

model.
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Table 2. Performance metrics of the final models on test data.

Model MSE MAE R2 Pearson Spearman Predictors

Heuristic Poly OLS 0.74 0.71 0.22 0.56 0.57 13
Split Poly Part1 0.46 0.54 0.38 0.62 0.61 5
Split Poly Part2 0.83 0.74 0.11 0.56 0.57 19
Split Poly Part3 0.77 0.73 0.24 0.61 0.62 15
Split Poly Part4 0.47 0.56 0.50 0.72 0.72 6

ior is consistently observable across all models, particularly those focusing on specific re-366

gions. As an alternative to zero substitution, we also explored the removal of these zero367

values. While this approach enhanced performance on the training set, it consistently368

led to diminished performance on the validation set. Consequently, despite its limita-369

tions, the zero substitution technique was retained to ensure better generalization to un-370

seen data.371

Turning our attention to Split Poly Part1 and Split Poly Part4, these models ex-372

hibit the most well-centered distribution around the ideal fit line in their respective heatmaps.373

This observation is consistent with their performance metrics as recorded in Table 2, show-374

casing R2 values of 0.38 and 0.50 and Spearman coefficients of 0.61 and 0.72 for the test375

set. Notably, these models also maintain low complexity, employing only 5 and 6 pre-376

dictors, respectively.377

Conversely, Split Poly Part2, with its high complexity due to having 19 predictors,378

exhibits subpar performance despite an acceptable Spearman coefficient. Significantly,379

with an R2 value of only 0.11, this model is the sole split variant that exhibits notably380

inferior performance compared to the unsplit Heuristic Poly OLS model in the test set.381

The more inhomogeneous distribution of hexagonal bins in its heatmap is indicative of382

this weaker performance. On the other hand, Split Poly Part3 shows a modest improve-383

ment over the unsplit model. This is evident not only in the performance metrics but384

also in a more concentrated distribution in its heatmap, compared to Split Poly Part2.385

4.3 Feature Importance386

In order to derive feature importance in a linear regression model, one can exam-387

ine the coefficients of the model. The magnitude of the coefficients indicates the rela-388

tive importance of the corresponding feature in predicting the target variable. A larger389

absolute value of a coefficient suggests a stronger influence of the associated feature on390

the outcome. The features are scaled appropriately by scaling the features once before391

the creation of the polynomials and once afterward. Scaling ensures that all features are392

on a comparable scale, which prevents features with larger values from dominating those393

with smaller values in the model. The feature importance for each model was plotted394

in figure 7.395

The variations in feature importance across the different models offer insights into396

the underlying mechanisms affecting proton intensities in various regions. For the Heuris-397

tic Poly OLS model and models corresponding to the inner regions (Split Poly -Part2398

and Split Poly Part3), the absolute value of z (|z|) emerges as the most significant pre-399

dictor, next to Foottype and VxSW GSE. The Split Poly -Part2 model additionally iden-400

tifies the polynomial terms |z| rdist and rdist2 as significant features. The similar-401

ity between the models for the inner part and the model trained on the full data is most402

likely partially influenced by the fact that the inner regions contain 61% of the total data403

points. The models tailored to the outer regions (Split Poly Part1 and Split Poly Part4)404
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Figure 7. Feature importance plots for five different OLS models: Each plot presents the

absolute values of the model coefficients, serving as indicators of feature importance. Accompa-

nying error bars represent the standard errors, providing a measure of the coefficient’s reliability.

The plots collectively offer insights into the relative significance of each predictor across different

models.
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prioritize rdist, VxSW GSE, and Foottype as their top predictors, in that order. A no-405

table distinction from the inner region models is the elevated significance of VxSW GSE.406

5 Discussion407

The most critical predictor for our Heuristic Poly OLS Model, which utilizes the408

full dataset, is the absolute value of z, denoted as |z|. The model reveals a negative cor-409

relation between |z| and the proton intensities, indicating that as |z| increases, the pro-410

ton intensity declines. This trend can be primarily attributed to the circulation of pro-411

tons in Earth’s magnetic field. Most ions are concentrated at the equatorial plane dur-412

ing their drift trajectories on the closed magnetic field lines. At higher latitudes where413

open magnetic field lines dominate, the proton intensities are expected to drop with |z|414

distance. Consequently, the proton intensities reduce with an increase in |z|.415

The predictor FootType categorizes magnetic field line types and ranks as the sec-416

ond most influential factor. Closed field lines, known for the highest proton intensities,417

trap charged particle populations. The importance of this parameter aligns with the stud-418

ies by Walsh et al. (2014) and Kronberg et al. (2020). In contrast, open field line regions419

typically correlate with lower particle energies outside the soft proton (SP) range, result-420

ing in weaker count rates as detailed in (Kronberg et al., 2020). IMF regions show slightly421

higher count rates since particles can experience acceleration in the bow shock region,422

especially quasi-parallel bow shock configurations (normal to the shock is parallel to the423

IMF direction) (Blandford & Ostriker, 1978; Kronberg et al., 2009; Sundberg et al., 2016).424

The high importance of solar wind speed in the X-direction is consistent with the425

analysis of the feature plot in figure 4. Kronberg, Hannan, et al. (2021) also found that426

VxSW GSE displays ”the most substantial linear dependence of the proton intensities among427

the OMNI parameters.” The solar wind speed, directly correlated to its electric field as428

E = Vx×Bz, is crucial for magnetospheric dynamics as it determines the rate of mag-429

netic reconnection on Earth’s dayside (Dorelli, 2019), and consequently magnetic recon-430

nection at the night side. A surge in solar wind speed correlates with an increased rate431

of magnetic reconnection. Additionally, magnetic reconnection events, which can accel-432

erate charged particles, also impact soft proton intensities significantly, as noted by (Read433

& Ponman, 2003). Research by Gonzalez et al. (1994), Milan et al. (2012)), and Wang434

et al. (2014) further elucidates this concept, indicating that a variety of solar wind-magnetosphere435

energy transfer models are dependent on the velocity of the solar wind.436

6 Conclusion437

In this study, we developed five user-friendly linear regression models to predict pro-438

ton intensities in the energy range of 92.2 keV to 159.7 keV with a Spearmen correla-439

tion ranging from 0.57 to 0.72 on the test data. Utilizing data from the Cluster’s RAPID440

experiment, supplemented with solar, solar wind, and geomagnetic data from the OMNI441

database, the study focused on aligning the models with the anticipated spatial area cov-442

ered by the upcoming SMILE-mission.443

Segmenting the data into four distinct regions based on the y coordinate with thresh-444

olds -6.6 RE , 2.3 RE and 6 RE , resulted in enhanced model performance for three of the445

four segments, surpassing the main model’s performance. The primary predictors in these446

outer regions were identified as radial distance and the radial solar wind speed. Conversely,447

the inner region models and the comprehensive main model demonstrated a significant448

dependence on the absolute value of z and the type of magnetic field lines.449

The redefinition of the FootType variable and the incorporation of the absolute value450

of z as key model features significantly improved the model compared to previous rel-451

evant studies. This study suggests that the development of more accurate predictive mod-452
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els for space weather phenomena may not solely rely on novel algorithms, but also on453

crafting tailored models, each addressing distinct regions with their specific character-454

istics.455

–18–



manuscript submitted to Space Weather

Appendix A : Histogram of Proton Intensities456

0 20000 40000 60000 80000 100000 120000 140000
p3 intensity (1/cm2/s/sr/keV)

10
0

10
1

10
2

10
3

10
4

10
5

Fr
eq

ue
nc

y 
(L

og
 S

ca
le

)

Figure A1. Histogram of the proton intensities measured by channel 3.
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