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Abstract

Axial Seamount, an extensively instrumented submarine volcano, lies at the intersec-

tion of the Cobb-Eickelberg hot spot and the Juan de Fuca Ridge. Since late 2014,

the Ocean Observatories Initiative (OOI) has operated a seven-station cabled ocean

bottom seismometers (OBS) array that captured Axial’s last eruption in April 2015.

This network streams data in real-time, facilitating seismic monitoring and analysis

for volcanic unrest detection and eruption forecasting. In this study, we introduce

a machine learning (ML) based real-time seismic monitoring framework for Axial

Seamount. Combining both supervised and unsupervised ML and double-difference

techniques, we constructed a comprehensive, high-resolution earthquake catalog

and effectively discriminated between various seismic and acoustic events. These

signals include earthquakes generated by different physical processes, acoustic sig-

nals of lava-water interaction, and oceanic sources such as whale calls. We first built

a labeled ML-based earthquake catalog that extends from November 2014 to the end

of 2021, and then implemented real-time monitoring and seismic analysis starting

in 2022. With rapid determination of high-resolution earthquake locations and the

capability to track potential precursory signals and co-eruption indicators of magma

outflow, this system may improve eruption forecasting by providing short-term con-

straints on Axial’s next eruption. Furthermore, our work demonstrated an effective

application that integrates unsupervised learning for signal discrimination in real-time

operation, which could be generalized to other regions for volcanic unrest detection

and enhanced eruption forecasting.

5
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Introduction6

Earthquakes hold fundamental information about the structure and dynamics of active volcanoes and the processes that7

control eruptions. Submarine volcanoes in particular are good cases for studying volcano dynamics, as they erupt in short8

intervals (Rubin et al., 2012; Sinton et al., 2002) and active source seismic pro�ling allows for detailed imaging of sub-sea�oor9

structures (Arnulf et al., 2014; Park et al., 2007; Chrapkiewicz et al., 2022). However, seismic monitoring using ocean bottom10

seismometers (OBS) is technically challenging and expensive, and the continuous waveforms include signals from various11

seismic sources and ocean noise. At Axial Seamount, for example, an active submarine volcano located 1,400 meters below12

the sea surface at the intersection of the Juan de Fuca Ridge and the Cobb-Eickelberg hot spot, the 7 cabled OBSs operated by13

the OceanObservatories Initiative (OOI) (Kelley et al., 2014), record signals from earthquakes, marinemammals, and airgun14

shots from active source experiments. The earthquakes have signi�cantly contributed to the understanding of the structure15

and inner workings of the volcano, which last erupted in April 2015, about four months after the network started recording.16

A complex ring fault system is imaged (Wilcock et al., 2016; Waldhauser et al., 2020) above a shallow magma chamber17

(Arnulf et al., 2014). The OBS recordings are complemented by other geophysical, chemical, temperature, and video camera18

measurements onsite (Smith et al., 2018; Wilcock et al., 2018; Chadwick Jr et al., 2016) operated by the OOI, making Axial19

Seamount one of the best instrumented submarine volcanoes.20

In the four months before and during the eruption of Axial volcano in April 2015, the OBS array recorded �136,000 earth-21

quakes. Identi�cation and classi�cation of these events is challenging due to both the high spatial density and the high rate22

of seismicity, and the diverse nature of brittle failure leading up to an eruption. In addition, eruption speci�c non-earthquake23

signals, such as acoustic signals generated fromhot lava reaching the sea�oor that helpmap areas of lava�ow (Wilcock et al.,24

2016; Tan et al., 2016; Le Saout et al., 2020), need to be identi�ed and separated from regular earthquakes. The detection,25

classi�cation, and characterization of seismic sources, and especially precursory signals, would have to be performed rapidly,26

ideally in near-real-time, if the information gained from the analysis is to be used in forecasting future eruptions for hazard27

mitigation purposes.28

Here, we take advantage of recent advances in both supervised and unsupervisedmachine learning (ML)methods (Bergen29

et al., 2019; Beroza et al., 2021; Mousavi and Beroza, 2023) to signi�cantly improve event detection and discrimination capa-30

bilities in a monitoring framework. This work builds on current monitoring e�orts at Axial that use standard detection31

and location methods (Wilcock et al., 2016) and correlation-based double-di�erence relocation (Waldhauser et al., 2020).32

We present a suite of tools that rapidly process and analyze continuous waveform data to produce high-precision, deep-33
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magnitude event catalogs in near real-time. Speci�cally, the new system is trained to detect potential precursory signals of34

mixed-frequency earthquakes (MFEs) presumably caused by the movement of volatiles or magma. These signals were dis-35

covered using an unsupervised spectral feature extraction method (Holtzman et al., 2018) before the last Axial eruption in36

2015, where they emerged from background seismicity about 15 hours before the lava reached the sea�oor (Wang et al.,37

2024). The method also detects acoustic signals that are generated when hot lava reaches the cold sea �oor after an eruption38

(Wilcock et al., 2016; Tan et al., 2016; Le Saout et al., 2020), allowing for rapid tracking of the lava �ow in time and space.39

Data and Methods40

Data and current monitoring41

We use the continuous seismic data from the OOI OBS array available through the IRIS DMC as input to our work�ow. The42

cabled OBS array comprises two broadband stations and �ve short-period stations on top of Axial seamount (Figure 4c), all43

data sampled at 200 Hz. Currently, the data is automatically processed in near-real-time at UW (Wilcock et al., 2016) using44

standard routine analysis with a Kurtosis phase picker (Baillard et al., 2014) and the Hypoinverse location algorithm (Klein,45

2002). Each newly detected and located earthquake is then automatically relocated at LDEOwith respect to a high-resolution46

earthquake (base) catalog using waveform cross-correlation and double-di�erence methods as implemented in the DD-RT47

system (Waldhauser et al., 2020) (DD-RT, Waldhauser, 2009). The base catalog was computed from a simultaneous double-48

di�erence inversion of both Kurtosis picks and precise correlation delay times (Waldhauser et al., 2020), with initial locations49

derived from a grid search analysis (NLL, Lomax et al., 2000, 2009) of the Kurtosis picks in a 3D earthquake tomographic P-50

and S-wave model (Baillard et al., 2019).51

New processing52

Here, we replace the current routine processing step with a supervised ML method (QuakeFlow, Zhu et al., 2023) to detect53

and characterize seismic events, and an unsupervisedMLmethod (Specufex, Holtzman et al., 2018) to discriminate between54

various seismic sources. Our ML-based framework is illustrated in Figure 1. Wang et al. (2024), in a retroactive analysis,55

applied these tools to 4 months of continuous waveforms leading up to the April 2015 eruption to develop a deep-magnitude56

catalog of diverse, labeled seismic source types, including precursoryMFEs and impulsive signals generated by lava reaching57

the cold sea�oor (Wilcock et al., 2016). These labeled data provide the foundation for our initial ML-based processing step.58

Base catalog59

We developed a new base catalog (2014-2021) for the DD-RT system, essentially following Waldhauser et al. (2020) but60

using PhaseNet (Zhu and Beroza, 2019) for picking P- and S-phase arrivals in the continuous waveforms, and GaMMA (Zhu61

et al., 2022) for associating them into seismic events. SpecUFEx (Holtzman et al., 2018) is then used to discriminate between62

the various types of signals and their underlying sources (details explained in the next subsection), including separating63
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(a) Overview of the ML work�ow

(b) Unsupervised event disrimination

Figure 1: ML-based work�ow for catalog construction and event discrimination.
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earthquakes from all other seismic sources such as whale calls (Wang et al., 2024). The ML phase picks are then used to64

locate events with a grid searchmethod, NonLinLoc (Lomax et al., 2000, 2009), in a local 3-D seismic velocitymodel (Baillard65

et al., 2019). The ML catalog is relocated using cross-correlation (Scha� and Waldhauser, 2005) and the double-di�erence66

method (Waldhauser and Ellsworth, 2000) using parameters similar to the ones described in Waldhauser et al. (2020). Close67

to 1.4 billion correlation delay times are computed on pairs of �ltered (4 - 50 Hz) seismograms with�� > 0.8 and hypocentral68

separation < 2 km. The correlation data together with the delay times formed from the ML picks are inverted for relative69

location using the HypoDD algorithm to obtain a high-precision base catalog to be used in the DD-RT monitoring system70

(Waldhauser, 2009).71

Unsupervised ML for event discrimination72

We use the unsupervised ML method SpecUFEx (Holtzman et al., 2018) to discriminate between various types of seismic73

events recorded by the Axial OBSs. This spectral feature extraction method was originally developed for audio signal recog-74

nition (Cotton and Ellis, 2011) and has been adapted to characterize seismic signals in various settings, such as earthquakes75

in geothermal �elds and along crustal faults, acoustic emissions in lab experiments, and icequakes and seismic noises at76

glaciers (Holtzman et al., 2018, 2021; Sawi et al., 2022). SpecUFEx generates low dimensional spectral �ngerprints for each77

earthquake signal which are then clustered to �nd groups of similar signals (Figure 1).78

Following Holtzman et al. (2018), we converted the waveforms of each event in the base catalog into spectrograms. We79

use vertical component recordings and cut the event window from 1 second before the P-arrival to 3 seconds after it. This80

window was chosen to encompass the initial arrival, coda, and re�ections in the water column (Figure 2). We selected this81

window length to capture the main features of the events while minimizing excessive background noises that may hamper82

performance. We set the spectrogram frequency range from 4 to 50 Hz to avoid high-frequency instrumental noise and low-83

frequencymicroseism noise at the OBS stations. We followedWang et al. (2024) in prepossessing the spectrograms, however,84

here we used a catalog of all event types (earthquakes and non-earthquake signals) as opposed to a subset of pre-eruption85

earthquakes in their study. We also integrated information frommultiple stations and performed array-based analysis in this86

study, whereas their work focused on single-station clustering.87

After generating the event spectrograms, we proceeded with a two-stage feature extraction process with Non-negative88

matrix factorization (NMF) and hidden Markov model (HMM). These two stages of data compression reduce data dimen-89

sionality and eliminate features that are common to all signals. From the output of HMM,we computed event �ngerprints by90

counting state transitions. These �ngerprints are low-dimensional representations of the original event spectrograms while91

preserving the key features of the time-variant spectral patterns. We then performed Principal Component Analysis (PCA)92

and retained the top principal components that explain 80% of the total variance, followed by K-means clustering on the93

principal components. Here, we built feature dictionaries and �ngerprints on a single-station basis to eliminate the e�ect94

Volume XX � Number XX � XXXX XXXX � www.srl-online.org Seismological Research Letters 5



of station-dependent noise on clustering. Figure 2a shows some examples of event spectrograms at a broad-band station95

(AXCC1) and two short-period stations (AXAS1 and AXEC1). At these OBS stations, we observe station-dependent back-96

ground noises that trigger especially at phase arrivals. This noise is observed at all times for the �ve short-period stations,97

while absent at the two broad-band stations. In Figure 2a, we show triggered noise at around 36.5 Hz for station AXAS198

and 33.5 Hz for station AXEC1. Based on their characteristics, we think these station-dependent noises are likely due to99

resonance within the instrument and excited by any incoming waves.100

Figure 2: (a) Examples of event spectrograms at a broad band station AXCC1 and two short period stations AXAS1 and
AXEC1. Initial arrival and re�ections in the water column are marked by arrows. Contingency matrix of cluster labels at two
OBS stations AXCC1 and AXID1 for (b)single-station models and (c)retrained models.

After obtaining the single-station-based event characterization and classi�cation models, we combined the clustering101

labels across the network and employed self-training (Yarowsky, 1995) to retrain these single-station classi�cation mod-102

els. Details of the retraining process are described in the next section. The �nal retrained models for event characterization103

and spectral feature clustering are saved for use in the real-time system.104

Results105

Our objective in this study is to distinguish between di�erent event sources in the catalog so that we can perform re�ned106

seismic monitoring on di�erent sources during real-time operation. Here we chose the number of clusters for each station107

through a trial and error process. Several classic clustering evaluation metrics were tested, including Summed squared dis-108

tances (Nainggolan et al., 2019), Silhouette coe�cient (Rousseeuw, 1987), Davies-Bouldin index (Davies and Bouldin, 1979),109

Calinski-Harabasz index (Cali�ski and Harabasz, 1974). However, these metrics did not reveal a sharp elbow that could110
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clearly de�ne the optimal cluster numbers (Nainggolan et al., 2019). Therefore, we resorted to evaluating clustering perfor-111

mance through visual inspection of the results, aiming to identify theminimum cluster number that e�ectively separates the112

signals of interest in the feature space.113

Our result shows di�erent levels of clustering in the spectral feature space. On the �rst order, we identi�ed threemain clus-114

ters that share common spectral patterns across the network. The three clusters are a group of earthquakes, a group of whale115

calls, and a group of sea�oor impulsive events (Figure 3). These three main clusters de�ne the �rst-order structure of the116

feature space, e�ectively separating events into earthquakes and non-earthquake sources. Further analysis within the earth-117

quake cluster reveals higher-level sub-groupings. The higher-level clusters re�ect subtle di�erences in the spectral patterns,118

which help to separate seismicity generated by di�erent physical processes during the eruption. The temporal distributions119

of signals in di�erent classes are shown in Figure 4a and 4b.120

To improve on the single-station clustering approach used in Wang et al. (2024), we employed self-training techniques for121

model retraining (Yarowsky, 1995). We started by creating an initial training dataset that was comprised of only events with122

consistent labels across the network. With this dataset, we trained an initial model and predicted pseudo labels using the123

initial model. High-con�dence predictions from these pseudo labels were incorporated back into the training set for iterative124

retraining. This iterative process allows the model to gradually improve by learning from its own predictions. By integrating125

clustering information from other stations in the network, we signi�cantly improved the coherence and accuracy of the126

single-station cluster labels. Figure 2b and 2c illustrates this enhancement. The contingency matrix between station AXCC1127

and station AXID1 shows a notable improvement in label coherency after the retraining process.128

(a) Spectrograms (b) Fingerprints

Figure 3: Examples of spectrogram and corresponding �ngerprints for di�erent clusters. (a) spectrogram examples. (b) �n-
gerprint examples.

Having consistent labels across the network ensures that source e�ect is dominant over path e�ect in event clustering. We129

show that we e�ectively discriminate signals from di�erent sources, as shown in Figure 3.130
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The initial ML catalog includes 200,891 earthquakes, 53,018 whale calls (predominantly from �n whales), 12,406 sea�oor131

impulsive events generated by lava-water interaction during the eruption in 2015, and 7,508 unlabeled events. We see consis-132

tent spectral patterns and �ngerprints within each of the three primary event classes. It is worth noting that the earthquake133

class shows more variability in spectral patterns compared to the two non-earthquake classes, suggesting they are gener-134

ated by complex physical processes. Further exploration of the earthquake class revealed two sub-groups that have di�erent135

spatiotemporal behavior and correlate with di�erent physical processes: tidally modeled earthquakes predominantly on the136

caldera ring faults and precursory mixed frequency earthquakes (MFEs) associated with pre-eruption magmatic processes137

(Wang et al., 2024).138

Figure 4: Histograms of di�erent types of sources in seismic monitoring and their locations. (a) Histogram shows earthquake
total rate. The bin size is 5 days. Bars of earthquake rate is colored by MFE count percentage in each bin. Main �gure shows
activity before and during the 2015 eruption. Dashed gray line marks the eruption onset. Inset �gure shows a zoom in view
of post eruption period from May 2015 to the end of 2021. (b) Blue and brown bars show whale call and impulsive sea�oor
events rate. (c) Map of earthquake density in log scale. Eruptive �ssure and lava �ow locations of 2015 and 2011 eruption is
plotted with colored contours, showing approximate locations of the impulsive sea�oor events.

Although we successfully classi�edmost events into threemain classes, a few remain unlabeled after retraining, examples139

shown in (Figure 3). These events either had inconsistent labels across the network or were weak signals with clear picks at140

less than two stations. Upon examining these unlabeled events, we found that they comprised a few event classes that are less141

frequently seen in the dataset, such as calls from di�erent species of whales (as shown in Figure 5b and 5c) and ship noise.142

Fin whales are the most common species that pass by the OBS array every year during winter seasons and thus contribute143

to one of the three main clusters in event clustering. Their calls are sinusoidal signals in the 15-20 Hz range, as shown in144

Figure 5a. Some can have a higher frequency note around 30 Hz (Weirathmueller et al., 2017). In contrast, sei whales and145

blue whales are less common, less than a tenth of �n whale calls. Thus, it is challenging to classify them with unsupervised146
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methods. However, they have distinct spectral content from the other event classes (examples in Figure 5b and 5c). Based147

on their spectral features, We designed a simple frequency-dependant classi�er that computes energy ratio in the 30-50 Hz148

frequency band relative to the 4-50 Hz band to distinguish them during real-time operation.149

(a) Fin whale (b) Sei whale

(c) Blue whale (d) Earthquake

(e) MFE (f) Impulsive sea�oor event

Figure 5: Examples of spectrogram and corresponding waveform for di�erent species of whale calls ((a)Fin whale, (b)Sei
whale, and (c)Blue whale), volcanic earthquakes, precursory MFEs, and co-eruption impulsive sea�oor events. The spectro-
grams are plotted with 100 samples (0.5 s) window length and 90 samples overlap.

The DD-RT base catalog, obtained after relocating the ML catalog of 200,891 earthquakes, includes 144,329 precisely150

located events constrained by 400 million correlation delay times and 1,702,714 ML P- and S-picks. Mean RMS of the delay151

times are 25ms for picks and 4ms for the correlation data. Relative location errors from a bootstrap analysis (Waldhauser and152
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Ellsworth, 2000) are 39m laterally and 53m vertically for events within the network. Di�erences betweenML pick and corre-153

lation times have standard deviations of 17ms, 40ms, and 28ms for the P wave on vertical component and the S wave on two154

horizontal components (for �� > 0.95 pairs), which can be considered the upper bound average pick uncertainty (Figure 7).155

The relocated catalog of seismicity images the Axial ring fault structures and the intersection/interaction between the Juan156

de Fuca Ridge and Axial volcano on its eastern side. The overall structures are similar to previous catalogs, although this157

new catalog has higher precision picks and more correlation measurements that contribute to higher resolution locations.158

Discussions159

The quality of the base catalog is crucial in double-di�erence monitoring as it determines the accuracy of future events160

(Waldhauser, 2009). We have an opportunity to compare the newest catalog presented here to previous catalogs ( Wilcock161

et al. (2016) and Waldhauser et al. (2020)) with respect to di�erences and robustness of arrival time measurements and162

hypocenter locations. Both theWilcock et al. (2016) and theWaldhauser et al. (2020) catalog used the same set of phase picks163

generated by a Kurtosis phase picker, with events in theWilcock et al. (2016) catalog located using Hypoinverse and those in164

the Waldhauser et al. (2020) catalog relocated using correlation-based double-di�erences. Here we make the comparison by165

matching the individual P and S wave picks in our newML-DD catalog to the Kurtosis picks in the Wilcock et al. (2016) and166

Waldhauser et al. (2020) catalog. We match two picks if they are within 0.05 s and of the same phase type. Then we select a167

set of events with all picks matched to the same event ID in the other catalog. This subset of matched IDs includes a total168

of 104,522 events. Figure 6 plots the di�erences between the matched P and S wave picks by the ML picker and the Kurtosis169

picker. The comparison shows that the di�erences between the matched picks are generally less than 0.02 s, while having170

systematic biases on the pick times for both P and Swaves. TheKurtosis picker consistently picks earlier on Swaves compared171

to the PhaseNet picks, while it tends to pick later on P waves for 60% of the picks but with a distribution that is skewed to the172

earlier side. The delay in the P picks for the Kurtosis picker may due to its windowing nature and the di�erences in S wave173

picks might be related to the complications caused by P coda and S to P/P to S conversions before S arrival.174

We estimate the pick uncertainty by comparing the Kurtosis and ML phase pick delay times between an event pair with175

the corresponding cross-correlation delay time measurements. The delay time di�erences for the P picks with respect to the176

correlation measurements on the vertical component and the S picks compared to those on the two horizontal components177

are shown in Figure 7. We see that the ML catalog has more picks and more correlation measurements (1-2 orders of mag-178

nitude more compared with the Kurtosis catalog). The standard deviations are comparable for the �� > 0.8 group, which179

is the threshold we use to select correlation measurements for double-di�erence relocation. However, the ML picks have180

much lower standard deviations for the error distribution for the �� > 0.95 group, 17 ms for P waves, and 40 ms/28 ms for S181

waves on E / N components, compared with 35 ms (P) and 51 ms/42 ms (S on E/N components) for the Kurtosis picks. This182
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Figure 6: Histograms of the di�erences between matched phase picks. Pick time di�erence is plotted as Kurtosis pick time -
PhaseNet pick time.

suggests the ML catalog has higher pick accuracy for the best constrained events, and has better performance when picking183

low signal-to-noise ratio data (more picks with similar uncertainty to the Kurtosis catalog).184

We also compared the �nal earthquake location results of the three catalogs. To make a straightforward comparison of185

location quality, we plot the locations of the same subset of events with matched IDs. Figure 8a shows the comparison of186

the �nal double-di�erence earthquake locations of the ML catalog (this study) and the Waldhauser et al. (2020) catalog. We187

see that the high resolution earthquake locations in this study delineates sharp-focused structures, including the varying188

geometry on the western wall of the caldera ring faults and the complex structures on the eastern wall at the intersection189

with the ridge. The Waldhauser et al. (2020) locations have similar patterns overall however more di�used. To understand190

which processing step contributed to this improvement, we also made comparisons of the initial locations before the double191

di�erence relocation. Figure 8b and 8c show the di�erences between the initial NonLinLoc (NLL) locations in the ML cat-192

alog (this study) and the initial NLL locations in the Waldhauser et al. (2020) catalog (Figure 8b), and Hypoinverse (HINV)193

locations in Wilcock et al. (2016) catalog (Figure 8c). The di�erences between Figure 8b and 8c shows the contribution of194

using a 3-D velocity model. We can see that in Figure 8b the initial locations of the two NLL catalogs match well for the195

overall patterns, whereas in Figure 8c the NLL locations and the HINV locations show signi�cant di�erences. This suggests196

that the di�erences in initial locations, i.e. the use of a 3-D velocity model with NLL as opposed to a 1-D velocity model by197

HINV, contributed considerably to the improvement of the �nal earthquake location results. Figure 8b shows the location198

di�erences caused by the absolute picks, while Figure 8a shows the di�erences after double-di�erence relocation. In Figure199

8b the overall pattern of two catalogs agrees and the di�erences are sharpened in Figure 8a. This suggests that improvements200

in pick accuracy and especially cross-correlation measurements helped in re�ning the complex structures at Axial volcano.201

Since the beginning of 2022, we have been operating the ML-based seismic monitoring work�ow in real time. Seismic202

activity following the last eruption has remained at a relatively low rate (Figure 4a). The overall seismicity pattern is gener-203

ally consistent with the active faults and structures activated during the 2015 eruption, with recent seismicity bursts more204
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Figure 7: Histograms of the phase picks error distribution as compared to cross-correlation delay time measurements. Top
panel are the Kurtosis P and S wave picks and bottom panel are the PhaseNet P and S wave picks. Light gray, gray, and dark
gray bars are the distributions of di�erent cross-correlation coe�cient groups: �� > 0, 8, �� > 0.9, and �� > 0.95. The standard
deviations of di�erent cross-correlation coe�cient groups are labeled on each subplot.

concentrated in the southern part of the caldera near the hydrothermal �eld International District (Kelley et al., 2014). The205

automatic near-real-time analysis of the continuous waveform data has identi�ed 31,710 earthquakes since the end of the206

base catalog, 5,773 whale calls (65% of them from �n whales), 1 misidenti�ed impulsive events, and 10,975 unlabeled events.207

We set a relatively tight threshold in real time operation to minimize the number of misclassi�ed events. Visual inspection208

of the unlabeled events shows that they are either weak events recorded by only a few stations or have inconsistent labels209

across the network.210

Since the 2015 eruption, Axial Seamount has been continuously in�ating and has recovered 90-95% of its previous eruption211

threshold Chadwick et al. (2023). However, its in�ation rate has gradually decreased over the past few years and levelled212

out in the last year, deviating from the steady in�ation pattern observed in previous cycles (Chadwick Jr et al., 2016, 2022)213

(the in�ation rate seems to start picking up again in early 2024). This irregular behavior makes it challenging for eruption214

forecasting solely from the deformation data. In this study, we demonstrate anMLwork�ow to track di�erent types of seismic215
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(a) ML-DD catalog with the Waldhauser et al.
(2020) catalog

(b)ML-NLL initial locationswith theKurtosis-
NLL initical locations in the Waldhauser et al.
(2020) catalog

(c)ML-NLL initial locations with the Kurtosis-
HINV initical locations in the Wilcock et al.
(2016) catalog

Figure 8: Comparison of earthquake locations in this study and catalogs inWilcock et al. (2016) andWaldhauser et al. (2020).
The three plots are earthquake density di�erences between the catalogs in log-scale counts. Red and blue color shows where
the ML catalog has more events and less events compared with the other catalog. The bin size is 25 m ◊ 25 m in (a) and 50
m ◊ 50 m in (b) and (c).

events, including short term precursory events, in real-time. Our current real-time system is set to operate on a daily basis216

during the low-activity period. The real time ML-DD catalog can be accessed at https://axialdd.ldeo.columbia.217

edu/index.html.proto. In routine ML-based processing, continuous seismic data are fed into the work�ow in 15 s218

overlapping windows, and the window size will decrease to 6 s during high seismicity rate periods. This allows us to achieve219

near real-time operation, such as every 5 minutes, when we approach the next eruption. It should be noted that in real-time220

operation, precursory events and eruption signals will be classi�ed from the initial catalog before running relocation step,221

further saving computational time for the purpose of seismic monitoring. This system, with its high-resolution earthquake222

catalog and real-time analysis capability, complements the current deformation-based long-term forecasting methods by223

providing valuable short-term constraints. It may enhance eruption forecasting at Axial Seamount and potentially other224

volcanoes in submarine or terrestrial environments.225

Furthermore, we are expecting the deployment of a new temporary OBS array which may improve our ability to constrain226

event locations outside the current array’s coverage. Future plans include extending our ML work�ow using the new OBS227

and terrestrial array stations and migrating the system to the cloud for more robust and accessible operation.228

Conclusions229

In this study, we presented an ML-based processing work�ow for Axial Seamount that e�ectively discriminats events from230

various types of source processes and constructed a high-resolution earthquake catalog. We addressed challenges unique231

to the Axial OBS dataset, such as station-dependant noise signatures and separation of non-earthquake signals with diverse232

spectral patterns.We implemented this work�ow for real-time seismicmonitoring and event classi�cation, showing its capa-233
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bility to track pre-eruption precursors and co-eruption volcanic signals as they evolve. This may help improve the short-term234

eruption forecasting for Axial Seamount’s next eruptionwith the potential to generalize to seismic activity at other submarine235

volcanoes.236

Our real-time seismic monitoring framework e�ectively integrates automated ML- and double-di�erence analysis for237

high-precision, deep-magnitude catalog production. This framework not only handles routine seismic processing and earth-238

quake location that are available in existing monitoring systems, but is also equipped with newmodules that classify various239

event types in real time without human assistance, using our pre-trained semi-supervised models. These unique modules240

are tailored for complex submarine volcanic environments such as Axial Seamount with characteristic sources that may be241

indicative of eruption related processes. Beyond routine seismic monitoring, we are now able to discriminate and track dif-242

ferent types of seismic events as they occur (Figure 4), including precursory MFEs (Figure 5e) that potentially indicate the243

preparation of an eruption (Wang et al., 2024) and sea�oor impulsive events (Figure 5f) that can be used to track magma244

out�ows during an eruption (Caplan-Auerbach et al., 2017).245
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The seismic data used in this study are downloaded from the Incorporated Research Institutions for Seismology (IRIS) Data Management247
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