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Abstract

Natural porous media is generally heterogeneous and anisotropic. The structure of porous media plays a vital role and is often

the source of the heterogeneity and anisotropy. In physical processes such as fluid flow in porous media, a small number of

major features, here referred to as wide channels, are responsible for the majority of the flow. The thickness and orientation of

these channels often determine the permeability characteristics. Typically, the identification of such major features is conducted

through time-consuming and expensive simulations. Here we propose a prompt approach based on geometric properties derived

from three-dimensional (3D) images. The size or radius of the major features is obtained via distance maps, and their orientations

are determined by Principal Component Analysis. Subsequently, we visualize these features with color and color brightness

according to their orientation and size, together with their location and distribution in 3D space. The simultaneous visualization

of anisotropy (orientation) and heterogeneity (size) in one plot provides a straightforward way to enhance our understanding

of pore structure characteristics. Besides, we propose a refined stereographic projection method to statistically illustrate both

heterogeneity and anisotropy. Based on these insights, we further present a new way to compress the model size in numerical

simulation, therefore significantly reducing the computational cost, while retaining its essential characteristics.
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Abstract 30 

Natural porous media is generally heterogeneous and anisotropic. The structure 31 

of porous media plays a vital role and is often the source of the heterogeneity and 32 

anisotropy. In physical processes such as fluid flow in porous media, a small number 33 

of major features, here referred to as wide channels, are responsible for the majority 34 

of the flow. The thickness and orientation of these channels often determine the 35 

permeability characteristics. Typically, the identification of such major features is 36 

conducted through time-consuming and expensive simulations. Here we propose a 37 

prompt approach based on geometric properties derived from three-dimensional (3D) 38 

images. The size or radius of the major features is obtained via distance maps, and 39 

their orientations are determined by Principal Component Analysis. Subsequently, we 40 

visualize these features with color and color brightness according to their orientation 41 

and size, together with their location and distribution in 3D space. The simultaneous 42 

visualization of anisotropy (orientation) and heterogeneity (size) in one plot provides 43 

a straightforward way to enhance our understanding of pore structure characteristics. 44 

Besides, we propose a refined stereographic projection method to statistically 45 

illustrate both heterogeneity and anisotropy. Based on these insights, we further 46 

present a new way to compress the model size in numerical simulation, therefore 47 

significantly reducing the computational cost, while retaining its essential 48 

characteristics.   49 
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Plain Language Summary 50 

Natural porous media, like soil or rock, have uneven structures which make it 51 

behave distinctively depending on their specific location or orientation. While this 52 

understanding has been widely acknowledged, conventional approaches rely on 53 

time-consuming and expensive methods such as field investigations, lab experiments, 54 

or numerical simulations to guess. Although imaging techniques such as X-ray 55 

computer tomography (CT) could provide the three-dimensional structure, there has 56 

yet to be no visualization technique that directly depicts the heterogeneity and 57 

anisotropy. Here, we propose a novel method that leverages feature size 58 

(heterogeneity) and orientation (anisotropy)to enable the simultaneous visualization of 59 

both size and orientation of targeted objects. A refined stereographic projection is 60 

introduced to statistically demonstrate the heterogeneity and anisotropy within one 61 

plot. To illustrate the effectiveness of our method, we utilize examples of coral pore 62 

structure, rock fractures, and ice crystals. The derived geometric features demonstrate 63 

a strong correlation with numerical simulation results of fluid flow, thereby proving 64 

its credibility and value in enhancing our comprehension of the heterogeneity and 65 

anisotropy of porous media. Based on these findings, we further propose a new 66 

approach to simplify geometric models in numerical simulations, which significatly 67 

reduces the computational cost while preserving the overall behavior.  68 

  69 
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1. Introduction 70 

Heterogeneity and anisotropy are inherent features in natural porous media. 71 

These two features are the source of the unpredictable nature of sediments or 72 

geomaterials, as the structure along with the composition determines physical 73 

behaviors. Therefore, understanding the heterogeneity and anisotropy of porous media 74 

is critical to explain observed behaviors and predict outcomes in engineering 75 

practices. 76 

The approach to consider the porous media with representative elementary 77 

volume (REV) is common. REV is based on the self-similarity of microstructures and 78 

can produce representative results when pore structure properties are stationary with 79 

increasing scale (Puyguiraud et al., 2020). Such an approach allows anisotropy but 80 

assumes that the media itself is homogeneous at a certain scale (Hunt & Sahimi, 2017; 81 

Bang & Lukkassen, 1999). It is ineffective for some porous media, like bio-generated 82 

structures. For instance, the coral pore structure shows some self-similarity and fractal 83 

behavior, the branches are scaled replicas of the whole structure (Martin-Garin et al., 84 

2007). Since the branches are orientated differently, there is no scale that yields a 85 

representative volume for fluid flow. In other words, the heterogeneity and anisotropy 86 

are throughout the entire pore structure, and the concept of REV does not apply. 87 

Therefore, the attempt to simplify the actual pore structure must be based on the 88 

actual geometry.  89 

Heterogeneity is critical in determining most physical properties of the porous 90 

media. Taking fluid flow in porous media as an example, seepages in porous media 91 

are often controlled by preferential flow channels (Hyman, 2020; Shigorina et al., 92 

2021). Predicting these channels in porous media is vital in many geophysical 93 

scientific and engineering applications, such as oil and gas recovery (Chong et al., 94 

2017; Chen et al., 2021), CO2 geological storage (Xu et al., 2020; Shahriar & Khanal, 95 

2023; Yang et al., 2018), and the estimation of subsurface contamination migration 96 
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(Sebben & Werner, 2016; Johnson et al., 2003). However, due to its heterogeneous 97 

porosity network, it is not practical to directly identify preferential flow channels.  98 

It is difficult to properly consider heterogeneity without a real three-dimensional 99 

(3D) structure. The application of computer tomography (CT) technology (Flannery et 100 

al., 1987) and magnetic resonance imaging (MRI) (Budinger & Lauterbur., 1984) 101 

makes it possible to obtain the actual 3D pore structure, and its combination with 102 

digital image technology (Wildenschild & Sheppard, 2012; Lyu et al., 2021) enables 103 

the numerical representation of the porous media heterogeneity. However, two 104 

significant limitations remain for numerical simulations: high cost and a trade-off 105 

between the image resolution and sample volume (Silin & Patzek, 2006). The rebuilt 106 

model needs to be substantial enough to yield a meaningful result and have sufficient 107 

details to accurately depict fine pores (Jiang et al., 2013). 108 

Image processing has contributed to numerical model simplification. For 109 

example, the connectivity of the pore structure can be identified by skeletonization 110 

(Ferreira & Nick, 2023, Lee et al., 1994), and thickness can be estimated by medial 111 

axis transform algorithms (Van der Walt et al., 2014) and distance transform 112 

algorithms (Grevera, 2007). On this basis, pore-network model, which was initially 113 

developed as regular lattices (Fatt, 1956), can be established to represent the 114 

connectivity and spatial arrangement of a 3D structure (Mahabadi et al., 2018; Jing et 115 

al., 2020). A pore-network model typically consists of pore nodes representing locally 116 

widest parts of pore space and bonds (sometimes called “pore throats”) connecting 117 

pores and the remainder (Jiang et al., 2017), and the flow calculation is much less 118 

expensive (Bultreys et al., 2016). However, the topology and geometry of the pore 119 

space are missing in modeling (Zhang et al., 2022), which may lead to significantly 120 

different flow properties (Nemati et al., 2020). In addition, the fractal theory is 121 

employed to characterize the pore irregularity (Zhang et al., 2020, Qin et al., 2023), 122 

yet the accuracy of this method remains uncertain since the spatial variation of pore 123 

size and pore network connectivity are neglected (Song et al., 2020). 124 
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The abovementioned efforts focus on heterogeneity, and the physical property in 125 

an isotropic but heterogeneous media within a small area can be represented by a 126 

scaler value. Anisotropy, on the other hand, requires the physical property to be 127 

represented by a tensor rather than a scaler (Galindo-Torres et al., 2012; Ren & 128 

Santamarina, 2018), which makes the problem more complicated. In geology, 129 

researchers focus on analyzing the distribution of fracture orientations, the fraction of 130 

void space, fracture local apertures, and preferred crystallographic orientation of 131 

minerals. These factors lead to the anisotropy. The rose diagram (Degu & Hossain, 132 

2012; Nemec et al., 1988) in geology are a common tool to describe the orientation 133 

distribution, where the petal runs along the same direction as the object, and the 134 

length of the petal depends on the frequency of the object in that direction. This 135 

method typically plots the dip azimuth and dip angle separately, although these two 136 

angles are actually coupled. Stereographic projection could be realized by projecting 137 

the geometric elements of the 3D space onto the plane (Howarth, 1996), both the 138 

longitude and latitude directions are plotted together. However, these approaches are 139 

limited to a 2D view, in which the dependencies between the individual characteristics 140 

cannot be investigated and the potential spatial regularities cannot be derived. Both 141 

rose diagrams and stereographic projections are statistical methods, showing the 142 

probability, but not the actual distribution in the space. 143 

Overall, heterogeneity and anisotropy remain conceptual and can therefore be 144 

obscure, without direct and vivid visualization. Frequently, they are considered 145 

separately. Current literatures simplify the morphology of actual 3D structures when 146 

considering heterogeneity and anisotropy due to limitations in computational 147 

efficiency. Visualization, as a tool, has been demonstrated powerful for other purposes; 148 

for example, visualizing pore size distribution using a 3D size map (Hilderand & 149 

Ruegsegger, 1997) is a common practice (Ihli et al., 2017), and Grau et al. (2010) 150 

described a method to visually identify the shortest path between two pores by 151 

correlating the distance between a specific pore and its neighboring pores with color. 152 
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Therefore, it is promising and necessary to develop new visualization ways to 153 

facilitate our understanding of the heterogeneity and anisotropy of porous media. 154 

Here, we propose a method to simultaneously depict heterogeneity and 155 

anisotropy in 3D structures while retaining their original morphology. We first show 156 

how size-dependent heterogeneity and orientation-dependent anisotropy can be 157 

derived from CT images. Then coral samples, rock fracture networks, and ice crystals 158 

are selected as representative examples to present the visualization results. Based on 159 

these results, we introduce a new approach to simplify geometric models in numerical 160 

simulations.  161 

2. Methods for Heterogeneity Characterization 162 

A coral structure and its CT images are used to demonstrate our method (Figure 163 

1). The axial canal, the lumen in the calyx, and the gastrovascular canal system 164 

linking the axial canal and the lumen in the calyx constitute the main components of 165 

the coral pore structure. Previous research (Li et al., 2021) indicates that the main 166 

branchlets of the coral canal system are significant for understanding coral growth 167 

patterns. The following workflow shows how the heterogeneous main branchlets are 168 

extracted. This workflow can be summarized as follows: image segmentation, pore 169 

structure isolation, 3D size measurement, and characterization and visualization of 170 

size-dependent heterogeneity.  171 
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 172 

Figure 1. Details of a coral sample. (a) Holistic coral view. (b) Top pore 173 

corresponding to axis canal. (c) A defect in the sample. (d) Side pores corresponding 174 

to the lumen in the calyx and gastrovascular canal system. 175 

2.1. Image Segmentation 176 

An example image is shown in Figure 2a with a resolution of 12.8×12.8×12.8 177 

μm per voxel. In this image, the void space and coral skeleton exhibit different voxel 178 

intensities, which quantifies the attenuations of X-rays as they pass through the 179 

corresponding points with different densities and atomic numbers. Image 180 

segmentation was carried out with ilastik (Berg et al., 2019). This machine 181 

learning-based tool offers significant advantages over traditional threshold 182 

segmentation and watershed segmentation methods. It learns from user-defined labels 183 

and then assigns image voxels to different groups in a batch-processing mode. The 184 

resulting image in Figure 2b contains two pixel values, 1 and 2, corresponding to 185 

‘coral skeleton’ (black) and ‘remainder’ (white, including air and coral pores). 186 
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 187 

Figure 2. Isolation of coral pore structure. (a) Raw CT image of the coral sample. (b) 188 

Image segmentation. There is a notable defect circled in blue within the coral 189 

structure. (c) Inner pore isolation by ‘fill holes’ function. (d) Inner pore isolation by 190 

‘3D dilate and erode’ and ‘fill holes’ functions. The black phase represents the coral 191 

skeleton and is depicted as yellow in 3D structure, while the purple phase represents 192 

the inner pores. (e) Volume expansion by ‘dilation’. (f) Volume shrinkage after 193 

‘erosion’. (g) Coral skeleton and the isolated coral inner pore structure.  194 

2.2. Pore Structure Isolation 195 

As seen in Figure 2b, the segmentation process separated the coral skeleton and 196 

the air-filled space, which can be further distinguished into inner pores and the space 197 

surrounding the coral skeleton. The coral pores are connected to the outside space and 198 

filled with the same substrate, air. It is therefore difficult to isolate the pore structure, 199 

and the challenge is to mathematically define the boundary between the pores at the 200 

coral edge and the outside space. Here, we propose two methods based on binary 201 

images of the coral skeleton.  202 

The first method is to use the ‘fill holes’ function in ImageJ (Schindelin et al., 203 

2012). In most cases, the inner pores are enclosed by the coral skeleton in 2D slices, 204 

allowing them to be filled with this function. The only issue occurs at the boundary 205 

between pores and the outside space, where a large space cannot be filled as they may 206 

appear to be open in 2D slices. One can apply the ‘fill holes’ function in the resliced 207 



manuscript submitted to Water Resources Research 

10 

 

results in all x, y, and z directions. Performing boolean operations by subtracting the 208 

skeleton from the results after filling holes yields the coral pore structure. The 209 

visualization of the outcome is shown in Figure 2c. 210 

In the second method, we apply the 3D ‘dilate’ function N times to close the 211 

pore openings (Figure 2e), and then apply the 3D ‘erode’ function the same N times to 212 

retreat from the over-occupied voxels while retaining the closed pore openings 213 

(Figure 2f). The value of N depends on the size of the pore openings: a small N value 214 

can not close large pores, whereas a large N value will render a more spherical coral 215 

outline, resulting in the loss of distinctive pore features. One can choose a good N 216 

value (N=5, in this paper) if the coral pore openings are relatively homogeneous in 217 

size. In the case of Figure 2a, which features a defect in the coral that requires a large 218 

N value that hurts the coral outline, we use a small N value to close small pore 219 

openings and manually close the large opening at the defect. Large pores or certain 220 

portion of the large pores could be left empty after N times of erosion-expansion 221 

cycles (Figure 2f). The unfilled portions are then filled with the 3D ‘fill holes’ 222 

function to obtain a summation of the coral skeleton and inner pores (Figure 2g). Then 223 

the subtraction of the coral skeleton from the summation yields the coral pore 224 

structure. Eventually, the three phases in the CT image: coral skeleton, pore structure, 225 

and air (outside space) are successfully distinguished in Figure 2g. The visualization 226 

of the result is shown in Figure 2d.  227 

In general, the pore structure obtained by the first method is conservative, and 228 

some of the pore space is left as outer space. The second method aligns more closely 229 

with human judgment, although it typically introduces some additional voxels at the 230 

coral surface and sometimes requires manual intervention. 231 

2.3. Feature size determination 232 

    The heterogeneity of porous media is primarily determined by morphology, 233 

which can be characterized by the local size of the 3D pore structure (Hilderand & 234 

Ruegsegger, 1997). Part of the three-phase image (Figure 3a) is used as an example to 235 
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illustrate the determination process of feature size, which includes 3D Euclidean 236 

distance (Merchant et al., 2023) measurement (Figure 3b) and 3D size determination 237 

(Figure 3c). Matrix A1(a) in Figure 3a stores the initial voxel values of the three-phase 238 

images (Figure 2g). The algorithm of 3D distance and size measurement is accelerated 239 

in parallel (Chandra et al., 2001), and further details are given in Text S1-S5 in 240 

Supporting Information. Eventually, each voxel within a specific pore is assigned a 241 

value according to its corresponding 3D distance and size. Specifically, the voxel 242 

values in Figure 3b are assigned as the distance from the voxel to the closest pore wall, 243 

while the voxel values in Figure 3c are assigned as the radius of the largest inscribed 244 

circle that contains the voxel. These values are stored in the computed matrices A2(a) 245 

and A3(a), respectively. 246 

 247 

Figure 3. Coral pore size determination and visualization. (a) Isolated pore structure. 248 

(b, c) Grayscale 3D distance and size map. (d, e) Extraction of main pore networks 249 

after setting thresholds on the 3D distance and size maps, respectively. The same color 250 

bar is applied.  251 

2.4. Heterogeneity Characterization and Visualization 252 

The heterogeneity characterization should be combined with geophysics. For 253 

example, in fluid flow through a cylindrical tube, the average pore fluid velocity is 254 
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proportional to the square of the pore radius (R, similar to the value determined in the 255 

3D size map) according to the Hagen-Poiseuille equation, and the overall flux is 256 

proportional to the fourth power of R. If the goal is to analyze the stiffness of the coral 257 

skeleton, then section modulus is proportional to the cube of the local skeleton 258 

diameter. In all these cases, the diameter or the feature size is the key.  259 

For extracting main flow channels, we can set a threshold value to display only 260 

larger pores. If this operation is conducted on the 3D distance map, the pore surface 261 

voxels are all with the same value which indicates the distance to the nearest coral 262 

skeleton. Therefore, the peripheries of all pore structures are lost due to their smaller 263 

values (rendered in yellow in Figure 3d). This immediately reveals the topology of a 264 

structure and areas with poor connectivity.  265 

If the operation is conducted on the 3D size map, in which the peripherical 266 

voxels are also assigned with the pore size, the complete pore structure meeting the 267 

threshold value is retained. The visualization allows one to distinguish pore size by 268 

color brightness (Figure 3e).  269 

3D visualization is produced via 3Dslicer, a free and open-source software 270 

platform for the visualization of medical, biological, and other 3D images (Fedorov et 271 

al., 2012). The ‘Volume Rendering’ module allows users to specify pore surface color 272 

with voxel value (which stores pore size), and therefore the 3D size of major pores, 273 

their 3D location or distribution, and connectivity are all visualized simultaneously. If 274 

the purpose is to visualize the average velocity of the fluid flow, one can multiply the 275 

matrix A3 by itself to obtain the square of the 3D size map in the visualization.  276 

3. Methods for Anisotropy Characterization 277 

Physical properties such as permeability and electrical resistivity have been 278 

proven to show anisotropy due to the anisotropy of the pore structure. Here, we take 279 

CT images of ice crystals as a demo to simultaneously depict the orientation and 280 

volume (or size) of individual ice crystals using color and color brightness.  281 
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3.1. Feature Identification of Individual Ice Crystals 282 

The raw data in Figure 4a consists of CT images of a freezing salty sand 283 

specimen saturated with 5% KI solution. The ice nuclei in the pores are often platy 284 

and therefore have preferential growth orientations. The procedure for identifying 285 

crystal features is shown in Figure 4. 286 

The identification of ice crystals anisotropy is carried out with ilastik. Crystals 287 

are isolated from segmented images to facilitate feature identification (Figure 4a). 288 

Here, orientations and volumes of ice crystals are selected to demonstrate their 289 

anisotropy. Specifically, crystal volumes are determined by corresponding voxel 290 

numbers, and Principal Component Analysis (Anderson, 1963) is employed for 291 

orientation characterization (Figure 4b). Three principal components corresponding to 292 

the long, medium, and short axes are obtained. The selection of feature principal 293 

components depends on the object shape and driven research questions. Given that the 294 

crystals are platy and thin along their short axes, we choose the third principal 295 

component, PC3, which is perpendicular to the crystal’s major plane, to visualize 296 

orientations. The identified ice crystals and obtained features of ice crystals serve as 297 

the input data for the subsequent color assignment. More details about the operation 298 

can be found at https://www.ilastik.org/documentation.  299 

https://www.ilastik.org/documentation
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 300 

Figure 4. Ice crystal orientation identification and visualization. (a) Images 301 

segmentation. Isolated ice crystals segmented from a raw image. (b) Crystal 302 

orientation extracted by Principal Component Analysis (PCA). (c) Color assignments 303 

for crystal voxels based on the third principal component's |x|, |y|, and |z| coordinates. 304 

3.2. From Anisotropy to Color Assignment 305 

The computed anisotropic features are now in the form of data. Here we propose 306 

a method to assign colors to the crystals according to their corresponding orientations. 307 

Three coordinates of the principal component PC3 are mapped to three components in 308 

the RGB color system, which constructs various colors based on a combination of red, 309 

green, and blue. A normalization step is required to scale up the range of the three 310 

coordinates of PC3 from [0, 1] to [0, 255] in the RGB system (Figure 4c). Note there 311 

could be negative values for the coordinates in a principal component, and 8 cases 312 

when considering the signs of the three coordinates can be reduced to 4 cases if we 313 

flip all the signs simultaneously to avoid negative z-axis coordinates as the orientation 314 

remains during this operation. Therefore, we can demonstrate the orientation of the 315 

crystals in a 3D view with four plots, in which the colors denote the orientations. 316 

Considering that principal components are unit vectors with only two 317 
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independent variables, there is an additional variable left to present another feature of 318 

the crystals. Here we use the crystal size as an example. The crystal size is used to 319 

decide the modulus of the unit vector. Specifically, the three coordinates of unit 320 

vectors are linearly adjusted according to the volume ratio between the corresponding 321 

crystal and the largest crystal. So that the brightness of a certain color (or the 322 

combination of RGB) represents the crystal size, that is, larger crystals are brighter 323 

and smaller crystals are dimmer. In this way, both of the two features, orientations, 324 

and volume, are represented in the same 3D view. The volume used here could be 325 

replaced by elastic modulus, density, wave velocity, or anything else to demonstrate 326 

heterogeneity. 327 

    The color assignment is carried out with Matlab, and its pseudocode is given in 328 

Text S6 in Supporting Information. One example of this procedure is shown in Figure 329 

4c. The voxels of ice crystals are assigned with |x|, |y|, or |z| values of related vectors 330 

separately. At last, three files are computed and then imported into ImageJ to integrate 331 

them into one RGB file, where x, y, and z are replaced by one RGB value of the 332 

relevant crystal. The combined characteristics of orientations and volume of ice 333 

crystals are visually highlighted and classified in 3D view. 334 

4. Results and Applications 335 

This section uses three examples to show the visualization results and discusses 336 

how these visualizations enhance our understanding of the heterogeneity and 337 

anisotropy of porous media. These results are further used to generate a new approach 338 

to simplify geometric models in numerical simulations.  339 

4.1. Coral Pore Structures 340 

Understanding the flow paths within coral pore structures helps researchers 341 

comprehend carbon and nutrient cycling, as coral reefs are essential components in 342 

the biogeochemical cycle. The visualization of isolated coral pore structures is shown 343 

in Figure 5a. The intricate voids of coral gastrovascular canal system make it difficult 344 
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for researchers to extract the main branchlets (axial canal and lumen in calyx) from 345 

complex pore structures.  346 

 347 

Figure 5. 3D visualization of the coral pore structure under various situations. (a) 348 

Isolated coral pore structure. (b) Color-coded visualization of coral pore size. (c) 349 

Extraction of coral main branches. (d) Intercepted central section of coral branches 350 

along the longitudinal plane, with a color-coded scale bar identical to that in (c). (e) 351 

Thresholded velocity distribution obtained by LBM to show main flow channels and 352 

velocities. 353 

Figure 5b shows the visualization of the 3D pore size with the method in 354 

Section 2.4, in which false color is assigned to the voxels according to the pore size. 355 

The color varies from deep to light blue as pore size increases, therefore pore size can 356 

be distinguished by the color of the pore surface. One can roughly locate the major 357 

branchlets. We further filter pores smaller than a particular size by thresholding and 358 

denoising, and the branch distribution of the coral canal system is obtained (Figure 359 

5c). The coral pore structure mainly consists of an axis channel and surrounding 360 

branchlets, resembling a tree. While all branchlets are connected to the main trunk in 361 

a tree structure, each branchlet in a coral system is relatively independent, with only 362 

small channels connecting with the axial canal. These small channels are filtered out 363 

during thresholding.  364 
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The visualization of the main branchlets of the coral pore structure not only 365 

helps to grasp the key heterogeneity but also sheds light on the hydrodynamic 366 

properties of the coral structure. According to Hagen-Poiseuille’s equation, as also 367 

mentioned in Section 2.4, the average flow velocity in a round tube is proportional to 368 

the square of the tube diameter. Therefore, for comparison with the later obtained flow 369 

velocity, we present the values of R
2
 here. The fluid flow within the coral sample, 370 

driven by ocean currents, is simulated with the Lattice Boltzmann Method (LBM), 371 

and the simulated boundary conditions are detailed in Table S1 and Figure S2 in 372 

Supporting Information. In Figure 5d, at the periphery of the branchlets, the pore size 373 

reaches its maximum, and the flow velocity also reaches the largest in Figure 5e. In 374 

the area with a larger aperture, the simulation results show a larger flow rate. 375 

Therefore, the distribution of flow velocity can be predicted with the color-coded pore 376 

size. 377 

One of the key advantages of the visualization lies in its efficiency in extracting 378 

main flow paths through porous media and its scale independence compared with 379 

numerical simulations. The coral pore structures contain a large number of tiny pores 380 

in addition to the tree-shaped branches, and including these tiny pores in the 381 

simulation greatly increases the computational cost because a large number of grid 382 

cells are required. Due to the large data size, model simplification is frequently 383 

required. For studies that prefer to preserve the entire structure, researchers often need 384 

to ignore certain details of the reconstructed model by sacrificing the resolution to 385 

shorten the computational time, which retains the physical size of the model but uses a 386 

coarser mesh. For the proposed method, as long as the resolution of the image is 387 

sufficient, the results we obtain cover all details. Comparatively, the computational 388 

cost of the full-resolution image with our method is still 1/100 of the fluid dynamic 389 

simulation (LBM simulation used here) with a quarter reduced resolution. The prompt 390 

analyses, purely based on geometry, although simple, could greatly help our 391 

understanding of the pore structure by identifying the skeleton as the main contributor 392 

to the flow. Furthermore, these analyses do not rely on computing power and therefore 393 
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can be applied to a large area. In addition, it is easy to conduct such analyses on 394 

different portions of porous media and merge the results afterward, while a similar 395 

approach with LBM simulation is not applicable. 396 

4.2. Fractured Rock 397 

Identification of preferential flow channels in rock masses and sediments is 398 

universally required in geological engineering. Here we take fractured rock as 399 

examples to demonstrate the application of our method in preferential flow channels 400 

extraction. Preferential flow channels here are defined by the seepage characteristics 401 

of good connectivity and high fracture apertures. 402 

A rock sample and fracture details are shown in Figure 6a. The omnidirectional 403 

fracture network extracted from CT images makes it difficult to determine the 404 

preferential seepage path without further processing (Figure 6c). Preferential flow 405 

channels are positively correlated with the aperture and connectivity of fractures. 406 

According to Hagen-Poiseuille's equation, the flow velocity in planar flow channels is 407 

proportional to R, and the volume flow is proportional to R
3
. Therefore, the quantitive 408 

analysis of fracture aperture distribution in rock sample based on 3D size 409 

determination algorithm is critical.  410 

 411 
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 412 

Figure 6. Details of the fractured rock sample and its connectivity visualization. (a) 413 

Rock sample size and its raw CT images. (b) Segmented images. The gray and green 414 

phases are rock and fracture. (c) 3D fracture structures. (d) The distribution of fracture 415 

apertures. (e, f) 3D visualization of remaining fracture structure after excluding pores 416 

less than 100 and 500 μm. 100 μm has little effect on the whole structure connectivity, 417 

while 500 μm is the maximum threshold value before connectivity is lost. 418 

The fracture aperture shows obvious heterogeneity, as shown in Figure 6d, and 419 

small pore throats are common, which can be the bottleneck that limits the flow 420 

continuity. To identify the size of the pore throats that would affect the fracture 421 

network connectivity, we use different threshold values on the full fracture network 422 

and identify the exact location of the pore throats. When pores with radius less than 423 

100 μm are hidden, the connectivity of the fracture network is not greatly affected 424 

(Figure 6e). However, when the threshold value is up to 500 μm, the connectivity of 425 

the fracture network deteriorates significantly, and one bottleneck appears (circled in 426 

red in Figure 6f). There is still one large aperture area marked in black that remains 427 

connected vertically, indicating its major contribution to the flow. We consider the 428 

preferential flow channels as the remaining fracture network.  429 

Additional permeability analyses of the rock sample with Avizo are carried out to 430 
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verify the reliability of identified preferential flow channels with fractures larger than 431 

500 μm, and the results are given in Text S7 in Supporting Information. The results 432 

prove the effectiveness of this method in predicting preferential flow channels, and 433 

the velocities at different locations can also be roughly compared with fracture color 434 

representing aperture.  435 

4.3. Ice Crystals  436 

Symmetry breaking occurs during crystallization. The formed crystals frequently 437 

show directional behavior. Anisotropy of crystals results in directional-dependent 438 

strength, stiffness, and deformation characteristics. Revealing crystal orientations 439 

within a rock can help us interpret its anisotropic properties. We use ice crystal 440 

formation in a salty sandy specimen as an example. Ice crystal images used here are 441 

from the nucleation stage, revealing crystal orientations that can help us understand 442 

the nuclei growth preference (Anderson et al., 2017).  443 

Rose diagram and equal-area stereographic projection are used first to show the 444 

statistics of crystal orientations (Figure 7). A significant number of dip angles around 445 

0º indicates the crystals show a preferential growth orientation along vertical 446 

directions (note that the axis perpendicular to the crystal major plane is selected to 447 

demonstrate the crystal orientation). In Figure 7b, the semi-sphere is expanded to a 2D 448 

plane according to equal-area stereographic projection (Text S8 in Supporting 449 

Information). Equal-area is chosen so that the density in Figure 7b (shown as cloud 450 

colors), defined as the number of crystals per unit area, demonstrates the probability 451 

of crystal orientations. The color bar encodes the point density in the subregion, which 452 

also represents the probability of crystal orientations. The main orientation is easily 453 

visible as yellow areas, which represent a strong prevalence along the horizontal axis, 454 

and the central high density is caused by its relatively small equal area. Additionally, 455 

it correlates the volume of each crystal with the size of the dot. Crystals with volumes 456 

bigger than 1000 voxels are all set as 1000 voxels, so that there are no abnormal dots 457 

overlapping with adjacent smaller dots.  458 
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 459 

Figure 7. Statistic of crystal orientation distributions. (a) Rose diagram. The dip 460 

azimuth φ ranges from 0º to 360º. The dip angle θ ranges from 0º (horizontal) to 90º 461 

(vertical), showing the angle inclined from the horizontal plane. (b) Equal-area 462 

stereographic projection. The dip azimuth φ and dip angle θ correspond to that in (a). 463 

In this method, the correspondences between features and the crystals are 464 

missing. All crystals are gathered at the same origin, and the original location of each 465 

crystal, along with the relative position between different crystals, is not available. 466 

Besides, the morphology of the crystal, as a key anisotropic characteristic, is absent. 467 

We show both the morphology, spatial distribution, and orientation of all crystals in 468 

one visualization (Figure 8a) and further correlate the color brightness with the crystal 469 

size in Figure 8b, where the brightness of the color demonstrates the crystal size (See 470 

3D animations in Data Set S1 in Supporting Information). Here, the maximum 471 

volume is set as 500 voxels to avoid extensive crystal darkening. Crystals larger than 472 

500 voxels maintain their original color, while those smaller than 500 voxels appear 473 

dimmer. The crystal size shown as the color brightness can be replaced by another 474 

characteristic when necessary. For example, it can be either fracture aperture, length, 475 

or aspect ratio in geology. 476 

We plot the color coding overlapping the stereographic projection orientations in 477 

the center of the four quadrants (Figure 8). One can then look for the orientation of a 478 

particular crystal according to its color and correspondingly find its dip angle and dip 479 

azimuth. The group behavior among homooriented crystals is clearly identified, with 480 

the major vertically orientated crystals (crystals with color ranging between red and 481 
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green in Figure 8) spreading across other regions. This indicates that the nuclei prefer 482 

to grow along the z-axis, aligning with the direction of the temperature gradient, while 483 

the minority of blue crystals accumulate at the side corner. Such a trend would not be 484 

possible to discern in a stereographic projection plot, which, in turn, highlights the 485 

necessity of the proposed 3D visualization.  486 

 487 

Figure 8. Visualization of anisotropic characteristics of ice crystals with four 488 

quadrants  (a) Orientation visualization. (b) Simultaneous visualization of orientation 489 

and volume. Red, green, and blue colors signify x, y, and z coordinates of vectors, 490 

respectively. Various colors are generated by blending these three primary colors 491 

according to their corresponding vector coordinates. This integration process produces 492 

a spectrum of colors, which is presented in the form of equal-area stereographic 493 

projection. Each color represents a unique orientation, and the determination of 494 

orientation follows the illustration in Figure 7. 495 

We have compared this method with those found in the literature across fields 496 

including fiber-reinforced composites, geology, and crystallography. Mishurova et al. 497 

(2017) presented the orientation of fibers by two plots to separately demonstrate the 498 

azimuth angle and dip angle. In crystallography, the most well-known color coding is 499 

the crystal orientation map, which also needs two plots to identify one direction 500 
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(Wittwer & Seita, 2022). Therefore, it is difficult to grasp the orientation directly in 501 

these two methods. Robb et al. (2007) used a color sphere based on a combination of 502 

the azimuth angle and dip angle. Weissenböck et al., (2014) used the same color map 503 

as us but did not divide it into four cases. However, in both of these two methods, 504 

specific colors could represent more than one orientation, and sometimes the 505 

orientation difference between two features shown with the same color could be more 506 

than 90 degrees. In comparison, our method demonstrates the direction in just one plot, 507 

and a unique direction could be traced to one color in one of the four quadrants. The 508 

three colors RGB naturally align with the x, y, and z directions, which makes it a 509 

natural match with the Cartesian coordinate system and, therefore, more intuitive. In 510 

addition, we combine size or any other heterogeneity with orientation in just one plot, 511 

a feature not available in existing methods. 512 

4.4. Geometrical Model Simplification for Numerical Simulation 513 

Previous sections have demonstrated the effectiveness of our method in 514 

enhancing the understanding of porous media heterogeneity and anisotropy. Based on 515 

this understanding, we further discuss its potential for geometrical model 516 

simplification in the numerical simulation. 517 

The fluid flow simulation results of the coral sample show that the filtered tiny 518 

pores have little influence on the ultimate flow properties of the coral pore structure, 519 

as discussed in Section 4.1. This provides a new approach to simplify the geometric 520 

model by filtering out tiny pores at the periphery of the coral structure, which can 521 

greatly improve computational efficiency without losing reliability. The simplest way 522 

is to use only the main branchlets of the coral pore structure; however, the central 523 

canal is disconnected from the branchlets. Therefore, we purposely retained the small 524 

pores around the central canal to ensure connectivity. As shown in Figure 9g, the 525 

central canal is dilated M times, connecting all the branchlets, the Boolean 526 

conjunction of the dilated central canal and the branchlets defines the region (labeled 527 

as the identified region) in which all inner pores should be included in the simulation. 528 

Such an approach guarantees a good connectivity among all the main channels while 529 
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involves only a small number of small pores. 530 

 531 

Figure 9. Comparison of simulation results before and after the coral pore structure 532 

simplification. (a, d) Original and simplified simulation models. The black phase 533 

represents the coral skeleton. (b, e) The longitudinal section of streamline distribution. 534 

(c, f) Overall streamline distribution in 3D. (g) Workflow of coral pore structure 535 

simplification. (h) Flow velocities pre- and post-simplification (plotted as blue and red 536 

dots) at three selected regions (labeled Ⅰ, Ⅱ, and Ⅲ). 537 

The same fluid flow conditions are applied to both the original and simplified 538 

models. Simulation results of the simplified model preserve fluid flow channels 539 

(Figures 9b, e) and present clearer streamlines (Figures 9c, f). Overall, the absence of 540 

tiny pores slightly changes the absolute velocity (less than 5% for the average flow 541 

velocity: 1.1%, 2.5%, and 5% for regions Ⅰ, Ⅱ, and Ⅲ) and flow paths (which are 542 
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more aligned with branch boundaries), and the flow velocity distribution remains 543 

consistent with the original model (Figure 9h). The effect of simplification on the flow 544 

field outside the coral is even less as the velocity profile at the top in Figure 9h pre- 545 

and post- simplification almost overlap with each other. 546 

Taking the rock sample in Figure 6 as an example, fractures narrower than a 547 

certain threshold value are hidden and then the permeability of the remaining fracture 548 

structure and the computation time are calculated with COMSOL. As the omitting 549 

threshold increases, more fractures are neglected in the simulation, therefore, the 550 

retained permeability, voxel count, and CPU time all decrease. The effect of these 551 

filtered fractures on the overall permeability is equivalent to the reduction ratio of 552 

overall permeability, and the results are shown in Figure 10. The fractures below 100 553 

μm have little effect on the overall permeability, and then the permeability sharply 554 

decreases with the increasing threshold value. Another sand specimen (Figure 10b) is 555 

used to verify this approach (more details about this specimen are given in Text S9 in 556 

Supporting Information). When a threshold value smaller than 33 μm is applied, the 557 

reduction in overall permeability is less than 3%. 558 

 559 

Figure 10. Retained proportion of permeability, surface area, and voxel count over 560 

the total while omitting pores smaller than a certain threshold, as well as the 561 

corresponding CPU time ratio over the case with the original pore structure. (a) Rock 562 

sample. (b) Saturated sand specimen.  563 
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The voxel count and surface area of the pore structure are correlated to the 564 

complexity of the mesh and computational cost. It is reported that there is an 565 

approximate power law relationship between CPU time and the number of finite 566 

elements, with an exponent larger than 1.5 (Erhel et al., 2009). Here, voxelized 567 

models are applied for permeability simulation. Consequently, the computation time 568 

obtained (dark green line) shows a direct correlation with voxel count (light green 569 

line), following a quadratic function with an exponent of about 2. If we regard a 5% 570 

permeability loss as acceptable, the CPU time can be reduced by 13% and 10% for the 571 

rock and sand cases, respectively. This reduction in computational time works for both 572 

samples. Therefore, fractures with low contributions (100 and 35 μm for the specific 573 

rock and sand specimens) can be identified in advance with our method to simplify 574 

the fracture structures during simulation modeling and further enhance computational 575 

efficiency. 576 

Simply neglecting smaller pores can cause problems in multiphase flow in 577 

porous media, since the neglected pores could be occupied by the wetting phase. On 578 

the other hand, we could consider the smaller pores and the simplified pore structure 579 

separately. For example, in a capillarity regime, we could assume that the wetting 580 

phase is stuck in the small pores and not sensitive to the pressure gradient, while still 581 

responding to other physical processes such as diffusion. 582 

5. Conclusions 583 

This study proposes a cost-effective method for simultaneously demonstrating 584 

heterogeneity and anisotropy based on geometry and image analyses. 585 

The heterogeneity of porous media is characterized by measuring pore size in CT 586 

images, and the anisotropy is determined using principal component analysis. Then a 587 

simultaneous visualization of both the orientation-based anisotropy and the size-based 588 

heterogeneity is generated by rendering the pore structure surface using color and 589 

color brightness. This visualization preserves the morphology and spatial location of 590 

pore structure, which enables interactive exploration of the spatial relationships 591 
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between individual pores. Furthermore, we propose a refined stereographic projection 592 

to statistically display both anisotropy (orientation) and heterogeneity (size) in one 593 

plot. 594 

The proposed method facilitates our understanding of heterogeneity and 595 

anisotropy within the porous media, and a general trend for size-related physical 596 

behavior can be predicted with the visualization results. We then propose a method of 597 

geometrical model simplification for the numerical simulation, specifically, by 598 

discarding tiny pores with low contribution to property while retaining the major 599 

contributing structures. The simplified models yield a good match with the original 600 

model but significantly reduce the computational cost.  601 

Acknowledgments 602 

This work is supported by Research Center for Industries of the Future (RCIF), 603 

Westlake Education Foundation, and Open Research Fund of State Key Laboratory of 604 

Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, 605 

Chinese Academy of Sciences (Grant No. SKLGME021008). We thank Westlake 606 

Center for Micro/Nano Fabrication for the facility support and technical assistance.  607 

Open Research 608 

The CT image data and corresponding image processing results in this study are 609 

available at Tian (2023) in Mendeley Data via https://doi.org/10.17632/6ypbv8gbcp.1. 610 

The code associated to this work is archived and published as Yin (2023) in Mendeley 611 

Data via https://doi.org/10.17632/rbgwgc2yv9.1, which can be accessed freely after 612 

registration. The LBM simulation and the corresponding model were described in 613 

MechSys (2021): Multi-physics Simulation Library and Galindo-Torres (2013). The 614 

software can be obtained from http://mechsys.nongnu.org/. 615 

https://doi.org/10.17632/6ypbv8gbcp.1


manuscript submitted to Water Resources Research 

28 

 

References 616 

Anderson, M. W., Gebbie-Rayet, J. T., Hill, A. R., Farida, N., Attfield, M. P., 617 

Cubillas, P., et al. (2017). Predicting crystal growth via a unified kinetic 618 

three-dimensional partition model. Nature, 544, 456–459. 619 

https://doi.org/10.1038/nature21684    620 

Anderson, T. W. (1963). Asymptotic theory for principal component analysis. Annals 621 

of mathematical statistics, 34(1), 122–148. 622 

https://doi.org/10.1214/aoms/1177704248   623 

Bang, B., & Lukkassen, D. (1999). Application of homogenization theory related to 624 

Stokes flow in porous media. Application of Mathematics, 44(4), 309–319. 625 

https://doi.org/10.1023/A:1023084614058 626 

Berg, S., Kutra, D., Kroeger, T., Straehle, C. N., Kausler, B. X., Haubold, C., et al. 627 

(2019). ilastik: interactive machine learning for (bio) image analysis. Nature 628 

Methods, 16, 1226–1232. https://doi.org/10.1038/s41592-019-0582-9 629 

Budinger, T. F., & Lauterbur, P. C. (1984). Nuclear magnetic resonance technology 630 

for medical studies. Science, 226, 288–298. 631 

http://dx.doi.org/10.1126/science.6385252 632 

Bultreys, T., Van Hoorebeke, L., & Cnudde, V. (2016). Simulating secondary 633 

waterflooding in heterogeneous rocks with variable wettability using an 634 

image-based, multiscale pore network model. Water Resources Research, 52(9), 635 

6833–6850. https://doi.org/10.1002/2016WR018950 636 

Chandra, R., Dagum, L., Kohr, D., Menon, R., Maydan, D., & McDonald, J. (2001). 637 

Parallel programming in OpenMP. San Francisco, Morgan Kaufmann Publishers 638 

Inc. 639 

Chen, J., Yang, S., Mei, Q., Chen, J., Chen, H., Zou, C., et al. (2021). Influence of 640 

pore structure on gas flow and recovery in ultradeep carbonate gas reservoirs at 641 

multiple scales. Energy & Fuels, 35(5), 3951–3971. 642 

https://doi.org/10.1021/acs.energyfuels.0c04178  643 

https://doi.org/10.1038/nature21684
https://doi.org/10.1023/A:1023084614058
http://dx.doi.org/10.1126/science.6385252
https://doi.org/10.1002/2016WR018950
https://doi.org/10.1021/acs.energyfuels.0c04178


manuscript submitted to Water Resources Research 

29 

 

Chong, Z., Li, X., Chen, X., Zhang, J., & Lu, J. (2017). Numerical investigation into 644 

the effect of natural fracture density on hydraulic fracture network propagation. 645 

Energies, 10, 914. https://doi.org/10.3390/en10070914 646 

Degu, A. M., & Hossain, F. (2012). Investigating the mesoscale impact of artificial 647 

reservoirs on frequency of rain during growing season. Water Resources 648 

Research, 48(5), W25510. https://doi.org/10.1029/2011WR010966 649 

Erhel, J., De Dreuzy, J. R., & Poirriez, B. (2009). Flow simulation in 650 

three-dimensional discrete fracture networks. SIAM Journal on Scientific 651 

Computing, 31(4), 2688–2705. https://doi.org/10.1137/080729244 652 

Fatt, I. (1956). The network model of porous media I. Capillary pressure 653 

characteristics. Transaction of the AIME, 207(1), 144–159. 654 

https://doi.org/10.2118/574-G 655 

Fedorov, A., Beichel, R., Kalpathy-Cramer, J., Fine, J., Fillion-Robin, J., Pujol, S., et 656 

al. (2012). 3D Slicer as an Image Computing Platform for the Quantitative 657 

Imaging Network. Magnetic Resonance Imaging, 30(9), 1323–1341. 658 

https://doi.org/10.1016/j.mri.2012.05.001 659 

Ferreira, A. A. S., & Nick, H. M. (2023). Computed-tomography-based discrete 660 

fracture-matrix modeling: An integrated framework for deriving fracture 661 

networks. Advances in Water Resources, 177, 104450. 662 

https://doi.org/10.1016/j.advwatres.2023.104450 663 

Flannery, B. P., Deckman, H. W., Roberge, W. G., & D’Amico, K. L. (1987). 664 

Three-dimensional X-ray microtomography. Science, 237, 1439–1444. 665 

http://dx.doi.org/10.1126/science. 237.4821.1439 666 

Galindo-Torres, S. A., Scheuermann, A., & Li, L. (2012). Numerical study on the 667 

permeability in a tensorial form for laminar flow in anisotropic porous media. 668 

Physical Review E, 86, 046306. https://doi.org/10.1103/PhysRevE.86.046306 669 

Galindo-Torres, S. A. (2013). A coupled discrete element lattice Boltzmann method 670 

for the simulation of fluid-solid interaction with particles of general shapes. 671 

https://doi.org/10.1029/2011WR010966
https://doi.org/10.1137/080729244
https://doi.org/10.1016/j.mri.2012.05.001
https://doi.org/10.1103/PhysRevE.86.046306


manuscript submitted to Water Resources Research 

30 

 

Computer Methods in Applied Mechanics and Engineering, 265, 107–119. 672 

https://doi.org/10.1016/j.cma.2013.06.004 673 

Grau, S., Verges, E., Tost, D., & Ayala, D. (2010). Exploration of porous structures 674 

with illustrative visualizations. Computers & Graphics-UK, 34(4), 398–408. 675 

http://dx.doi.org/10.1016/j.cag.2010.05.001 676 

Grevera, G.J. (2007). Distance transform algorithms and their implementation and 677 

evaluation. Deformable Models: Biomedical and Clinical Applications, Springer 678 

New York, New York, NY, 33–60. 679 

Hilderand, T., & Ruegsegger, P. (1997). A new method for the model-independent 680 

assessment of thickness in three-dimensional images. Journal of Microscopy, 681 

185, 67–75. https://doi.org/10.1046/j.1365-2818.1997.1340694.x 682 

Howarth, R. J. (1996). History of the stereographic projection and its early use in 683 

geology. Terra Nova, 8(6), 499–513. 684 

https://doi.org/10.1111/j.1365-3121.1996.tb00 779.x 685 

Hunt, A. G., & Sahimi, M. (2017). Flow, transport, and reaction in porous media: 686 

Percolation scaling, critical-path analysis, and effective medium approximation. 687 

Reviews of Geophysics, 55, 993–1078. https://doi.org/10.1002/2017RG000558 688 

Hyman, J. D. (2020). Flow channeling in fracture networks: characterizing the effect 689 

of density on preferential flow path formation. Water Resources Research, 56(9), 690 

e2020WR027986. https://doi.org/10.1029/2020WR027986 691 

Ihli, J., Jacob, R.R., Holler, M., Guizar-Sicairos, M., Diaz, A., da Silva, J. C., et al. 692 

(2017). A three-dimensional view of structural changes caused by deactivation of 693 

fluid catalytic cracking catalysts. Nature Communications, 8, 809. 694 

https://doi.org/10.1038/s41467-017-00789-w 695 

Jiang, Z., van Dijke, M. I. J., Geiger, S., Ma, J., Couples, G. D., & Li, X. (2017). Pore 696 

network extraction for fractured porous media. Advances in Water Resources, 697 

107, 280–289. https://doi.org/10.1016/ j.advwatres.2017.06.025 698 

https://doi.org/10.1029/2020WR027986


manuscript submitted to Water Resources Research 

31 

 

Jiang, Z., van Dijke, M. I. J., Sorbie, K. S., & Couples, G. D. (2013). Representation 699 

of multiscale heterogeneity via multiscale pore networks. Water Resources 700 

Research, 49(9), 5437–5449. https://doi.org/10.1002/wrcr.20304 701 

Jing, Y., Armstrong, R. T., & Mostaghimi, P. (2020). Image-based fracture pipe 702 

network modelling for prediction of coal permeability. Fuel, 270(15), 117447. 703 

https://doi.org/10.1016/j.fuel.2020.117447 704 

Johnson, G. R., Gupta, K., Putz, D. K., Hu, Q., & Brusseau, M.L. (2003). The effect 705 

of local-scale physical heterogeneity and nonlinear, rate-limited 706 

sorption/desorption on contaminant transport in porous media. Journal of 707 

Contaminant Hydrology, 64(1-2), 35–58. 708 

https://doi.org/10.1016/S0169-7722(02)00103-1 709 

Lee, T., Kashyap, R., & Chu, R. (1994). Building skeleton models via 3-D medial 710 

surface axis thinning algorithms. CVGIP: Graphical Models and Image 711 

Processing, 55(6), 462-478. https://doi.org/10.1006/cgip.1994.1042 712 

Li, Y., Liao, X., He, C., & Lu, Z. (2021). Calcium transport along the axial canal in 713 

Acropora. Diversity, 13(9), 407. https://doi.org/10.3390/d13090407 714 

Lyu, Q.F., Wu, H., & Li, X. (2021). A 3D model reflecting the dynamic generating 715 

process of pore networks for geological porous media. Computers and 716 

Geotechnics, 140, 104444. https://doi.org/10.1016/j.compgeo.2021.104444 717 

Mahabadi, N., Zheng, X., Yun, T. S., van Paassen, L., & Jang, J. (2018). Gas bubble 718 

migration and trapping in porous media: pore-scale simulation. Journal of 719 

Geophysical Research: Solid Earth, 123(2), 1060–1071. 720 

https://doi.org/10.1002/2017JB015331 721 

Martin-Garin, B., Lathuilière, B., Verrecchia, E. P., & Geister, J. (2007). Use of 722 

fractal dimensions to quantify coral shape. Coral Reefs, 26, 541–550. 723 

https://doi.org/10.1007/s00338-007-0256-4 724 

Merchant, F. A., Shah, S. K., & Castleman, K. R. (2023). Chapter Eight-Object 725 

Measurement. Microscope Image Processing (Second Edition), 153–175. 726 

https://doi.org/10.1016/B978-0-12-821049-9.00017-4 727 

https://doi.org/10.1002/wrcr.20304
https://doi.org/10.1016/S0169-7722(02)00103-1
https://doi.org/10.3390/d13090407
https://doi.org/10.1016/j.compgeo.2021.104444
https://doi.org/10.1016/B978-0-12-821049-9.00017-4


manuscript submitted to Water Resources Research 

32 

 

Mishurova, T., Léonard, F., Oesch, T., Meinel, D., Bruno, G., Rachmatulin, N., et al. 728 

(2017). Evaluation of fiber orientation in a composite and its effect on material 729 

behavior. Paper presented at 7th Conference on Industrial Computed 730 

Tomography, Leuven, Belgium. 731 

Nemati, R., Shahrouzi, J. R., & Alizadeh, R. (2020). A stochastic approach for 732 

predicting tortuosity in porous media via pore network modeling. Computers and 733 

Geotechnics, 120, 103406. https://doi.org/10.1016/j.compgeo.2019.103406 734 

Nemec, W. (1988). The shape of the rose. Sedimentary Geology, 59, 149–152. 735 

https://doi.org/10.1016/0037-0738(88)90105-4 736 

Puyguiraud, A., Gouze, P., & Dentz, M. (2020). Is there a representative elementary 737 

volume for anomalous dispersion? Transport in Porous Media, 131(2), 767–778. 738 

https://doi.org/ 10.1007/s11242-019-01366-z 739 

Qin, X., Cai, J., & Wang, G. (2023). Pore-scale modeling of pore structure properties 740 

and wettability effect on permeability of low-rank coal. International Journal of 741 

Mining Science and Technology, 33(5), 573–584. 742 

https://doi.org/10.1016/j.ijmst.2023.02.005 743 

Ren, X., & Santamarina, J. C. (2018). The hydraulic conductivity of sediments: Apore 744 

size perspective. Engineering Geology, 233(31), 48–54. 745 

https://doi.org/10.1016/j.enggeo.2017.11.022 746 

Robb, K., Wirjadi, O., & Schladitz, K. (2007). Fiber Orientation Estimation from 3D 747 

Image Data: Practical Algorithms, Visualization, and Interpretation. Paper 748 

presented at 7th International Conference on Hybrid Intelligent Systems, 749 

Kaiserslautern, Germany. 750 

Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., 751 

et al. (2012). Fiji: An Open-Source Platform for Biological-Image Analysis. 752 

Nature Methods, 9, 676–682. https://doi.org/10.1038/nmeth.2019 753 

Sebben, M. L., & Werner, A. D. (2016). A modeling investigation of solute transport 754 

in permeable porous media containing a discrete preferential flow feature. 755 

https://doi.org/10.1016/j.compgeo.2019.103406
https://doi.org/10.1016/j.ijmst.2023.02.005
https://doi.org/10.1016/j.enggeo.2017.11.022


manuscript submitted to Water Resources Research 

33 

 

Advances in Water Resources, 94, 307–317. 756 

https://doi.org/10.1016/j.advwatres.2016.05.022 757 

Shahriar, M. F., & Khanal, A. (2023). Effect of formation heterogeneity on CO2 758 

dissolution in subsurface porous media. ACS Earth and Space Chemistry, 7(10), 759 

2073–2090. https://doi.org/10.1021/acsearthspacechem.3c00175.  760 

Shigorina, E., Rüdiger, F., Tartakovsky, A. M., Sauter, M., & Kordilla, J. (2021). 761 

Multiscale Smoothed Particle Hydrodynamics Model Development for 762 

Simulating Preferential Flow Dynamics in Fractured Porous Media. Water 763 

Resources Research, 57(3), e2020WR027323. 764 

https://doi.org/10.1029/2020WR027323  765 

Silin, D., & Patzek, T. (2006). Pore space morphology analysis using maximal 766 

inscribed spheres. Physica A: Statistical Mechanics and its Applications, 371(2), 767 

336–360. https://doi.org/10.1016/j.physa.2006. 04.048 768 

Song, W., Jun, Y., Wang, D., Li, Y., Sun, H., & Yang, Y. (2020). Dynamic pore 769 

network modelling of real gas transport in shale nanopore structure. Journal of 770 

Petroleum Science and Engineering, 184, 106506. 771 

https://doi.org/10.1016/j.petrol.2019.106506 772 

Van der Walts, S., Schönberger J. L., Nunez-Iglesias J., Boulogne F., Warner J. D., 773 

Yager N., Gouillart E., & Yu T. (2014). scikit-image: Image processing in 774 

Python Peer J 2:e453. https://doi.org/10.7717/peerj.453 775 

Wang, J., Huang, X., Xu, J. Zhang, Z., Wang, S. F., & Li, Y. (2023). Network 776 

analysis of pore structure of coral reef limestone and its implications for seepage 777 

flow. Engineering Geology, 318(5), 107103. 778 

https://doi.org/10.1016/j.enggeo.2023.107103 779 

Weissenbock, J., Amirkhanov, A., Li, W., Reh, A., Amirkhanov, A., Groller, E., et al. 780 

(2014). FiberScout: An Interactive Tool for Exploring and Analyzing Fiber 781 

Reinforced Polymers. Paper presented at 2014 IEEE Pacific Visualization 782 

Symposium. Yokohama, Japan. 783 

https://doi.org/10.1029/2020WR027323
https://doi.org/10.1016/j.physa.%202006
https://doi.org/10.1016/j.petrol.2019.106506
https://doi.org/10.1016/j.enggeo.2023.107103


manuscript submitted to Water Resources Research 

34 

 

Wildenschild, D., & Sheppard, A. P. (2012). X-ray imaging and analysis techniques 784 

for quantifying pore-scale structure and processes in subsurface porous medium 785 

systems. Advances in Water Resources, 51, 217–246. 786 

http://dx.doi.org/10.1016/j.advwatres.2012. 07.018. 787 

Wittwer, M., & Seita, M. (2022). A machine learning approach to map crystal 788 

orientation by optical microscopy. npj Computational Materials, 8(8). 789 

https://doi.org/10.1038/s41524-021-00688-1 790 

Xu, L., Myers, M., Li, Q., White, C., & Zhang, X. (2020). Migration and storage 791 

characteristics of supercritical CO2 in anisotropic sandstones with clay 792 

interlayers based on X-CT experiments. Journal of Hydrology, 580, 124239. 793 

https://doi.org/10.1016/j.jhydrol.2019.124239 794 

Yang, Z., Xu, T., Wang, F., Yang, Y., Li, X., & Zhao, N. (2018). Impact of inner 795 

reservoir faults on migration and storage of injected CO2. Internal Journal of 796 

Greenhouse Gas Control, 72, 14–25. https://doi.org/10.1016/j.ijggc.2018.03.006 797 

Zhang, K., Wang, S., Wang, L., Cheng, Y., Li, W., & Han, X. (2022). 3D 798 

visualization of tectonic coal microstructure and quantitative characterization on 799 

topological connectivity of pore-fracture networks by Micro-CT. Journal of 800 

Petroleum Science and Engineering, 208, 109675. 801 

https://doi.org/10.1016/j.petrol.2021.109675 802 

Zhang, Z., Li, C., Ning, F., Liu, L., Cai, J., Liu, C., et al. (2020). Pore Fractal 803 

Characteristics of Hydrate-Bearing Sands and Implications to the Saturated 804 

Water Permeability. Journal of Geophysical Research: Solid Earth, 125(3), 805 

e2019JB018721. https://doi.org/10.1029/2019JB018721 806 

http://dx.doi.org/10.1016/j.advwatres.2012.%2007.018
https://doi.org/10.1016/j.jhydrol.2019.124239
https://doi.org/10.1016/j.ijggc.2018.03.006


Figure 1.





Figure 2.





Figure 3.





Figure 4.





Figure 5.





Figure 6.





Figure 7.





Figure 8.





Figure 9.





Figure 10.




	Article File
	Figure 1 legend
	Figure 1
	Figure 2 legend
	Figure 2
	Figure 3 legend
	Figure 3
	Figure 4 legend
	Figure 4
	Figure 5 legend
	Figure 5
	Figure 6 legend
	Figure 6
	Figure 7 legend
	Figure 7
	Figure 8 legend
	Figure 8
	Figure 9 legend
	Figure 9
	Figure 10 legend
	Figure 10

