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Abstract

In-situ spacecraft observations are critical to our study and understanding of the various phenomena that couple mass, mo-

mentum, and energy throughout near-Earth space and beyond. However, on-orbit telemetry constraints can severely limit the

capability of spacecraft to transmit high-cadence data, and missions are often only able to telemeter a small percentage of their

captured data at full rate. This presents a programmatic need to prioritize intervals with the highest probability of enabling the

mission’s science goals. Larger missions such as the Magnetospheric Multiscale mission (MMS) aim to solve this problem with a

Scientist-In-The-Loop (SITL), where a domain expert flags intervals of time with potentially interesting data for high-cadence

data downlink and subsequent study. Although suitable for some missions, the SITL solution is not always feasible, especially

for low-cost missions such as CubeSats and NanoSats. This manuscript presents a generalizable method for the detection of

anomalous data points in spacecraft observations, enabling rapid data prioritization without substantial computational overhead

or the need for additional infrastructure on the ground. Specifically, Principal Components Analysis and One-Class Support

Vector Machines are used to generate an alternative representation of the data and provide an indication, for each point, of

the data’s potential for scientific utility. The technique’s performance and generalizability is demonstrated through application

to intervals of observations, including magnetic field data and plasma moments, from the CASSIOPE e-POP/Swarm-Echo and

MMS missions.
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Key Points: 12 

• Spacecraft often cannot transmit all measurements to Earth at full cadence due to 13 

telemetry bandwidth limitations. 14 

• Many missions must implement complex data prioritization schemes to ensure only the 15 

highest-priority data is transmitted at high cadence.  16 

• The proposed data prioritization technique is highly generic, compatible with inexpensive 17 

hardware, and suitable for low-cost missions. 18 
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Abstract 20 

In-situ spacecraft observations are critical to our study and understanding of the various 21 

phenomena that couple mass, momentum, and energy throughout near-Earth space and beyond. 22 

However, on-orbit telemetry constraints can severely limit the capability of spacecraft to transmit 23 

high-cadence data, and missions are often only able to telemeter a small percentage of their 24 

captured data at full rate. This presents a programmatic need to prioritize intervals with the highest 25 

probability of enabling the mission’s science goals. Larger missions such as the Magnetospheric 26 

Multiscale mission (MMS) aim to solve this problem with a Scientist-In-The-Loop (SITL), where 27 

a domain expert flags intervals of time with potentially interesting data for high-cadence data 28 

downlink and subsequent study. Although suitable for some missions, the SITL solution is not 29 

always feasible, especially for low-cost missions such as CubeSats and NanoSats. This manuscript 30 

presents a generalizable method for the detection of anomalous data points in spacecraft 31 

observations, enabling rapid data prioritization without substantial computational overhead or the 32 

need for additional infrastructure on the ground. Specifically, Principal Components Analysis and 33 

One-Class Support Vector Machines are used to generate an alternative representation of the data 34 

and provide an indication, for each point, of the data’s potential for scientific utility. The 35 

technique’s performance and generalizability is demonstrated through application to intervals of 36 

observations, including magnetic field data and plasma moments, from the CASSIOPE e-37 

POP/Swarm-Echo and MMS missions. 38 

Plain Language Summary 39 

Measurements captured by spacecraft are necessary to our understanding the space environment 40 

near Earth and throughout our solar system. However, spacecraft can often only transmit a small 41 

portion of the data they capture back to Earth. This means that many spacecraft must prioritize 42 

intervals of data that have the highest probability of helping to further our understanding of these 43 

environments. Some missions utilize humans, on Earth, to help select these scientifically important 44 

intervals. This solution, called the Scientist-In-The-Loop, can be too expensive or 45 

programmatically complex for many small missions to implement. This manuscript presents a 46 

technique for the detection of anomalous events in spaceflight measurements using statistical 47 

analysis and machine learning. These detected anomalies can be used to prioritize data that has a 48 

high probability of scientific relevance. Further, the proposed technique is highly generalizable 49 

and computationally lightweight, making it suitable for a variety of missions. Several case studies 50 

from multiple existing missions will be analyzed throughout this paper. 51 

1 Introduction 52 

Magnetic field sensors are one of the many science instruments that have been a 53 

fundamental part of space exploration since its inception. Some of the first satellites, such as the 54 

late-1950’s Sputnik 3 and Explorer 6, carried fluxgate magnetometers to collect scientific data 55 

(Gordon & Brown, 1972). Since then, the science of magnetometry and spaceflight has been 56 

advanced such that we can make magnetic field measurements of far-flung bodies such as asteroids 57 

(Weiss et al., 2023), Mars (Connerney et al., 2015), Jupiter (Connerney et al., 2017), and the Sun 58 

(Bale et al., 2016). The need to understand fundamental physical processes in space, such as 59 

magnetic reconnection, has driven requirements for the telemetry of measurements at higher and 60 

higher cadences (Phan et al., 2016). Additionally, our desire to enable comprehensive 61 

understanding, nowcasting, and forecasting of Earth’s near-space environment has led to the 62 
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development of the inexpensive CubeSat form factor and a greater number of multi-spacecraft 63 

missions. CubeSats allow cost effective proliferation of measurements that can vastly improve our 64 

models through data assimilation and machine learning techniques. The last several years have 65 

seen the emergence of large constellations, leading to a multitude of challenges, particularly in the 66 

handling and telemetry of the massive quantities of raw data available onboard each spacecraft 67 

(Liddle et al., 2020; Zhan et al., 2020). 68 

Many missions, due to programmatic constraints on telemetry rates, are unfortunately 69 

unable to downlink all of their captured data to Earth for analysis. Instead, mission operators and 70 

science teams must make decisions about which intervals of time to transmit high-cadence data 71 

(i.e., burst data). Some missions will transmit a lower-cadence data product (i.e., survey data) 72 

during intervals deemed less important (Lepping et al., 1995), and some missions will simply not 73 

telemeter these intervals (Yau & James, 2015). Intervals of burst data to be telemetered are 74 

typically determined by estimated spacecraft position, by humans on the ground diligently 75 

monitoring low-cadence data, or by carefully calibrated onboard algorithms which search the high-76 

cadence data for mission-specific triggers.  77 

The Magnetospheric Multiscale (MMS) mission (Burch et al., 2016) utilizes a particularly 78 

thorough approach to the identification and prioritization of burst data to telemeter to the ground 79 

(Baker et al., 2016). During spacecraft traversal through predetermined regions of interest, the 80 

MMS instruments always capture data at their high cadence burst rates. This high-cadence data is 81 

stored onboard while the lower-cadence survey data is telemetered to the ground and analyzed. If 82 

the survey data shows potentially interesting phenomena, short intervals of burst data can be 83 

downlinked from the spacecraft. The MMS mission prioritizes burst data using two techniques: 84 

the Scientist in the Loop (SITL) and the Automated Burst System (ABS).  85 

The ABS, as its name indicates, runs automatically onboard each spacecraft and provides 86 

a data ranking metric to be downlinked alongside the survey data (Baker et al., 2016). This system 87 

uses data quality indicators calculated by each instrument to rank the available burst data in a 88 

downlink prioritization queue. The last item in the queue will be the first to be overwritten should 89 

a higher-ranking interval be identified. Although 34 data quality indicators are available for burst 90 

triggering, the early mission used only large gradients in the ZGSM-component of the measured 91 

magnetic field to prioritize burst intervals while the data quality indicators were characterized. 92 

After two years of careful parameterization, ~6 data quality indicators are now used by the ABS 93 

for prioritization of burst data containing mission-specific phenomena of interest (Argall et al., 94 

2020). 95 

The SITL is a manual option that can validate or override the selections made by the ABS. 96 

A domain expert – with access to MMS survey data, spacecraft-calculated trigger metadata, and 97 

data from other satellites or ground systems – determines the priority of data for downlink using 98 

specialized software, ensuring that data with high scientific significance is telemetered (Baker et 99 

al., 2016).  100 

Both the ABS and SITL burst selection schemes for data prioritization require substantial 101 

scientific infrastructure and potentially costly overhead in their implementation. Extensive 102 

onboard triggering logic, years of parameter characterization, dedicated interval labeling time from 103 

experts during in-situ mission operations, and bespoke burst prioritization software are almost 104 

certainly infeasible for low-budget missions.  105 
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One method has been recently proposed which aims to reduce the need for infrastructure-106 

intensive SITL activities on MMS using supervised machine learning (Argall et al., 2020). 107 

Although their technique shows excellent results and enables a great reduction in the reliance on 108 

manual labeling tasks, it requires a large set of expert-labeled data during the training of their 109 

segmentation network and therefore does not eliminate the need for the SITL infrastructure 110 

entirely. 111 

This manuscript proposes the use of a common dimensionality reduction technique, 112 

coupled with unsupervised clustering, to provide a robust and generalizable method for detecting 113 

anomalous intervals of time series spacecraft observations. This method is intended for use as a 114 

component of a drop-in burst data prioritization system for missions where the infrastructure and 115 

cost associated with more sophisticated and mission-specific solutions are not feasible. Although 116 

the SpaceX Starlink constellation currently dominates the Low Earth Orbit environment with over 117 

2,000 satellites currently in orbit and approval granted for 12,000 total satellites, it is unlikely to 118 

remain the only major constellation in orbit (Ma et al., 2023; McDowell, 2020). These mega-119 

constellations are a heavy burden on ground systems, requiring complex protocols for dealing with 120 

telemetry, command, and tracking (Berner, 2019). The proposed tool would be an invaluable asset 121 

for such constellation missions, enabling a higher degree of distributed autonomy in their space 122 

operations. 123 

The following sections of this manuscript describe the proposed technique and demonstrate 124 

its performance with several case studies on observational measurements obtained from the 125 

CASSIOPE e-POP/Swarm-Echo spacecraft and one of the Magnetospheric Multiscale mission 126 

satellites.  127 

2 Methodology 128 

2.1 Dimensionality Reduction via Principal Components Analysis 129 

 Principal Components Analysis (PCA) is one of the oldest and most popular multivariate 130 

statistical analysis techniques used to reduce the dimensionality of large datasets (Jolliffe & 131 

Cadima, 2016). Mathematically, PCA is performed by identifying the eigenvectors of the 132 

covariance matrix associated with the data matrix under observation (X) via 133 

𝑿𝑇𝑿 =  𝐕𝚲𝐕𝑻 (1) 134 

where the columns of V correspond to the eigenvectors and the diagonal elements of 𝚲 are the 135 

associated eigenvalues. For convenience, let each eigenvector Vi be ordered by the magnitude of 136 

its associated eigenvalue. 137 

The projection and subsequent dimensionality reduction can be realized through 138 

𝑷 = 𝑿𝐕𝒒 (2) 139 

where Vq is a matrix whose columns are only the first q eigenvectors from V. Throughout this 140 

manuscript, the dimensionality of the output projection is fixed to two (i.e., 𝑞 = 2) in order to 141 

reduce the computational complexity associated with the analysis of the projected data. 142 

The specific data matrix being analyzed in this manuscript is generated by concatenating 143 

R consecutive time intervals, of length L, from the original time series (x, with length N) into a 144 

single matrix via 145 
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𝑿 =  [
𝑥(1) 𝑥(𝐿 + 1) … 𝑥(𝑅𝐿 − 𝐿 + 1)

… … … …
𝑥(𝐿) 𝑥(2𝐿) … 𝑥(𝑅𝐿)

] . (3) 146 

It should be noted that X is a reduced version of the trajectory matrix passed into PCA by the 147 

Singular Spectrum Analysis (SSA) technique (Finley et al., 2023). Both SSA’s trajectory matrix 148 

and the data matrix used throughout this paper are constructed to enable information about the 149 

temporal variation of a signal to be utilized. The reduced trajectory matrix (i.e., no overlapping 150 

samples in each consecutive column) was used here to reduce the computational complexity 151 

associated with the overall algorithm.  152 

An example of this variation on PCA, applied to one axis of the vector magnetometer data 153 

captured by the CASSIOPE e-POP/Swarm-Echo magnetic field instrument (Wallis et al., 2015; 154 

Yau & James, 2015), is shown in Fig. 1. Figure 1(a) illustrates the 2.5-minute interval of data, at 155 

a sampling rate of 160 Hz, to be processed. Figure 2(b) shows the two-dimensional representation, 156 

given by P, of the data following the application of PCA (with q = 2) on a data matrix constructed 157 

from 0.5-second consecutive intervals taken from the signal in Fig. 1(a).  158 

 159 
Figure 1: Dimensionality reduction via application of PCA on concatenated 0.5-second intervals of magnetic field data. (a) 160 

Inboard magnetometer data from CASSIOPE e-POP/Swarm-Echo MGF; (b) Two-dimensional representation of the 0.5-second 161 
intervals of (a) following PCA while retaining only two principal components. 162 

Each point in Fig. 1(b) is a projection of one of the 0.5-second intervals of Fig. 1(a). It can 163 

be seen that many of these points are clustered tightly near the origin, whereas some of the points 164 

are outlying near the periphery. This implies that the majority of the time intervals exhibit similar 165 

behavior when represented using only the first two principal components (i.e., those that describe 166 

the largest variance in the original data matrix). However, some intervals show very different 167 

behavior in terms of these maximum-variance components. Automatic clustering of this two-168 

dimensional representation should reveal anomalous time intervals in the original signal and is 169 

discussed in detail in Sec. 2.2. 170 

2.2 Clustering with One-Class Support Vector Machine 171 

Machine learning techniques have become increasingly popular in the various space 172 

physics research domains. Successful application of these techniques has been seen in methods for 173 

auroral image classification (Clausen & Nickisch, 2018), recreating magnetohydrodynamic 174 

environments from sparse sample spaces (Bard & Dorelli, 2021), space weather forecasting 175 

(Camporeale, 2019), and many others. However, machine learning models can often be complex, 176 

requiring large quantities of training data and computational resources. Once trained, these large 177 

and complex models are often treated as ‘black boxes,’ and can lack interpretability (Angelov et 178 

al., 2021). To increase potential applicability to low-cost and in-situ spaceflight hardware, a 179 
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machine learning-based clustering solution that is computationally efficient and easily understood 180 

must be utilized instead of a more complex model. 181 

Support Vector Machines (SVMs) are a popular means of performing classification tasks 182 

throughout a variety of fields including the biomedical sciences (Zhou et al., 2005) and industrial 183 

engineering (Shin et al., 2005). This data labeling technique has seen widespread adoption due to 184 

its high degree of robustness and interpretability (Hearst et al., 1998). Traditional SVMs are trained 185 

by first projecting the labeled training data to a higher dimension feature space using a user-186 

selected kernel. Next, a hyperplane that best separates the classes is calculated, although a slack 187 

parameter is considered in this optimization. This slack parameter enables the trained SVM to 188 

handle a small number of data points that cannot be separated using a hyperplane in the higher-189 

dimension feature space, which is a common situation in real-world datasets (Noble, 2006). This 190 

trained SVM can now be used to classify new data not seen during the training process.  191 

Slight modification of the traditional SVM framework leads to a technique known as the 192 

One-Class Support Vector Machine (OC-SVM), a common unsupervised approach to data 193 

classification and anomaly detection (Yin et al., 2014). These OC-SVMs operate in a similar 194 

fashion to the traditional SVM but calculate a hyperplane that optimally separates the data from 195 

the origin, not by separating pre-labeled classes (Amer et al., 2013). Here, the primary user-defined 196 

control parameter is ν, which lies in the range (0,1] and determines the upper bound on the number 197 

of allowed errors and a lower bound on the number of data points used when calculating the 198 

separating hyperplane (Chang & Lin, 2001). 199 

 200 

Figure 2: One-Class Support Vector Machine clustering applied to the reduced-dimension data illustrated in Fig. 1. 201 

Figure 2 illustrates the result of passing the two-dimensional output of PCA, shown in Fig. 202 

1(b), through an OC-SVM. This OC-SVM was trained with a Gaussian kernel and a ν-value of 203 

0.3. Points shown in red were those that were considered anomalous, whereas the points shown in 204 

blue were considered nominal. Since each point in Fig. 2 represents a 0.5-second interval of the 205 

original input shown in Fig. 1(a), the associated labels can be directly applied to each interval in 206 

the original input time series. The result of this inversion procedure, and additional examples, will 207 

be discussed in detail in Sec. 4. 208 

 209 
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3 Data and Preprocessing 210 

3.1 CASSIOPE e-POP/Swarm-Echo MGF 211 

One primary source of the data analyzed in previous sections and throughout the remainder 212 

of this manuscript is the CASSIOPE/Swarm-Echo Magnetic Field instrument (Wallis et al., 2015; 213 

Yau & James, 2015). The Magnetic Field instrument (MGF) consists of a pair of identical fluxgate 214 

magnetometers mounted inline on a single boom at approximately 0.6 m and 0.9 m from the body 215 

of the spacecraft. Both magnetometers capture the local magnetic field at a rate of 160 Hz and 216 

downlink the data when telemetry constraints allow. Although the magnetometer pair (i.e., 217 

gradiometer) could be used to mitigate local interference from the host spacecraft and improve 218 

data fidelity (Finley et al., 2023), the measurements used in this manuscript were taken from only 219 

the inboard magnetometer mounted closer to the spacecraft. This provides some insight into how 220 

the proposed anomaly detection technique handles data contaminated by local interference, which 221 

is almost constantly observed at the magnetometers as high-frequency oscillations caused 222 

primarily by the spacecraft’s attitude control systems (i.e., reaction wheels). The magnetometer 223 

measurements used in this manuscript have had a near-DC baseline removed using a 20-s moving 224 

average prior to analysis and visualization. 225 

3.2 Magnetospheric Multiscale Mission FGM 226 

 Another source of magnetic field data used in the remaining sections of this manuscript is 227 

the Magnetospheric Multiscale mission (MMS) Magnetometers (Burch et al., 2016; Russell et al., 228 

2016). Although data is available from all four MMS satellites, only data from MMS1 was utilized 229 

throughout this manuscript. The MMS Magnetometers consist of a near-identical pair of fluxgate 230 

sensors, with each sensor mounted at the end of two separate 5-meter booms. The measured data 231 

is reported as a high-fidelity triaxial vector data product (called FGM) with three possible sampling 232 

rates: slow survey at 8 Hz; fast survey at 16 Hz; and, burst data at 128 Hz. In this manuscript, only 233 

fast survey and slow survey data were utilized. If both fast and slow survey data were present in 234 

the time interval to be analyzed, the data was resampled to match the slow survey data rate for 235 

consistency of analysis. As with the CASSIOPE data discussed in Sec. 3.1., a 20-s moving average 236 

has been removed from the MMS data prior to analysis and visualization. 237 

3.3 Magnetospheric Multiscale Mission FPI 238 

An additional set of data used in the remaining sections of this manuscript is the MMS Fast 239 

Plasma Investigation (Burch et al., 2016; Pollock et al., 2016). As with the magnetic field data, 240 

only data from the MMS1 satellite was used in this manuscript. The Fast Plasma Investigation 241 

(FPI) for MMS comprises multiple top-hat electrostatic analyzers (Carlson et al., 1982) to 242 

determine in situ the fluxes of electrons and ions as functions of energy and direction. The FPI, its 243 

measurements, and methods of computation are described in detail in (Pollock et al., 2016). FPI 244 

acquires a full 3D set of electron samples (32 energies × 32 azimuths × 16 polar sections) every 245 

30 ms, and an equivalent set of ion samples every 150 ms. When telemetered to the ground, these 246 

samples are employed to compute electron and ion fluid parameters such as number density, bulk-247 

flow velocity, pressure, and others. Each parameter is computed as a summation of fluxes weighted 248 

by appropriate physical factors. These parameters are essential quantities required for many 249 

scientific analyses of space plasmas, for example in comparisons of observations with the output 250 

of magnetohydrodynamic (MHD) simulations that predict the overall behavior of plasma as a fluid. 251 
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The ion parameters (i.e., number density and velocity) shown in this manuscript are reported at the 252 

Fast Survey rate of ~0.22 Hz (i.e., captured at full cadence and averaged once every 4.5 s). 253 

For the FPI, approximate fluid-like parameters are also computed in a simplified fashion 254 

by the instrument processor onboard the spacecraft. The computation is approximate because the 255 

summations are not weighted by the proper factors necessary to obtain true physical quantities. 256 

However, it has been shown that these onboard quantities, known as pseudo-moments, can be 257 

rescaled to serve as proxies for the true physical parameters (Barrie et al., 2018). As a result, 258 

analysis of the derived plasma moments using the proposed anomaly detection technique is 259 

indicative of the technique’s performance when applied to the onboard pseudo-moments. 260 

3.3 Magnetospheric Multiscale Mission SITL 261 

 To verify the capability of the proposed technique to identify intervals of time relevant to 262 

the MMS mission’s science objectives, this manuscript also includes data from the MMS Scientist-263 

in-the-Loop (SITL) report. MMS is the first mission with both the spatial and temporal resolution 264 

to resolve electron-scale dynamics. This requires MMS to capture much more data than it can 265 

telemeter to the ground. As discussed in Sec. 1, this has led to the development of MMS’ burst 266 

management system, consisting of the Automated Burst System (ABS), Scientist-in-the-Loop 267 

(SITL), and the Ground Loop System (GLS). The SITL, specifically, is a role passed among MMS 268 

team member volunteers who search through the survey data to identify and select time intervals 269 

that may contain relevant events for burst-mode downlink. Survey data has insufficient resolution 270 

to capture electron-scale dynamics, so the SITL must over-select events to ensure that mission-271 

critical science data is captured. The SITL is guided by mission-level science objectives that enable 272 

assignment of a figure of merit (FOM) value to each interval examined (Argall et al., 2020; 273 

Hasegawa et al., 2023; Phan et al., 2016). These FOMs subsequently inform the mission of the 274 

highest-priority data to be selected and downlinked at burst rate. Each SITL selection is 275 

accompanied by a short description that is searchable and parsable. These descriptions have 276 

previously been used to train a supervised machine learning model that uses the SITL report to 277 

make future predictions about which data should be selected for downlink (Argall et al., 2020). 278 

This model is installed in the near real-time data processing GLS so that predictions can be made 279 

as soon as the preliminary low-cadence data is downlinked in order to guide the SITL (along with 280 

the ABS selections). The SITL data itself is not publicly available, as it is not considered science-281 

quality, but the reports describing the selected events and their time range can be searched through 282 

the MMS Mission Events webpage (https://lasp.colorado.edu/mms/sdc/public/about/events/#/). 283 

Additional tools, such as PyMMS, have been developed that enable rapid searching of these reports 284 

(Argall et al., 2022).  285 

4 Results 286 

4.1 Observations of Current Sheets with Embedded Alfvén Waves (CASSIOPE) 287 

Section 2 illustrated (through Fig. 1 and Fig. 2, respectively) the dimensionality reduction 288 

and unsupervised clustering techniques utilized in the proposed method of automated anomaly 289 

detection by applying them to a short interval of magnetic field data captured by the CASSIOPE 290 

e-POP/Swarm-Echo inboard magnetometer. Figure 3(a) shows the proposed method’s output after 291 

inverting the labels given to each point shown in Fig. 2 back onto the original magnetometer data 292 

shown in Fig. 1(a), as described in Sec. 2.2. Points in blue are those considered nominal by the 293 

technique, whereas points labeled red have been flagged as anomalous or potentially scientifically 294 
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relevant. Figure 3(b) provides the spectral content for the interval shown in Fig. 3(a). The spectral 295 

content and time series for this 2.5-minute interval shows previously identified Alfvénic activity 296 

embedded in a large current sheet at roughly 6:48:55 UTC (Miles et al., 2018), with a smaller 297 

current sheet observed near 6:48:10 UTC. The current sheet containing embedded Alfvénic 298 

activity is highlighted in gray in Fig. 3(a). It can be seen that the proposed method of anomaly 299 

detection was able to accurately identify these interesting intervals containing broadband magnetic 300 

activity, even in the presence of the potentially obfuscating reaction wheel interference observed 301 

at ~15 Hz.  302 

 303 

 304 
Figure 3: Proposed method of anomaly detection applied to CASSIOPE e-POP/Swarm-Echo MGF data containing Alfvénic 305 
activity. (a)  Time series with anomalous intervals plotted in red, nominal regions plotted in blue; (b) Spectral content of the 306 

interval shown in (a). 307 

4.2 Observations of Spacecraft Maneuvers (CASSIOPE) 308 

The next interval of data analyzed in this section is a 20-minute interval of CASSIOPE e-309 

POP/Swarm-Echo magnetometer data captured when the spacecraft was performing maneuvers. 310 

As a result, the spacecraft’s four reaction wheels were changing their spin frequency rapidly during 311 

this period. Figure 4(a) shows the labeled time series output by the method with a window length 312 

of five seconds. Anomalous intervals are shown in red, normal points are shown in blue. Figure 313 

4(b) shows the spectral content of the interval shown in Fig. 4(a). Highly dynamic high-frequency 314 

activity resulting from the reaction wheels’ diverging operational rates can be seen for a five-315 

minute interval starting at approximately 4:55:00 UTC, with other low-frequency perturbations 316 

occurring throughout the total 20-minute interval. It can be seen that the detected anomalies 317 

directly correspond to changes in behavior in the measured magnetic field due to the spacecraft 318 

maneuvers. This example helps to both illustrate the ability of the proposed technique to 319 

simultaneously identify dynamic behavior in both high- and low-frequency bands, as well as 320 

identify intervals critical to spacecraft operations (i.e., spacecraft maneuvers). 321 
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 322 
 323 

Figure 4: Proposed method of anomaly detection applied to interval of CASSIOPE e-POP/Swarm Echo MGF data containing 324 
highly dynamic high-frequency signatures caused by spacecraft reaction wheels. (a) Time series with anomalous intervals plotted 325 

in red, nominal in blue. (b) Spectrogram associated with the data in (a). 326 

4.3 Observations of Interplanetary Shocks and EMIC Waves (MMS) 327 

The next period of data analyzed in this manuscript is a full 24 hours of magnetic field data 328 

captured by the MMS magnetometer suite in December 2015. Figure 5(a) shows the result of the 329 

proposed method of anomaly detection applied to the full day of data with a window length (L) of 330 

5 minutes. As in the previous examples, points shown in red correspond to detected anomalies and 331 

points shown in blue have been identified as nominal. Figure 5(b) shows the spectrogram 332 

associated with the magnetic field measurements in Fig. 5(a). Note that this data has been 333 

resampled to match the slowest sampling rate present in the interval (i.e., 8 Hz), as described in 334 

Sec. 3.2. The frequent broadband magnetic phenomena seen throughout the first ~40% of this 24-335 

hour interval is attributed, by the MMS SITL, to observations of the bow shock and magnetopause. 336 

The broadband magnetic activity seen in the last ~15% of the day was similarly reported by SITL 337 

to correspond to observations of the magnetopause. The large-amplitude (i.e., > 200 nT) 338 

phenomena at approximately 17:00 UTC corresponds to the perigee of the MMS1 spacecraft. This 339 

day of data, which was analyzed extensively by Engebretson et al. (2018), also contains MMS’ 340 

observations prior to, during, and after an interplanetary shock. The resultant compression of the 341 

magnetosheath was observed by MMS at approximately 13:24 UTC, with structured EMIC wave 342 

activity occurring before and after. The gray highlighted region in Fig. 5(a) corresponds to the 343 

region of interest (from 13:00-14:00 UTC) containing the majority of this activity (Engebretson et 344 

al., 2018). It can be seen that the proposed method of anomaly detection is able to accurately label 345 

a significant portion of the interesting magnetic field data occurring at bow shock and 346 

magnetopause crossings before noon and near midnight. In addition, the technique also labels 347 

several of the large-amplitude perturbations in the magnetic field measurement near and during 348 

the 13:00-14:00 UTC region of interest. Figures 6(a) and 6(b) provide a zoomed view of this 349 
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region’s time series and spectral content, respectively. No change has been made to the anomaly 350 

labeling, which still corresponds to the result when the proposed method is applied to the full 24-351 

hour period. It is important to note that although the proposed technique has successfully identified 352 

the broadband signal corresponding to the magnetosheath compression, much of the structured 353 

EMIC wave activity occurring during this region of interest has not been labeled as anomalous. 354 

This result is obtained due to the input parameters selected for this example. The next example, 355 

shown in Fig. 7, will illustrate the effect of varying the input parameters when the anomaly 356 

detection technique is applied.  357 

 358 

Figure 5: Anomaly detection technique applied to a 24-hour interval of MMS FGM data containing a variety of scientifically 359 
interesting phenomena including observations of the bow shock, magnetopause, and compressions of the magnetopause due to an 360 
interplanetary shock. (a) Time series FGM measurements with anomalous intervals identified by the proposed technique plotted 361 

in red, nominal intervals plotted in blue. (b) Spectrogram associated with the data shown in (a). 362 
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 363 
Figure 6: Zoomed view of the gray-highlighted region shown in Fig. 5, with previously identified EMIC activity. (a) Time series 364 

FGM measurement with anomalous points shown in red and nominal points shown in blue. (b) Spectral content corresponding to 365 
the interval shown in (a). 366 

 367 

Figure 7 illustrates the impact of changing the signal length (N) and window length (L) on 368 

the performance of this technique. Specifically, Figure 7(a) shows the labeling output by the 369 

proposed method of anomaly detection when applied to only the 13:00-14:00 UTC region of 370 

interest highlighted in Fig. 5(a) and shown in Fig. 6(a). Note that this impacts the signal length, N, 371 

without changing the window length, L. Although more of the structured wave activity in this 372 

region is correctly labeled as anomalous, this result may still not be sufficient for some 373 

applications. Reducing the window length (L) from five minutes to one second, as seen in Fig. 374 

7(b), provides a more detailed labeling of the anomalous samples within the total interval. As a 375 

result, much more of the structured EMIC wave activity occurring after the magnetosheath 376 

incursion is identified as anomalous. Although the parameter space inherent to the proposed 377 

method of anomaly detection is small, these results clearly show the relevance of the input 378 

parameters to the method’s result. Selection of these parameters, and their effect on the method’s 379 

computational complexity, will be discussed in greater detail in Sec. 5.1. 380 
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 381 
Figure 7: Illustration of the impact of the user-defined input parameters on the output of the proposed anomaly detection, shown 382 
for the same data seen in Fig. 6. (a) Time series output by the anomaly detection technique for a signal length of one hour and a 383 
window length of five minutes. (b) Time series output by the anomaly detection technique for a signal length of one hour and a 384 

window length of one second. 385 

4.4 Observations of Magnetopause Crossings and the Bow Shock (MMS) 386 

The next experiment in this manuscript demonstrates the applicability of the proposed 387 

anomaly detection technique to spacecraft observations other than magnetic field measurements. 388 

Specifically, the technique is applied to a large interval of magnetic field data, as well as ion 389 

number density and ion velocity, as measured by the MMS spacecraft on 15 May 2023. Figure 390 

8(a) shows a 24-hour period of magnetic field measurements, Fig. 8(b) and Fig. 8(c) show the ion 391 

number density and ion velocity corresponding to the same period. The points illustrated in red are 392 

those considered anomalous by the proposed technique when it was applied to the total interval, 393 

whereas points shown in blue are considered nominal. It should be noted that the last 3.75 hours 394 

of ion measurements were not available because the spacecraft transitioned from Fast Survey to 395 

Slow Survey rate, and the FPI does not operate during Slow Survey mode. This period of missing 396 

data has been padded with nominal-labeled zeroes, after the anomaly detection algorithm was 397 

applied, for consistency with the magnetic field data. The gray region highlighted in Fig. 8 398 

corresponds to a region of data containing various physical phenomena identified by the MMS 399 

SITL, such as observations of the bow shock, magnetopause, and boundary layer crossings. These 400 

SITL identifications, including the time range and the associated Figure of Merit (FOM) are 401 

detailed in Tab. 1. A higher FOM is assigned to a selection that should be downlinked at higher 402 

priority, with a maximum value of 199 being assigned to typical events, while higher FOMs are 403 

reserved for calibration intervals or other special events (Argall et al., 2020). 404 

 405 

 406 

 407 
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Table 1: MMS SITL report for 15 May 2023. Columns 1-2 provide the start and stop time for each interval of interest. Column 3 408 
shows the Figure of Merit (FOM) associated with each interval. Column 4 shows SITL remarks for each interval.  409 

Start Time  

(UTC) 

Stop Time  

(UTC) 

Figure of 

Merit (FOM) Discussion 

12:49:43 13:17:33 100 Partial Bow Shock 

13:25:33 13:32:43 75 Partial Bow Shock 

13:37:33 13:46:43 75 
String of Partial Bow 

Shock Crossings 

15:34:03 15:58:13 90 Partial Magnetopause 

16:24:53 16:49:43 150 
Full Medium Shear 

Magnetopause 

17:51:43 17:56:13 55 Boundary Layer Traversal 

 410 

In addition to these SITL-identified phenomena, the magnetic field data shows frequent 411 

broadband perturbations throughout the first half of the day, as well as a large data spike occurring 412 

near midnight that corresponds to a perigee pass of the MMS satellite. It can be seen that, for all 413 

three sets of input data, the anomaly detection technique successfully identifies much of the gray-414 

highlighted region selected by the SITL as anomalous, but with a significant number of false 415 

positives shown for the magnetic field data when compared to only the SITL selections. These 416 

false positives in relationship to the SITL selection can be attributed to successful identification of 417 

the broadband perturbations of the magnetic field during the first half of the day. This number of 418 

false positives is greatly reduced in the labels associated with both the ion density and velocity, 419 

implying that a combination of parameters classified by the proposed technique may be used in 420 

the identification of only phenomena similar to those prioritized by the MMS SITL. 421 
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 422 
Figure 8: Anomaly detection technique applied to a long interval of MMS FGM and FPI measurements. This interval contains 423 

SITL-identified observations of the bow shock, magnetopause, and boundary layer crossings. Points highlighted in red are 424 
considered anomalous, points highlighted in blue are considered nominal. (a) FGM magnetic field measurements. (b) FPI ion 425 

number density measurements. (c) FPI ion velocity measurements. 426 

Figure 9 provides a zoomed view of only the gray-highlighted region shown in Fig. 8. As 427 

before, Fig. 9(a) – Fig. 9(c) show the magnetic field, the ion number density, and the ion velocity 428 

measured by MMS. The nominal and anomalous labels assigned by the proposed anomaly 429 

detection technique correspond to the blue and red points, respectively. These labels are identical 430 

to the labels seen in Fig. 8; only the time scale of the plot has been changed to visualize the 431 

technique’s output more clearly during the intervals selected by SITL. The regions highlighted in 432 

gray in Fig. 9 correspond to the specific time periods identified by SITL (described in Tab. 1) as 433 

containing observations of the bow shock, magnetopause, and boundary layer crossings. In a 434 

similar trend to the larger period shown in Fig. 8, the magnetic field data contains a greater number 435 

of false positive identifications of anomalous events when compared to only the SITL selections, 436 

and the ion moments, or combinations of the ion moments and magnetic field, may provide a 437 

greater degree of accuracy for this case study.  438 

The example shown in Fig. 8 and Fig. 9 clearly demonstrates the generic applicability of 439 

the anomaly detection algorithm to a variety of spaceflight data products. Additionally, it shows 440 

that greater utility may be leveraged from the proposed method by analyzing its output when 441 

applied to several data products. For example, a weighting scheme generated by some logical 442 

operation of the binary labels (nominal or anomalous) associated with the method’s output, when 443 

applied to multiple data products, may provide a reduced number of potential false positives 444 

depending on the target application. This is left as a potential topic for future study, and Section 5 445 

will discuss several other avenues for future work utilizing this technique. 446 

 447 
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 448 
Figure 9: Zoomed view of the region of interest shown in Fig. 8., with SITL-identified observations of the bow shock, 449 

magnetopause, and boundary layer crossings. (a) FGM magnetic field data. (b) FPI ion number density. (c) FPI ion velocity.  450 

5 Discussion & Future Work 451 

5.1 Parameter Selection & Computational Complexity 452 

This manuscript has demonstrated the capabilities of the proposed method of anomaly 453 

detection to analyze data from a variety of instruments and successfully identify various 454 

interesting phenomena; however, the example shown in Fig. 5 through Fig. 7 has illustrated the 455 

need for appropriate parameter selection to enable the highest possible scientific return. The 456 

proposed technique has a small parameter space, with only three variables impacting the output 457 

result. Thus, each of these parameters plays a critical role in the outcome of the analysis, as well 458 

is its computational complexity.  459 

The input signal length (N) determines the total length of data to be analyzed when 460 

determining anomalous activity. The window length, L, determines the length of the consecutive 461 

observations used as features when performing PCA. Finally, the tuning parameter ν used in the 462 

OC-SVM is, practically, the fraction of the consecutive observations that can be considered 463 

anomalous when the data is clustered. In practice, this means that the input signal length (N) 464 

must be large enough that the majority of the data (i.e., at least the fraction given by 1 −  𝜈) 465 

should be considered nominal, based on the target application. The window length must also be 466 

carefully considered when applying the technique as it corresponds to the scale on which 467 

anomalies are detected. If large, slowly varying changes are to be identified, a longer window 468 

length might be utilized; if small, rapid changes must be flagged, a shorter window length may 469 

be more suitable. 470 
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Changes in these parameters also have a significant impact on the computational 471 

complexity of the previously described technique. PCA, which is one of the fundamental 472 

building blocks for this algorithm, has two basic steps: computation of the covariance matrix, 473 

which has a complexity of O(𝐿2𝑅) for a given window length of L and a given number of total 474 

consecutive observations, R; and, eigendecomposition of the covariance matrix, which has a 475 

complexity of up to O(𝑅3) in the worst-case scenario (Zhang et al., 2015). For the OC-SVM, the 476 

most computationally expensive component is the model training, with a complexity of up to 477 

O(𝑅3). However, this complexity has been proven to be reduced by approximately one order of 478 

magnitude using more complex techniques such as sequential minimal optimization (Kang et al., 479 

2019).  480 

It can be seen that the window length, the number of consecutive observation intervals, 481 

and the OC-SVM tuning parameter have a direct impact on the computational complexity, or the 482 

detected anomalies associated with the proposed algorithm. As a result, users must tune these 483 

parameters as appropriate to suite the capabilities of their hardware and the data being processed. 484 

5.2 Potential for Implementation on Low-Cost Hardware 485 

Although PCA has historically been one of the most popular statistical analysis techniques 486 

used to reduce the dimensionality of large datasets (Jolliffe & Cadima, 2016), until recently 487 

relatively few studies have evaluated the potential for PCA’s implementation on embedded 488 

hardware (Korat & Alimohammad, 2019). Early efforts to perform PCA on embedded hardware 489 

relied on bespoke Very Large Scale Integration (VLSI) integrated circuits with complex 490 

architecture (Tung-Chien Chen et al., 2008), but more recent works have leveraged modern and 491 

relatively inexpensive FPGA technologies to perform either portions of the PCA computations 492 

(Ali et al., 2013) or complete implementations of the PCA algorithm (Bravo et al., 2010; Korat & 493 

Alimohammad, 2019). Additional research has proven that embedded implementation of PCA is 494 

generic and highly scalable, enabling substantial improvements in the computational speed of the 495 

technique across a range of applications (Shahrouzi & Perera, 2019). 496 

Support Vector Machines (SVMs), which fall into the broad category of machine learning 497 

algorithms, have historically provided excellent performance when classifying complex and 498 

continuous features (Saidi et al., 2021). Generally, machine learning techniques are considered 499 

computationally expensive and challenging to implement on embedded hardware (Sze et al., 500 

2017). However, several recent studies have shown the potential for the SVM algorithm to be 501 

implemented on a variety of embedded devices including VLSI integrated circuits and FPGAs 502 

(Amezzane et al., 2020; Loukrakpam & Choudhury, 2020). 503 

In addition to being suitable for implementation on embedded hardware, both Principal 504 

Components Analysis and/or Support Vector Machines have been previously utilized for 505 

spacecraft fault detection and diagnosis (Yu Gao et al., 2012), the onboard detection of anomalous 506 

behavior in CubeSat solar panels (Cespedes et al., 2022), and other intelligent decision making 507 

applications onboard spacecraft (Jallad & Mohammed, 2014). This illustrates that not only can 508 

PCA and SVM be implemented in hardware, but that they have history in successful 509 

implementation for spaceflight applications. 510 

5.3 Semantic Labeling of Prioritized Data 511 

 This manuscript has proposed a technique for the automated binary classification of time-512 

series data as either anomalous (i.e., potentially of high scientific importance) or nominal, one 513 

useful avenue of future work would be to provide additional semantic labels for the high-priority 514 



manuscript submitted to Journal of Geophysical Research: Machine Learning and Computation 

 

 

data. These labels could indicate whether an identified event falls into a particular class of 515 

geophysical event, such as shocks, magnetopause crossings, or whistler-mode waves. Several 516 

machine learning techniques have been previously developed for the identification of events in 517 

spaceflight data archives (Fordin et al., 2023; Vech & Malaspina, 2021), although the 518 

computational intensity or large dimensionality of some of these algorithms make them potentially 519 

unsuitable for deployment on spaceflight hardware. The proposed anomaly detection technique 520 

provides utility to the pursuit of semantic labeling in two ways: firstly, as a low-cost data reduction 521 

tool it can reduce the number of samples that must be processed by more complex algorithms, 522 

decreasing the overall time complexity of the problem; secondly, the binary-labeled data can serve 523 

as a powerful input feature vector if data reduction is not desired or required, potentially increasing 524 

model performance. 525 

5.4 Generalizability 526 

 This manuscript has illustrated the applicability of the proposed method of anomaly 527 

detection to magnetic field data from MMS and CASSIOPE/Swarm-Echo, as well as the ion 528 

density and velocity moments from MMS. Although this shows promise for the generalizability 529 

of the technique to other platforms and other physical observations, thorough exploration of this 530 

generalizability to other spacecraft observations (such as ion and electron pressures and 531 

temperatures, as well as the housekeeping measurements critical to spacecraft operations) remains 532 

an avenue for future work. 533 

Testing the generalizability of the clustering model trained on a specific interval of time 534 

against different intervals is also an interesting future project. If the clustering learned by an OC-535 

SVM trained on one interval of time (e.g., one of the 24-hour periods of MMS data) is applied to 536 

subsequent intervals (e.g., the next several days of MMS data) with meaningful results, the 537 

computational complexity of the proposed technique would decrease by eliminating the need to 538 

retrain a model for every interval under observation, enabling more rapid in-situ application. 539 

6 Conclusions 540 

The scientific measurements captured by in-situ spacecraft are critical to our study of the 541 

physical phenomena that control the flow of mass, momentum, and energy throughout our solar 542 

system. However, due to burdens on ground systems as a result of a rapid increase in the number 543 

of active spaceflight missions and the ever-growing need for higher-cadence data, spacecraft are 544 

often unable to transmit all of their data to Earth at full rate. As a result, missions must develop 545 

techniques that enable prioritization of specific intervals with a high probability of importance to 546 

their science goals. The techniques that have historically been used by large missions have 547 

provided excellent results but come with high design and implementation costs, leaving them 548 

potentially unsuitable for application on low-cost missions. This manuscript has proposed a 549 

generic technique for the prioritization of data through the detection of anomalous data points in 550 

spaceflight observations. The technique’s utility has been demonstrated through the successful 551 

identification of various physical phenomena in a variety of data products from several missions, 552 

and its potential applicability to low-cost spaceflight hardware has been discussed. Additionally, 553 

several avenues for potential future research utilizing the proposed technique have been 554 

highlighted.  555 

 556 
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Abstract 20 

In-situ spacecraft observations are critical to our study and understanding of the various 21 

phenomena that couple mass, momentum, and energy throughout near-Earth space and beyond. 22 

However, on-orbit telemetry constraints can severely limit the capability of spacecraft to transmit 23 

high-cadence data, and missions are often only able to telemeter a small percentage of their 24 

captured data at full rate. This presents a programmatic need to prioritize intervals with the highest 25 

probability of enabling the mission’s science goals. Larger missions such as the Magnetospheric 26 

Multiscale mission (MMS) aim to solve this problem with a Scientist-In-The-Loop (SITL), where 27 

a domain expert flags intervals of time with potentially interesting data for high-cadence data 28 

downlink and subsequent study. Although suitable for some missions, the SITL solution is not 29 

always feasible, especially for low-cost missions such as CubeSats and NanoSats. This manuscript 30 

presents a generalizable method for the detection of anomalous data points in spacecraft 31 

observations, enabling rapid data prioritization without substantial computational overhead or the 32 

need for additional infrastructure on the ground. Specifically, Principal Components Analysis and 33 

One-Class Support Vector Machines are used to generate an alternative representation of the data 34 

and provide an indication, for each point, of the data’s potential for scientific utility. The 35 

technique’s performance and generalizability is demonstrated through application to intervals of 36 

observations, including magnetic field data and plasma moments, from the CASSIOPE e-37 

POP/Swarm-Echo and MMS missions. 38 

Plain Language Summary 39 

Measurements captured by spacecraft are necessary to our understanding the space environment 40 

near Earth and throughout our solar system. However, spacecraft can often only transmit a small 41 

portion of the data they capture back to Earth. This means that many spacecraft must prioritize 42 

intervals of data that have the highest probability of helping to further our understanding of these 43 

environments. Some missions utilize humans, on Earth, to help select these scientifically important 44 

intervals. This solution, called the Scientist-In-The-Loop, can be too expensive or 45 

programmatically complex for many small missions to implement. This manuscript presents a 46 

technique for the detection of anomalous events in spaceflight measurements using statistical 47 

analysis and machine learning. These detected anomalies can be used to prioritize data that has a 48 

high probability of scientific relevance. Further, the proposed technique is highly generalizable 49 

and computationally lightweight, making it suitable for a variety of missions. Several case studies 50 

from multiple existing missions will be analyzed throughout this paper. 51 

1 Introduction 52 

Magnetic field sensors are one of the many science instruments that have been a 53 

fundamental part of space exploration since its inception. Some of the first satellites, such as the 54 

late-1950’s Sputnik 3 and Explorer 6, carried fluxgate magnetometers to collect scientific data 55 

(Gordon & Brown, 1972). Since then, the science of magnetometry and spaceflight has been 56 

advanced such that we can make magnetic field measurements of far-flung bodies such as asteroids 57 

(Weiss et al., 2023), Mars (Connerney et al., 2015), Jupiter (Connerney et al., 2017), and the Sun 58 

(Bale et al., 2016). The need to understand fundamental physical processes in space, such as 59 

magnetic reconnection, has driven requirements for the telemetry of measurements at higher and 60 

higher cadences (Phan et al., 2016). Additionally, our desire to enable comprehensive 61 

understanding, nowcasting, and forecasting of Earth’s near-space environment has led to the 62 
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development of the inexpensive CubeSat form factor and a greater number of multi-spacecraft 63 

missions. CubeSats allow cost effective proliferation of measurements that can vastly improve our 64 

models through data assimilation and machine learning techniques. The last several years have 65 

seen the emergence of large constellations, leading to a multitude of challenges, particularly in the 66 

handling and telemetry of the massive quantities of raw data available onboard each spacecraft 67 

(Liddle et al., 2020; Zhan et al., 2020). 68 

Many missions, due to programmatic constraints on telemetry rates, are unfortunately 69 

unable to downlink all of their captured data to Earth for analysis. Instead, mission operators and 70 

science teams must make decisions about which intervals of time to transmit high-cadence data 71 

(i.e., burst data). Some missions will transmit a lower-cadence data product (i.e., survey data) 72 

during intervals deemed less important (Lepping et al., 1995), and some missions will simply not 73 

telemeter these intervals (Yau & James, 2015). Intervals of burst data to be telemetered are 74 

typically determined by estimated spacecraft position, by humans on the ground diligently 75 

monitoring low-cadence data, or by carefully calibrated onboard algorithms which search the high-76 

cadence data for mission-specific triggers.  77 

The Magnetospheric Multiscale (MMS) mission (Burch et al., 2016) utilizes a particularly 78 

thorough approach to the identification and prioritization of burst data to telemeter to the ground 79 

(Baker et al., 2016). During spacecraft traversal through predetermined regions of interest, the 80 

MMS instruments always capture data at their high cadence burst rates. This high-cadence data is 81 

stored onboard while the lower-cadence survey data is telemetered to the ground and analyzed. If 82 

the survey data shows potentially interesting phenomena, short intervals of burst data can be 83 

downlinked from the spacecraft. The MMS mission prioritizes burst data using two techniques: 84 

the Scientist in the Loop (SITL) and the Automated Burst System (ABS).  85 

The ABS, as its name indicates, runs automatically onboard each spacecraft and provides 86 

a data ranking metric to be downlinked alongside the survey data (Baker et al., 2016). This system 87 

uses data quality indicators calculated by each instrument to rank the available burst data in a 88 

downlink prioritization queue. The last item in the queue will be the first to be overwritten should 89 

a higher-ranking interval be identified. Although 34 data quality indicators are available for burst 90 

triggering, the early mission used only large gradients in the ZGSM-component of the measured 91 

magnetic field to prioritize burst intervals while the data quality indicators were characterized. 92 

After two years of careful parameterization, ~6 data quality indicators are now used by the ABS 93 

for prioritization of burst data containing mission-specific phenomena of interest (Argall et al., 94 

2020). 95 

The SITL is a manual option that can validate or override the selections made by the ABS. 96 

A domain expert – with access to MMS survey data, spacecraft-calculated trigger metadata, and 97 

data from other satellites or ground systems – determines the priority of data for downlink using 98 

specialized software, ensuring that data with high scientific significance is telemetered (Baker et 99 

al., 2016).  100 

Both the ABS and SITL burst selection schemes for data prioritization require substantial 101 

scientific infrastructure and potentially costly overhead in their implementation. Extensive 102 

onboard triggering logic, years of parameter characterization, dedicated interval labeling time from 103 

experts during in-situ mission operations, and bespoke burst prioritization software are almost 104 

certainly infeasible for low-budget missions.  105 
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One method has been recently proposed which aims to reduce the need for infrastructure-106 

intensive SITL activities on MMS using supervised machine learning (Argall et al., 2020). 107 

Although their technique shows excellent results and enables a great reduction in the reliance on 108 

manual labeling tasks, it requires a large set of expert-labeled data during the training of their 109 

segmentation network and therefore does not eliminate the need for the SITL infrastructure 110 

entirely. 111 

This manuscript proposes the use of a common dimensionality reduction technique, 112 

coupled with unsupervised clustering, to provide a robust and generalizable method for detecting 113 

anomalous intervals of time series spacecraft observations. This method is intended for use as a 114 

component of a drop-in burst data prioritization system for missions where the infrastructure and 115 

cost associated with more sophisticated and mission-specific solutions are not feasible. Although 116 

the SpaceX Starlink constellation currently dominates the Low Earth Orbit environment with over 117 

2,000 satellites currently in orbit and approval granted for 12,000 total satellites, it is unlikely to 118 

remain the only major constellation in orbit (Ma et al., 2023; McDowell, 2020). These mega-119 

constellations are a heavy burden on ground systems, requiring complex protocols for dealing with 120 

telemetry, command, and tracking (Berner, 2019). The proposed tool would be an invaluable asset 121 

for such constellation missions, enabling a higher degree of distributed autonomy in their space 122 

operations. 123 

The following sections of this manuscript describe the proposed technique and demonstrate 124 

its performance with several case studies on observational measurements obtained from the 125 

CASSIOPE e-POP/Swarm-Echo spacecraft and one of the Magnetospheric Multiscale mission 126 

satellites.  127 

2 Methodology 128 

2.1 Dimensionality Reduction via Principal Components Analysis 129 

 Principal Components Analysis (PCA) is one of the oldest and most popular multivariate 130 

statistical analysis techniques used to reduce the dimensionality of large datasets (Jolliffe & 131 

Cadima, 2016). Mathematically, PCA is performed by identifying the eigenvectors of the 132 

covariance matrix associated with the data matrix under observation (X) via 133 

𝑿𝑇𝑿 =  𝐕𝚲𝐕𝑻 (1) 134 

where the columns of V correspond to the eigenvectors and the diagonal elements of 𝚲 are the 135 

associated eigenvalues. For convenience, let each eigenvector Vi be ordered by the magnitude of 136 

its associated eigenvalue. 137 

The projection and subsequent dimensionality reduction can be realized through 138 

𝑷 = 𝑿𝐕𝒒 (2) 139 

where Vq is a matrix whose columns are only the first q eigenvectors from V. Throughout this 140 

manuscript, the dimensionality of the output projection is fixed to two (i.e., 𝑞 = 2) in order to 141 

reduce the computational complexity associated with the analysis of the projected data. 142 

The specific data matrix being analyzed in this manuscript is generated by concatenating 143 

R consecutive time intervals, of length L, from the original time series (x, with length N) into a 144 

single matrix via 145 
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𝑿 =  [
𝑥(1) 𝑥(𝐿 + 1) … 𝑥(𝑅𝐿 − 𝐿 + 1)

… … … …
𝑥(𝐿) 𝑥(2𝐿) … 𝑥(𝑅𝐿)

] . (3) 146 

It should be noted that X is a reduced version of the trajectory matrix passed into PCA by the 147 

Singular Spectrum Analysis (SSA) technique (Finley et al., 2023). Both SSA’s trajectory matrix 148 

and the data matrix used throughout this paper are constructed to enable information about the 149 

temporal variation of a signal to be utilized. The reduced trajectory matrix (i.e., no overlapping 150 

samples in each consecutive column) was used here to reduce the computational complexity 151 

associated with the overall algorithm.  152 

An example of this variation on PCA, applied to one axis of the vector magnetometer data 153 

captured by the CASSIOPE e-POP/Swarm-Echo magnetic field instrument (Wallis et al., 2015; 154 

Yau & James, 2015), is shown in Fig. 1. Figure 1(a) illustrates the 2.5-minute interval of data, at 155 

a sampling rate of 160 Hz, to be processed. Figure 2(b) shows the two-dimensional representation, 156 

given by P, of the data following the application of PCA (with q = 2) on a data matrix constructed 157 

from 0.5-second consecutive intervals taken from the signal in Fig. 1(a).  158 

 159 
Figure 1: Dimensionality reduction via application of PCA on concatenated 0.5-second intervals of magnetic field data. (a) 160 

Inboard magnetometer data from CASSIOPE e-POP/Swarm-Echo MGF; (b) Two-dimensional representation of the 0.5-second 161 
intervals of (a) following PCA while retaining only two principal components. 162 

Each point in Fig. 1(b) is a projection of one of the 0.5-second intervals of Fig. 1(a). It can 163 

be seen that many of these points are clustered tightly near the origin, whereas some of the points 164 

are outlying near the periphery. This implies that the majority of the time intervals exhibit similar 165 

behavior when represented using only the first two principal components (i.e., those that describe 166 

the largest variance in the original data matrix). However, some intervals show very different 167 

behavior in terms of these maximum-variance components. Automatic clustering of this two-168 

dimensional representation should reveal anomalous time intervals in the original signal and is 169 

discussed in detail in Sec. 2.2. 170 

2.2 Clustering with One-Class Support Vector Machine 171 

Machine learning techniques have become increasingly popular in the various space 172 

physics research domains. Successful application of these techniques has been seen in methods for 173 

auroral image classification (Clausen & Nickisch, 2018), recreating magnetohydrodynamic 174 

environments from sparse sample spaces (Bard & Dorelli, 2021), space weather forecasting 175 

(Camporeale, 2019), and many others. However, machine learning models can often be complex, 176 

requiring large quantities of training data and computational resources. Once trained, these large 177 

and complex models are often treated as ‘black boxes,’ and can lack interpretability (Angelov et 178 

al., 2021). To increase potential applicability to low-cost and in-situ spaceflight hardware, a 179 
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machine learning-based clustering solution that is computationally efficient and easily understood 180 

must be utilized instead of a more complex model. 181 

Support Vector Machines (SVMs) are a popular means of performing classification tasks 182 

throughout a variety of fields including the biomedical sciences (Zhou et al., 2005) and industrial 183 

engineering (Shin et al., 2005). This data labeling technique has seen widespread adoption due to 184 

its high degree of robustness and interpretability (Hearst et al., 1998). Traditional SVMs are trained 185 

by first projecting the labeled training data to a higher dimension feature space using a user-186 

selected kernel. Next, a hyperplane that best separates the classes is calculated, although a slack 187 

parameter is considered in this optimization. This slack parameter enables the trained SVM to 188 

handle a small number of data points that cannot be separated using a hyperplane in the higher-189 

dimension feature space, which is a common situation in real-world datasets (Noble, 2006). This 190 

trained SVM can now be used to classify new data not seen during the training process.  191 

Slight modification of the traditional SVM framework leads to a technique known as the 192 

One-Class Support Vector Machine (OC-SVM), a common unsupervised approach to data 193 

classification and anomaly detection (Yin et al., 2014). These OC-SVMs operate in a similar 194 

fashion to the traditional SVM but calculate a hyperplane that optimally separates the data from 195 

the origin, not by separating pre-labeled classes (Amer et al., 2013). Here, the primary user-defined 196 

control parameter is ν, which lies in the range (0,1] and determines the upper bound on the number 197 

of allowed errors and a lower bound on the number of data points used when calculating the 198 

separating hyperplane (Chang & Lin, 2001). 199 

 200 

Figure 2: One-Class Support Vector Machine clustering applied to the reduced-dimension data illustrated in Fig. 1. 201 

Figure 2 illustrates the result of passing the two-dimensional output of PCA, shown in Fig. 202 

1(b), through an OC-SVM. This OC-SVM was trained with a Gaussian kernel and a ν-value of 203 

0.3. Points shown in red were those that were considered anomalous, whereas the points shown in 204 

blue were considered nominal. Since each point in Fig. 2 represents a 0.5-second interval of the 205 

original input shown in Fig. 1(a), the associated labels can be directly applied to each interval in 206 

the original input time series. The result of this inversion procedure, and additional examples, will 207 

be discussed in detail in Sec. 4. 208 

 209 
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3 Data and Preprocessing 210 

3.1 CASSIOPE e-POP/Swarm-Echo MGF 211 

One primary source of the data analyzed in previous sections and throughout the remainder 212 

of this manuscript is the CASSIOPE/Swarm-Echo Magnetic Field instrument (Wallis et al., 2015; 213 

Yau & James, 2015). The Magnetic Field instrument (MGF) consists of a pair of identical fluxgate 214 

magnetometers mounted inline on a single boom at approximately 0.6 m and 0.9 m from the body 215 

of the spacecraft. Both magnetometers capture the local magnetic field at a rate of 160 Hz and 216 

downlink the data when telemetry constraints allow. Although the magnetometer pair (i.e., 217 

gradiometer) could be used to mitigate local interference from the host spacecraft and improve 218 

data fidelity (Finley et al., 2023), the measurements used in this manuscript were taken from only 219 

the inboard magnetometer mounted closer to the spacecraft. This provides some insight into how 220 

the proposed anomaly detection technique handles data contaminated by local interference, which 221 

is almost constantly observed at the magnetometers as high-frequency oscillations caused 222 

primarily by the spacecraft’s attitude control systems (i.e., reaction wheels). The magnetometer 223 

measurements used in this manuscript have had a near-DC baseline removed using a 20-s moving 224 

average prior to analysis and visualization. 225 

3.2 Magnetospheric Multiscale Mission FGM 226 

 Another source of magnetic field data used in the remaining sections of this manuscript is 227 

the Magnetospheric Multiscale mission (MMS) Magnetometers (Burch et al., 2016; Russell et al., 228 

2016). Although data is available from all four MMS satellites, only data from MMS1 was utilized 229 

throughout this manuscript. The MMS Magnetometers consist of a near-identical pair of fluxgate 230 

sensors, with each sensor mounted at the end of two separate 5-meter booms. The measured data 231 

is reported as a high-fidelity triaxial vector data product (called FGM) with three possible sampling 232 

rates: slow survey at 8 Hz; fast survey at 16 Hz; and, burst data at 128 Hz. In this manuscript, only 233 

fast survey and slow survey data were utilized. If both fast and slow survey data were present in 234 

the time interval to be analyzed, the data was resampled to match the slow survey data rate for 235 

consistency of analysis. As with the CASSIOPE data discussed in Sec. 3.1., a 20-s moving average 236 

has been removed from the MMS data prior to analysis and visualization. 237 

3.3 Magnetospheric Multiscale Mission FPI 238 

An additional set of data used in the remaining sections of this manuscript is the MMS Fast 239 

Plasma Investigation (Burch et al., 2016; Pollock et al., 2016). As with the magnetic field data, 240 

only data from the MMS1 satellite was used in this manuscript. The Fast Plasma Investigation 241 

(FPI) for MMS comprises multiple top-hat electrostatic analyzers (Carlson et al., 1982) to 242 

determine in situ the fluxes of electrons and ions as functions of energy and direction. The FPI, its 243 

measurements, and methods of computation are described in detail in (Pollock et al., 2016). FPI 244 

acquires a full 3D set of electron samples (32 energies × 32 azimuths × 16 polar sections) every 245 

30 ms, and an equivalent set of ion samples every 150 ms. When telemetered to the ground, these 246 

samples are employed to compute electron and ion fluid parameters such as number density, bulk-247 

flow velocity, pressure, and others. Each parameter is computed as a summation of fluxes weighted 248 

by appropriate physical factors. These parameters are essential quantities required for many 249 

scientific analyses of space plasmas, for example in comparisons of observations with the output 250 

of magnetohydrodynamic (MHD) simulations that predict the overall behavior of plasma as a fluid. 251 
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The ion parameters (i.e., number density and velocity) shown in this manuscript are reported at the 252 

Fast Survey rate of ~0.22 Hz (i.e., captured at full cadence and averaged once every 4.5 s). 253 

For the FPI, approximate fluid-like parameters are also computed in a simplified fashion 254 

by the instrument processor onboard the spacecraft. The computation is approximate because the 255 

summations are not weighted by the proper factors necessary to obtain true physical quantities. 256 

However, it has been shown that these onboard quantities, known as pseudo-moments, can be 257 

rescaled to serve as proxies for the true physical parameters (Barrie et al., 2018). As a result, 258 

analysis of the derived plasma moments using the proposed anomaly detection technique is 259 

indicative of the technique’s performance when applied to the onboard pseudo-moments. 260 

3.3 Magnetospheric Multiscale Mission SITL 261 

 To verify the capability of the proposed technique to identify intervals of time relevant to 262 

the MMS mission’s science objectives, this manuscript also includes data from the MMS Scientist-263 

in-the-Loop (SITL) report. MMS is the first mission with both the spatial and temporal resolution 264 

to resolve electron-scale dynamics. This requires MMS to capture much more data than it can 265 

telemeter to the ground. As discussed in Sec. 1, this has led to the development of MMS’ burst 266 

management system, consisting of the Automated Burst System (ABS), Scientist-in-the-Loop 267 

(SITL), and the Ground Loop System (GLS). The SITL, specifically, is a role passed among MMS 268 

team member volunteers who search through the survey data to identify and select time intervals 269 

that may contain relevant events for burst-mode downlink. Survey data has insufficient resolution 270 

to capture electron-scale dynamics, so the SITL must over-select events to ensure that mission-271 

critical science data is captured. The SITL is guided by mission-level science objectives that enable 272 

assignment of a figure of merit (FOM) value to each interval examined (Argall et al., 2020; 273 

Hasegawa et al., 2023; Phan et al., 2016). These FOMs subsequently inform the mission of the 274 

highest-priority data to be selected and downlinked at burst rate. Each SITL selection is 275 

accompanied by a short description that is searchable and parsable. These descriptions have 276 

previously been used to train a supervised machine learning model that uses the SITL report to 277 

make future predictions about which data should be selected for downlink (Argall et al., 2020). 278 

This model is installed in the near real-time data processing GLS so that predictions can be made 279 

as soon as the preliminary low-cadence data is downlinked in order to guide the SITL (along with 280 

the ABS selections). The SITL data itself is not publicly available, as it is not considered science-281 

quality, but the reports describing the selected events and their time range can be searched through 282 

the MMS Mission Events webpage (https://lasp.colorado.edu/mms/sdc/public/about/events/#/). 283 

Additional tools, such as PyMMS, have been developed that enable rapid searching of these reports 284 

(Argall et al., 2022).  285 

4 Results 286 

4.1 Observations of Current Sheets with Embedded Alfvén Waves (CASSIOPE) 287 

Section 2 illustrated (through Fig. 1 and Fig. 2, respectively) the dimensionality reduction 288 

and unsupervised clustering techniques utilized in the proposed method of automated anomaly 289 

detection by applying them to a short interval of magnetic field data captured by the CASSIOPE 290 

e-POP/Swarm-Echo inboard magnetometer. Figure 3(a) shows the proposed method’s output after 291 

inverting the labels given to each point shown in Fig. 2 back onto the original magnetometer data 292 

shown in Fig. 1(a), as described in Sec. 2.2. Points in blue are those considered nominal by the 293 

technique, whereas points labeled red have been flagged as anomalous or potentially scientifically 294 
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relevant. Figure 3(b) provides the spectral content for the interval shown in Fig. 3(a). The spectral 295 

content and time series for this 2.5-minute interval shows previously identified Alfvénic activity 296 

embedded in a large current sheet at roughly 6:48:55 UTC (Miles et al., 2018), with a smaller 297 

current sheet observed near 6:48:10 UTC. The current sheet containing embedded Alfvénic 298 

activity is highlighted in gray in Fig. 3(a). It can be seen that the proposed method of anomaly 299 

detection was able to accurately identify these interesting intervals containing broadband magnetic 300 

activity, even in the presence of the potentially obfuscating reaction wheel interference observed 301 

at ~15 Hz.  302 

 303 

 304 
Figure 3: Proposed method of anomaly detection applied to CASSIOPE e-POP/Swarm-Echo MGF data containing Alfvénic 305 
activity. (a)  Time series with anomalous intervals plotted in red, nominal regions plotted in blue; (b) Spectral content of the 306 

interval shown in (a). 307 

4.2 Observations of Spacecraft Maneuvers (CASSIOPE) 308 

The next interval of data analyzed in this section is a 20-minute interval of CASSIOPE e-309 

POP/Swarm-Echo magnetometer data captured when the spacecraft was performing maneuvers. 310 

As a result, the spacecraft’s four reaction wheels were changing their spin frequency rapidly during 311 

this period. Figure 4(a) shows the labeled time series output by the method with a window length 312 

of five seconds. Anomalous intervals are shown in red, normal points are shown in blue. Figure 313 

4(b) shows the spectral content of the interval shown in Fig. 4(a). Highly dynamic high-frequency 314 

activity resulting from the reaction wheels’ diverging operational rates can be seen for a five-315 

minute interval starting at approximately 4:55:00 UTC, with other low-frequency perturbations 316 

occurring throughout the total 20-minute interval. It can be seen that the detected anomalies 317 

directly correspond to changes in behavior in the measured magnetic field due to the spacecraft 318 

maneuvers. This example helps to both illustrate the ability of the proposed technique to 319 

simultaneously identify dynamic behavior in both high- and low-frequency bands, as well as 320 

identify intervals critical to spacecraft operations (i.e., spacecraft maneuvers). 321 
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 322 
 323 

Figure 4: Proposed method of anomaly detection applied to interval of CASSIOPE e-POP/Swarm Echo MGF data containing 324 
highly dynamic high-frequency signatures caused by spacecraft reaction wheels. (a) Time series with anomalous intervals plotted 325 

in red, nominal in blue. (b) Spectrogram associated with the data in (a). 326 

4.3 Observations of Interplanetary Shocks and EMIC Waves (MMS) 327 

The next period of data analyzed in this manuscript is a full 24 hours of magnetic field data 328 

captured by the MMS magnetometer suite in December 2015. Figure 5(a) shows the result of the 329 

proposed method of anomaly detection applied to the full day of data with a window length (L) of 330 

5 minutes. As in the previous examples, points shown in red correspond to detected anomalies and 331 

points shown in blue have been identified as nominal. Figure 5(b) shows the spectrogram 332 

associated with the magnetic field measurements in Fig. 5(a). Note that this data has been 333 

resampled to match the slowest sampling rate present in the interval (i.e., 8 Hz), as described in 334 

Sec. 3.2. The frequent broadband magnetic phenomena seen throughout the first ~40% of this 24-335 

hour interval is attributed, by the MMS SITL, to observations of the bow shock and magnetopause. 336 

The broadband magnetic activity seen in the last ~15% of the day was similarly reported by SITL 337 

to correspond to observations of the magnetopause. The large-amplitude (i.e., > 200 nT) 338 

phenomena at approximately 17:00 UTC corresponds to the perigee of the MMS1 spacecraft. This 339 

day of data, which was analyzed extensively by Engebretson et al. (2018), also contains MMS’ 340 

observations prior to, during, and after an interplanetary shock. The resultant compression of the 341 

magnetosheath was observed by MMS at approximately 13:24 UTC, with structured EMIC wave 342 

activity occurring before and after. The gray highlighted region in Fig. 5(a) corresponds to the 343 

region of interest (from 13:00-14:00 UTC) containing the majority of this activity (Engebretson et 344 

al., 2018). It can be seen that the proposed method of anomaly detection is able to accurately label 345 

a significant portion of the interesting magnetic field data occurring at bow shock and 346 

magnetopause crossings before noon and near midnight. In addition, the technique also labels 347 

several of the large-amplitude perturbations in the magnetic field measurement near and during 348 

the 13:00-14:00 UTC region of interest. Figures 6(a) and 6(b) provide a zoomed view of this 349 
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region’s time series and spectral content, respectively. No change has been made to the anomaly 350 

labeling, which still corresponds to the result when the proposed method is applied to the full 24-351 

hour period. It is important to note that although the proposed technique has successfully identified 352 

the broadband signal corresponding to the magnetosheath compression, much of the structured 353 

EMIC wave activity occurring during this region of interest has not been labeled as anomalous. 354 

This result is obtained due to the input parameters selected for this example. The next example, 355 

shown in Fig. 7, will illustrate the effect of varying the input parameters when the anomaly 356 

detection technique is applied.  357 

 358 

Figure 5: Anomaly detection technique applied to a 24-hour interval of MMS FGM data containing a variety of scientifically 359 
interesting phenomena including observations of the bow shock, magnetopause, and compressions of the magnetopause due to an 360 
interplanetary shock. (a) Time series FGM measurements with anomalous intervals identified by the proposed technique plotted 361 

in red, nominal intervals plotted in blue. (b) Spectrogram associated with the data shown in (a). 362 
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 363 
Figure 6: Zoomed view of the gray-highlighted region shown in Fig. 5, with previously identified EMIC activity. (a) Time series 364 

FGM measurement with anomalous points shown in red and nominal points shown in blue. (b) Spectral content corresponding to 365 
the interval shown in (a). 366 

 367 

Figure 7 illustrates the impact of changing the signal length (N) and window length (L) on 368 

the performance of this technique. Specifically, Figure 7(a) shows the labeling output by the 369 

proposed method of anomaly detection when applied to only the 13:00-14:00 UTC region of 370 

interest highlighted in Fig. 5(a) and shown in Fig. 6(a). Note that this impacts the signal length, N, 371 

without changing the window length, L. Although more of the structured wave activity in this 372 

region is correctly labeled as anomalous, this result may still not be sufficient for some 373 

applications. Reducing the window length (L) from five minutes to one second, as seen in Fig. 374 

7(b), provides a more detailed labeling of the anomalous samples within the total interval. As a 375 

result, much more of the structured EMIC wave activity occurring after the magnetosheath 376 

incursion is identified as anomalous. Although the parameter space inherent to the proposed 377 

method of anomaly detection is small, these results clearly show the relevance of the input 378 

parameters to the method’s result. Selection of these parameters, and their effect on the method’s 379 

computational complexity, will be discussed in greater detail in Sec. 5.1. 380 
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 381 
Figure 7: Illustration of the impact of the user-defined input parameters on the output of the proposed anomaly detection, shown 382 
for the same data seen in Fig. 6. (a) Time series output by the anomaly detection technique for a signal length of one hour and a 383 
window length of five minutes. (b) Time series output by the anomaly detection technique for a signal length of one hour and a 384 

window length of one second. 385 

4.4 Observations of Magnetopause Crossings and the Bow Shock (MMS) 386 

The next experiment in this manuscript demonstrates the applicability of the proposed 387 

anomaly detection technique to spacecraft observations other than magnetic field measurements. 388 

Specifically, the technique is applied to a large interval of magnetic field data, as well as ion 389 

number density and ion velocity, as measured by the MMS spacecraft on 15 May 2023. Figure 390 

8(a) shows a 24-hour period of magnetic field measurements, Fig. 8(b) and Fig. 8(c) show the ion 391 

number density and ion velocity corresponding to the same period. The points illustrated in red are 392 

those considered anomalous by the proposed technique when it was applied to the total interval, 393 

whereas points shown in blue are considered nominal. It should be noted that the last 3.75 hours 394 

of ion measurements were not available because the spacecraft transitioned from Fast Survey to 395 

Slow Survey rate, and the FPI does not operate during Slow Survey mode. This period of missing 396 

data has been padded with nominal-labeled zeroes, after the anomaly detection algorithm was 397 

applied, for consistency with the magnetic field data. The gray region highlighted in Fig. 8 398 

corresponds to a region of data containing various physical phenomena identified by the MMS 399 

SITL, such as observations of the bow shock, magnetopause, and boundary layer crossings. These 400 

SITL identifications, including the time range and the associated Figure of Merit (FOM) are 401 

detailed in Tab. 1. A higher FOM is assigned to a selection that should be downlinked at higher 402 

priority, with a maximum value of 199 being assigned to typical events, while higher FOMs are 403 

reserved for calibration intervals or other special events (Argall et al., 2020). 404 

 405 

 406 

 407 
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Table 1: MMS SITL report for 15 May 2023. Columns 1-2 provide the start and stop time for each interval of interest. Column 3 408 
shows the Figure of Merit (FOM) associated with each interval. Column 4 shows SITL remarks for each interval.  409 

Start Time  

(UTC) 

Stop Time  

(UTC) 

Figure of 

Merit (FOM) Discussion 

12:49:43 13:17:33 100 Partial Bow Shock 

13:25:33 13:32:43 75 Partial Bow Shock 

13:37:33 13:46:43 75 
String of Partial Bow 

Shock Crossings 

15:34:03 15:58:13 90 Partial Magnetopause 

16:24:53 16:49:43 150 
Full Medium Shear 

Magnetopause 

17:51:43 17:56:13 55 Boundary Layer Traversal 

 410 

In addition to these SITL-identified phenomena, the magnetic field data shows frequent 411 

broadband perturbations throughout the first half of the day, as well as a large data spike occurring 412 

near midnight that corresponds to a perigee pass of the MMS satellite. It can be seen that, for all 413 

three sets of input data, the anomaly detection technique successfully identifies much of the gray-414 

highlighted region selected by the SITL as anomalous, but with a significant number of false 415 

positives shown for the magnetic field data when compared to only the SITL selections. These 416 

false positives in relationship to the SITL selection can be attributed to successful identification of 417 

the broadband perturbations of the magnetic field during the first half of the day. This number of 418 

false positives is greatly reduced in the labels associated with both the ion density and velocity, 419 

implying that a combination of parameters classified by the proposed technique may be used in 420 

the identification of only phenomena similar to those prioritized by the MMS SITL. 421 
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 422 
Figure 8: Anomaly detection technique applied to a long interval of MMS FGM and FPI measurements. This interval contains 423 

SITL-identified observations of the bow shock, magnetopause, and boundary layer crossings. Points highlighted in red are 424 
considered anomalous, points highlighted in blue are considered nominal. (a) FGM magnetic field measurements. (b) FPI ion 425 

number density measurements. (c) FPI ion velocity measurements. 426 

Figure 9 provides a zoomed view of only the gray-highlighted region shown in Fig. 8. As 427 

before, Fig. 9(a) – Fig. 9(c) show the magnetic field, the ion number density, and the ion velocity 428 

measured by MMS. The nominal and anomalous labels assigned by the proposed anomaly 429 

detection technique correspond to the blue and red points, respectively. These labels are identical 430 

to the labels seen in Fig. 8; only the time scale of the plot has been changed to visualize the 431 

technique’s output more clearly during the intervals selected by SITL. The regions highlighted in 432 

gray in Fig. 9 correspond to the specific time periods identified by SITL (described in Tab. 1) as 433 

containing observations of the bow shock, magnetopause, and boundary layer crossings. In a 434 

similar trend to the larger period shown in Fig. 8, the magnetic field data contains a greater number 435 

of false positive identifications of anomalous events when compared to only the SITL selections, 436 

and the ion moments, or combinations of the ion moments and magnetic field, may provide a 437 

greater degree of accuracy for this case study.  438 

The example shown in Fig. 8 and Fig. 9 clearly demonstrates the generic applicability of 439 

the anomaly detection algorithm to a variety of spaceflight data products. Additionally, it shows 440 

that greater utility may be leveraged from the proposed method by analyzing its output when 441 

applied to several data products. For example, a weighting scheme generated by some logical 442 

operation of the binary labels (nominal or anomalous) associated with the method’s output, when 443 

applied to multiple data products, may provide a reduced number of potential false positives 444 

depending on the target application. This is left as a potential topic for future study, and Section 5 445 

will discuss several other avenues for future work utilizing this technique. 446 

 447 
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 448 
Figure 9: Zoomed view of the region of interest shown in Fig. 8., with SITL-identified observations of the bow shock, 449 

magnetopause, and boundary layer crossings. (a) FGM magnetic field data. (b) FPI ion number density. (c) FPI ion velocity.  450 

5 Discussion & Future Work 451 

5.1 Parameter Selection & Computational Complexity 452 

This manuscript has demonstrated the capabilities of the proposed method of anomaly 453 

detection to analyze data from a variety of instruments and successfully identify various 454 

interesting phenomena; however, the example shown in Fig. 5 through Fig. 7 has illustrated the 455 

need for appropriate parameter selection to enable the highest possible scientific return. The 456 

proposed technique has a small parameter space, with only three variables impacting the output 457 

result. Thus, each of these parameters plays a critical role in the outcome of the analysis, as well 458 

is its computational complexity.  459 

The input signal length (N) determines the total length of data to be analyzed when 460 

determining anomalous activity. The window length, L, determines the length of the consecutive 461 

observations used as features when performing PCA. Finally, the tuning parameter ν used in the 462 

OC-SVM is, practically, the fraction of the consecutive observations that can be considered 463 

anomalous when the data is clustered. In practice, this means that the input signal length (N) 464 

must be large enough that the majority of the data (i.e., at least the fraction given by 1 −  𝜈) 465 

should be considered nominal, based on the target application. The window length must also be 466 

carefully considered when applying the technique as it corresponds to the scale on which 467 

anomalies are detected. If large, slowly varying changes are to be identified, a longer window 468 

length might be utilized; if small, rapid changes must be flagged, a shorter window length may 469 

be more suitable. 470 
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Changes in these parameters also have a significant impact on the computational 471 

complexity of the previously described technique. PCA, which is one of the fundamental 472 

building blocks for this algorithm, has two basic steps: computation of the covariance matrix, 473 

which has a complexity of O(𝐿2𝑅) for a given window length of L and a given number of total 474 

consecutive observations, R; and, eigendecomposition of the covariance matrix, which has a 475 

complexity of up to O(𝑅3) in the worst-case scenario (Zhang et al., 2015). For the OC-SVM, the 476 

most computationally expensive component is the model training, with a complexity of up to 477 

O(𝑅3). However, this complexity has been proven to be reduced by approximately one order of 478 

magnitude using more complex techniques such as sequential minimal optimization (Kang et al., 479 

2019).  480 

It can be seen that the window length, the number of consecutive observation intervals, 481 

and the OC-SVM tuning parameter have a direct impact on the computational complexity, or the 482 

detected anomalies associated with the proposed algorithm. As a result, users must tune these 483 

parameters as appropriate to suite the capabilities of their hardware and the data being processed. 484 

5.2 Potential for Implementation on Low-Cost Hardware 485 

Although PCA has historically been one of the most popular statistical analysis techniques 486 

used to reduce the dimensionality of large datasets (Jolliffe & Cadima, 2016), until recently 487 

relatively few studies have evaluated the potential for PCA’s implementation on embedded 488 

hardware (Korat & Alimohammad, 2019). Early efforts to perform PCA on embedded hardware 489 

relied on bespoke Very Large Scale Integration (VLSI) integrated circuits with complex 490 

architecture (Tung-Chien Chen et al., 2008), but more recent works have leveraged modern and 491 

relatively inexpensive FPGA technologies to perform either portions of the PCA computations 492 

(Ali et al., 2013) or complete implementations of the PCA algorithm (Bravo et al., 2010; Korat & 493 

Alimohammad, 2019). Additional research has proven that embedded implementation of PCA is 494 

generic and highly scalable, enabling substantial improvements in the computational speed of the 495 

technique across a range of applications (Shahrouzi & Perera, 2019). 496 

Support Vector Machines (SVMs), which fall into the broad category of machine learning 497 

algorithms, have historically provided excellent performance when classifying complex and 498 

continuous features (Saidi et al., 2021). Generally, machine learning techniques are considered 499 

computationally expensive and challenging to implement on embedded hardware (Sze et al., 500 

2017). However, several recent studies have shown the potential for the SVM algorithm to be 501 

implemented on a variety of embedded devices including VLSI integrated circuits and FPGAs 502 

(Amezzane et al., 2020; Loukrakpam & Choudhury, 2020). 503 

In addition to being suitable for implementation on embedded hardware, both Principal 504 

Components Analysis and/or Support Vector Machines have been previously utilized for 505 

spacecraft fault detection and diagnosis (Yu Gao et al., 2012), the onboard detection of anomalous 506 

behavior in CubeSat solar panels (Cespedes et al., 2022), and other intelligent decision making 507 

applications onboard spacecraft (Jallad & Mohammed, 2014). This illustrates that not only can 508 

PCA and SVM be implemented in hardware, but that they have history in successful 509 

implementation for spaceflight applications. 510 

5.3 Semantic Labeling of Prioritized Data 511 

 This manuscript has proposed a technique for the automated binary classification of time-512 

series data as either anomalous (i.e., potentially of high scientific importance) or nominal, one 513 

useful avenue of future work would be to provide additional semantic labels for the high-priority 514 
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data. These labels could indicate whether an identified event falls into a particular class of 515 

geophysical event, such as shocks, magnetopause crossings, or whistler-mode waves. Several 516 

machine learning techniques have been previously developed for the identification of events in 517 

spaceflight data archives (Fordin et al., 2023; Vech & Malaspina, 2021), although the 518 

computational intensity or large dimensionality of some of these algorithms make them potentially 519 

unsuitable for deployment on spaceflight hardware. The proposed anomaly detection technique 520 

provides utility to the pursuit of semantic labeling in two ways: firstly, as a low-cost data reduction 521 

tool it can reduce the number of samples that must be processed by more complex algorithms, 522 

decreasing the overall time complexity of the problem; secondly, the binary-labeled data can serve 523 

as a powerful input feature vector if data reduction is not desired or required, potentially increasing 524 

model performance. 525 

5.4 Generalizability 526 

 This manuscript has illustrated the applicability of the proposed method of anomaly 527 

detection to magnetic field data from MMS and CASSIOPE/Swarm-Echo, as well as the ion 528 

density and velocity moments from MMS. Although this shows promise for the generalizability 529 

of the technique to other platforms and other physical observations, thorough exploration of this 530 

generalizability to other spacecraft observations (such as ion and electron pressures and 531 

temperatures, as well as the housekeeping measurements critical to spacecraft operations) remains 532 

an avenue for future work. 533 

Testing the generalizability of the clustering model trained on a specific interval of time 534 

against different intervals is also an interesting future project. If the clustering learned by an OC-535 

SVM trained on one interval of time (e.g., one of the 24-hour periods of MMS data) is applied to 536 

subsequent intervals (e.g., the next several days of MMS data) with meaningful results, the 537 

computational complexity of the proposed technique would decrease by eliminating the need to 538 

retrain a model for every interval under observation, enabling more rapid in-situ application. 539 

6 Conclusions 540 

The scientific measurements captured by in-situ spacecraft are critical to our study of the 541 

physical phenomena that control the flow of mass, momentum, and energy throughout our solar 542 

system. However, due to burdens on ground systems as a result of a rapid increase in the number 543 

of active spaceflight missions and the ever-growing need for higher-cadence data, spacecraft are 544 

often unable to transmit all of their data to Earth at full rate. As a result, missions must develop 545 

techniques that enable prioritization of specific intervals with a high probability of importance to 546 

their science goals. The techniques that have historically been used by large missions have 547 

provided excellent results but come with high design and implementation costs, leaving them 548 

potentially unsuitable for application on low-cost missions. This manuscript has proposed a 549 

generic technique for the prioritization of data through the detection of anomalous data points in 550 

spaceflight observations. The technique’s utility has been demonstrated through the successful 551 

identification of various physical phenomena in a variety of data products from several missions, 552 

and its potential applicability to low-cost spaceflight hardware has been discussed. Additionally, 553 

several avenues for potential future research utilizing the proposed technique have been 554 

highlighted.  555 

 556 
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