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Abstract

A data-driven model of Earth’s magnetosheath is developed by training a Bayesian recurrent neural network to reproduce

Magnetospheric MultiScale (MMS) measurements of the magnetosheath plasma and magnetic field using measurements from

the Wind spacecraft upstream of Earth at the first Earth-Sun Lagrange point (L1). This model, called PRIME-SH in reference

to its progenitor algorithm PRIME (Probabilistic Regressor for Input to the Magnetosphere Estimation), is shown to predict

spacecraft observations of magnetosheath conditions accurately in a statistical sense with a continuous rank probability score

(CRPS) of $0.227\sigma$ and more accurately than current analytical models of the magnetosheath. Furthermore, PRIME-SH

is shown to reproduce physics not explicitly enforced during training, such as field line draping, the dayside plasma depletion

layer, the magnetosheath flow stagnation point, and the Rankine-Hugoniot MHD shock jump conditions. PRIME-SH has

the additional benefits of being computationally inexpensive relative to global MHD simulations, being capable of reproducing

difficult-to-model physics such as temperature anisotropy, and being capable of reliably estimating its own uncertainty to within

$3.5\%$.
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Key Points:11

• PRIME-SH is an algorithm that predicts plasma and magnetic field in Earth’s mag-12

netosheath using inputs from in-situ monitors at L1.13

• PRIME-SH accurately predicts the magnetosheath conditions in a statistical sense14

and its predictions obey conservation laws at the shock.15

• PRIME-SH can be used to easily assemble continuous maps of the magnetosheath,16

addressing spatial limitations of in-situ data.17
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Abstract18

A data-driven model of Earth’s magnetosheath is developed by training a Bayesian19

recurrent neural network to reproduce Magnetospheric MultiScale (MMS) measurements20

of the magnetosheath plasma and magnetic field using measurements from the Wind space-21

craft upstream of Earth at the first Earth-Sun Lagrange point (L1). This model, called22

PRIME-SH in reference to its progenitor algorithm PRIME (Probabilistic Regressor for23

Input to the Magnetosphere Estimation), is shown to predict spacecraft observations of24

magnetosheath conditions accurately in a statistical sense with a continuous rank prob-25

ability score (CRPS) of 0.227σ (dimensionless standard deviation units). PRIME-SH is26

shown to be more accurate than many current analytical models of the magnetosheath.27

Furthermore, PRIME-SH is shown to reproduce physics not explicitly enforced during28

training, such as field line draping, the dayside plasma depletion layer, the magnetosheath29

flow stagnation point, and the Rankine-Hugoniot MHD shock jump conditions. PRIME-30

SH has the additional benefits of being computationally inexpensive relative to global31

MHD simulations, being capable of reproducing difficult-to-model physics such as tem-32

perature anisotropy, and being capable of reliably estimating its own uncertainty to within33

3.5%.34

Plain Language Summary35

As the solar wind encounters Earth’s magnetosphere and diverts around it, a shock36

is formed that heats and compresses the plasma and warps the magnetic field frozen into37

it. This shocked plasma and magnetic field, known as the magnetosheath, is what drives38

energy transfer at the magnetopause. Due to orbital constraints there is no continuous39

in-situ monitor of magnetosheath conditions. Studies of solar wind magnetosphere in-40

teraction typically rely on solar wind conditions measured at L1 propagated to Earth41

by some algorithm, which are then either used directly or used to drive some model of42

the magnetosheath. This process has numerous points of uncertainty, from the choice43

of propagation algorithm to the choice of magnetosheath model (or lack thereof). To ad-44

dress these concerns with the traditional approach, this study develops a data-driven model45

of the magnetosheath that uses data from L1 as its input. This new model, called PRIME-46

SH, adapts a Bayesian recurrent neural network architecture that is capable of estimat-47

ing uncertainties for its predictions. This new model is verified to be accurate in a sta-48

tistical sense, and is also capable of representing physics that is not explicitly incorpo-49

rated in the model during training.50

1 Introduction51

The region of turbulent, shocked solar wind plasma downstream of Earth’s bow shock52

is known as the magnetosheath. The magnetosheath plasma and magnetic field trans-53

fer energy to Earth’s magnetosphere via magnetic reconnection and viscous interaction54

(Dungey, 1961; Axford, 1964). Despite this, the solar wind conditions upstream of the55

bow shock are frequently taken as the input to the system in studies of solar wind-magnetosphere56

interaction. This is largely because of the absence of any continuous in-situ magnetosheath57

monitor due to orbital constraints. Continuous records of the magnetosheath conditions58

therefore require modeling the magnetosheath by some method.59

Early models of the magnetosheath used gas dynamics as their basis, incorporat-60

ing some physical assumptions and including limited consideration of the magnetic field61

outside the magnetopause (Spreiter et al., 1966; Spreiter & Alksne, 1969). These mod-62

els have matured through the inclusion of additional physics into modern MHD codes63

(e.g. Powell et al. (1999); Lyon et al. (2004)), that offer spatially and temporally com-64

plete model magnetosheaths at the cost of some physical assumptions and increased com-65

putational expense. In situations where the computational expense of MHD modeling66
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is prohibitive, some magnetosheath modeling efforts fit analytical expressions derived from67

physical assumptions to spacecraft measurements of the magnetosheath (Kobel & Flückiger,68

1994; Soucek & Escoubet, 2012; Tsyganenko et al., 2023). Others, such as the recent Mshpy2369

model (Jung et al., 2024), parameterize the outputs of MHD models to reduce their com-70

putational cost but retain some of their accuracy. A shared feature of these approaches71

is that they all include physical assumptions. While they may often be valid, there re-72

mains differences between their outputs and the actual magnetosheath that can limit their73

representational power. This issue could be addressed by reducing the number of assump-74

tions used to construct the model; for example, hybrid-Vlasov codes capable of simulat-75

ing the entire magnetosheath have recently come online (Von Alfthan et al., 2014; Hoil-76

ijoki et al., 2016) but come with an even higher computational cost than MHD codes.77

One possible way of addressing this limitation is the use of neural network codes78

that do not assume a functional form or simplified physics. Neural networks have been79

used to assemble models of geophysical quantities for the past few decades since the early80

relativistic electron flux model of Koons and Gorney (1991), and have continued to be81

regularly utilized for space physics tasks. These algorithms do not require physical as-82

sumptions to construct tractable or analytical descriptions of the magnetosheath plasma83

and magnetic field, and are also computationally inexpensive. In particular, new Bayesian84

recurrent neural network architectures have shown good performance in spatio-temporal85

inversion tasks such as electron density in the inner magnetosphere (Huang et al., 2022).86

A crucial aspect of any prediction algorithm that is typically lacking in magneto-87

spheric physics (and that is addressed by Bayesian neural networks) is uncertainty quan-88

tification (Borovsky, 2021). There is growing evidence that uncertainty in solar wind data89

affects correlation studies of the cross polar cap potential (Sivadas et al., 2022), devel-90

opment of solar wind-magnetosphere coupling functions (Lockwood et al., 2019), and global91

MHD simulation outputs (Al Shidi et al., 2023); the solar wind data uncertainty and the92

magnetosheath model uncertainty compound. Since it is the shocked solar wind at the93

magnetopause rather than the solar wind upstream of the bow shock that interacts with94

the magnetosphere, this uncertainty has the potential to affect any study that tries to95

associate solar wind conditions with magnetospheric response in a way that is difficult96

to account for without a magnetosheath model that estimates this uncertainty.97

Another challenge with traditional models aside from their physical assumptions98

is the fact that they typically use solar wind data that has been propagated from in-situ99

monitors far from Earth as input. Much like the magnetosheath, there is no continuous100

in-situ monitor of the solar wind near Earth due to orbital constraints. In order to ob-101

tain inputs for each of the previously mentioned models, data from monitors at the L1102

position 235RE (1,500,000 km) ahead of Earth need to be propagated to Earth to ac-103

count for the travel time of the solar wind plasma and interplanetary magnetic field (gen-104

erally 30-60 minutes). This propagation task is made difficult by the structure and dy-105

namics of the solar wind (Borovsky, 2018), and a variety of algorithms have been devel-106

oped in order to propagate measurements between L1 and Earth accurately. One such107

algorithm, the Probabilistic Regressor for Input to the Magnetosphere Estimation (PRIME)108

(O’Brien et al., 2023) was recently developed to address some of these difficulties with109

traditional propagation algorithms, and its Bayesian recurrent neural network architec-110

ture is well suited to be adapted to the problem of magnetosheath prediction from L1111

inputs (since the physics of solar wind propagation is the first “step” of that task).112

Motivated by the limitations of traditional algorithms outlined above, a new algo-113

rithm capable of predicting magnetosheath plasma and magnetic field conditions given114

measurements made by an in-situ monitor at L1 is developed. This algorithm, named115

PRIME-SH after its progenitor algorithm PRIME (O’Brien et al., 2023), requires a dataset116

of in-situ magnetosheath measurements and associated solar wind inputs at L1 (Section117

2), a network architecture adapted from PRIME and optimized for the magnetosheath118

(Section 3). Outputs from PRIME-SH are validated statistically on a holdout dataset.119
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PRIME-SH is subjected to additional validation verifying that it reproduces some ex-120

pected physics (Section 4), after which the results can be summarized and discussed (Sec-121

tion 5).122

2 Data123

2.1 MMS Target Dataset124

Plasma and magnetic field data from the Magnetospheric Multi Scale 1 (MMS-1)125

spacecraft’s (Burch et al., 2016) Fast Plasma Investigation (FPI) (Pollock et al., 2016)126

and Fluxgate Magnetometer (FGM) (Russell et al., 2016) instruments are utilized as tar-127

gets for the algorithm to be optimized against. MMS is a constellation of four spacecraft128

designed to study magnetic reconnection at Earth’s magnetopause and neutral sheet. It129

therefore spends considerable time in Earth’s magnetosheath and carries instruments par-130

ticularly designed to measure the plasma and magnetic field there, making data it col-131

lects highly suitable for use as targets to optimize PRIME-SH. The large volume of data132

produced by MMS-1’s instruments have motivated the development of automated clas-133

sification, identification, and segmentation tools for MMS data that allow rapid selec-134

tion of large amounts of data with particular features or from particular plasma regimes.135

To assemble a solar wind dataset using MMS, an automatic tool developed by Olshevsky136

et al. (2021) is used to classify all MMS-1 FPI 3D ion distributions from September 2nd137

2015 to January 1st 2023. The classifier is capable of discriminating between magneto-138

spheric, magnetosheath, non-foreshock solar wind, and foreshock plasma using the shape139

of the ion distribution function, and outputs a normalized probability that a given dis-140

tribution belongs to each class. Periods of time where MMS-1 is in the magnetosheath141

with probability p > 0.7 are found using the classifier; all other time periods are removed142

thereby removing the magnetosphere, solar wind, foreshock, and ambiguous classifica-143

tions from the dataset. Remaining FGM magnetic field and FPI ion moments are av-144

eraged in 100 second bins. Since the classifier is trained only on data from dayside or-145

bits, any data on the nightside (GSE X < 0) are removed. The full spatial distribu-146

tion of the magnetosheath data are shown in Figure 1.147

2.2 Wind Input Dataset148

The input solar wind data at L1 comes from the Magnetic Field Investigation (MFI)149

(Lepping et al., 1995) and Solar Wind Experiment (SWE) (Ogilvie et al., 1995) aboard150

the Wind spacecraft. Wind was selected for this study because it had the best coverage151

over the time period of the MMS-1 dataset used here (September 2nd 2015 to January152

1st 2023). Key parameter (KP) moments data are utilized, resulting in time series of plasma153

flow velocity v⃗ (GSE coordinates), ion density nion, ion thermal speed v⊥th, and IMF154

B⃗ (GSM coordinates) at a 100 second cadence. Due to the difficulty involved with space-155

craft intercalibration data from other L1 monitors are not included in this study (King,156

2005). To give PRIME-SH information about the spatial separation of the input and tar-157

get spacecraft and the location in the sheath at which the prediction is being made, the158

positions of Wind and MMS-1 in GSE coordinates are included in the input data. Miss-159

ing data are linearly interpolated and flagged so they can be excluded if necessary. The160

precise windows of time in the Wind dataset used as input to predict each MMS target161

heavily influence the performance of the optimized algorithm; these and other param-162

eters pertaining to the exact construction of the dataset therefore must be optimized through163

hyperparameter search (see Section 3.2).164
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Figure 1. 3D spatial distribution of the 117,427 magnetosheath MMS-1 data points split into

80% training/validation (purple) and 20% test (yellow) subsets. Data consists of B⃗GSM , V⃗GSE ,

ni, Ti∥, and Ti⊥ from September 2nd 2015 to January 1st 2023. Train/validation/test split is as

used in the optimized dataset (see Section 3.2).

3 Algorithm Methodology165

3.1 Network Architecture166

The overall architecture selected for the algorithm is similar to that utilized to con-167

struct PRIME (Probabilistic Regressor for Input to the Magnetosphere Estimation), an168

algorithm that predicts the solar wind near Earth using data from the Wind spacecraft169

at L1 (O’Brien et al., 2023). The Bayesian recurrent neural network architecture devel-170

oped for PRIME is well suited to be adapted to the task of magnetosheath prediction171

for several reasons. First, it is capable of incorporating information about the time his-172

tory of solar wind at L1 into its predictions which is important for predicting the solar173

wind and the evolution of the magnetosheath. Second, it is capable of assigning uncer-174

tainties to its predictions which is crucial in the frequently turbulent environment in the175

magnetosheath. Third, it has proven to be accurate when applied to the task of solar176

wind propagation, which is essentially the first step of the task undertaken by PRIME-177

SH.178

The overall form of PRIME-SH is shown in Figure 2. Like PRIME, PRIME-SH uti-179

lizes a Gated Recurrent Unit (GRU) sequence (See Cho et al. (2014)) that is fed into fully180

connected neural network (FCNN) layers (See Bebis and Georgiopoulos (1994)). The last181

layer of neurons are taken to be the mean and variance of a Gaussian probability dis-182

tribution for each parameter rather than single scalar values (Nix & Weigend, 1994; Lak-183

shminarayanan et al., 2017). The input feature size is 14, and the output feature size is184

9. The algorithm is implemented in the Keras high-level API for tensorflow (https://185

keras.io/api/). Details of the architecture such as the length of the input time series186

and the size of each layer do not have optimal values that can be determined a priori.187

Instead, they are chosen via hyperparameter tuning (See Section 3.2).188

The loss criterion used to optimize the algorithm during training is chosen to be189

the continuous rank probability score (CRPS) (Matheson & Winkler, 1976; Hersbach,190

2000). The CRPS is a common scoring metric used to compare probabilistic forecasts191

for weather prediction (Zamo & Naveau, 2018). For a detailed description of the CRPS192
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Figure 2. Schematic of PRIME-SH’s neural network architecture, based on the architecture of

PRIME (O’Brien et al., 2023). Note that the Gated Recurrent Unit (GRU) sequence feeds into

a Fully Connected Neural Network (FCNN) in order to output a mean and variance for each de-

sired parameter instead of a single value. Vector quantities such as magnetic field, flow velocity,

and spacecraft position are stacked to show that they constitute three units in the input/output

but describe one physical vector quantity. Exact layer size and additional regularization features

(see Table 1) chosen via hyperparameter search.
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see Section 2 of Camporeale and Carè (2021) or Section 3.1 of O’Brien et al. (2023). Briefly,193

the continuous rank probability score is given by194

CRPS =

∫ ∞

−∞
[F (y)−H(y − yobs)]

2dy (1)

where F (y) is the cumulative distribution function of a probabilistic prediction for some195

observation yobs and H(y) is the Heaviside step function (Wilks, 2011). The continuous196

rank probability score is desirable as a loss function because it more symmetrically pun-197

ishes over and under confident predictions than the negative log probability density (the198

most commonly used score for probabilistic predictions) (Camporeale & Carè, 2021). A199

side benefit is that the CRPS has the same unit as the variable of interest, making it more200

intuitively human-readable. In the case of Gaussian predictions with mean µ and vari-201

ance σ2 the CRPS is given by202

CRPS(yobs, µ, σ) = σ

[
yobs − µ

σ
erf

(
yobs − µ√

2σ

)
+

√
2

π
e−

(yobs−µ)2

2σ2 − 1√
π

]
(2)

(Gneiting et al., 2005). Since PRIME-SH outputs Gaussian probability distributions, and203

since CRPS is negatively oriented, Equation 2 is used as a loss function during training.204

The 18 output units in PRIME-SH’s last layer are taken to be the means (µs) and vari-205

ances (σs) defining a Gaussian probability distribution for each parameter. During train-206

ing the CRPS over all nine parameters in the target dataset are averaged with equal weight207

assigned to all parameters.208

The primary limitation of the CRPS as a loss function training probabilistic algo-209

rithms is the fact that it does not explicitly enforce reliability of the algorithm’s predicted210

uncertainties (Camporeale et al., 2019). Reliability is measure of the degree to which a211

probabilistic forecast’s uncertainties are statistically consistent with the observed prob-212

abilities of the events the forecast seeks to predict (Anderson, 1996). It has been shown213

that accuracy and reliability are competing metrics that must be balanced, and that sim-214

ply minimizing the CRPS does not necessarily mean that the resulting model is reliable215

(Camporeale & Carè, 2021). Since reliability is not explicitly enforced, the reliability of216

PRIME-SH’s uncertainties must be verified after training (See Section 4.1) (Tasistro-Hart217

et al., 2021).218

3.2 Algorithm Optimization219

Optimization of PRIME-SH follows a three step process. First, the optimal length,220

lead time, and composition of the input timeseries dataset is determined (the dataset221

hyperparameter search). Then the algorithm hyperparameters are systematically var-222

ied in order to find the optimal algorithm, then finally the optimal algorithm is instan-223

tiated and trained. This algorithm then becomes the canonical version of PRIME-SH.224

Given a particular time when a prediction of the magnetosheath conditions is de-225

sired, it is difficult to say a priori what time period of Wind data from L1 contains the226

necessary information to make that prediction (especially given the flexible nature of neu-227

ral network algorithms). Since the solar wind typically takes 30 to 60 minutes to get from228

L1 to Earth, there is likely only so much time history that can be incorporated before229

including more yields diminishing returns in terms of accuracy. Similarly, it is likely that230

including conditions at L1 right up until the time the sheath prediction is desired is not231

necessary, since the solar wind at that time has not had sufficient time to get to Earth.232

To find the optimal start and stop times of the timeseries used to make each prediction,233

a range of start and stop times are tested by optimizing a test version of PRIME-SH us-234

ing different input time series lengths (windows) and lead times before each prediction235

(strides). It is also likely that large data gaps that are filled with interpolated data can236

affect the algorithm’s performance, therefore a range of permissible data gap sizes are237
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Figure 3. Results from dataset optimization trials over timeseries window (length), stride

(lead time), and permitted fraction of interpolated data. Units for window and stride are 100s

(the Wind KP data cadence). The optimal set (window 55, stride 18, largest interp. fraction

≤ 5%) is shown in darkest green and labelled “optimal”. Loss is given in dimensionless units of

parameter interquartile range to ensure comparability of CRPS for each parameter.

also tested (expressed in terms of fractions of the window size). Whichever parameters238

produce a model that can achieve the best results on the validation dataset before over-239

fitting are taken as optimal. When training these test models and for any time a model240

is trained, the input/target datasets are split into 60% training, 20% validation, and 20%241

test subsets. Since temporally adjacent entries in the input dataset are almost entirely242

overlapping, randomly assigning input/target pairs to each subset results in significant243

data leakage. To avoid this, the full dataset is split into independent blocks four times244

the length of the timeseries window used as input (i.e. for a window size of 55 measure-245

ments/ ∼1 hour 32 minutes, the dataset is split into chunks of length 220 measurements/246

∼6 hours 8 minutes) and those blocks are then assigned to each subset in order to achieve247

a 60%-20%-20% train-validation-test split. To ensure that no parameter dominates oth-248

ers due to their absolute relative values, each subset is rescaled to the interquartile range249

of the training set in order to account for outliers without leaking information about the250

validation/test sets during training. Results on the validation dataset from the search251

are shown in Figure 3.252

Whichever set from Figure 3 has the lowest CRPS is taken to be optimal. The op-253

timal window size is 55 measurements (∼ 5,500 seconds, ∼1 hour 32 minutes), the op-254

timal stride/lead time is 18 measurements (∼1,800 seconds, ∼30 minutes). That is to255

say, for an MMS measurement at time t, the input timeseries from Wind runs from time256

t − 5, 500s − 1, 800s ≈ t − 122min to time t − 1, 800s ≈ t − 30min. The largest data257

gap that can be interpolated over is 4.6 minutes (≤ 5% of the input window).258

Once the optimal dataset structure is found, the optimal model configuration can259

be determined via hyperparameter search. The nine hyperparameters that are optimized260

are listed in Table 1, along with the values used for determining the optimal dataset, the261

optimal values used for the canonical version of PRIME-SH, and the search range for262

each hyperparameter. The hyperparameter search is conducted using the Hyperband tour-263

nament bracket style algorithm (Li et al., 2018) implemented in the KerasTuner API (O’Malley264

et al., 2019). The meaning of each hyperparameter is described in the following para-265

graph. After the optimal model configuration is determined, the canonical version of PRIME-266

–8–
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Dataset HP Test Canonical Algorithm HP Range

GRU Layer 192 416 128-640
FCNN Layer 1 352 352 128-640
FCNN Layer 2 48 32 16-128
FCNN Layer 3 N/A 64 16-128
Normalization Last Layer Last Layer Any Combination

Dropout Location Last Layer Last Layer Any Combination
Dropout Rate 20% 35% 20%-50%
Optimizer Adamax Adam Adam, Adamax, Adagrad

Learning Rate 10−4 10−4 10−3, 10−4, 10−5

Table 1. Detailed layer sizes and architecture parameters for the test version of PRIME-SH

used to optimize the dataset parameters (left column), the canonical version of PRIME-SH deter-

mined by hyperparameter search (middle column), and the range of each parameter for which the

hyperparameter search was conducted (right column).

SH is optimized on the training dataset for 20 epochs (the maximum before the loss on267

the validation dataset starts to increase).268

The nine hyperparameters are as follows (see also Table 1). The first four are the269

node sizes of the GRU layer and the following three fully-connected layers. The fifth is270

where in the algorithm sequence to perform a layer normalization step, which stabilizes271

neural networks during optimization to reduce the time it takes to optimize them (Ba272

et al., 2016). Layer normalization normalizes a given layer’s output vector before pass-273

ing it to the next layer, which speeds up the convergence of the algorithm used to op-274

timize the weights and biases of the algorithm by reducing the extent to which the gra-275

dients with respect to the weights in one layer covary with the outputs of the previous276

layer. The sixth and seventh hyperparameters are the dropout locations and rate used277

during training. Dropout is a technique to mitigate overfitting that involves randomly278

removing some percentage of the units from the network every training epoch. This pre-279

vents units from co-adapting which can lead to overfitting (Srivastava et al., 2014). The280

eighth and ninth hyperparameters are the optimization algorithm used to update the weights281

and biases in the network and that algorithm’s learning rate. Included in the search are282

the adaptive gradient descent algorithms Adam, Adamax, and Adagrad. An adaptive283

gradient descent algorithm changes the step size it uses to update parameter weights dur-284

ing optimization to avoid getting stuck in local minima or skipping over minima. Adam285

updates parameters according to estimates of first order and second moments and has286

been shown to be suitable for optimizing large algorithms (Kingma & Ba, 2017), Adamax287

updates parameters according to first order moments and the infinity norm and has been288

shown to be suitable for recurrent networks (Kingma & Ba, 2017), and Adagrad updates289

its gradient descent step size per parameter based on the number of updates the param-290

eter receives during training making it suitable for sparse gradients (Duchi et al., 2011).291

Since each of these conditions could apply to PRIME-SH and the dataset used to op-292

timize it, these three algorithms were included.293

4 Results294

4.1 Statistical Performance295

PRIME-SH’s performance is evaluated on the test dataset (not seen by the algo-296

rithm at any point during training) by calculating the CRPS between its predictions and297

the test dataset. Additionally, the mean absolute error (MAE) and Pearson’s r corre-298

lation coefficient are calculated between the means of PRIME-SH’s predicted probabil-299
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Parameter PRIME-SH CRPS PRIME-SH MAE PRIME-SH r

Bx GSM 2.65nT (0.296σ) 3.61nT (0.403σ) 0.800
By GSM 4.18nT (0.245σ) 5.65nT (0.331σ) 0.864
Bz GSM 5.19nT (0.323σ) 7.08nT (0.440σ) 0.779
Vx GSE 14.03km/s (0.182σ) 19.25km/s (0.250σ) 0.945
Vy GSE 13.22km/s (0.127σ) 17.95km/s (0.173σ) 0.969
Vz GSE 15.35km/s (0.291σ) 21.04km/s (0.399σ) 0.838

ni 3.63cm−3 (0.169σ) 4.96cm−3 (0.231σ) 0.929
Ti⊥ 23.76eV (0.158σ) 32.58eV (0.216σ) 0.936
Ti∥ 22.67eV (0.198σ) 30.70eV (0.268σ) 0.881
Pdyn 0.255nPa (0.224σ) 0.353nPa (0.311σ) 0.859

Table 2. Performance of PRIME-SH on the MMS test dataset across continuous rank proba-

bility score (CRPS, Equation 1), mean absolute error (MAE), and Pearson’s r correlation coef-

ficient (also shown in Figure 4). CRPS is given in the units of each parameter as well as dimen-

sionless units of standard deviations of each parameter in the MMS training dataset to facilitate

comparison between each parameter.

ity distributions and the MMS test set thereby ignoring the uncertainty information. To300

gain a better sense of the accuracy of PRIME-SH’s predictions in a statistical sense, its301

outputs are compared to several analytical models and a parameterization of a popu-302

lar MHD code for the same MMS-1 test dataset (Figure 4, Table 2). For magnetic field,303

the model derived in Cooling et al. (2001) is utilized. The Cooling et al. (2001) model304

essentially “drapes” the interplanetary magnetic field over the Shue et al. (1998) axisym-305

metric conic section magnetosheath model (based on Kobel and Flückiger (1994)). For306

magnetosheath flow, the model derived in Soucek and Escoubet (2012) is utilized. The307

Soucek and Escoubet (2012) model is partially based on Génot et al. (2011) and Kobel308

and Flückiger (1994), but extends those works to additional magnetopause and bow shock309

shapes. For density and temperature, the model derived in Spreiter et al. (1966) is uti-310

lized. The Spreiter et al. (1966) model is a gas dynamic model that assumes a nondis-311

sipative, ideal, compressible, steady flow. Additionally, PRIME-SH is compared to a pa-312

rameterization of the OpenGGCM MHD code (Raeder et al., 2001, 2008) developed in313

Jung et al. (2024). This parameterization cannot capture small-scale structure in the MHD314

code’s outputs, but has been shown to be accurate when compared to observations and315

is importantly computationally inexpensive enough to enable the statistical comparison316

in this study. The Soucek and Escoubet (2012) and Spreiter et al. (1966) models are im-317

plemented in the Mshpy23 package (Jung et al., 2024) and accept one minute resolution318

OMNI data as input (King & Papitashvili, 2020). The Spreiter et al. (1966) and OpenG-319

GCM models produce isotropic temperatures, therefore their temperatures are compared320

to the average temperature measured by MMS TiAV = (2Ti⊥ + Ti∥)/3. None of the321

models PRIME-SH is compared to have uncertainty information, therefore the MAE and322

CRPS reduce to the same form and number (Hersbach, 2000); both metrics are provided323

for PRIME-SH’s outputs so that all comparisons can be made.324

On average, PRIME-SH predicts plasma parameters (v⃗, ni, Ti⊥, and Ti∥) slightly325

more accurately than magnetic field parameters. This is possibly due to the fact that326

fluctuations in magnetic field happen more quickly than those in the plasma, and neu-327

ral networks tend to have more difficulty representing smaller scale variations than larger328

scale ones whether temporal or spatial in nature. PRIME-SH has a Pearson’s r higher329

than 0.75 for every parameter. There are no strong biases or systematic errors visible330

in Figure 4, only some amount of regression to the mean in the most extreme values of331

VX and ni (and therefore in Pdyn as well). Interestingly, PRIME-SH predicts magnetosheath332
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Figure 4. Joint distributions of MMS-1 data (x axis) with predicted parameters from

PRIME-SH (purple, top), three analytical magnetosheath models (yellow, middle), and a pa-

rameterization of the OpenGGCM MHD code (orange, bottom). CRPS, the mean absolute error

(MAE), and Pearson’s r correlation coefficient for each parameter shown in the top left of each

distribution. The MAE is calculated between the peaks of PRIME-SH’s predicted distributions

and each MMS observation (thereby throwing away uncertainty information). A perfect predic-

tion corresponds to the line y = x, plotted overtop of each distribution for convenience.
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conditions almost as accurately as its progenitor algorithm PRIME predicts solar wind333

conditions given the same type of input data from L1 (PRIME-SH’s average CRPS of334

0.221σ and PRIME’s average CRPS of 0.214σ), despite that it has to represent not only335

the physics of the solar wind’s propagation from L1 to Earth but the physics of the bow336

shock as well.337

For all parameters PRIME-SH outperforms all of the analytical models considered338

here with respect to MAE and CRPS. For each component in the magnetic field, PRIME-339

SH predicts MMS-1 observations more accurately than the Cooling et al. (2001) model.340

Specifically, PRIME-SH’s CRPS and MAE are both lower than the Cooling et al. (2001)341

model’s MAE, and PRIME-SH’s Pearson’s r is higher than the Cooling et al. (2001) model’s342

Pearson’s r. There appears to be some systematic overprediction in the Cooling et al.343

(2001) model’s outputs for BX . This means that PRIME-SH reproduces the actual mag-344

netic field in the magnetosheath given upstream conditions more accurately than the Cooling345

et al. (2001) model, but whether it produces a physically accurate draped field must be346

separately validated in Section 4.2.1. The Soucek and Escoubet (2012) model has a large347

variance in VX and does not reproduce fast flows (> 300km/s) as accurately as PRIME-348

SH does. It also underpredicts VY and VZ , all of which could be regression effects due349

to model outputs being too “smooth”. The Spreiter et al. (1966) comes the closest to350

outperforming PRIME-SH of any model considered here, but still does not predict ni351

or TiAV G more accurately than PRIME-SH.352

Compared to the parameterized MHD model, PRIME-SH has higher representa-353

tional power and therefore higher accuracy across the parameters. For BX and BY the354

parameterized MHD model does not vary by much (both have Pearson’s r < 0.12), which355

could be consistent with the results presented in Jung et al. (2024) Figures 2, 3, and 4.356

For plasma flow velocity, the parameterized MHD model clearly reaches the bounds of357

its parameterization (most visible for VY < −120km/s and VY > 160km/s). The shape358

of the distribution for TiAV G is also consistent with results presented in Jung et al. (2024)359

Figure 2. The MHD model is more accurate than the associated analytical model for all360

parameters except BY , ni, TiAV G, and Pdyn, but is not more accurate than PRIME-SH361

for any of the parameters it is capable of predicting.362

PRIME-SH is a 3D model, and its outputs are valid over any regions covered by363

MMS-1’s orbit on the dayside (GSE X > 0RE , GSE |Y | < 5RE). Since the magne-364

tosheath conditions vary significantly across its extent, PRIME-SH’s accuracy evaluated365

against the test set is displayed in GSE coordinates in Figure 5. In general, PRIME-SH’s366

outputs are generally less accurate on predictions closer to the Earth than on those fur-367

ther from the Earth. This suggests that PRIME-SH is less accurate during periods where368

the magnetosheath is highly compressed or when it makes predictions close to the mag-369

netopause. These periods are rare relative to nominal conditions in the training dataset,370

so PRIME-SH being somewhat less accurate under these conditions is expected and should371

be taken into account when using PRIME-SH. It is worth noting that PRIME-SH has372

not been trained outside of the areas shown in Figure 5 and thus its predictions outside373

of those areas are likely to be inaccurate or unphysical due to its nature as a neural net-374

work algorithm.375

Since reliability is not enforced by the CRPS loss function during training, PRIME-376

SH’s output uncertainties must be validated quantitatively through the use of a relia-377

bility diagram (Hamill, 1997, 2001). Following the procedure in Camporeale et al. (2019)378

and Camporeale and Carè (2021), the standardized errors associated with prediction µi, σi379

with i = 1, ..., N are defined as ηi = (yobs,i − µi)/(
√
2σi). The probability density of380

a given Gaussian forecast is therefore Φi =
1
2 [erf(ηi)+1], allowing the reliability dia-381

gram to be constructed from the empirical cumulative distribution of Φi given by C(ϕ) =382

1
N

∑N
i=1 H(ϕ − Φi) (with H being the Heaviside step function). C(ϕ) is the observed383

frequency as a function of the predicted frequency, the same as reliability diagrams of384

forecasts of discrete events (e.g. those in Hamill (1997)). This method has the benefit385
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Figure 5. PRIME-SH’s accuracy on the test dataset averaged across all nine target param-

eters in dimensionless standard deviation units (σ). Targets arranged spatially in 3D (top), the

GSE X-Y plane (bottom left), and the GSE X-Z plane (bottom right).

of not requiring binning, which has been shown to affect the results of reliability diagrams386

of discrete events (Bröcker & Smith, 2007). C(ϕ) is calculated for all observations in the387

test dataset for each parameter and presented in Figure 6.388

PRIME-SH is not perfectly reliable (its reliability diagram does not exactly follow389

the dashed line in Figure 6); it generally tends to overestimate the likelihood of unlikely390

events, and underestimate the likelihood of likely events. With the exception of VZ , BX ,391

and T∥, PRIME-SH tends to be conservative. This is not unexpected, as even models392

perfectly calibrated on training data can suffer calibration loss on the test dataset (Kull393

& Flach, 2015). The largest departures from perfect calibration are observed in VY GSE394

(predicts events that occur with p = 0.221 as occurring with p = 0.320), BX GSM395

(predicts events that occur with p = 0.754 as occurring with p = 0.657), and T∥ (pre-396

dicts events that occur with p = 0.674 as occurring with p = 0.586). On average PRIME-397

SH is reliable to within 3.5% with a maximum difference 10% (calculated pobs−ppred).398

This is roughly as reliable as its progenitor algorithm PRIME and other probabilistic pre-399

diction algorithms for space weather tasks (e.g. Tasistro-Hart et al. (2021)), but less re-400

liable than those that use loss functions that enforce reliability explicitly (e.g. Hu et al.401

(2022)).402

4.2 Physical Validation403

While a model’s accuracy and reliability are important to quantify statistically, it404

is also important to verify that a model can reproduce expected physics. This is espe-405

cially important for neural network models that can relatively easily overfit and repro-406

duce a dataset’s noise rather than the underlying data representation or physics. In the407

following sections PRIME-SH’s outputs for synthetic data are investigated to ensure that408

it can reproduce magnetic field and plasma physics in the magnetosheath.409
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Figure 6. Reliability diagram constructed from PRIME-SH’s outputs on the test dataset for

each parameter. Shown versus the predicted frequency of the observation from PRIME-SH are

the value of the observed frequency (top) and the deviation from perfect reliability (bottom).

For the bottom plot, a given parameter being over (under) the line by an amount corresponds to

PRIME-SH over (under) predicting the frequency by that amount.

4.2.1 Field Line Draping and Uncertainty410

Since the interplanetary magnetic field is frozen into the solar wind plasma, as the411

plasma is shocked and diverted around the magnetopause the magnetic field “drapes”412

over the obstacle forming a tangential discontinuity at the magnetopause (Crooker et413

al., 1985). In order to verify that PRIME-SH captures this feature of the magnetosheath,414

outputs are generated on a grid of points for the same input data. The grid is chosen415

to lie in the GSE X-Y or GSE X-Z plane (depending on IMF orientation) with a grid416

scale of 0.1RE . All grid cells inside the Shue et al. (1998) or outside the Jeĺınek et al.417

(2012) bow shock (calculated using the conditions at L1 used as inputs for PRIME-SH)418

are left unused. Only grid cells in regions well sampled by the MMS training data are419

included, hence the Z extent is restricted to ±5RE away from the ecliptic and the night-420

side is not included (see Figure 1). The input data are chosen to be a 400km/s solar wind421

only in the GSE X direction with otherwise average solar wind conditions from the Wind422

L1 dataset: |B| = 5.34nT , VX = −400km/s, VY = 0km/s, VZ = 0km/s, ni = 7.12cm−3,423

and vth = 34.9km/s. In order to investigate whether PRIME-SH is capable of drap-424

ing, conditions on the grid are calculated for six different IMF orientations: one radial425

toward Earth (cone angle 0◦), one dawnward (cone angle −90◦), one duskward (cone an-426

gle +90◦) one radial away from Earth (cone angle 180◦), one purely northward (clock427

angle 0◦), and one purely southward (clock angle 180◦). Shown in Figure 7 are these six428

grids, with the sheath magnetic field streamlines plotted in black arrows and the mag-429

nitude of B in each cell in color.430

As can be seen in Figure 7, PRIME-SH reproduces the draping of the magnetic field431

in the magnetosheath well despite the frozen in condition not being enforced during train-432

ing. For cone angles of ±90◦ the magnetic field piles up at the nose of the magnetopause,433

much more than it does for radial IMF. This can be seen in the magnitude of the mag-434

netic field, which is higher at the nose than the flanks for cone angles of ±90◦. For cone435

angles of 0◦ or 180◦, the flanks have a relatively higher magnetic field than the nose (though436

it is not as strong as the field at the nose in the cone angle ±90◦ case). For northward437
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Figure 7. Magnetosheath conditions output by PRIME-SH using synthetic data for six differ-

ent IMF orientations (Shown with arrows in top left or bottom). Plasma conditions are average

conditions from the input dataset, magnetic field magnitude is 5.34nT (the average magnitude

from the input dataset). Shown in color is the magnitude of B, and the arrows are BX and BY

GSM field lines (for the left four plots) or the BX and BZ GSM field lines (for the right two

plots).

IMF, somewhat more magnetic field pileup pileup is observed at the northern and south-438

ern flanks than for the southern IMF case. The magnetic field magnitude is also slightly439

higher overall in the northward IMF case than in the southward IMF case. These maps440

suggest that a lower reconnection rate for northward IMF at the nose causes magnetic441

field pileup and rearrangement in the sheath as many studies have predicted.442

4.2.2 Stagnation Point443

As the solar wind plasma diverts and is slowed around the magnetopause, a region444

known as the stagnation point develops where there is very little to no plasma flow (Spreiter445

et al., 1966). For radial flow and typical Parker spiral magnetic field orientation, this point446

is thought to be roughly located at the nose of the magnetopause (with slight aberra-447

tion from Earth’s ≈ 30km/s motion in the negative GSE Y direction). MHD theory pre-448

dicts that for a Parker spiral IMF, the stagnation point should deflect dawnward for so-449

lar wind flows with low Alfvén Mach numbers (Russell et al., 1981). Here PRIME-SH450

is used to assemble predictions on more 0.1RE grids of the same configuration as Sec-451

tion 4.2.1, however this time the Alfvén Mach number of the synthetic dataset is var-452

ied from MA = 4 to MA = 16 (the solar wind typically has MA ≈ 10). The density453

and velocity are held the same (ni = 7.12, VX = −400km/s) and the magnetic field454

is kept at a 45◦ Parker spiral as its magnitude is decreased in steps from 12nT to 2.4nT455

to yield the four Alfvén Mach numbers. Shown in Figure 8 are these four grids, with the456

X and Y GSE plasma flow velocity depicted with black arrows and the Z GSE flow ve-457

locity in color. Also depicted is the stagnation point, marked with a purple X.458

As can be seen in Figure 7, PRIME-SH produces continuous flow maps that divert459

around the magnetopause for all four Alfvén mach numbers. Additionally, as the Alfvén460

Mach number decreases the stagnation point is observed to move dawnward as predicted461

by MHD theory and simulations. This feature is hard to observe using in-situ instruments,462

but here through what is essentially a spatio-temporal inversion the feature is shown to463

occur in reality.464

One interesting feature is that there appears to be some weak dawn-dusk asym-465

metry in the flow velocity maps produced by PRIME-SH. This could be due to biases466

in MMS-1’s orbit showing up in PRIME-SH’ outputs, as the asymmetry does not ap-467
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Figure 8. Magnetosheath conditions output by PRIME-SH using synthetic data at four dif-

ferent Alfvén Mach numbers (MA = 4, 6, 10, 16). Flow velocity is 400km/s with VY = VZ = 0,

magnetic field is a Parker spiral orientation whose magnitude is varied for each case to result in

the four Alfvén Mach numbers. Shown in color is the Z GSE velocity, and the arrows are the

X and Y GSE velocity. The point of minimum velocity in the sheath (the stagnation point) is

marked with the purple X.

pear in MHD simulations of the magnetosheath. However, other experimental work has468

also found dawn-dusk asymmetries in the magnetosheath properties (Walsh et al., 2012;469

Dimmock & Nykyri, 2013).470

4.2.3 Shock Jump Conditions471

Shocks, whether they are collisional or collisionless, conserve mass, momentum and472

energy. The Rankine-Hugoniot shock jump conditions are formulations of each of these473

conservation laws in terms of the conditions upstream and downstream of the shock. For474

an MHD shock, define the shock normal direction to be n̂, the plasma flow velocity to475

be v⃗, the plasma mass density to be ρ, the thermal pressure to be P , the specific heat476

ratio to be γ, and the magnetic field to be B⃗. For some quantity X⃗ upstream and down-477

stream of the shock, define the notation X⃗up − X⃗down = [X⃗]. Mass conservation up-478

stream and downstream of the shock can then be written:479

[ρu⃗ · n̂] = 0 (3)

Momentum conservation (with magnetic pressure included) can be written:480

[ρu⃗(u⃗ · n̂) + (P +
B⃗2

2µ0
)n̂− (B⃗ · n̂)B⃗

µ0
] = 0 (4)

Energy conservation can be written:481

[u⃗ · n̂(ρu⃗
2

2
+

γ

γ − 1
P +

B⃗2

µ0
)− (B⃗ · n̂)(B⃗ · u⃗)

µ0
] = 0 (5)

(Kallenrode, 2010).482

None of these conditions are explicitly enforced during training, but they are part483

of the underlying physics PRIME-SH should be representing. To validate that PRIME-484

SH reproduces these conservation laws, a range of synthetic solar wind conditions with485
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Figure 9. Particle, momentum, and energy fluxes calculated across a range of synthetic input

conditions roughly corresponding to the range of the training dataset. Fluxes are calculated just

upstream of the bow shock nose (using the input data) and just downstream (using PRIME-SH’s

outputs), and uncertainties are calculated by propagating PRIME-SH’s predicted uncertainties

through the MHD shock jump condition equations. Within PRIME-SH’s predicted uncertainties

the three Rankine-Hugoniot MHD jump conditions are obeyed.

densities ranging from 1cm−3 to 50cm−3 with VGSE = −400km/s, B⃗ = (−4nT )x̂ +486

(−4nT )ŷ, and vth = 30km/s are initialized and used to generate predictions just be-487

hind the Jeĺınek et al. (2012) bow shock nose along the Sun-Earth line. This range was488

chosen to reflect the full range of densities from the input dataset, which results in bet-489

ter coverage of the range of the three upstream fluxes observed than varying other con-490

ditions such as velocity. Equations 3, 4, and 5 are used to calculate the particle, momen-491

tum, and energy flux from the synthetic input data (upstream) and from PRIME-SH’s492

outputs (downstream). The uncertainties predicted by PRIME-SH can be propagated493

through Equations 3, 4, and 5 to obtain uncertainties for the downstream fluxes as well.494

Only magnetosheath conditions on the Sun-Earth line just behind the Jeĺınek et al. (2012)495

bow shock nose are included so it can be assumed that n̂ = x̂. The downstream fluxes496

are plotted as a function of upstream fluxes in Figure 9.497

Perfect conservation of each flux is represented by the dashed lines in Figure 9. As498

can be seen, while the quantities predicted by PRIME-SH do not perfectly conserve mass/particles,499

momentum, and energy, it does conserve them within the the 1σ uncertainty bounds for500

each quantity. One contribution to this uncertainty is an experimental one. Although501

the instruments on Wind and MMS have been carefully calibrated, they were not cal-502

ibrated together. Previous studies have found mismatches when comparing plasma and503

magnetic field parameters from different missions, even those with very similar instru-504

ments (King, 2005; Roberts et al., 2021). The points of largest fractional difference be-505

tween upstream and downstream fluxes occur for the smallest fluxes (when nup = 1cm−3),506

which happens relatively infrequently in the input dataset. Despite the fact that mass/particle507

conservation, momentum conservation, and energy conservation were not explicitly en-508

forced during training, PRIME-SH has been optimized such that it successfully repre-509

sents the underlying physics to a degree that the three quantities are conserved.510

4.2.4 Plasma Depletion Layer511

The plasma depletion layer is a transient region of the subsolar magnetosheath char-512

acterized by decreased density and increased magnetic field strength. This layer exists513
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Figure 10. Magnetosheath conditions output by PRIME-SH for synthetic input conditions

with IMF purely northward (BZ = 5nT ) and purely southward (BZ = −5nT ). Average plasma

conditions from the input dataset are used. Top row shows |B|, ni, and T⊥/T∥ for BZ = 5nT ,

middle row shows the same for BZ = −5nT , and bottom row shows cuts along Y = Z = 0RE for

both magnetic field orientations for each parameter for ease of comparison.

when the reconnection rate at the magnetopause is insufficient to prevent “pile-up” of514

magnetic flux, and as such is typically observed during periods of northward IMF (al-515

though it can sometimes be observed during periods of southward IMF). This “pile-up”516

can modify the local reconnection rate, and could even enable reconnection at the sub-517

solar magnetopause for northward IMF (Anderson, 1996). It has also been shown that518

the plasma depletion layer has stronger temperature anisotropy than the rest of the mag-519

netosheath, although it is currently unclear whether this is a formation mechanism of520

the region or simply a consequence of the flux pile-up (Phan & Paschmann, 1996). De-521

spite the fact that the plasma depletion layer has been observed by in-situ spacecraft for522

many years (Cummings & Coleman, 1968), the dynamics and global geometry of the re-523

gion is difficult to determine from observations due to their spatio-temporal ambiguity524

(Wang et al., 2004).525

Both to verify PRIME-SH has been properly trained to replicate solar wind flow526

around the magnetosphere and to overcome the spatio-temporal ambiguity of in-situ ob-527

servations, PRIME-SH is used to assemble predictions on more grids of the same con-528

figuration as Section 4.2.1 for northward (B⃗ = 5nT ẑ) and southward (B⃗ = −5nT ẑ)529

IMF. Plasma conditions are the same between each run (VGSE = −400km/s, n = 5cm−3,530

and vth = 30km/s, Alfvén Mach number 8). The magnetic field magnitude, density,531

and temperature anisotropy (T⊥/T∥) are shown for each configuration in Figure 10 in532

the ecliptic and in cuts along the Sun-Earth line.533

The plasma depletion layer can be identified in Figure 10 as the region of high |B|,534

T⊥/T∥ and low n close to the subsolar point in the northward IMF case that is not ap-535

parent in the southward IMF case. In the cuts along the Sun-Earth line, the density can536

be more readily observed to begin falling off about 1RE from the magnetopause, while537

at the same time |B| and T⊥/T∥ begin to increase. This is contrasted with the south-538

ward case, in which all three parameters increase across the sheath somewhat linearly.539

This thickness is consistent with reported thicknesses from the literature which range540

from 0.3RE to 1RE for MA = 8, depending on identification criteria (Wang et al., 2004).541

This validates that PRIME-SH has been trained to reproduce magnetic flux pile-up and542

its effects in the magnetosheath, which are indirect measurements of the dayside mag-543

netic reconnection rate. Unlike numerical simulations, PRIME-SH can generate spatial544
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map of the plasma depletion layer based directly on observations rather than physical545

assumptions, which can cause deviation between predicted and observed global deple-546

tion layer configurations (Zwan & Wolf, 1976; Southwood & Kivelson, 1995).547

5 Conclusions548

A Bayesian recurrent neural network is trained to predict MMS-1 observations of549

Earth’s magnetosheath given timeseries input measured by the Wind spacecraft at L1.550

This algorithm, called PRIME-SH in reference to its progenitor algorithm PRIME, in-551

corporates the time history of the solar wind at L1 to generate probability distributions552

for magnetosheath plasma and magnetic field parameters. These probability distribu-553

tions can be used to determine the uncertainty associated with PRIME-SH’s predictions.554

PRIME-SH is shown to have good performance in a statistical sense across a test555

dataset of MMS-1 data not used during training (Average CRPS 0.221σ). The uncer-556

tainties predicted by PRIME-SH are shown to be reliable to within 3.5% with a max-557

imum difference 10% through a comparison to the test dataset. Additionally, PRIME-558

SH predicts magnetosheath conditions more accurately than several popular analytical559

models (Spreiter et al., 1966; Kobel & Flückiger, 1994; Cooling et al., 2001; Soucek &560

Escoubet, 2012) and a parameterization of the OpenGGCM MHD code (Jung et al., 2024).561

While statistical validation is important, it is also important to validate that a model562

is indeed producing physical results. It is verified that the magnetic field values produced563

by PRIME-SH across a grid of points in the magnetosheath “drape” across the magne-564

topause in 3D for several different orientations of the upstream magnetic field. Plasma565

flow velocities output by PRIME-SH across a grid of magnetosheath points divert around566

the magnetopause as expected, and the point at which the flow stagnates moves dawn-567

ward with decreasing Alfvén Mach number as predicted by MHD theory (Russell et al.,568

1981). PRIME-SH is shown to conserve particle/mass flux, momentum flux, and energy569

flux within 1σ uncertainty across the bow shock for the range of input parameters it is570

trained on. PRIME-SH is also capable of reproducing the plasma depletion layer given571

input conditions for which the depletion layer is expected to form. From this it may be572

concluded that PRIME-SH has indeed been optimized to represent the physics of solar573

wind flow from L1, through the bow shock, and around the magnetopause.574

PRIME-SH is not only more accurate in a statistical sense than current analyti-575

cal models and MHD simulation parameterizations, but it also has additional function-576

ality these other models do not. First, PRIME-SH outputs T⊥ and T∥ separately. While577

it is possible to have anisotropic temperatures in MHD simulations using a few assump-578

tions (Erkaev et al., 1999), most MHD and analytical models currently assume isotropic579

temperatures. Additionally, PRIME-SH outputs uncertainties for with its outputs. These580

uncertainties were used in this study to assign confidence intervals to fluxes calculated581

to verify that PRIME-SH conserves particles, mass, and energy. They could addition-582

ally be used to in more advanced techniques such as regression recalibration or ensem-583

ble modeling. In short, PRIME-SH is an accurate and computationally inexpensive mag-584

netosheath prediction algorithm that offers functionality no other magnetosheath pre-585

diction algorithm does, and enables new statistical and event-based studies of the mag-586

netosheath.587

Appendix A Open Research588

Magnetospheric Multiscale, Wind, and OMNI data are available through the Co-589

ordinated Data Analysis Web (CDAWeb) online portal at https://cdaweb.gsfc.nasa590

.gov/istp public/. Codes for dataset preparation, algorithm development, and anal-591

ysis presented in this paper are available at https://github.com/connor-obrien888/592

primesh.593
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Key Points:11

• PRIME-SH is an algorithm that predicts plasma and magnetic field in Earth’s mag-12

netosheath using inputs from in-situ monitors at L1.13

• PRIME-SH accurately predicts the magnetosheath conditions in a statistical sense14

and its predictions obey conservation laws at the shock.15

• PRIME-SH can be used to easily assemble continuous maps of the magnetosheath,16

addressing spatial limitations of in-situ data.17
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Abstract18

A data-driven model of Earth’s magnetosheath is developed by training a Bayesian19

recurrent neural network to reproduce Magnetospheric MultiScale (MMS) measurements20

of the magnetosheath plasma and magnetic field using measurements from the Wind space-21

craft upstream of Earth at the first Earth-Sun Lagrange point (L1). This model, called22

PRIME-SH in reference to its progenitor algorithm PRIME (Probabilistic Regressor for23

Input to the Magnetosphere Estimation), is shown to predict spacecraft observations of24

magnetosheath conditions accurately in a statistical sense with a continuous rank prob-25

ability score (CRPS) of 0.227σ (dimensionless standard deviation units). PRIME-SH is26

shown to be more accurate than many current analytical models of the magnetosheath.27

Furthermore, PRIME-SH is shown to reproduce physics not explicitly enforced during28

training, such as field line draping, the dayside plasma depletion layer, the magnetosheath29

flow stagnation point, and the Rankine-Hugoniot MHD shock jump conditions. PRIME-30

SH has the additional benefits of being computationally inexpensive relative to global31

MHD simulations, being capable of reproducing difficult-to-model physics such as tem-32

perature anisotropy, and being capable of reliably estimating its own uncertainty to within33

3.5%.34

Plain Language Summary35

As the solar wind encounters Earth’s magnetosphere and diverts around it, a shock36

is formed that heats and compresses the plasma and warps the magnetic field frozen into37

it. This shocked plasma and magnetic field, known as the magnetosheath, is what drives38

energy transfer at the magnetopause. Due to orbital constraints there is no continuous39

in-situ monitor of magnetosheath conditions. Studies of solar wind magnetosphere in-40

teraction typically rely on solar wind conditions measured at L1 propagated to Earth41

by some algorithm, which are then either used directly or used to drive some model of42

the magnetosheath. This process has numerous points of uncertainty, from the choice43

of propagation algorithm to the choice of magnetosheath model (or lack thereof). To ad-44

dress these concerns with the traditional approach, this study develops a data-driven model45

of the magnetosheath that uses data from L1 as its input. This new model, called PRIME-46

SH, adapts a Bayesian recurrent neural network architecture that is capable of estimat-47

ing uncertainties for its predictions. This new model is verified to be accurate in a sta-48

tistical sense, and is also capable of representing physics that is not explicitly incorpo-49

rated in the model during training.50

1 Introduction51

The region of turbulent, shocked solar wind plasma downstream of Earth’s bow shock52

is known as the magnetosheath. The magnetosheath plasma and magnetic field trans-53

fer energy to Earth’s magnetosphere via magnetic reconnection and viscous interaction54

(Dungey, 1961; Axford, 1964). Despite this, the solar wind conditions upstream of the55

bow shock are frequently taken as the input to the system in studies of solar wind-magnetosphere56

interaction. This is largely because of the absence of any continuous in-situ magnetosheath57

monitor due to orbital constraints. Continuous records of the magnetosheath conditions58

therefore require modeling the magnetosheath by some method.59

Early models of the magnetosheath used gas dynamics as their basis, incorporat-60

ing some physical assumptions and including limited consideration of the magnetic field61

outside the magnetopause (Spreiter et al., 1966; Spreiter & Alksne, 1969). These mod-62

els have matured through the inclusion of additional physics into modern MHD codes63

(e.g. Powell et al. (1999); Lyon et al. (2004)), that offer spatially and temporally com-64

plete model magnetosheaths at the cost of some physical assumptions and increased com-65

putational expense. In situations where the computational expense of MHD modeling66
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is prohibitive, some magnetosheath modeling efforts fit analytical expressions derived from67

physical assumptions to spacecraft measurements of the magnetosheath (Kobel & Flückiger,68

1994; Soucek & Escoubet, 2012; Tsyganenko et al., 2023). Others, such as the recent Mshpy2369

model (Jung et al., 2024), parameterize the outputs of MHD models to reduce their com-70

putational cost but retain some of their accuracy. A shared feature of these approaches71

is that they all include physical assumptions. While they may often be valid, there re-72

mains differences between their outputs and the actual magnetosheath that can limit their73

representational power. This issue could be addressed by reducing the number of assump-74

tions used to construct the model; for example, hybrid-Vlasov codes capable of simulat-75

ing the entire magnetosheath have recently come online (Von Alfthan et al., 2014; Hoil-76

ijoki et al., 2016) but come with an even higher computational cost than MHD codes.77

One possible way of addressing this limitation is the use of neural network codes78

that do not assume a functional form or simplified physics. Neural networks have been79

used to assemble models of geophysical quantities for the past few decades since the early80

relativistic electron flux model of Koons and Gorney (1991), and have continued to be81

regularly utilized for space physics tasks. These algorithms do not require physical as-82

sumptions to construct tractable or analytical descriptions of the magnetosheath plasma83

and magnetic field, and are also computationally inexpensive. In particular, new Bayesian84

recurrent neural network architectures have shown good performance in spatio-temporal85

inversion tasks such as electron density in the inner magnetosphere (Huang et al., 2022).86

A crucial aspect of any prediction algorithm that is typically lacking in magneto-87

spheric physics (and that is addressed by Bayesian neural networks) is uncertainty quan-88

tification (Borovsky, 2021). There is growing evidence that uncertainty in solar wind data89

affects correlation studies of the cross polar cap potential (Sivadas et al., 2022), devel-90

opment of solar wind-magnetosphere coupling functions (Lockwood et al., 2019), and global91

MHD simulation outputs (Al Shidi et al., 2023); the solar wind data uncertainty and the92

magnetosheath model uncertainty compound. Since it is the shocked solar wind at the93

magnetopause rather than the solar wind upstream of the bow shock that interacts with94

the magnetosphere, this uncertainty has the potential to affect any study that tries to95

associate solar wind conditions with magnetospheric response in a way that is difficult96

to account for without a magnetosheath model that estimates this uncertainty.97

Another challenge with traditional models aside from their physical assumptions98

is the fact that they typically use solar wind data that has been propagated from in-situ99

monitors far from Earth as input. Much like the magnetosheath, there is no continuous100

in-situ monitor of the solar wind near Earth due to orbital constraints. In order to ob-101

tain inputs for each of the previously mentioned models, data from monitors at the L1102

position 235RE (1,500,000 km) ahead of Earth need to be propagated to Earth to ac-103

count for the travel time of the solar wind plasma and interplanetary magnetic field (gen-104

erally 30-60 minutes). This propagation task is made difficult by the structure and dy-105

namics of the solar wind (Borovsky, 2018), and a variety of algorithms have been devel-106

oped in order to propagate measurements between L1 and Earth accurately. One such107

algorithm, the Probabilistic Regressor for Input to the Magnetosphere Estimation (PRIME)108

(O’Brien et al., 2023) was recently developed to address some of these difficulties with109

traditional propagation algorithms, and its Bayesian recurrent neural network architec-110

ture is well suited to be adapted to the problem of magnetosheath prediction from L1111

inputs (since the physics of solar wind propagation is the first “step” of that task).112

Motivated by the limitations of traditional algorithms outlined above, a new algo-113

rithm capable of predicting magnetosheath plasma and magnetic field conditions given114

measurements made by an in-situ monitor at L1 is developed. This algorithm, named115

PRIME-SH after its progenitor algorithm PRIME (O’Brien et al., 2023), requires a dataset116

of in-situ magnetosheath measurements and associated solar wind inputs at L1 (Section117

2), a network architecture adapted from PRIME and optimized for the magnetosheath118

(Section 3). Outputs from PRIME-SH are validated statistically on a holdout dataset.119

–3–



manuscript submitted to JGR: Machine Learning and Computation

PRIME-SH is subjected to additional validation verifying that it reproduces some ex-120

pected physics (Section 4), after which the results can be summarized and discussed (Sec-121

tion 5).122

2 Data123

2.1 MMS Target Dataset124

Plasma and magnetic field data from the Magnetospheric Multi Scale 1 (MMS-1)125

spacecraft’s (Burch et al., 2016) Fast Plasma Investigation (FPI) (Pollock et al., 2016)126

and Fluxgate Magnetometer (FGM) (Russell et al., 2016) instruments are utilized as tar-127

gets for the algorithm to be optimized against. MMS is a constellation of four spacecraft128

designed to study magnetic reconnection at Earth’s magnetopause and neutral sheet. It129

therefore spends considerable time in Earth’s magnetosheath and carries instruments par-130

ticularly designed to measure the plasma and magnetic field there, making data it col-131

lects highly suitable for use as targets to optimize PRIME-SH. The large volume of data132

produced by MMS-1’s instruments have motivated the development of automated clas-133

sification, identification, and segmentation tools for MMS data that allow rapid selec-134

tion of large amounts of data with particular features or from particular plasma regimes.135

To assemble a solar wind dataset using MMS, an automatic tool developed by Olshevsky136

et al. (2021) is used to classify all MMS-1 FPI 3D ion distributions from September 2nd137

2015 to January 1st 2023. The classifier is capable of discriminating between magneto-138

spheric, magnetosheath, non-foreshock solar wind, and foreshock plasma using the shape139

of the ion distribution function, and outputs a normalized probability that a given dis-140

tribution belongs to each class. Periods of time where MMS-1 is in the magnetosheath141

with probability p > 0.7 are found using the classifier; all other time periods are removed142

thereby removing the magnetosphere, solar wind, foreshock, and ambiguous classifica-143

tions from the dataset. Remaining FGM magnetic field and FPI ion moments are av-144

eraged in 100 second bins. Since the classifier is trained only on data from dayside or-145

bits, any data on the nightside (GSE X < 0) are removed. The full spatial distribu-146

tion of the magnetosheath data are shown in Figure 1.147

2.2 Wind Input Dataset148

The input solar wind data at L1 comes from the Magnetic Field Investigation (MFI)149

(Lepping et al., 1995) and Solar Wind Experiment (SWE) (Ogilvie et al., 1995) aboard150

the Wind spacecraft. Wind was selected for this study because it had the best coverage151

over the time period of the MMS-1 dataset used here (September 2nd 2015 to January152

1st 2023). Key parameter (KP) moments data are utilized, resulting in time series of plasma153

flow velocity v⃗ (GSE coordinates), ion density nion, ion thermal speed v⊥th, and IMF154

B⃗ (GSM coordinates) at a 100 second cadence. Due to the difficulty involved with space-155

craft intercalibration data from other L1 monitors are not included in this study (King,156

2005). To give PRIME-SH information about the spatial separation of the input and tar-157

get spacecraft and the location in the sheath at which the prediction is being made, the158

positions of Wind and MMS-1 in GSE coordinates are included in the input data. Miss-159

ing data are linearly interpolated and flagged so they can be excluded if necessary. The160

precise windows of time in the Wind dataset used as input to predict each MMS target161

heavily influence the performance of the optimized algorithm; these and other param-162

eters pertaining to the exact construction of the dataset therefore must be optimized through163

hyperparameter search (see Section 3.2).164

–4–



manuscript submitted to JGR: Machine Learning and Computation

Figure 1. 3D spatial distribution of the 117,427 magnetosheath MMS-1 data points split into

80% training/validation (purple) and 20% test (yellow) subsets. Data consists of B⃗GSM , V⃗GSE ,

ni, Ti∥, and Ti⊥ from September 2nd 2015 to January 1st 2023. Train/validation/test split is as

used in the optimized dataset (see Section 3.2).

3 Algorithm Methodology165

3.1 Network Architecture166

The overall architecture selected for the algorithm is similar to that utilized to con-167

struct PRIME (Probabilistic Regressor for Input to the Magnetosphere Estimation), an168

algorithm that predicts the solar wind near Earth using data from the Wind spacecraft169

at L1 (O’Brien et al., 2023). The Bayesian recurrent neural network architecture devel-170

oped for PRIME is well suited to be adapted to the task of magnetosheath prediction171

for several reasons. First, it is capable of incorporating information about the time his-172

tory of solar wind at L1 into its predictions which is important for predicting the solar173

wind and the evolution of the magnetosheath. Second, it is capable of assigning uncer-174

tainties to its predictions which is crucial in the frequently turbulent environment in the175

magnetosheath. Third, it has proven to be accurate when applied to the task of solar176

wind propagation, which is essentially the first step of the task undertaken by PRIME-177

SH.178

The overall form of PRIME-SH is shown in Figure 2. Like PRIME, PRIME-SH uti-179

lizes a Gated Recurrent Unit (GRU) sequence (See Cho et al. (2014)) that is fed into fully180

connected neural network (FCNN) layers (See Bebis and Georgiopoulos (1994)). The last181

layer of neurons are taken to be the mean and variance of a Gaussian probability dis-182

tribution for each parameter rather than single scalar values (Nix & Weigend, 1994; Lak-183

shminarayanan et al., 2017). The input feature size is 14, and the output feature size is184

9. The algorithm is implemented in the Keras high-level API for tensorflow (https://185

keras.io/api/). Details of the architecture such as the length of the input time series186

and the size of each layer do not have optimal values that can be determined a priori.187

Instead, they are chosen via hyperparameter tuning (See Section 3.2).188

The loss criterion used to optimize the algorithm during training is chosen to be189

the continuous rank probability score (CRPS) (Matheson & Winkler, 1976; Hersbach,190

2000). The CRPS is a common scoring metric used to compare probabilistic forecasts191

for weather prediction (Zamo & Naveau, 2018). For a detailed description of the CRPS192
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Figure 2. Schematic of PRIME-SH’s neural network architecture, based on the architecture of

PRIME (O’Brien et al., 2023). Note that the Gated Recurrent Unit (GRU) sequence feeds into

a Fully Connected Neural Network (FCNN) in order to output a mean and variance for each de-

sired parameter instead of a single value. Vector quantities such as magnetic field, flow velocity,

and spacecraft position are stacked to show that they constitute three units in the input/output

but describe one physical vector quantity. Exact layer size and additional regularization features

(see Table 1) chosen via hyperparameter search.
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see Section 2 of Camporeale and Carè (2021) or Section 3.1 of O’Brien et al. (2023). Briefly,193

the continuous rank probability score is given by194

CRPS =

∫ ∞

−∞
[F (y)−H(y − yobs)]

2dy (1)

where F (y) is the cumulative distribution function of a probabilistic prediction for some195

observation yobs and H(y) is the Heaviside step function (Wilks, 2011). The continuous196

rank probability score is desirable as a loss function because it more symmetrically pun-197

ishes over and under confident predictions than the negative log probability density (the198

most commonly used score for probabilistic predictions) (Camporeale & Carè, 2021). A199

side benefit is that the CRPS has the same unit as the variable of interest, making it more200

intuitively human-readable. In the case of Gaussian predictions with mean µ and vari-201

ance σ2 the CRPS is given by202

CRPS(yobs, µ, σ) = σ

[
yobs − µ

σ
erf

(
yobs − µ√

2σ

)
+

√
2

π
e−

(yobs−µ)2

2σ2 − 1√
π

]
(2)

(Gneiting et al., 2005). Since PRIME-SH outputs Gaussian probability distributions, and203

since CRPS is negatively oriented, Equation 2 is used as a loss function during training.204

The 18 output units in PRIME-SH’s last layer are taken to be the means (µs) and vari-205

ances (σs) defining a Gaussian probability distribution for each parameter. During train-206

ing the CRPS over all nine parameters in the target dataset are averaged with equal weight207

assigned to all parameters.208

The primary limitation of the CRPS as a loss function training probabilistic algo-209

rithms is the fact that it does not explicitly enforce reliability of the algorithm’s predicted210

uncertainties (Camporeale et al., 2019). Reliability is measure of the degree to which a211

probabilistic forecast’s uncertainties are statistically consistent with the observed prob-212

abilities of the events the forecast seeks to predict (Anderson, 1996). It has been shown213

that accuracy and reliability are competing metrics that must be balanced, and that sim-214

ply minimizing the CRPS does not necessarily mean that the resulting model is reliable215

(Camporeale & Carè, 2021). Since reliability is not explicitly enforced, the reliability of216

PRIME-SH’s uncertainties must be verified after training (See Section 4.1) (Tasistro-Hart217

et al., 2021).218

3.2 Algorithm Optimization219

Optimization of PRIME-SH follows a three step process. First, the optimal length,220

lead time, and composition of the input timeseries dataset is determined (the dataset221

hyperparameter search). Then the algorithm hyperparameters are systematically var-222

ied in order to find the optimal algorithm, then finally the optimal algorithm is instan-223

tiated and trained. This algorithm then becomes the canonical version of PRIME-SH.224

Given a particular time when a prediction of the magnetosheath conditions is de-225

sired, it is difficult to say a priori what time period of Wind data from L1 contains the226

necessary information to make that prediction (especially given the flexible nature of neu-227

ral network algorithms). Since the solar wind typically takes 30 to 60 minutes to get from228

L1 to Earth, there is likely only so much time history that can be incorporated before229

including more yields diminishing returns in terms of accuracy. Similarly, it is likely that230

including conditions at L1 right up until the time the sheath prediction is desired is not231

necessary, since the solar wind at that time has not had sufficient time to get to Earth.232

To find the optimal start and stop times of the timeseries used to make each prediction,233

a range of start and stop times are tested by optimizing a test version of PRIME-SH us-234

ing different input time series lengths (windows) and lead times before each prediction235

(strides). It is also likely that large data gaps that are filled with interpolated data can236

affect the algorithm’s performance, therefore a range of permissible data gap sizes are237
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Figure 3. Results from dataset optimization trials over timeseries window (length), stride

(lead time), and permitted fraction of interpolated data. Units for window and stride are 100s

(the Wind KP data cadence). The optimal set (window 55, stride 18, largest interp. fraction

≤ 5%) is shown in darkest green and labelled “optimal”. Loss is given in dimensionless units of

parameter interquartile range to ensure comparability of CRPS for each parameter.

also tested (expressed in terms of fractions of the window size). Whichever parameters238

produce a model that can achieve the best results on the validation dataset before over-239

fitting are taken as optimal. When training these test models and for any time a model240

is trained, the input/target datasets are split into 60% training, 20% validation, and 20%241

test subsets. Since temporally adjacent entries in the input dataset are almost entirely242

overlapping, randomly assigning input/target pairs to each subset results in significant243

data leakage. To avoid this, the full dataset is split into independent blocks four times244

the length of the timeseries window used as input (i.e. for a window size of 55 measure-245

ments/ ∼1 hour 32 minutes, the dataset is split into chunks of length 220 measurements/246

∼6 hours 8 minutes) and those blocks are then assigned to each subset in order to achieve247

a 60%-20%-20% train-validation-test split. To ensure that no parameter dominates oth-248

ers due to their absolute relative values, each subset is rescaled to the interquartile range249

of the training set in order to account for outliers without leaking information about the250

validation/test sets during training. Results on the validation dataset from the search251

are shown in Figure 3.252

Whichever set from Figure 3 has the lowest CRPS is taken to be optimal. The op-253

timal window size is 55 measurements (∼ 5,500 seconds, ∼1 hour 32 minutes), the op-254

timal stride/lead time is 18 measurements (∼1,800 seconds, ∼30 minutes). That is to255

say, for an MMS measurement at time t, the input timeseries from Wind runs from time256

t − 5, 500s − 1, 800s ≈ t − 122min to time t − 1, 800s ≈ t − 30min. The largest data257

gap that can be interpolated over is 4.6 minutes (≤ 5% of the input window).258

Once the optimal dataset structure is found, the optimal model configuration can259

be determined via hyperparameter search. The nine hyperparameters that are optimized260

are listed in Table 1, along with the values used for determining the optimal dataset, the261

optimal values used for the canonical version of PRIME-SH, and the search range for262

each hyperparameter. The hyperparameter search is conducted using the Hyperband tour-263

nament bracket style algorithm (Li et al., 2018) implemented in the KerasTuner API (O’Malley264

et al., 2019). The meaning of each hyperparameter is described in the following para-265

graph. After the optimal model configuration is determined, the canonical version of PRIME-266
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Dataset HP Test Canonical Algorithm HP Range

GRU Layer 192 416 128-640
FCNN Layer 1 352 352 128-640
FCNN Layer 2 48 32 16-128
FCNN Layer 3 N/A 64 16-128
Normalization Last Layer Last Layer Any Combination

Dropout Location Last Layer Last Layer Any Combination
Dropout Rate 20% 35% 20%-50%
Optimizer Adamax Adam Adam, Adamax, Adagrad

Learning Rate 10−4 10−4 10−3, 10−4, 10−5

Table 1. Detailed layer sizes and architecture parameters for the test version of PRIME-SH

used to optimize the dataset parameters (left column), the canonical version of PRIME-SH deter-

mined by hyperparameter search (middle column), and the range of each parameter for which the

hyperparameter search was conducted (right column).

SH is optimized on the training dataset for 20 epochs (the maximum before the loss on267

the validation dataset starts to increase).268

The nine hyperparameters are as follows (see also Table 1). The first four are the269

node sizes of the GRU layer and the following three fully-connected layers. The fifth is270

where in the algorithm sequence to perform a layer normalization step, which stabilizes271

neural networks during optimization to reduce the time it takes to optimize them (Ba272

et al., 2016). Layer normalization normalizes a given layer’s output vector before pass-273

ing it to the next layer, which speeds up the convergence of the algorithm used to op-274

timize the weights and biases of the algorithm by reducing the extent to which the gra-275

dients with respect to the weights in one layer covary with the outputs of the previous276

layer. The sixth and seventh hyperparameters are the dropout locations and rate used277

during training. Dropout is a technique to mitigate overfitting that involves randomly278

removing some percentage of the units from the network every training epoch. This pre-279

vents units from co-adapting which can lead to overfitting (Srivastava et al., 2014). The280

eighth and ninth hyperparameters are the optimization algorithm used to update the weights281

and biases in the network and that algorithm’s learning rate. Included in the search are282

the adaptive gradient descent algorithms Adam, Adamax, and Adagrad. An adaptive283

gradient descent algorithm changes the step size it uses to update parameter weights dur-284

ing optimization to avoid getting stuck in local minima or skipping over minima. Adam285

updates parameters according to estimates of first order and second moments and has286

been shown to be suitable for optimizing large algorithms (Kingma & Ba, 2017), Adamax287

updates parameters according to first order moments and the infinity norm and has been288

shown to be suitable for recurrent networks (Kingma & Ba, 2017), and Adagrad updates289

its gradient descent step size per parameter based on the number of updates the param-290

eter receives during training making it suitable for sparse gradients (Duchi et al., 2011).291

Since each of these conditions could apply to PRIME-SH and the dataset used to op-292

timize it, these three algorithms were included.293

4 Results294

4.1 Statistical Performance295

PRIME-SH’s performance is evaluated on the test dataset (not seen by the algo-296

rithm at any point during training) by calculating the CRPS between its predictions and297

the test dataset. Additionally, the mean absolute error (MAE) and Pearson’s r corre-298

lation coefficient are calculated between the means of PRIME-SH’s predicted probabil-299
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Parameter PRIME-SH CRPS PRIME-SH MAE PRIME-SH r

Bx GSM 2.65nT (0.296σ) 3.61nT (0.403σ) 0.800
By GSM 4.18nT (0.245σ) 5.65nT (0.331σ) 0.864
Bz GSM 5.19nT (0.323σ) 7.08nT (0.440σ) 0.779
Vx GSE 14.03km/s (0.182σ) 19.25km/s (0.250σ) 0.945
Vy GSE 13.22km/s (0.127σ) 17.95km/s (0.173σ) 0.969
Vz GSE 15.35km/s (0.291σ) 21.04km/s (0.399σ) 0.838

ni 3.63cm−3 (0.169σ) 4.96cm−3 (0.231σ) 0.929
Ti⊥ 23.76eV (0.158σ) 32.58eV (0.216σ) 0.936
Ti∥ 22.67eV (0.198σ) 30.70eV (0.268σ) 0.881
Pdyn 0.255nPa (0.224σ) 0.353nPa (0.311σ) 0.859

Table 2. Performance of PRIME-SH on the MMS test dataset across continuous rank proba-

bility score (CRPS, Equation 1), mean absolute error (MAE), and Pearson’s r correlation coef-

ficient (also shown in Figure 4). CRPS is given in the units of each parameter as well as dimen-

sionless units of standard deviations of each parameter in the MMS training dataset to facilitate

comparison between each parameter.

ity distributions and the MMS test set thereby ignoring the uncertainty information. To300

gain a better sense of the accuracy of PRIME-SH’s predictions in a statistical sense, its301

outputs are compared to several analytical models and a parameterization of a popu-302

lar MHD code for the same MMS-1 test dataset (Figure 4, Table 2). For magnetic field,303

the model derived in Cooling et al. (2001) is utilized. The Cooling et al. (2001) model304

essentially “drapes” the interplanetary magnetic field over the Shue et al. (1998) axisym-305

metric conic section magnetosheath model (based on Kobel and Flückiger (1994)). For306

magnetosheath flow, the model derived in Soucek and Escoubet (2012) is utilized. The307

Soucek and Escoubet (2012) model is partially based on Génot et al. (2011) and Kobel308

and Flückiger (1994), but extends those works to additional magnetopause and bow shock309

shapes. For density and temperature, the model derived in Spreiter et al. (1966) is uti-310

lized. The Spreiter et al. (1966) model is a gas dynamic model that assumes a nondis-311

sipative, ideal, compressible, steady flow. Additionally, PRIME-SH is compared to a pa-312

rameterization of the OpenGGCM MHD code (Raeder et al., 2001, 2008) developed in313

Jung et al. (2024). This parameterization cannot capture small-scale structure in the MHD314

code’s outputs, but has been shown to be accurate when compared to observations and315

is importantly computationally inexpensive enough to enable the statistical comparison316

in this study. The Soucek and Escoubet (2012) and Spreiter et al. (1966) models are im-317

plemented in the Mshpy23 package (Jung et al., 2024) and accept one minute resolution318

OMNI data as input (King & Papitashvili, 2020). The Spreiter et al. (1966) and OpenG-319

GCM models produce isotropic temperatures, therefore their temperatures are compared320

to the average temperature measured by MMS TiAV = (2Ti⊥ + Ti∥)/3. None of the321

models PRIME-SH is compared to have uncertainty information, therefore the MAE and322

CRPS reduce to the same form and number (Hersbach, 2000); both metrics are provided323

for PRIME-SH’s outputs so that all comparisons can be made.324

On average, PRIME-SH predicts plasma parameters (v⃗, ni, Ti⊥, and Ti∥) slightly325

more accurately than magnetic field parameters. This is possibly due to the fact that326

fluctuations in magnetic field happen more quickly than those in the plasma, and neu-327

ral networks tend to have more difficulty representing smaller scale variations than larger328

scale ones whether temporal or spatial in nature. PRIME-SH has a Pearson’s r higher329

than 0.75 for every parameter. There are no strong biases or systematic errors visible330

in Figure 4, only some amount of regression to the mean in the most extreme values of331

VX and ni (and therefore in Pdyn as well). Interestingly, PRIME-SH predicts magnetosheath332
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Figure 4. Joint distributions of MMS-1 data (x axis) with predicted parameters from

PRIME-SH (purple, top), three analytical magnetosheath models (yellow, middle), and a pa-

rameterization of the OpenGGCM MHD code (orange, bottom). CRPS, the mean absolute error

(MAE), and Pearson’s r correlation coefficient for each parameter shown in the top left of each

distribution. The MAE is calculated between the peaks of PRIME-SH’s predicted distributions

and each MMS observation (thereby throwing away uncertainty information). A perfect predic-

tion corresponds to the line y = x, plotted overtop of each distribution for convenience.
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conditions almost as accurately as its progenitor algorithm PRIME predicts solar wind333

conditions given the same type of input data from L1 (PRIME-SH’s average CRPS of334

0.221σ and PRIME’s average CRPS of 0.214σ), despite that it has to represent not only335

the physics of the solar wind’s propagation from L1 to Earth but the physics of the bow336

shock as well.337

For all parameters PRIME-SH outperforms all of the analytical models considered338

here with respect to MAE and CRPS. For each component in the magnetic field, PRIME-339

SH predicts MMS-1 observations more accurately than the Cooling et al. (2001) model.340

Specifically, PRIME-SH’s CRPS and MAE are both lower than the Cooling et al. (2001)341

model’s MAE, and PRIME-SH’s Pearson’s r is higher than the Cooling et al. (2001) model’s342

Pearson’s r. There appears to be some systematic overprediction in the Cooling et al.343

(2001) model’s outputs for BX . This means that PRIME-SH reproduces the actual mag-344

netic field in the magnetosheath given upstream conditions more accurately than the Cooling345

et al. (2001) model, but whether it produces a physically accurate draped field must be346

separately validated in Section 4.2.1. The Soucek and Escoubet (2012) model has a large347

variance in VX and does not reproduce fast flows (> 300km/s) as accurately as PRIME-348

SH does. It also underpredicts VY and VZ , all of which could be regression effects due349

to model outputs being too “smooth”. The Spreiter et al. (1966) comes the closest to350

outperforming PRIME-SH of any model considered here, but still does not predict ni351

or TiAV G more accurately than PRIME-SH.352

Compared to the parameterized MHD model, PRIME-SH has higher representa-353

tional power and therefore higher accuracy across the parameters. For BX and BY the354

parameterized MHD model does not vary by much (both have Pearson’s r < 0.12), which355

could be consistent with the results presented in Jung et al. (2024) Figures 2, 3, and 4.356

For plasma flow velocity, the parameterized MHD model clearly reaches the bounds of357

its parameterization (most visible for VY < −120km/s and VY > 160km/s). The shape358

of the distribution for TiAV G is also consistent with results presented in Jung et al. (2024)359

Figure 2. The MHD model is more accurate than the associated analytical model for all360

parameters except BY , ni, TiAV G, and Pdyn, but is not more accurate than PRIME-SH361

for any of the parameters it is capable of predicting.362

PRIME-SH is a 3D model, and its outputs are valid over any regions covered by363

MMS-1’s orbit on the dayside (GSE X > 0RE , GSE |Y | < 5RE). Since the magne-364

tosheath conditions vary significantly across its extent, PRIME-SH’s accuracy evaluated365

against the test set is displayed in GSE coordinates in Figure 5. In general, PRIME-SH’s366

outputs are generally less accurate on predictions closer to the Earth than on those fur-367

ther from the Earth. This suggests that PRIME-SH is less accurate during periods where368

the magnetosheath is highly compressed or when it makes predictions close to the mag-369

netopause. These periods are rare relative to nominal conditions in the training dataset,370

so PRIME-SH being somewhat less accurate under these conditions is expected and should371

be taken into account when using PRIME-SH. It is worth noting that PRIME-SH has372

not been trained outside of the areas shown in Figure 5 and thus its predictions outside373

of those areas are likely to be inaccurate or unphysical due to its nature as a neural net-374

work algorithm.375

Since reliability is not enforced by the CRPS loss function during training, PRIME-376

SH’s output uncertainties must be validated quantitatively through the use of a relia-377

bility diagram (Hamill, 1997, 2001). Following the procedure in Camporeale et al. (2019)378

and Camporeale and Carè (2021), the standardized errors associated with prediction µi, σi379

with i = 1, ..., N are defined as ηi = (yobs,i − µi)/(
√
2σi). The probability density of380

a given Gaussian forecast is therefore Φi =
1
2 [erf(ηi)+1], allowing the reliability dia-381

gram to be constructed from the empirical cumulative distribution of Φi given by C(ϕ) =382

1
N

∑N
i=1 H(ϕ − Φi) (with H being the Heaviside step function). C(ϕ) is the observed383

frequency as a function of the predicted frequency, the same as reliability diagrams of384

forecasts of discrete events (e.g. those in Hamill (1997)). This method has the benefit385
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Figure 5. PRIME-SH’s accuracy on the test dataset averaged across all nine target param-

eters in dimensionless standard deviation units (σ). Targets arranged spatially in 3D (top), the

GSE X-Y plane (bottom left), and the GSE X-Z plane (bottom right).

of not requiring binning, which has been shown to affect the results of reliability diagrams386

of discrete events (Bröcker & Smith, 2007). C(ϕ) is calculated for all observations in the387

test dataset for each parameter and presented in Figure 6.388

PRIME-SH is not perfectly reliable (its reliability diagram does not exactly follow389

the dashed line in Figure 6); it generally tends to overestimate the likelihood of unlikely390

events, and underestimate the likelihood of likely events. With the exception of VZ , BX ,391

and T∥, PRIME-SH tends to be conservative. This is not unexpected, as even models392

perfectly calibrated on training data can suffer calibration loss on the test dataset (Kull393

& Flach, 2015). The largest departures from perfect calibration are observed in VY GSE394

(predicts events that occur with p = 0.221 as occurring with p = 0.320), BX GSM395

(predicts events that occur with p = 0.754 as occurring with p = 0.657), and T∥ (pre-396

dicts events that occur with p = 0.674 as occurring with p = 0.586). On average PRIME-397

SH is reliable to within 3.5% with a maximum difference 10% (calculated pobs−ppred).398

This is roughly as reliable as its progenitor algorithm PRIME and other probabilistic pre-399

diction algorithms for space weather tasks (e.g. Tasistro-Hart et al. (2021)), but less re-400

liable than those that use loss functions that enforce reliability explicitly (e.g. Hu et al.401

(2022)).402

4.2 Physical Validation403

While a model’s accuracy and reliability are important to quantify statistically, it404

is also important to verify that a model can reproduce expected physics. This is espe-405

cially important for neural network models that can relatively easily overfit and repro-406

duce a dataset’s noise rather than the underlying data representation or physics. In the407

following sections PRIME-SH’s outputs for synthetic data are investigated to ensure that408

it can reproduce magnetic field and plasma physics in the magnetosheath.409
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Figure 6. Reliability diagram constructed from PRIME-SH’s outputs on the test dataset for

each parameter. Shown versus the predicted frequency of the observation from PRIME-SH are

the value of the observed frequency (top) and the deviation from perfect reliability (bottom).

For the bottom plot, a given parameter being over (under) the line by an amount corresponds to

PRIME-SH over (under) predicting the frequency by that amount.

4.2.1 Field Line Draping and Uncertainty410

Since the interplanetary magnetic field is frozen into the solar wind plasma, as the411

plasma is shocked and diverted around the magnetopause the magnetic field “drapes”412

over the obstacle forming a tangential discontinuity at the magnetopause (Crooker et413

al., 1985). In order to verify that PRIME-SH captures this feature of the magnetosheath,414

outputs are generated on a grid of points for the same input data. The grid is chosen415

to lie in the GSE X-Y or GSE X-Z plane (depending on IMF orientation) with a grid416

scale of 0.1RE . All grid cells inside the Shue et al. (1998) or outside the Jeĺınek et al.417

(2012) bow shock (calculated using the conditions at L1 used as inputs for PRIME-SH)418

are left unused. Only grid cells in regions well sampled by the MMS training data are419

included, hence the Z extent is restricted to ±5RE away from the ecliptic and the night-420

side is not included (see Figure 1). The input data are chosen to be a 400km/s solar wind421

only in the GSE X direction with otherwise average solar wind conditions from the Wind422

L1 dataset: |B| = 5.34nT , VX = −400km/s, VY = 0km/s, VZ = 0km/s, ni = 7.12cm−3,423

and vth = 34.9km/s. In order to investigate whether PRIME-SH is capable of drap-424

ing, conditions on the grid are calculated for six different IMF orientations: one radial425

toward Earth (cone angle 0◦), one dawnward (cone angle −90◦), one duskward (cone an-426

gle +90◦) one radial away from Earth (cone angle 180◦), one purely northward (clock427

angle 0◦), and one purely southward (clock angle 180◦). Shown in Figure 7 are these six428

grids, with the sheath magnetic field streamlines plotted in black arrows and the mag-429

nitude of B in each cell in color.430

As can be seen in Figure 7, PRIME-SH reproduces the draping of the magnetic field431

in the magnetosheath well despite the frozen in condition not being enforced during train-432

ing. For cone angles of ±90◦ the magnetic field piles up at the nose of the magnetopause,433

much more than it does for radial IMF. This can be seen in the magnitude of the mag-434

netic field, which is higher at the nose than the flanks for cone angles of ±90◦. For cone435

angles of 0◦ or 180◦, the flanks have a relatively higher magnetic field than the nose (though436

it is not as strong as the field at the nose in the cone angle ±90◦ case). For northward437
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Figure 7. Magnetosheath conditions output by PRIME-SH using synthetic data for six differ-

ent IMF orientations (Shown with arrows in top left or bottom). Plasma conditions are average

conditions from the input dataset, magnetic field magnitude is 5.34nT (the average magnitude

from the input dataset). Shown in color is the magnitude of B, and the arrows are BX and BY

GSM field lines (for the left four plots) or the BX and BZ GSM field lines (for the right two

plots).

IMF, somewhat more magnetic field pileup pileup is observed at the northern and south-438

ern flanks than for the southern IMF case. The magnetic field magnitude is also slightly439

higher overall in the northward IMF case than in the southward IMF case. These maps440

suggest that a lower reconnection rate for northward IMF at the nose causes magnetic441

field pileup and rearrangement in the sheath as many studies have predicted.442

4.2.2 Stagnation Point443

As the solar wind plasma diverts and is slowed around the magnetopause, a region444

known as the stagnation point develops where there is very little to no plasma flow (Spreiter445

et al., 1966). For radial flow and typical Parker spiral magnetic field orientation, this point446

is thought to be roughly located at the nose of the magnetopause (with slight aberra-447

tion from Earth’s ≈ 30km/s motion in the negative GSE Y direction). MHD theory pre-448

dicts that for a Parker spiral IMF, the stagnation point should deflect dawnward for so-449

lar wind flows with low Alfvén Mach numbers (Russell et al., 1981). Here PRIME-SH450

is used to assemble predictions on more 0.1RE grids of the same configuration as Sec-451

tion 4.2.1, however this time the Alfvén Mach number of the synthetic dataset is var-452

ied from MA = 4 to MA = 16 (the solar wind typically has MA ≈ 10). The density453

and velocity are held the same (ni = 7.12, VX = −400km/s) and the magnetic field454

is kept at a 45◦ Parker spiral as its magnitude is decreased in steps from 12nT to 2.4nT455

to yield the four Alfvén Mach numbers. Shown in Figure 8 are these four grids, with the456

X and Y GSE plasma flow velocity depicted with black arrows and the Z GSE flow ve-457

locity in color. Also depicted is the stagnation point, marked with a purple X.458

As can be seen in Figure 7, PRIME-SH produces continuous flow maps that divert459

around the magnetopause for all four Alfvén mach numbers. Additionally, as the Alfvén460

Mach number decreases the stagnation point is observed to move dawnward as predicted461

by MHD theory and simulations. This feature is hard to observe using in-situ instruments,462

but here through what is essentially a spatio-temporal inversion the feature is shown to463

occur in reality.464

One interesting feature is that there appears to be some weak dawn-dusk asym-465

metry in the flow velocity maps produced by PRIME-SH. This could be due to biases466

in MMS-1’s orbit showing up in PRIME-SH’ outputs, as the asymmetry does not ap-467
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Figure 8. Magnetosheath conditions output by PRIME-SH using synthetic data at four dif-

ferent Alfvén Mach numbers (MA = 4, 6, 10, 16). Flow velocity is 400km/s with VY = VZ = 0,

magnetic field is a Parker spiral orientation whose magnitude is varied for each case to result in

the four Alfvén Mach numbers. Shown in color is the Z GSE velocity, and the arrows are the

X and Y GSE velocity. The point of minimum velocity in the sheath (the stagnation point) is

marked with the purple X.

pear in MHD simulations of the magnetosheath. However, other experimental work has468

also found dawn-dusk asymmetries in the magnetosheath properties (Walsh et al., 2012;469

Dimmock & Nykyri, 2013).470

4.2.3 Shock Jump Conditions471

Shocks, whether they are collisional or collisionless, conserve mass, momentum and472

energy. The Rankine-Hugoniot shock jump conditions are formulations of each of these473

conservation laws in terms of the conditions upstream and downstream of the shock. For474

an MHD shock, define the shock normal direction to be n̂, the plasma flow velocity to475

be v⃗, the plasma mass density to be ρ, the thermal pressure to be P , the specific heat476

ratio to be γ, and the magnetic field to be B⃗. For some quantity X⃗ upstream and down-477

stream of the shock, define the notation X⃗up − X⃗down = [X⃗]. Mass conservation up-478

stream and downstream of the shock can then be written:479

[ρu⃗ · n̂] = 0 (3)

Momentum conservation (with magnetic pressure included) can be written:480

[ρu⃗(u⃗ · n̂) + (P +
B⃗2

2µ0
)n̂− (B⃗ · n̂)B⃗

µ0
] = 0 (4)

Energy conservation can be written:481

[u⃗ · n̂(ρu⃗
2

2
+

γ

γ − 1
P +

B⃗2

µ0
)− (B⃗ · n̂)(B⃗ · u⃗)

µ0
] = 0 (5)

(Kallenrode, 2010).482

None of these conditions are explicitly enforced during training, but they are part483

of the underlying physics PRIME-SH should be representing. To validate that PRIME-484

SH reproduces these conservation laws, a range of synthetic solar wind conditions with485
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Figure 9. Particle, momentum, and energy fluxes calculated across a range of synthetic input

conditions roughly corresponding to the range of the training dataset. Fluxes are calculated just

upstream of the bow shock nose (using the input data) and just downstream (using PRIME-SH’s

outputs), and uncertainties are calculated by propagating PRIME-SH’s predicted uncertainties

through the MHD shock jump condition equations. Within PRIME-SH’s predicted uncertainties

the three Rankine-Hugoniot MHD jump conditions are obeyed.

densities ranging from 1cm−3 to 50cm−3 with VGSE = −400km/s, B⃗ = (−4nT )x̂ +486

(−4nT )ŷ, and vth = 30km/s are initialized and used to generate predictions just be-487

hind the Jeĺınek et al. (2012) bow shock nose along the Sun-Earth line. This range was488

chosen to reflect the full range of densities from the input dataset, which results in bet-489

ter coverage of the range of the three upstream fluxes observed than varying other con-490

ditions such as velocity. Equations 3, 4, and 5 are used to calculate the particle, momen-491

tum, and energy flux from the synthetic input data (upstream) and from PRIME-SH’s492

outputs (downstream). The uncertainties predicted by PRIME-SH can be propagated493

through Equations 3, 4, and 5 to obtain uncertainties for the downstream fluxes as well.494

Only magnetosheath conditions on the Sun-Earth line just behind the Jeĺınek et al. (2012)495

bow shock nose are included so it can be assumed that n̂ = x̂. The downstream fluxes496

are plotted as a function of upstream fluxes in Figure 9.497

Perfect conservation of each flux is represented by the dashed lines in Figure 9. As498

can be seen, while the quantities predicted by PRIME-SH do not perfectly conserve mass/particles,499

momentum, and energy, it does conserve them within the the 1σ uncertainty bounds for500

each quantity. One contribution to this uncertainty is an experimental one. Although501

the instruments on Wind and MMS have been carefully calibrated, they were not cal-502

ibrated together. Previous studies have found mismatches when comparing plasma and503

magnetic field parameters from different missions, even those with very similar instru-504

ments (King, 2005; Roberts et al., 2021). The points of largest fractional difference be-505

tween upstream and downstream fluxes occur for the smallest fluxes (when nup = 1cm−3),506

which happens relatively infrequently in the input dataset. Despite the fact that mass/particle507

conservation, momentum conservation, and energy conservation were not explicitly en-508

forced during training, PRIME-SH has been optimized such that it successfully repre-509

sents the underlying physics to a degree that the three quantities are conserved.510

4.2.4 Plasma Depletion Layer511

The plasma depletion layer is a transient region of the subsolar magnetosheath char-512

acterized by decreased density and increased magnetic field strength. This layer exists513
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Figure 10. Magnetosheath conditions output by PRIME-SH for synthetic input conditions

with IMF purely northward (BZ = 5nT ) and purely southward (BZ = −5nT ). Average plasma

conditions from the input dataset are used. Top row shows |B|, ni, and T⊥/T∥ for BZ = 5nT ,

middle row shows the same for BZ = −5nT , and bottom row shows cuts along Y = Z = 0RE for

both magnetic field orientations for each parameter for ease of comparison.

when the reconnection rate at the magnetopause is insufficient to prevent “pile-up” of514

magnetic flux, and as such is typically observed during periods of northward IMF (al-515

though it can sometimes be observed during periods of southward IMF). This “pile-up”516

can modify the local reconnection rate, and could even enable reconnection at the sub-517

solar magnetopause for northward IMF (Anderson, 1996). It has also been shown that518

the plasma depletion layer has stronger temperature anisotropy than the rest of the mag-519

netosheath, although it is currently unclear whether this is a formation mechanism of520

the region or simply a consequence of the flux pile-up (Phan & Paschmann, 1996). De-521

spite the fact that the plasma depletion layer has been observed by in-situ spacecraft for522

many years (Cummings & Coleman, 1968), the dynamics and global geometry of the re-523

gion is difficult to determine from observations due to their spatio-temporal ambiguity524

(Wang et al., 2004).525

Both to verify PRIME-SH has been properly trained to replicate solar wind flow526

around the magnetosphere and to overcome the spatio-temporal ambiguity of in-situ ob-527

servations, PRIME-SH is used to assemble predictions on more grids of the same con-528

figuration as Section 4.2.1 for northward (B⃗ = 5nT ẑ) and southward (B⃗ = −5nT ẑ)529

IMF. Plasma conditions are the same between each run (VGSE = −400km/s, n = 5cm−3,530

and vth = 30km/s, Alfvén Mach number 8). The magnetic field magnitude, density,531

and temperature anisotropy (T⊥/T∥) are shown for each configuration in Figure 10 in532

the ecliptic and in cuts along the Sun-Earth line.533

The plasma depletion layer can be identified in Figure 10 as the region of high |B|,534

T⊥/T∥ and low n close to the subsolar point in the northward IMF case that is not ap-535

parent in the southward IMF case. In the cuts along the Sun-Earth line, the density can536

be more readily observed to begin falling off about 1RE from the magnetopause, while537

at the same time |B| and T⊥/T∥ begin to increase. This is contrasted with the south-538

ward case, in which all three parameters increase across the sheath somewhat linearly.539

This thickness is consistent with reported thicknesses from the literature which range540

from 0.3RE to 1RE for MA = 8, depending on identification criteria (Wang et al., 2004).541

This validates that PRIME-SH has been trained to reproduce magnetic flux pile-up and542

its effects in the magnetosheath, which are indirect measurements of the dayside mag-543

netic reconnection rate. Unlike numerical simulations, PRIME-SH can generate spatial544
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map of the plasma depletion layer based directly on observations rather than physical545

assumptions, which can cause deviation between predicted and observed global deple-546

tion layer configurations (Zwan & Wolf, 1976; Southwood & Kivelson, 1995).547

5 Conclusions548

A Bayesian recurrent neural network is trained to predict MMS-1 observations of549

Earth’s magnetosheath given timeseries input measured by the Wind spacecraft at L1.550

This algorithm, called PRIME-SH in reference to its progenitor algorithm PRIME, in-551

corporates the time history of the solar wind at L1 to generate probability distributions552

for magnetosheath plasma and magnetic field parameters. These probability distribu-553

tions can be used to determine the uncertainty associated with PRIME-SH’s predictions.554

PRIME-SH is shown to have good performance in a statistical sense across a test555

dataset of MMS-1 data not used during training (Average CRPS 0.221σ). The uncer-556

tainties predicted by PRIME-SH are shown to be reliable to within 3.5% with a max-557

imum difference 10% through a comparison to the test dataset. Additionally, PRIME-558

SH predicts magnetosheath conditions more accurately than several popular analytical559

models (Spreiter et al., 1966; Kobel & Flückiger, 1994; Cooling et al., 2001; Soucek &560

Escoubet, 2012) and a parameterization of the OpenGGCM MHD code (Jung et al., 2024).561

While statistical validation is important, it is also important to validate that a model562

is indeed producing physical results. It is verified that the magnetic field values produced563

by PRIME-SH across a grid of points in the magnetosheath “drape” across the magne-564

topause in 3D for several different orientations of the upstream magnetic field. Plasma565

flow velocities output by PRIME-SH across a grid of magnetosheath points divert around566

the magnetopause as expected, and the point at which the flow stagnates moves dawn-567

ward with decreasing Alfvén Mach number as predicted by MHD theory (Russell et al.,568

1981). PRIME-SH is shown to conserve particle/mass flux, momentum flux, and energy569

flux within 1σ uncertainty across the bow shock for the range of input parameters it is570

trained on. PRIME-SH is also capable of reproducing the plasma depletion layer given571

input conditions for which the depletion layer is expected to form. From this it may be572

concluded that PRIME-SH has indeed been optimized to represent the physics of solar573

wind flow from L1, through the bow shock, and around the magnetopause.574

PRIME-SH is not only more accurate in a statistical sense than current analyti-575

cal models and MHD simulation parameterizations, but it also has additional function-576

ality these other models do not. First, PRIME-SH outputs T⊥ and T∥ separately. While577

it is possible to have anisotropic temperatures in MHD simulations using a few assump-578

tions (Erkaev et al., 1999), most MHD and analytical models currently assume isotropic579

temperatures. Additionally, PRIME-SH outputs uncertainties for with its outputs. These580

uncertainties were used in this study to assign confidence intervals to fluxes calculated581

to verify that PRIME-SH conserves particles, mass, and energy. They could addition-582

ally be used to in more advanced techniques such as regression recalibration or ensem-583

ble modeling. In short, PRIME-SH is an accurate and computationally inexpensive mag-584

netosheath prediction algorithm that offers functionality no other magnetosheath pre-585

diction algorithm does, and enables new statistical and event-based studies of the mag-586

netosheath.587

Appendix A Open Research588

Magnetospheric Multiscale, Wind, and OMNI data are available through the Co-589

ordinated Data Analysis Web (CDAWeb) online portal at https://cdaweb.gsfc.nasa590

.gov/istp public/. Codes for dataset preparation, algorithm development, and anal-591

ysis presented in this paper are available at https://github.com/connor-obrien888/592

primesh.593
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Bröcker, J., & Smith, L. A. (2007, June). Increasing the Reliability of Reliability630

Diagrams. Weather and Forecasting , 22 (3), 651–661. Retrieved 2023-07-24,631

from https://journals.ametsoc.org/doi/10.1175/WAF993.1 doi: 10.1175/632

WAF993.1633

Burch, J. L., Moore, T. E., Torbert, R. B., & Giles, B. L. (2016, March). Magne-634

tospheric Multiscale Overview and Science Objectives. Space Science Reviews,635

199 (1-4), 5–21. Retrieved 2021-12-01, from http://link.springer.com/10636

.1007/s11214-015-0164-9 doi: 10.1007/s11214-015-0164-9637
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