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Abstract

Zebra rocks, characterized by their striking reddish-brown stripes, rods, and spots of hematite (Fe-oxide), showcase complex

self-organized patterns formed under far-from-equilibrium conditions. Despite their recognition, the underlying mechanisms

remain elusive. We introduce a novel advection-dominated phase-field model that effectively replicates the Liesegang-like

patterns observed in Zebra rocks. This model leverages the concept of phase separation, a well-established principle governing

Liesegang phenomena. Our findings reveal that initial solute concentration and fluid flow velocity are critical determinants in

pattern selection and transition. We quantitatively explain the spacing and width of a specific Liesegang-like pattern category.

Furthermore, the model demonstrates that vanishingly low initial concentrations promote the formation of oblique patterns,

with inclination angles influenced by rock heterogeneity. Additionally, we establish a quantitative relationship between band

thickness and geological parameters for orthogonal bands. This enables the characterization of critical geological parameters

based solely on static patterns observed in Zebra rocks, providing valuable insights into their formation environments. The

diverse patterns in Zebra rocks share similarities with morphologies observed on early Earth and Mars, such as banded iron

formations and hematite spherules. Our model, therefore, offers a plausible explanation for the formation mechanisms of these

patterns and presents a powerful tool for deciphering the geochemical environments of their origin.
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Key Points:9
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Abstract15

Zebra rocks, characterized by their striking reddish-brown stripes, rods, and spots of16

hematite (Fe-oxide), showcase complex self-organized patterns formed under far-from-17

equilibrium conditions. Despite their recognition, the underlying mechanisms remain elu-18

sive. We introduce a novel advection-dominated phase-field model that effectively repli-19

cates the Liesegang-like patterns observed in Zebra rocks. This model leverages the con-20

cept of phase separation, a well-established principle governing Liesegang phenomena.21

Our findings reveal that initial solute concentration and fluid flow velocity are critical22

determinants in pattern selection and transition. We quantitatively explain the spacing23

and width of a specific Liesegang-like pattern category. Furthermore, the model demon-24

strates that vanishingly low initial concentrations promote the formation of oblique pat-25

terns, with inclination angles influenced by rock heterogeneity. Additionally, we estab-26

lish a quantitative relationship between band thickness and geological parameters for or-27

thogonal bands. This enables the characterization of critical geological parameters based28

solely on static patterns observed in Zebra rocks, providing valuable insights into their29

formation environments. The diverse patterns in Zebra rocks share similarities with mor-30

phologies observed on early Earth and Mars, such as banded iron formations and hematite31

spherules. Our model, therefore, offers a plausible explanation for the formation mech-32

anisms of these patterns and presents a powerful tool for deciphering the geochemical33

environments of their origin.34

Plain Language Summary35

Zebra rocks, known for their unique red and brown stripes and spots, hold clues36

to how similar patterns formed on early Earth and Mars. We have developed a new model37

to explain how these intriguing patterns form. The model suggests that the flow of flu-38

ids and the initial amount and location of dissolved iron-oxide (rust) in water plays a39

big role in shaping the final Zebra rock design. The speed of the flow and the initial amount40

of rust can create different stripe and spot patterns, just like the ones in Zebra rocks.41

By studying these rocks, we can potentially decipher fluid flow scenarios of ancient en-42

vironments on both Earth and Mars.43

1 Introduction44

When geological systems are far from equilibrium, self-organization processes can45

form geochemical patterns autonomously (Ortoleva et al., 1987; L’Heureux, 2013; Wang46

et al., 2015; Al-Ghoul & Sultan, 2019; C. Liu et al., 2022, 2023a; Yatsuda et al., 2023;47

Qiu et al., 2024). Heterogeneity of geological materials and systems as well as compli-48

cated boundary conditions can make the observed patterns rich in information about the49

geological environments in which they are formed, particularly concerning fluid migra-50

tion and initial conditions. In this contribution we develop a theory and method to use51

these patterns to provide a window into the past of planetary evolution.52

One example of extensively studied pattern formation is the formation of variable53

hematite (Fe-oxide) on early Earth and Mars, including the Zebra rock formation, Pre-54

cambrian banded iron formations (BIFs), Mississippi-Valley-type (MVT) ores, and oth-55

ers (Wang et al., 2009, 2015; C. Liu et al., 2023a). Field evidence suggests that ground-56

water flows influence the formation of Fe-oxide precipitation bands and that BIFs may57

reflect the changing composition of the oceanic crust (Kawahara et al., 2022; Wang et58

al., 2009). Additionally, concretions formed in Jurassic Navajo Sandstone have been pro-59

posed as a terrestrial analog to hematite spherules detected by the rover Opportunity60

at the Meridiani Planum site on Mars (Chan et al., 2004; Arvidson et al., 2014; Yoshida61

et al., 2018). Therefore, a better understanding of the pattern-forming processes in rocks62

and minerals can reveal valuable information about the geological environment on early63
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Earth and Mars, including the possibility of aqueous environments on Mars and the abil-64

ity to invert fluid flow velocity and initial solute concentration on early Earth.65

We study the Zebra Rock pattern in the northern region of Western Australia, which66

exhibits a unique and highly noticeable rhythmic concentration of hematite (Kawahara67

et al., 2022). Among all hematite banding patterns, none are as distinct and rich as the68

Zebra rock patterns. Thus, the Zebra rock formation is an excellent analog for various69

pattern-forming processes associated with subsurface environmental evolution. Zebra rock70

formation contains reddish-brown bands, rods, and elliptical spots on a white or light-71

colored background, as shown in Figure 1. In our earlier work, we linked Zebra rock for-72

mation to the Liesegang phenomenon, a process where supersaturation, nucleation (for-73

mation of solid particles), and depletion compete to create banded patterns (C. Liu et74

al., 2023a, 2023b). This connection was made because some Zebra rock patterns look sim-75

ilar to Liesegang bands. However, classic Liesegang bands typically show increasing band76

thickness and spacing as they form. Zebra rocks, on the other hand, exhibit a wider va-77

riety of patterns. To differentiate these, we refer to the Zebra rock patterns as Liesegang-78

like patterns throughout this study.79

(a) orthogonal pattern (b) parallel pattern

(c) oblique pattern (d) spotted pattern

flow direction

flow direction

flow direction flow direction

Figure 1. Rich patterns appear in Zebra rocks in the northern region of Western Australia:
(a) orthogonal pattern; (b) parallel pattern (after Coward et al. (2023)); (c) oblique pattern; and
(d) spotted patterns.

80

81

82

The fundamental Liesegang precipitation model helps to explain the forming mech-83

anism of Zebra rocks (Loughnan & Roberts, 1990; Kawahara et al., 2022; Coward et al.,84

2023; C. Liu et al., 2023a). However, there are many other hypotheses regarding their85

origin, including alternating sedimentation either in marine environments (Larcombe,86

1926) or ripple trough (Geidans, 1981), ferronematic liquid crystals (Mattievich et al.,87

2003), acid-sulfate soil weathering in conjunction with redox (Retallack, 2021).88

Recently, acidic-hydrothermal alterations have been suggested to form Liesegang-89

like patterns behind a moving front of concentrated iron (Kawahara et al., 2022). How-90

ever, this theory faces several challenges in explaining the diverse Zebra rock patterns:91

(i) the Liesegang theory predicts only simple band or ring patterns, while Zebra rocks92

exhibit a wider variety, including horizontal, vertical, and slanted stripes; (ii) diffusion-93

driven Liesegang patterns typically form over a small area. The theory has difficulties94

in explaining the vast, multi-layered patterns observed in the Ediacaran Ranford For-95

mation, spanning over 45 kilometers (Coward et al., 2023); (iii) the Liesegang model is96
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limited in explaining pattern shape variations and cannot generate the spotted or rod-97

shaped patterns commonly seen in Zebra rock formations (Coward et al., 2023).98

In an earlier contribution, we aimed to overcome some limitations of the Liesegang99

model, using the Cahn-Hilliard model to describe the mineral precipitation in a phase100

separation model in binary mixtures (C. Liu et al., 2023a). In this case, stripe patterns101

with the externally imposed periodicity can be stabilized against coarsening above some102

critical modulation amplitude. However, two essential questions were raised by this model.103

First, the diffusion-dominated model may not produce the vast Zebra rocks formation104

argued by Wang et al. (2015). Fluid transport should be necessary for this giant Zebra105

rock to form across several kilometers horizontally. Second, while the previous model can106

produce banded and spotted patterns when varying diffusion coefficient or solute mo-107

bility, it cannot generate the variable bands photographed in the field, containing hor-108

izontal, oblique, and vertical stripes. Thus, we investigate whether directional quench-109

ing can create the observed Liesegang-like patterns. This transport-limited model con-110

centrates on the phase separation process by neglecting the diffusion of the reactants and111

focusing on the dominant fluid flow. Consequently, we investigate whether the fluid trans-112

port velocity and initial conditions uniquely determine the pattern morphology.113

The phase separation process with advection, where fluid flow transports different114

components, can generate a wide variety of self-organized patterns in various systems.115

These include binary alloys, fluid mixtures, polymer blends, and even nanostructured116

thin films. In material science, controlling this process is crucial for designing nanoma-117

terials and nanodevices with specific functionalities. For example, researchers can cre-118

ate regular structures desirable for applications ranging from bioactive implants to poly-119

mer electronics. In such studies Furukawa (1992) investigated the transition between dif-120

ferent morphologies (shapes) in a binary mixture by varying the speed of the quench-121

ing front, the boundary between the separated phases. They observed and classified three122

main categories: irregular, regular lamellar (layered), and regular columnar morpholo-123

gies. Since then, researchers have introduced alternative descriptions for these transi-124

tions, considering factors like dimensionality (2D vs. 3D) (Ishikawa et al., 2022), bound-125

ary and temperature effects (B. Liu et al., 2000; Ishikawa et al., 2022), and the under-126

lying mechanisms governing the transitions (Krekhov, 2009; Tsukada & Kurita, 2020).127

In this contribution we extend the analysis to decipher the geological environments128

by interpreting geological patterns, particularly pattern formation in Zebra rocks. Al-129

though the advection-dominated phase separation model is successfully applied in ma-130

terial science, there are still several research gaps in adopting it in geological pattern for-131

mation: (i) the mechanism of oblique patterns, one of the most notable patterns, remains132

unclear; (ii) the morphological transition from one particular pattern to the oblique pat-133

tern is unexplained; (iii) Liesegang patterns are not replicated by the advection-dominated134

phase separation even though it commonly occurs in diffusion-dominated formulations;135

(iv) the association between the migration velocities and the band thickness of the uni-136

form patterns remains unclear; (v) the plausibility of deriving geological environments137

by reproducing the pattern appearance in Zebra rocks needs investigation. We seek to138

fill these research gaps by adopting the working hypothesis of Kawahara et al. (2022) and139

studying the phase separation of Fe-oxyhydroxide under acidic Fe-bearing fluid trans-140

port conditions by performing numerical simulations in a two-dimensional setting. Note141

that the model is not limited to the choice of the specific phase separation reaction. How-142

ever, if a reaction can be identified, the normalized velocities and concentrations can be143

quantified further by comparing them to laboratory results of the particular reaction cho-144

sen. We focus here primarily on the investigation of the effect of the transport velocity145

and initial Fe-oxyhydroxide concentration on the pattern selection and transitions.146

The remaining parts of this study are organized as follows. Section 2 presents the147

Cahn-Hilliard formulation with the convection term, which can capture the phase sep-148

aration process during mineral precipitation. In Section 3, we first select numerical pa-149
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rameters through a series of convergence studies, and then we conduct parameter stud-150

ies regarding the transport velocity and initial Fe-oxyhydroxide concentration to inves-151

tigate the pattern selection and transition, especially detailed studies for three different152

banded patterns. Eventually, we invert the potential geological pattern by replicating153

the field patterns photographed in a few Zebra rock outcrops. Section 4 discusses our154

numerical results and suggests potential applications of our model in the future. Finally,155

we conclude our study in Section 5.156

2 Methodology157

2.1 Cahn-Hilliard model158

We adopt a classical Cahn-Hilliard model to study Liesegang-like pattern forma-
tion in a reaction-advection-diffusion system A(aq) + B(aq) → C(s). In our study, two
reagents A and B denoting Fe-bearing acidic fluid and dolomite, respectively, in our study,
react and produce C (i.e., Fe-oxyhydroxide). This model captures the phase separation
dynamics occurring in the wake of the fluid front with the A+B chemical reaction. We
focus on pattern formation and transition by simulating the dynamics of the phase-separating
chemical C in our model instead of including its production as we studied in our pre-
vious model (C. Liu et al., 2023a). Using this model, the reaction product C can be sep-
arated into low- and high-concentration phases (Antal et al., 1999). The concentration
contrast between phases leads to the forming of precipitation patterns. In this study, the
Fe-oxyhydroxide concentration enters an unstable region (a.k.a. spinodal), where it di-
vides into a low-concentration region (no precipitate) and a high-concentration region
(precipitate), which is underpinned by the classical Cahn-Hilliard equation (Cahn & Hilliard,
1958; Cahn, 1961):

∂c

∂t
= −∇ ·

(
λ∇ δF

δc

)
(1)

where c is the concentration of the reaction product C and λ is the diffusive mobility;
we assign λ = 1 in current study. Let µ = δF/δc = I ′c + B′

c be a generalized thermo-
dynamic potential that drives the phase separation. The interfacial energy is

Ic =
1

2
σ|∇c|2 (2)

in which σ is a constant relevant to interface sharpness; we set it to σ = 0.5.165

In addition, again for simplicity, we use a Landau-Ginzburg type free energy den-
sity with two minima corresponding to cl and ch and the maximum to c̄ = (cl+ch)/2.

Bc =
ε

2
(c− c̄)2 − γ

4
(c− c̄)4 (3)

where ε and γ are system-dependent parameters. Here, we assume γ = 1 and vary the
parameter ε to control the phase separation process. When ε < 0, the system is sta-
ble with a single minimum; when ε > 0, the system experiences phase separation with
two minima. We simply mimic the transport of the Fe-bearing acidic front by varying
the parameter ε. Initially, we set ε = −1 in the whole system as the static state before
the Fe-bearing acidic front reaches. During the reactive transport process, the param-
eter ε varies over both time and space as follows:

ε =

{
−1, if x < vt

1, if x ≥ vt
(4)

where v is a constant velocity denoting the transport of the Fe-bearing acidic fluid front166

and t is time.167

Finally, by substituting the chemical potential equations (2) and (3), the Cahn-Hilliard
equation (1) becomes

∂c

∂t
= ∇ ·

(
λ∇(−εc+ γc3 − σ∆c)

)
(5)
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Figure 2. Qualitative phase diagram for the phase separation. Phase separation takes place
when ε >0. The system becomes unstable as |c| < 1/

√
3, while the system is metastable when

|c| > 1/
√
3. The system initially has a negative ε=−1, but the concentration is in the unstable

region. After the Fe-bearing acidic fluid sweeps at constant speed v, we switch ε=−1 to ε=1.
By doing this, the fluid-swept area will experience phase separation, and different patterns will
emerge. Adapted from Tsukada and Kurita (2020).

159

160

161

162

163

164

We use a mixed discretization of the system where we avoid the fourth term in the
equation (5) by considering the chemical potential µ as an auxiliary variable to facili-
tate using the standard bilinear finite element space. Then the governing equation (5)
separates as

∂c

∂t
= ∇ · (λ∇µ)

µ = −εc+ γc3 − σ∆c
(6)

2.2 Problem statement168

We consider an initial-boundary value problem in a rectangular domain Ω as dis-171

played in Figure 3. The domain size is Lx = 64 in height and Ly = 32 in width, suf-172

ficiently large to present different categories of patterns. We impose periodic boundary173

conditions on the top and bottom edges for both concentration and chemical potential174

and use the natural boundary condition on the lateral edges. Initially, the product C con-175

centration is set to the stable magnitude, c0 = cin+η in the whole region, where η de-176

notes noise effects, such as the heterogeneous reagents and thermal fluctuations. We as-177

sume η as a random distribution in the range [−0.01, 0.01], a typical value for homoge-178

neous phase-separation simulations (Foard & Wagner, 2012). We put the position of the179

Fe-bearing acidic fluid front at x = Lx. As a result, the whole domain initially remains180

stable. After the front moves left, the swept region undergoes spinodal decomposition,181

creating a phase-separating pattern.182

After determining the boundary and initial conditions, the governing equations (6)183

can be solved by PRISMS-PF (DeWitt et al., 2020), which is an open-source, high-performance184

phase-field code built on a finite element library deal.ii (Arndt et al., 2020). Interested185

readers can derive the weak form based on the Cahn-Hilliard implication. In addition,186

we use the forward Euler method as the time marching technique. To this end, we should187

–6–
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Periodic boundary condition

Lx = 64
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direction

Periodic boundary condition

Figure 3. Sketch of initial and boundary conditions for Liesegang-like patterns formation
after the infiltration of Fe-bearing fluid flow.

169

170

select the time increment satisfying the Courant–Friedrichs–Lewy (CFL) condition, which188

has been implemented in PRISMS-PF.189

3 Results190

We use the Cahn-Hilliard model described in Section 2 to numerically study the191

phase separation phenomenon observed in a geological setting. First, we conduct con-192

vergence studies in space and time to choose an appropriate mesh size and time incre-193

ment in Section 3.1. After selecting the suitable numerical parameters, in Section 3.2,194

we perform parameter studies on the speed of the Fe-bearing acidic fluid front as well195

as the initial concentration of the product, which plays a decisive role in selecting the196

morphology appearance. Finally, Section 3.3 reproduces the different patterns observed197

in Zebra rocks by the numerical simulations.198

3.1 Model convergence study199

We demonstrate PRISMS-PF’s capability for simulating phase separation problems203

by conducting convergence studies in space and time. We perform two simulations for204

the mesh size h selection with a fixed time increment ∆t = 1.25 × 10−5. We vary the205

mesh size as ∆h = 0.125 and ∆h = 0.25, respectively. The selections ensure the typi-206

cal value, i.e., σ/∆h ranging from 2 to 4, for the phase field methods capturing the struc-207

ture and interfacial evolution. Figure 4a shows that the resulting patterns are similar208

except for the localized noise emerging in the transport front. This is because the noise209

term is introduced in the initial concentration distribution. Meanwhile, the band loca-210

tions match well, demonstrating the noise cannot change the internal characteristics.211

Additionally, we select the appropriate time step size by performing the temporal212

convergence. We fix the mesh size as ∆h = 0.25 but vary the time size as ∆t = 10−4
213

and ∆t = 1.25 × 10−5, respectively. The pattern formation after the transport front214

approaches the left boundary is depicted in Figure 4b. The reduced time step is in ex-215

cellent agreement with the large time step. These results imply that the time size ∆t =216

10−4 is small enough to guarantee converged results.217

3.2 Parameter space analysis and patterning218

We thoroughly explore the parameter spaces to understand better how parameters219

affect the pattern formation and transition as the Fe-bearing fluid passes one geologi-220

cal formation. We identify the two main parameters responsible for pattern formation221

–7–
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Coarse mesh, ∆h = 0.25 Large time step, ∆t = 10−4

Fine mesh, ∆h = 0.125 Small time step, ∆t = 1.25 × 10−5

(a) mesh convergence (b) time convergence

Figure 4. Convergence studies determining numerical parameters: (a) mesh size and (b) in-
cremental time step. Parameters used in these simulations are λ=1, σ=0.5, γ=1, and ε shifting
from -1 to 1 after the fluid front passes.

200

201

202

and selection: the fluid velocity v and initial solute concentration cin. We create a phase222

morphology diagram that illustrates the various patterns by fixing one control param-223

eter constant while adjusting another. From our simulation results, we initially classify224

these patterns into five morphologies by their characteristics and the formed pattern with225

the direction of the fluid flow. Subsequently, we assess one category of banded patterns226

quantitatively by relating the spacing coefficient with the fluid speed. These simulations227

use the same setup as those described in Section 3.1.228

3.2.1 Morphology phase diagram229

We numerically examine how the fluid velocity v and initial solute concentration235

cin influence the pattern evolution. For the parameter sweep, we consider seven differ-236

ent fluid velocities, spanning several orders of magnitude from 0.001 to 10, to ensure the237

emergence of all potential morphologies. Additionally, we set the initial solute concen-238

tration cin from 0.0 to 0.5 with an increment of 0.1, satisfying the spinodal decomposi-239

tion condition with a limit of cin<1/
√
3 in Figure 2. As a result, we perform 42 simu-240

lations to observe the morphology evolution while varying v and cin, as shown in Fig-241

ure 5. It is worth noting that we end each simulation as long as the corresponding pat-242

tern shows all the characteristics.243

First, we classify the patterns that emerge following the phase separation, as the244

resulting patterns exhibit great versatility. Drawing upon the features exhibited by these245

patterns, we categorize them as banded or spotted patterns, as discussed in our recent246

work (C. Liu et al., 2022, 2023a). To avoid any potential confusion, we refer to patterns247

with a spotty appearance as spotted patterns. Furthermore, within the banded morpholo-248

gies, we further classify them into three distinct categories based on the direction of the249

bands relative to the fluid flow: (i) orthogonal bands, characterized by stripes perpen-250

dicular to the fluid flow direction; (ii) parallel bands, oriented in parallel with the fluid251

front; and (iii) oblique bands, displaying an inclined angle relative to the fluid front. No-252

tably, no discernible pattern is observed in some instances referred to as homogeneous253

cases. In total, our simulations yield five distinct pattern types. Although this simple254

classification of morphologies is based on our numerical findings, it provides a valuable255

tool for visually distinguishing patterns observed in geological settings on Earth and Mars (Barge256

–8–
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Figure 5. Morphology evolution in the phase diagram where the initial solute concentration
and fluid front speed are varied.

230

231

et al., 2011; Wang et al., 2015; Yoshida et al., 2018). An example is the patterns observed257

in Zebra rocks (Coward et al., 2023). According to the proposed classification criterion,258

we divide the generated patterns into five groups. Figure 6 shows that the fluid veloc-259

ity v and initial solute concentration cin are crucial to determining the pattern type.260

Second, we investigate the effect of the Fe-bearing fluid velocity on the pattern for-261

mation and transition as we can observe the simulated patterns from the bottom to top262

in Figure 6, the simulated patterns transition from parallel bands to orthogonal bands263

and ultimately to spotted patterns. This transition depends on the initial concentration264

level cin. The transition speed from the striped to spotted patterns is particularly sen-265

sitive to concentration, with the speed decreasing as cin increases. In contrast, when cin <266

0.5, the transition speed from parallel to orthogonal stripes is gentler and remains con-267

stant throughout our simulations. Without refined simulations conducted, we report the268

trend that the transition velocity tends to decrease between 0.1 and 0.5 as cin increases.269

This phenomenon becomes apparent when cin reaches 0.5, and the front velocity v drops270

from 0.1 to 0.05. Furthermore, homogeneity only arises when the slow velocity is com-271

bined with a relatively high initial concentration. Interestingly, oblique bands are only272

observed once in our phase diagram, with cin = 0 and v = 0.5. Given the uniqueness273

of this pattern, we provide an in-depth analysis in the following section.274

Finally, we survey the pattern evolution in the horizontal axis to test the influence275

of the initial concentration cin. Unlike the comprehensive spectrum of transitions observed276

when varying the Fe-bearing fluid velocity, changing the concentration cin with a fixed277

v results in only one discernible transition. However, an exception occurs when v = 0.5,278

where oblique stripes appear when cin = 0. When the transport velocity v is relatively279

low, pure parallel patterns emerge, while a transition from orthogonal bands to spots is280
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Figure 6. Morphology classification based on the pattern features: homogeneous, banded, and
spotted patterns and the banded patterns relative to the fluid direction: parallel, oblique, and
orthogonal patterns.

232

233

234

observed at higher velocities. Additionally, either parallel or orthogonal bands evolve into281

spot morphologies, but a transition between parallel and orthogonal stripes is absent.282

3.2.2 Oblique band appearance283

Oblique bands appear in a narrow area with the initial solution concentration cin =287

0 in the morphology phase diagram. Figure 5 illustrates how the stripe patterns change288

from parallel to inclined and ultimately to orthogonal bands when the front speed ac-289

celerates from 0.1 to 1.0 with a fixed cin = 0. We investigate the transition process by290

performing extra simulations with v ranging from 0.4 to 0.6 as Figure 7a shows. There,291

oblique patterns emerge at v = 0.45 and v = 0.5 but with different inclined directions292

relative to the fluid front.293

The arbitrary occurrence of oblique bands is two-fold. First, the creation of the in-294

clined patterns depends on the competition between the emergence of parallel and or-295

thogonal bands. When the transport velocity reaches a critical value, the competition296

becomes comparable. As a consequence, the inclined pattern should appear. Second, this297

competitive mechanism explains the varied angles observed in the phase separation pro-298

cess occurring in an inhomogeneous system. The heterogeneity is realized by the noise299

term that we add in the initial condition. Figure 7c shows that the noise term can dra-300

matically affect the morphology selection. In these simulations, the randomly distributed301

noise term is the only changing parameter since we maintain the front velocity v = 0.45302

constant and vanish the initial concentration. Oblique bands with different directions303

can appear, even in the form of orthogonal patterns.304

The initial solution concentration inhibits the occurrence of oblique patterns. As305

for the cases of cin = 0, we understand that the oblique patterns develop between the306

parallel and orthogonal patterns. To test the possibility of inclined patterns when cin ̸=307

0, we capture the transition process from parallel bands to orthogonal bands as nonzero308

initial concentrations, e.g., cin = 0.1, as Figure 7b shows. Numerical results show that309

oblique patterns cannot appear when parallel bands shift to orthogonal bands. The pat-310

tern features remain unaltered when we use the same setup as in the convergence stud-311
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(a) increasing v with fixed cin = 0.0

(b) increasing v with fixed cin = 0.1

(c) constant v = 0.45 and cin = 0.0

parallel oblique oblique orthogonal

0.4 0.45 0.5 0.6

parallel parallel orthogonal orthogonal

0.1 0.15 0.2 0.25

oblique oblique oblique orthogonal

Figure 7. Pattern formation and selection with increasing front speeds and fixed initial solute
concentration: (a) cin=0 and (b) cin=0.1. (c) Constant front speed cin=0.45 and concentration
cin=0.0 with different .

284

285

286

ies in Section 3.1. This implies that it is the initial concentration that controls the phase312

separation rather than the additional noise term.313

Overall, the vanishing solute concentration plays a pivotal role in determining the314

appearance of oblique patterns, while the noise effect makes the oblique direction emerge315

arbitrarily. Our findings explain why randomly oblique patterns can develop in Zebra316

rocks in the same geological setting (Coward et al., 2023). Specifically, our study sug-317

gests that unprecipitated rocks with heterogeneity tend to develop oblique patterns.318

3.2.3 Orthogonal patterns with Liesegang phenomenon319

In the phase diagram, several orthogonal patterns exhibit characteristics reminis-320

cent of the Liesegang phenomenon. As observed in experiments, Liesegang bands are typ-321

ically governed by empirical laws regarding their formation time, locations, and widths.322

The time law cannot apply in our advection-dominated model since the empirical rela-323

tionships are built in the diffusion-limited experiments. However, we seek to quantita-324

tively validate the Liesegang-like patterns regarding spacing and width laws by focussing325

on a specific combination of v = 5 and cin = 0.1 in Figure 5. This choice is made based326

on the fact that the simulated patterns exhibit behavior closely resembling Liesegang bands.327

Figure 8 presents the product concentration distribution c along the x-axis follow-333

ing the passage of Fe-bearing fluid. As the fluid front propagates, rhythmic precipita-334

tion bands appear, forming regular Liesegang band patterns. Qualitatively, the width335

of periodic stripes and interband spacing increases, consistent with the behavior of Liesegang336

stripes. We quantitatively verify the empirical laws by measuring the band location, e.g.,337

i-th band location denoted by xi, and band thickness, e.g., n-th band thickness repre-338
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Figure 8. The product concentration distribution c along the x-axis after the fluid flow, form-
ing the regular Liesegang band patterns. xi and wn denote location and thickness of the i−th
and n−th bands, respectively.
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Figure 9. Verification of Liesegang bands: (a) spacing law and (b) width law. The shaded
regions are the liner regression’s root mean square error (RMSE).
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332
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We provide quantitative validation for the selected bands and examine the behav-341

ior of Liesegang striping in terms of the empirical spacing and width laws. The spacing342

law indicates a linear relationship between the locations of subsequent bands, given by343

xn+1/xn = 1 + p, where 1 + p represents the spacing coefficient. Figure 9a shows this344

linear relationship, with a high coefficient of determination R2 = 0.99. The estimated345

value of 1+p is approximately 1.26, falling within the 1 to 7 range, consistent with the346

inversion of Zebra rock samples from the same region (C. Liu et al., 2023a).347

Additionally, we investigate the width law, which states that the bandwidth wn is348

proportional to the position xn of the band, i.e., xn ∝ wn. Once again, Figure 9b shows349

a linear relation between xn and wn. By successfully reproducing these two empirical350
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observations from the Liesegang phenomenon, our simplified model demonstrates the abil-351

ity to replicate Liesegang patterns without considering the diffusion of reactants in the352

reaction-diffusion system.353

3.2.4 Uniform pattern354

The uniform pattern, commonly observed in Zebra rocks, suggests that the spac-360

ing coefficient is around 1 + p ≈ 1, following the classical Turing pattern (Hu et al.,361

2022). This study’s uniform pattern refers to orthogonal bands exhibiting minimal strip362

variations. Through our simulations, we discover that the diffusion velocity and the ini-363

tial concentration influence the bandwidth of each uniform pattern.
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Figure 10. (a) The concentration profiles along the x-axis for varying transport velocities v,
ranging from 0.2 to 0.5 with a 0.05 increment, while maintaining a constant initial concentration
of cin=0.1. (b) The formation of uniform bands at the end of the simulation for four transport
velocities. (c) and (d) The banded thickness measured from the simulations for initial concentra-
tions cin=0.1 and cin=0.05, respectively, along with the corresponding linear fit.
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We seek to gain a deeper understanding of the relationship between fluid speed and368

band thickness; thus, we conduct refined simulations in the phase diagram, varying the369

fluid speed v from 0.2 to 0.5 with 0.05 increments while maintaining a constant initial370

concentration of cin = 0.1. Figure 10a shows the concentration profiles along the x-axis,371

where the bands are located in regions with c > 0. Figure 10b illustrates the forma-372

tion of regular patterns at four different velocities. The repeated bands exhibit nearly373

identical thickness wn in each simulation. Therefore, we calculate the average band thick-374

ness to assess the generated thickness for different front velocities. Subsequently, we plot375

the band thickness against the corresponding velocity in Figure 10c. Our results indi-376

cate that the band thickness is proportional to the fluid front speed. Specifically, a higher377

front speed v leads to a decrease in the band thickness wn, consistent with the finding378

from Yoshida et al. (2020). We conduct five additional simulations for cin = 0.05 to val-379

idate this linear relationship further. In analogy to the case of cin = 0.1, the simula-380

tions exhibit the same linear trend as Figure 10d depicts.381
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Figure 11. (a) Concentration profiles along the x-axis for four initial concentrations ranging
from 0.15 and 0.1 to 0.5 with a 0.1 increment with constant transport velocity v=0.5. (b) The
estimated banded thickness from the simulations and the corresponding linear fit.
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The transport velocity and the initial concentration influence the thickness of uni-382

form bands. The morphology phase diagram in Figure 5 shows in the column correspond-383

ing to v = 0.5 for various initial concentrations (cin=0.1, 0.2, and 0.3). We quantita-384

tively investigate this relationship using additional simulations with an initial concen-385

tration of cin = 0.15 and the same fluid speed of v = 0.5. Figure 11a displays the con-386

centration profile along the x-axis, enabling the measurement of the mean band thick-387

ness. By determining the average band thickness for each simulation, we can establish388

a correlation between the parameter cin and the band thickness, as shown in Figure 11b.389

The band thickness decreases as the initial concentration increases, displaying an almost390

linear relationship.391

3.3 Zebra rock pattern comparison392

This section replicates the hematite patterns observed in Zebra rocks from the West-393

ern Australian East Kimberley region. We compare the primary features captured by394

our simulations with those present in the field patterns for different pattern classifica-395

tions, such as parallel, orthogonal, oblique, and spotted patterns. Our primary focus is396

to reproduce the diverse morphologies observed in Zebra rocks. However, a quantitative397

analysis is beyond the scope of the current research. For further details, see our recent398

work that accurately replicates orthogonal banded patterns in Zebra rocks (C. Liu et al.,399

2023a).400

Parallel bands represent the stripes aligned parallel to the direction of Fe-bearing404

flow. Field exploration conducted by Coward and co-authors (Coward et al., 2023) in405

four Zebra rock deposits reveals that this pattern is exclusively observed in the Remote406

Island outcrop. The researchers identified two representatives within this category: pil-407

lars and vertical stripes. Our simulations indicate that these representatives can be clas-408

sified as parallel bands with varying propagation lengths. We replicate the two Zebra409

rock samples and determine the corresponding flow speeds and initial concentrations by410

comparing the simulated morphologies in the morphology phase diagram of Figure 5. The411

inverted parameters have the same front velocity v = 0.05 and the different initial con-412

centrations cin = 0.5 for sample 1 and cin = 0.5 for sample 2, respectively, as shown413

in Figure 12.414
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(a) parallel pattern 1 (b) parallel pattern 2

flow direction

Figure 12. Comparison between the hematite parallel patterns in Zebra rocks and our sim-
ulated patterns. The top two Zebra rock samples are from the Remote Island outcrop, adapted
from Coward et al. (2023). The arrow denotes the Fe-bearing flow direction in each figure.

401

402

403

Our inversion indicates that parallel bands emerge under conditions of low fluid ve-415

locities. The relatively slow fluid velocity, coupled with a high initial concentration, pro-416

motes the formation of elongated strips. On the other hand, a low concentration facil-417

itates the development of flat stripes. Consequently, our findings suggest that the trans-418

port velocity in the Remote Island outcrop may be relatively sluggish compared to other419

locations. Furthermore, inhomogeneous initial conditions can give rise to the simulta-420

neous occurrence of both elongated and flat bands.421

Orthogonal bands are perpendicular to the fluid direction, commonly observed in425

various outcrops. Based on field observations, two orthogonal stripes can be distinguished426

in Figure 13. The first group consists of uniform bands with nearly uniform band thick-427

ness, as discussed in Section 3.2.4. The second group comprises Liesegang strips that ex-428

hibit an increasing bandwidth along the flow direction, as Section 8 describes.

(a) orthogonal pattern 1 (b) orthogonal pattern 2

flow direction

Figure 13. Comparison between the hematite orthogonal patterns in Zebra rocks and our
simulated patterns. The top-right Zebra rock sample is located at the Donkey Road deposit,
while the top-right one is from the Remote Island outcrop, adapted from Coward et al. (2023).

422

423

424
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Following the same procedure as in the previous comparison, we identify the cor-429

responding orthogonal stripes that resemble the field morphologies in Figure 5. For the430

uniform bands, parameters v = 0.5 and c = 0.2 produce a similar pattern as shown431

in Figure 13. When the velocity is increased to v = 1.0 while keeping c = 0.2 constant,432

our simulation results in a Liesegang pattern. Thus, although we compare field and sim-433

ulated patterns visually, a quantitative analysis is possible, e.g., in C. Liu et al. (2023a).434

Nevertheless, by exploring the morphology phase diagram in Figure 5, we deduce that435

the uniform bands indicate a lower transport velocity than the Liesegang patterns. Thus,436

our study might suggest that the transport velocity for the uniform pattern observed in437

Donkey Road is lower than that for the Liesegang bands observed in the Remote Island.438

Oblique bands are stripes inclined relative to the fluid front, as Figure 14 depicts.442

The appearance of oblique patterns occurs in field observation and analogous simulations.443

Previously, we explained this pattern as a consequence of curved diffusion directions (C. Liu444

et al., 2023a), which could be applicable in specific geological situations. However, this445

study relaxes the constraint of curved transport velocity for the inclined stripes, allow-446

ing them to emerge more efficiently, mimicking a geological setting. Alternatively, the447

competition between parallel and orthogonal bands could contribute to the forming of448

oblique bands, as suggested by the transition morphology in Figure 5.

(a) oblique pattern 1 (b) oblique pattern 2

flow direction

Figure 14. Comparison between the hematite oblique patterns in Zebra rocks and our simu-
lated patterns. The top-right Zebra rock sample is from the Remote Island outcrop (after Coward
et al. (2023)), while the top-right one is photographed from the Western Australia Museum.

439

440

441

449

Next, we investigate parameter combinations for two Zebra rock samples from the450

Remote Island and the Western Australian Museum. Figure 14 demonstrates that fluid451

transport velocities of v = 0.45 and v = 0.5, along with a vanishing initial concentra-452

tion cin = 0.0, yield comparable oblique bands in the two Zebra rock samples. Inter-453

estingly, the field pattern exhibits a branching behavior in some bands, which is also cap-454

tured in our results in Figure 14b. Furthermore, while two velocities explain different455

patterns in our study, the presence of oblique patterns is heavily influenced by the noise456

term η, as Figure 7c shows. Consequently, velocities ranging from 0.45 to 0.5 will likely457

result in oblique patterns, with the inclined angle pattern depending on the initial noise458

distribution. Nevertheless, the narrowed range of velocities may provide insight into the459

potential geological environments during the formation of oblique patterns.460
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Spotted patterns combine stripes and spots and patterns consisting solely of spots.464

Figures 15a and 15b depict the two types of spotted patterns: (i) stripes that separate465

into connected spots and (ii) fully developed isolated spots. Our simulations indicate that466

higher fluid speeds contribute to the emergence of mixed patterns. Furthermore, the spot-467

ted patterns tend to appear when the initial concentration cin falls within the range of468

0.2 to 0.4, and the fluid speed v exceeds 0.5.

(a) spotted pattern 1 (b) spotted pattern 2

flow direction

Figure 15. Comparison between the hematite spotted patterns in Zebra rocks and our simu-
lated spots. The top-right Zebra rock sample is from the Remote Island outcrop (after Coward et
al. (2023)), while the top-right one is located at the Donkey Load deposit.
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462

463

469

Our simulated morphologies determine the optimal parameters to produce mor-470

phologies similar to those in the Museum samples are v = 5.0 and cin = 0.4 for sam-471

ple 1 of the Remote Island, and v = 1.0 and cin = 0.4 for sample 2 of the Donkey Road.472

The quantified parameters suggest that the transport velocity in Donkey Road is lower473

than that for the Liesegang bands observed in the Remote Island. Additionally, our model474

successfully simulates the Ostwald ripening phenomenon, where the stripes separate into475

connected and isolated spots in both simulations. This phenomenon plays a crucial role476

in the pattern transition observed in Zebra rocks, as discussed in our recent work (C. Liu477

et al., 2023a).478

4 Discussion479

In this contribution we explored a new framework to explain the diverse patterns480

observed in Zebra rocks. This framework builds on the idea of self-organization through481

a process similar to the Liesegang phenomenon, where chemicals organize themselves into482

bands. Our approach combines the Liesegang theory with a concept from material sci-483

ence called phase separation. We modify a well-established model (Cahn-Hilliard) by adding484

the effect of flowing groundwater (advection) to mimic how iron oxide dissolves and moves485

through rock. This improved model successfully reproduces the variety of patterns seen486

in Zebra rocks. The model reveals that it is important to distinguish these Zebra rock487

patterns from classic Liesegang bands. Classic Liesegang patterns typically have bands488

or rings that increase in width and spacing as they move away from their starting point.489

Zebra rocks, however, exhibit a much wider range of patterns, including bands, rods, and490

ellipses. We therefore refer to them as Liesegang-like patterns.491

–17–



manuscript submitted to JGR: Solid Earth

For the transport-limited case the observed morphological variations between the492

Liesegang-like patterns identify differing geological environments during the pattern-forming493

process, emphasizing just two factors: the initial solute concentration cin and the fluid494

flow velocity v. By systematically examining the parameter space of cin and v using our495

model, we can generate all variations of the Liesegang-like patterns previously identified.496

However, the impact of geological parameters on the band characteristics varies depend-497

ing on the specific category of Liesegang-like patterns being considered. For example,498

an oblique banding occurrence most probably indicates the vanishing initial solute con-499

centration before the infiltration of acidic iron-bearing fluids. When the Fe-bearing fluid500

flow speed narrows to a limited region, the oblique patterns emerge due to the compet-501

ing growth of orthogonal and parallel bands. Additionally, the arbitrary inclination an-502

gles of the oblique bands may be attributed to the heterogeneous geological conditions503

represented by the noise term when setting the initial solute concentration vanish. Our504

findings provide insight into the development of randomly oblique patterns observed in505

Zebra rocks at five outcrop locations (Coward et al., 2023).506

One of the categories of orthogonal bands obeys the spacing and width laws com-507

monly observed in traditional Liesegang banding. We have previously replicated this type508

of pattern, referred to as Liesegang banding, using a pure diffusion-based Cahn-Hilliard509

formulation. However, we still classify it as a type of Liesegang-like pattern because the510

advection-based formulation annihilates the time law which is primarily governed by diffusion-511

limited transport (C. Liu et al., 2022). Our simulations reveal that multiple bands emerge512

behind the advection front, unlike the classic Liesegang phenomenon, where band thick-513

ness increases step by step. The Ostwald ripening process gradually causes neighboring514

bands to coarsen, eventually leading to characteristics similar to those observed in Liesegang515

banding.516

The existence of a linear correlation between the uniform thickness of orthogonal517

bands and two controlling parameters presents a valuable opportunity for interpreting518

the geological context. Our simulations indicate that the band thickness decreases lin-519

early with increasing fluid speed; a similar correlation can be found with the initial so-520

lute concentration, too. These quantitative relationships allow us to estimate the fluid521

flow rates and initial concentrations based on photographic images captured in the field.522

However, a quantitative comparison of the field patterns with the simulated morpholo-523

gies is out of the scope of current study. The operational procedure for deriving the dif-524

fusion coefficient from orthogonal Zebra rock patterns has been extensively demonstrated525

in our earlier work (C. Liu et al., 2023a).526

The rods and ellipses observed in Zebra rock likely represent an intermediate Ost-527

wald Ripening stage, wherein stripes gradually localize into spots or individual spots coarsen528

into more prominent spots over time. The former is likely a result of the imposed het-529

erogeneity. At the same time, the latter serves to reduce overall system energy, where530

combined rods or ellipses are energetically favorable compared to smaller individual spots (Ostwald,531

1902). Although our phase separation model can replicate irregular pattern categories,532

we cannot exclude the possibility of geological deformation occurring after pattern for-533

mation (Sheldon & Retallack, 2001; Retallack, 2021). For instance, formation compaction534

may cause spheroids to reduce, resulting in an elliptical shape, a common occurrence in535

geological settings. Additional field and experimental work is necessary to confirm the536

potential impact of compaction on pattern formation.537

The examined Zebra rock outcrops exhibit distinct pattern features that have the538

potential to provide valuable information about chemical conditions and iron transport.539

First, parallel and orthogonal patterns can be observed in different layers of the Ran-540

ford formation, attributed to variations in the infiltrating flow rate into the rock. Re-541

ferring to the morphology phase diagram (see Figure 5), we can interpret that the fluid542

flow rate in the parallel banding layer is lower than that in the orthogonal layer. Ma-543

terial heterogeneity, such as permeability, may contribute to these differences in flow rate,544
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as the patterns are bounded by bedding planes. Similarly, inhomogeneous initial con-545

ditions can give rise to the simultaneous occurrence of both elongated and flat bands ob-546

served in the Remote Island. Furthermore, the variations in pattern features can be used547

to infer the flow conditions during the pattern formation process.548

Zebra rocks, while beautiful and often used as decorative stones, hold a deeper se-549

cret. Understanding the patterns of hematite (iron-oxide) within them can unlock valu-550

able geological information. These patterns reveal the complex interplay between chem-551

ical reactions and fluid movement that shaped the rock. Similar processes may have been552

at work in the distant past, creating features like the early Earth’s banded iron forma-553

tions (BIFs) and the hematite spherules found on Mars. For instance, iron oxide spots554

and rods found in Earth’s Navajo Sandstone are considered a close match to hematite555

nodules on Mars (Chan et al., 2004; Yoshida et al., 2018). The insights gained from study-556

ing Zebra rocks may therefore provide valuable tools for interpreting data and poten-557

tially even detecting signs of past life on Mars.558

The Precambrian Banded Iron Formations (BIFs) show three scales of bandings559

that may have self-organizational origins (Wang et al., 2009). Understanding how Ze-560

bra rock patterns form has significant implications beyond just Zebra rocks themselves.561

It can help us unlock secrets about Earth’s history and potentially guide resource ex-562

ploration. BIFs, similar to Zebra rocks in pattern formation but with a higher iron con-563

tent, are commercially valuable for iron ore. By studying Zebra rocks with our model,564

methods that identify promising BIF deposits using aerial photographs or drone images565

may be developed. This could be a game-changer for resource exploration. The abun-566

dance of BIFs in the Archaean and early Proterozoic eras, followed by their decline, sug-567

gests a significant shift in the ocean environment. Using our simulations to translate ob-568

served patterns into geological parameters guides the potential development of entirely569

new geophysical tools. These tools could help us reconstruct the conditions on early Earth’s570

crust, offering a glimpse into our planet’s distant past.571

5 Conclusion572

This study delves into the intriguing patterns found in Zebra rocks, focusing on how573

these patterns form over time. We use a computer model that simulates the separation574

of iron oxide (hematite) under flowing water (advective phase separation). This model575

provides valuable insights into how two key factors influence the shapes and transitions576

of these patterns: (i) how the iron oxide is initially distributed within the rock affects577

the resulting patterns; (ii) the speed at which water moves through the rock plays a role578

in shaping the patterns.579

Using our simulations, we were able to categorize the resulting patterns (referred580

to as Liesegang-like patterns) and quantify the influence of the two factors mentioned581

above. Here are some key findings: (i) we were able to recreate the spacing and width582

of various Liesegang-like patterns based on the initial iron oxide distribution and water583

flow velocity; (ii) lower initial iron oxide concentration seems to favor the formation of584

slanted patterns, and the angle of the slant can reveal information about the rock’s in-585

ternal structure; (iii) for straight, banded patterns, we identified a linear relationship be-586

tween the controlling factors and the thickness of the bands.587

Our classification system allows us to match simulated patterns with those observed588

in the field. This "reverse analysis" helps us to estimate the key parameters that con-589

trol pattern formation in different Zebra rock locations. By comparing simulated pat-590

terns with real-world observations, we found a close resemblance, suggesting the model’s591

accuracy. This paves the way for a powerful tool: a computer-aided interpretation frame-592

work. This tool can analyze patterns captured in field photographs, similar to Zebra rocks.593

We can then estimate crucial geochemical parameters that were present when the pat-594
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terns formed, including the chemical makeup and water flow conditions. The model’s ca-595

pability to interpret past environments is particularly valuable for understanding the con-596

ditions on early Earth and Mars. By analyzing patterns in rocks from these locations,597

we can potentially uncover clues about the chemical conditions and fluid movement that598

existed billions of years ago.599

6 Open Research600
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review.602
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Abstract15

Zebra rocks, characterized by their striking reddish-brown stripes, rods, and spots of16

hematite (Fe-oxide), showcase complex self-organized patterns formed under far-from-17

equilibrium conditions. Despite their recognition, the underlying mechanisms remain elu-18

sive. We introduce a novel advection-dominated phase-field model that effectively repli-19

cates the Liesegang-like patterns observed in Zebra rocks. This model leverages the con-20

cept of phase separation, a well-established principle governing Liesegang phenomena.21

Our findings reveal that initial solute concentration and fluid flow velocity are critical22

determinants in pattern selection and transition. We quantitatively explain the spacing23

and width of a specific Liesegang-like pattern category. Furthermore, the model demon-24

strates that vanishingly low initial concentrations promote the formation of oblique pat-25

terns, with inclination angles influenced by rock heterogeneity. Additionally, we estab-26

lish a quantitative relationship between band thickness and geological parameters for or-27

thogonal bands. This enables the characterization of critical geological parameters based28

solely on static patterns observed in Zebra rocks, providing valuable insights into their29

formation environments. The diverse patterns in Zebra rocks share similarities with mor-30

phologies observed on early Earth and Mars, such as banded iron formations and hematite31

spherules. Our model, therefore, offers a plausible explanation for the formation mech-32

anisms of these patterns and presents a powerful tool for deciphering the geochemical33

environments of their origin.34

Plain Language Summary35

Zebra rocks, known for their unique red and brown stripes and spots, hold clues36

to how similar patterns formed on early Earth and Mars. We have developed a new model37

to explain how these intriguing patterns form. The model suggests that the flow of flu-38

ids and the initial amount and location of dissolved iron-oxide (rust) in water plays a39

big role in shaping the final Zebra rock design. The speed of the flow and the initial amount40

of rust can create different stripe and spot patterns, just like the ones in Zebra rocks.41

By studying these rocks, we can potentially decipher fluid flow scenarios of ancient en-42

vironments on both Earth and Mars.43

1 Introduction44

When geological systems are far from equilibrium, self-organization processes can45

form geochemical patterns autonomously (Ortoleva et al., 1987; L’Heureux, 2013; Wang46

et al., 2015; Al-Ghoul & Sultan, 2019; C. Liu et al., 2022, 2023a; Yatsuda et al., 2023;47

Qiu et al., 2024). Heterogeneity of geological materials and systems as well as compli-48

cated boundary conditions can make the observed patterns rich in information about the49

geological environments in which they are formed, particularly concerning fluid migra-50

tion and initial conditions. In this contribution we develop a theory and method to use51

these patterns to provide a window into the past of planetary evolution.52

One example of extensively studied pattern formation is the formation of variable53

hematite (Fe-oxide) on early Earth and Mars, including the Zebra rock formation, Pre-54

cambrian banded iron formations (BIFs), Mississippi-Valley-type (MVT) ores, and oth-55

ers (Wang et al., 2009, 2015; C. Liu et al., 2023a). Field evidence suggests that ground-56

water flows influence the formation of Fe-oxide precipitation bands and that BIFs may57

reflect the changing composition of the oceanic crust (Kawahara et al., 2022; Wang et58

al., 2009). Additionally, concretions formed in Jurassic Navajo Sandstone have been pro-59

posed as a terrestrial analog to hematite spherules detected by the rover Opportunity60

at the Meridiani Planum site on Mars (Chan et al., 2004; Arvidson et al., 2014; Yoshida61

et al., 2018). Therefore, a better understanding of the pattern-forming processes in rocks62

and minerals can reveal valuable information about the geological environment on early63
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Earth and Mars, including the possibility of aqueous environments on Mars and the abil-64

ity to invert fluid flow velocity and initial solute concentration on early Earth.65

We study the Zebra Rock pattern in the northern region of Western Australia, which66

exhibits a unique and highly noticeable rhythmic concentration of hematite (Kawahara67

et al., 2022). Among all hematite banding patterns, none are as distinct and rich as the68

Zebra rock patterns. Thus, the Zebra rock formation is an excellent analog for various69

pattern-forming processes associated with subsurface environmental evolution. Zebra rock70

formation contains reddish-brown bands, rods, and elliptical spots on a white or light-71

colored background, as shown in Figure 1. In our earlier work, we linked Zebra rock for-72

mation to the Liesegang phenomenon, a process where supersaturation, nucleation (for-73

mation of solid particles), and depletion compete to create banded patterns (C. Liu et74

al., 2023a, 2023b). This connection was made because some Zebra rock patterns look sim-75

ilar to Liesegang bands. However, classic Liesegang bands typically show increasing band76

thickness and spacing as they form. Zebra rocks, on the other hand, exhibit a wider va-77

riety of patterns. To differentiate these, we refer to the Zebra rock patterns as Liesegang-78

like patterns throughout this study.79

(a) orthogonal pattern (b) parallel pattern

(c) oblique pattern (d) spotted pattern

flow direction

flow direction

flow direction flow direction

Figure 1. Rich patterns appear in Zebra rocks in the northern region of Western Australia:
(a) orthogonal pattern; (b) parallel pattern (after Coward et al. (2023)); (c) oblique pattern; and
(d) spotted patterns.

80

81

82

The fundamental Liesegang precipitation model helps to explain the forming mech-83

anism of Zebra rocks (Loughnan & Roberts, 1990; Kawahara et al., 2022; Coward et al.,84

2023; C. Liu et al., 2023a). However, there are many other hypotheses regarding their85

origin, including alternating sedimentation either in marine environments (Larcombe,86

1926) or ripple trough (Geidans, 1981), ferronematic liquid crystals (Mattievich et al.,87

2003), acid-sulfate soil weathering in conjunction with redox (Retallack, 2021).88

Recently, acidic-hydrothermal alterations have been suggested to form Liesegang-89

like patterns behind a moving front of concentrated iron (Kawahara et al., 2022). How-90

ever, this theory faces several challenges in explaining the diverse Zebra rock patterns:91

(i) the Liesegang theory predicts only simple band or ring patterns, while Zebra rocks92

exhibit a wider variety, including horizontal, vertical, and slanted stripes; (ii) diffusion-93

driven Liesegang patterns typically form over a small area. The theory has difficulties94

in explaining the vast, multi-layered patterns observed in the Ediacaran Ranford For-95

mation, spanning over 45 kilometers (Coward et al., 2023); (iii) the Liesegang model is96
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limited in explaining pattern shape variations and cannot generate the spotted or rod-97

shaped patterns commonly seen in Zebra rock formations (Coward et al., 2023).98

In an earlier contribution, we aimed to overcome some limitations of the Liesegang99

model, using the Cahn-Hilliard model to describe the mineral precipitation in a phase100

separation model in binary mixtures (C. Liu et al., 2023a). In this case, stripe patterns101

with the externally imposed periodicity can be stabilized against coarsening above some102

critical modulation amplitude. However, two essential questions were raised by this model.103

First, the diffusion-dominated model may not produce the vast Zebra rocks formation104

argued by Wang et al. (2015). Fluid transport should be necessary for this giant Zebra105

rock to form across several kilometers horizontally. Second, while the previous model can106

produce banded and spotted patterns when varying diffusion coefficient or solute mo-107

bility, it cannot generate the variable bands photographed in the field, containing hor-108

izontal, oblique, and vertical stripes. Thus, we investigate whether directional quench-109

ing can create the observed Liesegang-like patterns. This transport-limited model con-110

centrates on the phase separation process by neglecting the diffusion of the reactants and111

focusing on the dominant fluid flow. Consequently, we investigate whether the fluid trans-112

port velocity and initial conditions uniquely determine the pattern morphology.113

The phase separation process with advection, where fluid flow transports different114

components, can generate a wide variety of self-organized patterns in various systems.115

These include binary alloys, fluid mixtures, polymer blends, and even nanostructured116

thin films. In material science, controlling this process is crucial for designing nanoma-117

terials and nanodevices with specific functionalities. For example, researchers can cre-118

ate regular structures desirable for applications ranging from bioactive implants to poly-119

mer electronics. In such studies Furukawa (1992) investigated the transition between dif-120

ferent morphologies (shapes) in a binary mixture by varying the speed of the quench-121

ing front, the boundary between the separated phases. They observed and classified three122

main categories: irregular, regular lamellar (layered), and regular columnar morpholo-123

gies. Since then, researchers have introduced alternative descriptions for these transi-124

tions, considering factors like dimensionality (2D vs. 3D) (Ishikawa et al., 2022), bound-125

ary and temperature effects (B. Liu et al., 2000; Ishikawa et al., 2022), and the under-126

lying mechanisms governing the transitions (Krekhov, 2009; Tsukada & Kurita, 2020).127

In this contribution we extend the analysis to decipher the geological environments128

by interpreting geological patterns, particularly pattern formation in Zebra rocks. Al-129

though the advection-dominated phase separation model is successfully applied in ma-130

terial science, there are still several research gaps in adopting it in geological pattern for-131

mation: (i) the mechanism of oblique patterns, one of the most notable patterns, remains132

unclear; (ii) the morphological transition from one particular pattern to the oblique pat-133

tern is unexplained; (iii) Liesegang patterns are not replicated by the advection-dominated134

phase separation even though it commonly occurs in diffusion-dominated formulations;135

(iv) the association between the migration velocities and the band thickness of the uni-136

form patterns remains unclear; (v) the plausibility of deriving geological environments137

by reproducing the pattern appearance in Zebra rocks needs investigation. We seek to138

fill these research gaps by adopting the working hypothesis of Kawahara et al. (2022) and139

studying the phase separation of Fe-oxyhydroxide under acidic Fe-bearing fluid trans-140

port conditions by performing numerical simulations in a two-dimensional setting. Note141

that the model is not limited to the choice of the specific phase separation reaction. How-142

ever, if a reaction can be identified, the normalized velocities and concentrations can be143

quantified further by comparing them to laboratory results of the particular reaction cho-144

sen. We focus here primarily on the investigation of the effect of the transport velocity145

and initial Fe-oxyhydroxide concentration on the pattern selection and transitions.146

The remaining parts of this study are organized as follows. Section 2 presents the147

Cahn-Hilliard formulation with the convection term, which can capture the phase sep-148

aration process during mineral precipitation. In Section 3, we first select numerical pa-149
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rameters through a series of convergence studies, and then we conduct parameter stud-150

ies regarding the transport velocity and initial Fe-oxyhydroxide concentration to inves-151

tigate the pattern selection and transition, especially detailed studies for three different152

banded patterns. Eventually, we invert the potential geological pattern by replicating153

the field patterns photographed in a few Zebra rock outcrops. Section 4 discusses our154

numerical results and suggests potential applications of our model in the future. Finally,155

we conclude our study in Section 5.156

2 Methodology157

2.1 Cahn-Hilliard model158

We adopt a classical Cahn-Hilliard model to study Liesegang-like pattern forma-
tion in a reaction-advection-diffusion system A(aq) + B(aq) → C(s). In our study, two
reagents A and B denoting Fe-bearing acidic fluid and dolomite, respectively, in our study,
react and produce C (i.e., Fe-oxyhydroxide). This model captures the phase separation
dynamics occurring in the wake of the fluid front with the A+B chemical reaction. We
focus on pattern formation and transition by simulating the dynamics of the phase-separating
chemical C in our model instead of including its production as we studied in our pre-
vious model (C. Liu et al., 2023a). Using this model, the reaction product C can be sep-
arated into low- and high-concentration phases (Antal et al., 1999). The concentration
contrast between phases leads to the forming of precipitation patterns. In this study, the
Fe-oxyhydroxide concentration enters an unstable region (a.k.a. spinodal), where it di-
vides into a low-concentration region (no precipitate) and a high-concentration region
(precipitate), which is underpinned by the classical Cahn-Hilliard equation (Cahn & Hilliard,
1958; Cahn, 1961):

∂c

∂t
= −∇ ·

(
λ∇ δF

δc

)
(1)

where c is the concentration of the reaction product C and λ is the diffusive mobility;
we assign λ = 1 in current study. Let µ = δF/δc = I ′c + B′

c be a generalized thermo-
dynamic potential that drives the phase separation. The interfacial energy is

Ic =
1

2
σ|∇c|2 (2)

in which σ is a constant relevant to interface sharpness; we set it to σ = 0.5.165

In addition, again for simplicity, we use a Landau-Ginzburg type free energy den-
sity with two minima corresponding to cl and ch and the maximum to c̄ = (cl+ch)/2.

Bc =
ε

2
(c− c̄)2 − γ

4
(c− c̄)4 (3)

where ε and γ are system-dependent parameters. Here, we assume γ = 1 and vary the
parameter ε to control the phase separation process. When ε < 0, the system is sta-
ble with a single minimum; when ε > 0, the system experiences phase separation with
two minima. We simply mimic the transport of the Fe-bearing acidic front by varying
the parameter ε. Initially, we set ε = −1 in the whole system as the static state before
the Fe-bearing acidic front reaches. During the reactive transport process, the param-
eter ε varies over both time and space as follows:

ε =

{
−1, if x < vt

1, if x ≥ vt
(4)

where v is a constant velocity denoting the transport of the Fe-bearing acidic fluid front166

and t is time.167

Finally, by substituting the chemical potential equations (2) and (3), the Cahn-Hilliard
equation (1) becomes

∂c

∂t
= ∇ ·

(
λ∇(−εc+ γc3 − σ∆c)

)
(5)
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Figure 2. Qualitative phase diagram for the phase separation. Phase separation takes place
when ε >0. The system becomes unstable as |c| < 1/

√
3, while the system is metastable when

|c| > 1/
√
3. The system initially has a negative ε=−1, but the concentration is in the unstable

region. After the Fe-bearing acidic fluid sweeps at constant speed v, we switch ε=−1 to ε=1.
By doing this, the fluid-swept area will experience phase separation, and different patterns will
emerge. Adapted from Tsukada and Kurita (2020).
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160
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164

We use a mixed discretization of the system where we avoid the fourth term in the
equation (5) by considering the chemical potential µ as an auxiliary variable to facili-
tate using the standard bilinear finite element space. Then the governing equation (5)
separates as

∂c

∂t
= ∇ · (λ∇µ)

µ = −εc+ γc3 − σ∆c
(6)

2.2 Problem statement168

We consider an initial-boundary value problem in a rectangular domain Ω as dis-171

played in Figure 3. The domain size is Lx = 64 in height and Ly = 32 in width, suf-172

ficiently large to present different categories of patterns. We impose periodic boundary173

conditions on the top and bottom edges for both concentration and chemical potential174

and use the natural boundary condition on the lateral edges. Initially, the product C con-175

centration is set to the stable magnitude, c0 = cin+η in the whole region, where η de-176

notes noise effects, such as the heterogeneous reagents and thermal fluctuations. We as-177

sume η as a random distribution in the range [−0.01, 0.01], a typical value for homoge-178

neous phase-separation simulations (Foard & Wagner, 2012). We put the position of the179

Fe-bearing acidic fluid front at x = Lx. As a result, the whole domain initially remains180

stable. After the front moves left, the swept region undergoes spinodal decomposition,181

creating a phase-separating pattern.182

After determining the boundary and initial conditions, the governing equations (6)183

can be solved by PRISMS-PF (DeWitt et al., 2020), which is an open-source, high-performance184

phase-field code built on a finite element library deal.ii (Arndt et al., 2020). Interested185

readers can derive the weak form based on the Cahn-Hilliard implication. In addition,186

we use the forward Euler method as the time marching technique. To this end, we should187
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Figure 3. Sketch of initial and boundary conditions for Liesegang-like patterns formation
after the infiltration of Fe-bearing fluid flow.

169

170

select the time increment satisfying the Courant–Friedrichs–Lewy (CFL) condition, which188

has been implemented in PRISMS-PF.189

3 Results190

We use the Cahn-Hilliard model described in Section 2 to numerically study the191

phase separation phenomenon observed in a geological setting. First, we conduct con-192

vergence studies in space and time to choose an appropriate mesh size and time incre-193

ment in Section 3.1. After selecting the suitable numerical parameters, in Section 3.2,194

we perform parameter studies on the speed of the Fe-bearing acidic fluid front as well195

as the initial concentration of the product, which plays a decisive role in selecting the196

morphology appearance. Finally, Section 3.3 reproduces the different patterns observed197

in Zebra rocks by the numerical simulations.198

3.1 Model convergence study199

We demonstrate PRISMS-PF’s capability for simulating phase separation problems203

by conducting convergence studies in space and time. We perform two simulations for204

the mesh size h selection with a fixed time increment ∆t = 1.25 × 10−5. We vary the205

mesh size as ∆h = 0.125 and ∆h = 0.25, respectively. The selections ensure the typi-206

cal value, i.e., σ/∆h ranging from 2 to 4, for the phase field methods capturing the struc-207

ture and interfacial evolution. Figure 4a shows that the resulting patterns are similar208

except for the localized noise emerging in the transport front. This is because the noise209

term is introduced in the initial concentration distribution. Meanwhile, the band loca-210

tions match well, demonstrating the noise cannot change the internal characteristics.211

Additionally, we select the appropriate time step size by performing the temporal212

convergence. We fix the mesh size as ∆h = 0.25 but vary the time size as ∆t = 10−4
213

and ∆t = 1.25 × 10−5, respectively. The pattern formation after the transport front214

approaches the left boundary is depicted in Figure 4b. The reduced time step is in ex-215

cellent agreement with the large time step. These results imply that the time size ∆t =216

10−4 is small enough to guarantee converged results.217

3.2 Parameter space analysis and patterning218

We thoroughly explore the parameter spaces to understand better how parameters219

affect the pattern formation and transition as the Fe-bearing fluid passes one geologi-220

cal formation. We identify the two main parameters responsible for pattern formation221
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Coarse mesh, ∆h = 0.25 Large time step, ∆t = 10−4

Fine mesh, ∆h = 0.125 Small time step, ∆t = 1.25 × 10−5

(a) mesh convergence (b) time convergence

Figure 4. Convergence studies determining numerical parameters: (a) mesh size and (b) in-
cremental time step. Parameters used in these simulations are λ=1, σ=0.5, γ=1, and ε shifting
from -1 to 1 after the fluid front passes.

200

201

202

and selection: the fluid velocity v and initial solute concentration cin. We create a phase222

morphology diagram that illustrates the various patterns by fixing one control param-223

eter constant while adjusting another. From our simulation results, we initially classify224

these patterns into five morphologies by their characteristics and the formed pattern with225

the direction of the fluid flow. Subsequently, we assess one category of banded patterns226

quantitatively by relating the spacing coefficient with the fluid speed. These simulations227

use the same setup as those described in Section 3.1.228

3.2.1 Morphology phase diagram229

We numerically examine how the fluid velocity v and initial solute concentration235

cin influence the pattern evolution. For the parameter sweep, we consider seven differ-236

ent fluid velocities, spanning several orders of magnitude from 0.001 to 10, to ensure the237

emergence of all potential morphologies. Additionally, we set the initial solute concen-238

tration cin from 0.0 to 0.5 with an increment of 0.1, satisfying the spinodal decomposi-239

tion condition with a limit of cin<1/
√
3 in Figure 2. As a result, we perform 42 simu-240

lations to observe the morphology evolution while varying v and cin, as shown in Fig-241

ure 5. It is worth noting that we end each simulation as long as the corresponding pat-242

tern shows all the characteristics.243

First, we classify the patterns that emerge following the phase separation, as the244

resulting patterns exhibit great versatility. Drawing upon the features exhibited by these245

patterns, we categorize them as banded or spotted patterns, as discussed in our recent246

work (C. Liu et al., 2022, 2023a). To avoid any potential confusion, we refer to patterns247

with a spotty appearance as spotted patterns. Furthermore, within the banded morpholo-248

gies, we further classify them into three distinct categories based on the direction of the249

bands relative to the fluid flow: (i) orthogonal bands, characterized by stripes perpen-250

dicular to the fluid flow direction; (ii) parallel bands, oriented in parallel with the fluid251

front; and (iii) oblique bands, displaying an inclined angle relative to the fluid front. No-252

tably, no discernible pattern is observed in some instances referred to as homogeneous253

cases. In total, our simulations yield five distinct pattern types. Although this simple254

classification of morphologies is based on our numerical findings, it provides a valuable255

tool for visually distinguishing patterns observed in geological settings on Earth and Mars (Barge256
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Figure 5. Morphology evolution in the phase diagram where the initial solute concentration
and fluid front speed are varied.

230

231

et al., 2011; Wang et al., 2015; Yoshida et al., 2018). An example is the patterns observed257

in Zebra rocks (Coward et al., 2023). According to the proposed classification criterion,258

we divide the generated patterns into five groups. Figure 6 shows that the fluid veloc-259

ity v and initial solute concentration cin are crucial to determining the pattern type.260

Second, we investigate the effect of the Fe-bearing fluid velocity on the pattern for-261

mation and transition as we can observe the simulated patterns from the bottom to top262

in Figure 6, the simulated patterns transition from parallel bands to orthogonal bands263

and ultimately to spotted patterns. This transition depends on the initial concentration264

level cin. The transition speed from the striped to spotted patterns is particularly sen-265

sitive to concentration, with the speed decreasing as cin increases. In contrast, when cin <266

0.5, the transition speed from parallel to orthogonal stripes is gentler and remains con-267

stant throughout our simulations. Without refined simulations conducted, we report the268

trend that the transition velocity tends to decrease between 0.1 and 0.5 as cin increases.269

This phenomenon becomes apparent when cin reaches 0.5, and the front velocity v drops270

from 0.1 to 0.05. Furthermore, homogeneity only arises when the slow velocity is com-271

bined with a relatively high initial concentration. Interestingly, oblique bands are only272

observed once in our phase diagram, with cin = 0 and v = 0.5. Given the uniqueness273

of this pattern, we provide an in-depth analysis in the following section.274

Finally, we survey the pattern evolution in the horizontal axis to test the influence275

of the initial concentration cin. Unlike the comprehensive spectrum of transitions observed276

when varying the Fe-bearing fluid velocity, changing the concentration cin with a fixed277

v results in only one discernible transition. However, an exception occurs when v = 0.5,278

where oblique stripes appear when cin = 0. When the transport velocity v is relatively279

low, pure parallel patterns emerge, while a transition from orthogonal bands to spots is280
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Figure 6. Morphology classification based on the pattern features: homogeneous, banded, and
spotted patterns and the banded patterns relative to the fluid direction: parallel, oblique, and
orthogonal patterns.
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observed at higher velocities. Additionally, either parallel or orthogonal bands evolve into281

spot morphologies, but a transition between parallel and orthogonal stripes is absent.282

3.2.2 Oblique band appearance283

Oblique bands appear in a narrow area with the initial solution concentration cin =287

0 in the morphology phase diagram. Figure 5 illustrates how the stripe patterns change288

from parallel to inclined and ultimately to orthogonal bands when the front speed ac-289

celerates from 0.1 to 1.0 with a fixed cin = 0. We investigate the transition process by290

performing extra simulations with v ranging from 0.4 to 0.6 as Figure 7a shows. There,291

oblique patterns emerge at v = 0.45 and v = 0.5 but with different inclined directions292

relative to the fluid front.293

The arbitrary occurrence of oblique bands is two-fold. First, the creation of the in-294

clined patterns depends on the competition between the emergence of parallel and or-295

thogonal bands. When the transport velocity reaches a critical value, the competition296

becomes comparable. As a consequence, the inclined pattern should appear. Second, this297

competitive mechanism explains the varied angles observed in the phase separation pro-298

cess occurring in an inhomogeneous system. The heterogeneity is realized by the noise299

term that we add in the initial condition. Figure 7c shows that the noise term can dra-300

matically affect the morphology selection. In these simulations, the randomly distributed301

noise term is the only changing parameter since we maintain the front velocity v = 0.45302

constant and vanish the initial concentration. Oblique bands with different directions303

can appear, even in the form of orthogonal patterns.304

The initial solution concentration inhibits the occurrence of oblique patterns. As305

for the cases of cin = 0, we understand that the oblique patterns develop between the306

parallel and orthogonal patterns. To test the possibility of inclined patterns when cin ̸=307

0, we capture the transition process from parallel bands to orthogonal bands as nonzero308

initial concentrations, e.g., cin = 0.1, as Figure 7b shows. Numerical results show that309

oblique patterns cannot appear when parallel bands shift to orthogonal bands. The pat-310

tern features remain unaltered when we use the same setup as in the convergence stud-311
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(a) increasing v with fixed cin = 0.0

(b) increasing v with fixed cin = 0.1

(c) constant v = 0.45 and cin = 0.0

parallel oblique oblique orthogonal
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Figure 7. Pattern formation and selection with increasing front speeds and fixed initial solute
concentration: (a) cin=0 and (b) cin=0.1. (c) Constant front speed cin=0.45 and concentration
cin=0.0 with different .

284

285

286

ies in Section 3.1. This implies that it is the initial concentration that controls the phase312

separation rather than the additional noise term.313

Overall, the vanishing solute concentration plays a pivotal role in determining the314

appearance of oblique patterns, while the noise effect makes the oblique direction emerge315

arbitrarily. Our findings explain why randomly oblique patterns can develop in Zebra316

rocks in the same geological setting (Coward et al., 2023). Specifically, our study sug-317

gests that unprecipitated rocks with heterogeneity tend to develop oblique patterns.318

3.2.3 Orthogonal patterns with Liesegang phenomenon319

In the phase diagram, several orthogonal patterns exhibit characteristics reminis-320

cent of the Liesegang phenomenon. As observed in experiments, Liesegang bands are typ-321

ically governed by empirical laws regarding their formation time, locations, and widths.322

The time law cannot apply in our advection-dominated model since the empirical rela-323

tionships are built in the diffusion-limited experiments. However, we seek to quantita-324

tively validate the Liesegang-like patterns regarding spacing and width laws by focussing325

on a specific combination of v = 5 and cin = 0.1 in Figure 5. This choice is made based326

on the fact that the simulated patterns exhibit behavior closely resembling Liesegang bands.327

Figure 8 presents the product concentration distribution c along the x-axis follow-333

ing the passage of Fe-bearing fluid. As the fluid front propagates, rhythmic precipita-334

tion bands appear, forming regular Liesegang band patterns. Qualitatively, the width335

of periodic stripes and interband spacing increases, consistent with the behavior of Liesegang336

stripes. We quantitatively verify the empirical laws by measuring the band location, e.g.,337

i-th band location denoted by xi, and band thickness, e.g., n-th band thickness repre-338

–11–



manuscript submitted to JGR: Solid Earth

0 16 32 48 64
0

0.5

1.0

location 𝑥𝑖
thickness 𝑤𝑛

Position 𝑥

Co
nc

en
tra

tio
n
𝑐

Figure 8. The product concentration distribution c along the x-axis after the fluid flow, form-
ing the regular Liesegang band patterns. xi and wn denote location and thickness of the i−th
and n−th bands, respectively.
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sented by and wn. The location xi represents the distance between the band center and339

the model boundary.
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Figure 9. Verification of Liesegang bands: (a) spacing law and (b) width law. The shaded
regions are the liner regression’s root mean square error (RMSE).
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We provide quantitative validation for the selected bands and examine the behav-341

ior of Liesegang striping in terms of the empirical spacing and width laws. The spacing342

law indicates a linear relationship between the locations of subsequent bands, given by343

xn+1/xn = 1 + p, where 1 + p represents the spacing coefficient. Figure 9a shows this344

linear relationship, with a high coefficient of determination R2 = 0.99. The estimated345

value of 1+p is approximately 1.26, falling within the 1 to 7 range, consistent with the346

inversion of Zebra rock samples from the same region (C. Liu et al., 2023a).347

Additionally, we investigate the width law, which states that the bandwidth wn is348

proportional to the position xn of the band, i.e., xn ∝ wn. Once again, Figure 9b shows349

a linear relation between xn and wn. By successfully reproducing these two empirical350
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observations from the Liesegang phenomenon, our simplified model demonstrates the abil-351

ity to replicate Liesegang patterns without considering the diffusion of reactants in the352

reaction-diffusion system.353

3.2.4 Uniform pattern354

The uniform pattern, commonly observed in Zebra rocks, suggests that the spac-360

ing coefficient is around 1 + p ≈ 1, following the classical Turing pattern (Hu et al.,361

2022). This study’s uniform pattern refers to orthogonal bands exhibiting minimal strip362

variations. Through our simulations, we discover that the diffusion velocity and the ini-363

tial concentration influence the bandwidth of each uniform pattern.
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Figure 10. (a) The concentration profiles along the x-axis for varying transport velocities v,
ranging from 0.2 to 0.5 with a 0.05 increment, while maintaining a constant initial concentration
of cin=0.1. (b) The formation of uniform bands at the end of the simulation for four transport
velocities. (c) and (d) The banded thickness measured from the simulations for initial concentra-
tions cin=0.1 and cin=0.05, respectively, along with the corresponding linear fit.
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We seek to gain a deeper understanding of the relationship between fluid speed and368

band thickness; thus, we conduct refined simulations in the phase diagram, varying the369

fluid speed v from 0.2 to 0.5 with 0.05 increments while maintaining a constant initial370

concentration of cin = 0.1. Figure 10a shows the concentration profiles along the x-axis,371

where the bands are located in regions with c > 0. Figure 10b illustrates the forma-372

tion of regular patterns at four different velocities. The repeated bands exhibit nearly373

identical thickness wn in each simulation. Therefore, we calculate the average band thick-374

ness to assess the generated thickness for different front velocities. Subsequently, we plot375

the band thickness against the corresponding velocity in Figure 10c. Our results indi-376

cate that the band thickness is proportional to the fluid front speed. Specifically, a higher377

front speed v leads to a decrease in the band thickness wn, consistent with the finding378

from Yoshida et al. (2020). We conduct five additional simulations for cin = 0.05 to val-379

idate this linear relationship further. In analogy to the case of cin = 0.1, the simula-380

tions exhibit the same linear trend as Figure 10d depicts.381
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Figure 11. (a) Concentration profiles along the x-axis for four initial concentrations ranging
from 0.15 and 0.1 to 0.5 with a 0.1 increment with constant transport velocity v=0.5. (b) The
estimated banded thickness from the simulations and the corresponding linear fit.
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The transport velocity and the initial concentration influence the thickness of uni-382

form bands. The morphology phase diagram in Figure 5 shows in the column correspond-383

ing to v = 0.5 for various initial concentrations (cin=0.1, 0.2, and 0.3). We quantita-384

tively investigate this relationship using additional simulations with an initial concen-385

tration of cin = 0.15 and the same fluid speed of v = 0.5. Figure 11a displays the con-386

centration profile along the x-axis, enabling the measurement of the mean band thick-387

ness. By determining the average band thickness for each simulation, we can establish388

a correlation between the parameter cin and the band thickness, as shown in Figure 11b.389

The band thickness decreases as the initial concentration increases, displaying an almost390

linear relationship.391

3.3 Zebra rock pattern comparison392

This section replicates the hematite patterns observed in Zebra rocks from the West-393

ern Australian East Kimberley region. We compare the primary features captured by394

our simulations with those present in the field patterns for different pattern classifica-395

tions, such as parallel, orthogonal, oblique, and spotted patterns. Our primary focus is396

to reproduce the diverse morphologies observed in Zebra rocks. However, a quantitative397

analysis is beyond the scope of the current research. For further details, see our recent398

work that accurately replicates orthogonal banded patterns in Zebra rocks (C. Liu et al.,399

2023a).400

Parallel bands represent the stripes aligned parallel to the direction of Fe-bearing404

flow. Field exploration conducted by Coward and co-authors (Coward et al., 2023) in405

four Zebra rock deposits reveals that this pattern is exclusively observed in the Remote406

Island outcrop. The researchers identified two representatives within this category: pil-407

lars and vertical stripes. Our simulations indicate that these representatives can be clas-408

sified as parallel bands with varying propagation lengths. We replicate the two Zebra409

rock samples and determine the corresponding flow speeds and initial concentrations by410

comparing the simulated morphologies in the morphology phase diagram of Figure 5. The411

inverted parameters have the same front velocity v = 0.05 and the different initial con-412

centrations cin = 0.5 for sample 1 and cin = 0.5 for sample 2, respectively, as shown413

in Figure 12.414
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(a) parallel pattern 1 (b) parallel pattern 2

flow direction

Figure 12. Comparison between the hematite parallel patterns in Zebra rocks and our sim-
ulated patterns. The top two Zebra rock samples are from the Remote Island outcrop, adapted
from Coward et al. (2023). The arrow denotes the Fe-bearing flow direction in each figure.

401

402

403

Our inversion indicates that parallel bands emerge under conditions of low fluid ve-415

locities. The relatively slow fluid velocity, coupled with a high initial concentration, pro-416

motes the formation of elongated strips. On the other hand, a low concentration facil-417

itates the development of flat stripes. Consequently, our findings suggest that the trans-418

port velocity in the Remote Island outcrop may be relatively sluggish compared to other419

locations. Furthermore, inhomogeneous initial conditions can give rise to the simulta-420

neous occurrence of both elongated and flat bands.421

Orthogonal bands are perpendicular to the fluid direction, commonly observed in425

various outcrops. Based on field observations, two orthogonal stripes can be distinguished426

in Figure 13. The first group consists of uniform bands with nearly uniform band thick-427

ness, as discussed in Section 3.2.4. The second group comprises Liesegang strips that ex-428

hibit an increasing bandwidth along the flow direction, as Section 8 describes.

(a) orthogonal pattern 1 (b) orthogonal pattern 2

flow direction

Figure 13. Comparison between the hematite orthogonal patterns in Zebra rocks and our
simulated patterns. The top-right Zebra rock sample is located at the Donkey Road deposit,
while the top-right one is from the Remote Island outcrop, adapted from Coward et al. (2023).

422

423

424
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Following the same procedure as in the previous comparison, we identify the cor-429

responding orthogonal stripes that resemble the field morphologies in Figure 5. For the430

uniform bands, parameters v = 0.5 and c = 0.2 produce a similar pattern as shown431

in Figure 13. When the velocity is increased to v = 1.0 while keeping c = 0.2 constant,432

our simulation results in a Liesegang pattern. Thus, although we compare field and sim-433

ulated patterns visually, a quantitative analysis is possible, e.g., in C. Liu et al. (2023a).434

Nevertheless, by exploring the morphology phase diagram in Figure 5, we deduce that435

the uniform bands indicate a lower transport velocity than the Liesegang patterns. Thus,436

our study might suggest that the transport velocity for the uniform pattern observed in437

Donkey Road is lower than that for the Liesegang bands observed in the Remote Island.438

Oblique bands are stripes inclined relative to the fluid front, as Figure 14 depicts.442

The appearance of oblique patterns occurs in field observation and analogous simulations.443

Previously, we explained this pattern as a consequence of curved diffusion directions (C. Liu444

et al., 2023a), which could be applicable in specific geological situations. However, this445

study relaxes the constraint of curved transport velocity for the inclined stripes, allow-446

ing them to emerge more efficiently, mimicking a geological setting. Alternatively, the447

competition between parallel and orthogonal bands could contribute to the forming of448

oblique bands, as suggested by the transition morphology in Figure 5.

(a) oblique pattern 1 (b) oblique pattern 2

flow direction

Figure 14. Comparison between the hematite oblique patterns in Zebra rocks and our simu-
lated patterns. The top-right Zebra rock sample is from the Remote Island outcrop (after Coward
et al. (2023)), while the top-right one is photographed from the Western Australia Museum.
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Next, we investigate parameter combinations for two Zebra rock samples from the450

Remote Island and the Western Australian Museum. Figure 14 demonstrates that fluid451

transport velocities of v = 0.45 and v = 0.5, along with a vanishing initial concentra-452

tion cin = 0.0, yield comparable oblique bands in the two Zebra rock samples. Inter-453

estingly, the field pattern exhibits a branching behavior in some bands, which is also cap-454

tured in our results in Figure 14b. Furthermore, while two velocities explain different455

patterns in our study, the presence of oblique patterns is heavily influenced by the noise456

term η, as Figure 7c shows. Consequently, velocities ranging from 0.45 to 0.5 will likely457

result in oblique patterns, with the inclined angle pattern depending on the initial noise458

distribution. Nevertheless, the narrowed range of velocities may provide insight into the459

potential geological environments during the formation of oblique patterns.460
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Spotted patterns combine stripes and spots and patterns consisting solely of spots.464

Figures 15a and 15b depict the two types of spotted patterns: (i) stripes that separate465

into connected spots and (ii) fully developed isolated spots. Our simulations indicate that466

higher fluid speeds contribute to the emergence of mixed patterns. Furthermore, the spot-467

ted patterns tend to appear when the initial concentration cin falls within the range of468

0.2 to 0.4, and the fluid speed v exceeds 0.5.

(a) spotted pattern 1 (b) spotted pattern 2

flow direction

Figure 15. Comparison between the hematite spotted patterns in Zebra rocks and our simu-
lated spots. The top-right Zebra rock sample is from the Remote Island outcrop (after Coward et
al. (2023)), while the top-right one is located at the Donkey Load deposit.
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469

Our simulated morphologies determine the optimal parameters to produce mor-470

phologies similar to those in the Museum samples are v = 5.0 and cin = 0.4 for sam-471

ple 1 of the Remote Island, and v = 1.0 and cin = 0.4 for sample 2 of the Donkey Road.472

The quantified parameters suggest that the transport velocity in Donkey Road is lower473

than that for the Liesegang bands observed in the Remote Island. Additionally, our model474

successfully simulates the Ostwald ripening phenomenon, where the stripes separate into475

connected and isolated spots in both simulations. This phenomenon plays a crucial role476

in the pattern transition observed in Zebra rocks, as discussed in our recent work (C. Liu477

et al., 2023a).478

4 Discussion479

In this contribution we explored a new framework to explain the diverse patterns480

observed in Zebra rocks. This framework builds on the idea of self-organization through481

a process similar to the Liesegang phenomenon, where chemicals organize themselves into482

bands. Our approach combines the Liesegang theory with a concept from material sci-483

ence called phase separation. We modify a well-established model (Cahn-Hilliard) by adding484

the effect of flowing groundwater (advection) to mimic how iron oxide dissolves and moves485

through rock. This improved model successfully reproduces the variety of patterns seen486

in Zebra rocks. The model reveals that it is important to distinguish these Zebra rock487

patterns from classic Liesegang bands. Classic Liesegang patterns typically have bands488

or rings that increase in width and spacing as they move away from their starting point.489

Zebra rocks, however, exhibit a much wider range of patterns, including bands, rods, and490

ellipses. We therefore refer to them as Liesegang-like patterns.491
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For the transport-limited case the observed morphological variations between the492

Liesegang-like patterns identify differing geological environments during the pattern-forming493

process, emphasizing just two factors: the initial solute concentration cin and the fluid494

flow velocity v. By systematically examining the parameter space of cin and v using our495

model, we can generate all variations of the Liesegang-like patterns previously identified.496

However, the impact of geological parameters on the band characteristics varies depend-497

ing on the specific category of Liesegang-like patterns being considered. For example,498

an oblique banding occurrence most probably indicates the vanishing initial solute con-499

centration before the infiltration of acidic iron-bearing fluids. When the Fe-bearing fluid500

flow speed narrows to a limited region, the oblique patterns emerge due to the compet-501

ing growth of orthogonal and parallel bands. Additionally, the arbitrary inclination an-502

gles of the oblique bands may be attributed to the heterogeneous geological conditions503

represented by the noise term when setting the initial solute concentration vanish. Our504

findings provide insight into the development of randomly oblique patterns observed in505

Zebra rocks at five outcrop locations (Coward et al., 2023).506

One of the categories of orthogonal bands obeys the spacing and width laws com-507

monly observed in traditional Liesegang banding. We have previously replicated this type508

of pattern, referred to as Liesegang banding, using a pure diffusion-based Cahn-Hilliard509

formulation. However, we still classify it as a type of Liesegang-like pattern because the510

advection-based formulation annihilates the time law which is primarily governed by diffusion-511

limited transport (C. Liu et al., 2022). Our simulations reveal that multiple bands emerge512

behind the advection front, unlike the classic Liesegang phenomenon, where band thick-513

ness increases step by step. The Ostwald ripening process gradually causes neighboring514

bands to coarsen, eventually leading to characteristics similar to those observed in Liesegang515

banding.516

The existence of a linear correlation between the uniform thickness of orthogonal517

bands and two controlling parameters presents a valuable opportunity for interpreting518

the geological context. Our simulations indicate that the band thickness decreases lin-519

early with increasing fluid speed; a similar correlation can be found with the initial so-520

lute concentration, too. These quantitative relationships allow us to estimate the fluid521

flow rates and initial concentrations based on photographic images captured in the field.522

However, a quantitative comparison of the field patterns with the simulated morpholo-523

gies is out of the scope of current study. The operational procedure for deriving the dif-524

fusion coefficient from orthogonal Zebra rock patterns has been extensively demonstrated525

in our earlier work (C. Liu et al., 2023a).526

The rods and ellipses observed in Zebra rock likely represent an intermediate Ost-527

wald Ripening stage, wherein stripes gradually localize into spots or individual spots coarsen528

into more prominent spots over time. The former is likely a result of the imposed het-529

erogeneity. At the same time, the latter serves to reduce overall system energy, where530

combined rods or ellipses are energetically favorable compared to smaller individual spots (Ostwald,531

1902). Although our phase separation model can replicate irregular pattern categories,532

we cannot exclude the possibility of geological deformation occurring after pattern for-533

mation (Sheldon & Retallack, 2001; Retallack, 2021). For instance, formation compaction534

may cause spheroids to reduce, resulting in an elliptical shape, a common occurrence in535

geological settings. Additional field and experimental work is necessary to confirm the536

potential impact of compaction on pattern formation.537

The examined Zebra rock outcrops exhibit distinct pattern features that have the538

potential to provide valuable information about chemical conditions and iron transport.539

First, parallel and orthogonal patterns can be observed in different layers of the Ran-540

ford formation, attributed to variations in the infiltrating flow rate into the rock. Re-541

ferring to the morphology phase diagram (see Figure 5), we can interpret that the fluid542

flow rate in the parallel banding layer is lower than that in the orthogonal layer. Ma-543

terial heterogeneity, such as permeability, may contribute to these differences in flow rate,544

–18–



manuscript submitted to JGR: Solid Earth

as the patterns are bounded by bedding planes. Similarly, inhomogeneous initial con-545

ditions can give rise to the simultaneous occurrence of both elongated and flat bands ob-546

served in the Remote Island. Furthermore, the variations in pattern features can be used547

to infer the flow conditions during the pattern formation process.548

Zebra rocks, while beautiful and often used as decorative stones, hold a deeper se-549

cret. Understanding the patterns of hematite (iron-oxide) within them can unlock valu-550

able geological information. These patterns reveal the complex interplay between chem-551

ical reactions and fluid movement that shaped the rock. Similar processes may have been552

at work in the distant past, creating features like the early Earth’s banded iron forma-553

tions (BIFs) and the hematite spherules found on Mars. For instance, iron oxide spots554

and rods found in Earth’s Navajo Sandstone are considered a close match to hematite555

nodules on Mars (Chan et al., 2004; Yoshida et al., 2018). The insights gained from study-556

ing Zebra rocks may therefore provide valuable tools for interpreting data and poten-557

tially even detecting signs of past life on Mars.558

The Precambrian Banded Iron Formations (BIFs) show three scales of bandings559

that may have self-organizational origins (Wang et al., 2009). Understanding how Ze-560

bra rock patterns form has significant implications beyond just Zebra rocks themselves.561

It can help us unlock secrets about Earth’s history and potentially guide resource ex-562

ploration. BIFs, similar to Zebra rocks in pattern formation but with a higher iron con-563

tent, are commercially valuable for iron ore. By studying Zebra rocks with our model,564

methods that identify promising BIF deposits using aerial photographs or drone images565

may be developed. This could be a game-changer for resource exploration. The abun-566

dance of BIFs in the Archaean and early Proterozoic eras, followed by their decline, sug-567

gests a significant shift in the ocean environment. Using our simulations to translate ob-568

served patterns into geological parameters guides the potential development of entirely569

new geophysical tools. These tools could help us reconstruct the conditions on early Earth’s570

crust, offering a glimpse into our planet’s distant past.571

5 Conclusion572

This study delves into the intriguing patterns found in Zebra rocks, focusing on how573

these patterns form over time. We use a computer model that simulates the separation574

of iron oxide (hematite) under flowing water (advective phase separation). This model575

provides valuable insights into how two key factors influence the shapes and transitions576

of these patterns: (i) how the iron oxide is initially distributed within the rock affects577

the resulting patterns; (ii) the speed at which water moves through the rock plays a role578

in shaping the patterns.579

Using our simulations, we were able to categorize the resulting patterns (referred580

to as Liesegang-like patterns) and quantify the influence of the two factors mentioned581

above. Here are some key findings: (i) we were able to recreate the spacing and width582

of various Liesegang-like patterns based on the initial iron oxide distribution and water583

flow velocity; (ii) lower initial iron oxide concentration seems to favor the formation of584

slanted patterns, and the angle of the slant can reveal information about the rock’s in-585

ternal structure; (iii) for straight, banded patterns, we identified a linear relationship be-586

tween the controlling factors and the thickness of the bands.587

Our classification system allows us to match simulated patterns with those observed588

in the field. This "reverse analysis" helps us to estimate the key parameters that con-589

trol pattern formation in different Zebra rock locations. By comparing simulated pat-590

terns with real-world observations, we found a close resemblance, suggesting the model’s591

accuracy. This paves the way for a powerful tool: a computer-aided interpretation frame-592

work. This tool can analyze patterns captured in field photographs, similar to Zebra rocks.593

We can then estimate crucial geochemical parameters that were present when the pat-594
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terns formed, including the chemical makeup and water flow conditions. The model’s ca-595

pability to interpret past environments is particularly valuable for understanding the con-596

ditions on early Earth and Mars. By analyzing patterns in rocks from these locations,597

we can potentially uncover clues about the chemical conditions and fluid movement that598

existed billions of years ago.599

6 Open Research600

The Finite Element Method code and numerical results will be available after peer601

review.602
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