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Abstract

The coupling between the magnetosphere and solar wind contributes to the energy, momentum, and mass transfer between the

systems. However, geomagnetic pulsations facilitate the continuation of this process in the magnetosphere and the production

of discrete auroral arcs. Therefore, remote-sensing the magnetospheric conditions. Data analytics with machine learning (ML)

gives insight into scalability, adaptability, and feature extraction compared to traditional empirical models. The availability of

big data in the Svalbard network spanning 25years from 1996 motivated the current study. Hence, we present the forecasting

of auroral Pc5 pulsations from solar wind parameters using the ML technique. In the training phase, there was a regression

of 0.75 and MSE=11.90 nT2. The relationship between Pc5 forecast and observations in low and high geomagnetic activity

and solar activity showed good consistency with R=0.76 and MSE= 11.4 nT2. For instance, the model adapted well to the

St. Patrick geomagnetic storm of March 17th, 2015 despite uncertainties in the data. In addition, the model also adapted well

with stunning performance in all Svalbard observatories with HOP leading with 6949 prediction events and NAL with the least.

Thus, this was consistent with previous studies in terms of Pc5 pulsations latitudinal or L-shell dependence. Finally, validation

with Kp and F10.7 indices presented excellent coherence between the models. Overall, The ML studied the connection between

solar wind and interplanetary magnetic field properties to the ground magnetic field perturbations with good correlation results.

Hence, the model will be fit for use by the magnetospheric community for space weather studies.
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Abstract15

The coupling between the magnetosphere and solar wind contributes to the energy, mo-16

mentum, and mass transfer between the systems. However, geomagnetic pulsations fa-17

cilitate the continuation of this process in the magnetosphere and the production of dis-18

crete auroral arcs. Therefore, remote-sensing the magnetospheric conditions. Data an-19

alytics with machine learning (ML) gives insight into scalability, adaptability, and fea-20

ture extraction compared to traditional empirical models. The availability of big data21

in the Svalbard network spanning 25 years from 1996 motivated the current study. Hence,22

we present the forecasting of auroral Pc5 pulsations from solar wind parameters using23

the ML technique. In the training phase, there was a regression of 0.75 and MSE=11.9024

nT2. The relationship between Pc5 forecast and observations in low and high geomag-25

netic activity and solar activity showed good consistency with R=0.76 and MSE= 11.426

nT2 For instance, the model adapted well to the St. Patrick geomagnetic storm of March27

17th, 2015 despite uncertainties in the data. In addition, the model also adapted well with28

stunning performance in all Svalbard observatories with HOP leading with 6949 predic-29

tion events and NAL with the least. Thus, this was consistent with previous studies in30

terms of Pc5 pulsations latitudinal or L-shell dependence. Finally, validation with Kp31

and F10.7 indices presented excellent coherence between the models. Overall, The ML32

studied the connection between solar wind and interplanetary magnetic field properties33

to the ground magnetic field perturbations with good correlation results. Hence, the model34

will be fit for use by the magnetospheric community for space weather studies.35

1 Introduction36

Geomagnetic pulsations of the frequency band (1.7-6.7) mHz are generated by mag-37

netospheric ultra-low frequency (ULF) waves. These waves contribute to the momen-38

tum, mass, and energy transfer and in the discrete auroral arcs production (Samson et39

al., 1996). The characteristics of Pc5 waves, majorly determined by the length of and40

plasma distribution along magnetic flux tubes, give means of remote-sensing magneto-41

spheric conditions, for example, the radial spreading of the equatorial plasma density in42

the inner magnetosphere (Waters et al., 1995). The field line resonance theory explains43

the generation of Pc5 undulations (Chen & Hasegawa, 1974; Southwood, 1974). Shear44

velocity in the plasma flow on the magnetopause excites the Kelvin-Helmholtz instabil-45

ity, and the resulting surface waves propagate and penetrate the Earth’s magnetosphere46

as fast compressional mode waves. When the compressional waves meet the region where47

the local field line eigenfrequency matches the fast mode frequency, the energy of com-48

pressional waves is coupled into shear Alfvén waves by the field line resonances. Con-49

sequently, waveguide theory (Harrold & Samson, 1992) and Cavity mode theory (Kivelson50

et al., 1984) also explain the discrete frequency field resonances. Overall, field line res-51

onances theory has successfully been adopted to explain numerous features of in situ and52

ground observation of geomagnetic pulsations (Baddeley et al., 2007).53

Pc5 pulsations frequently monitored at the auroral latitudes mostly using radars54

and ground magnetometers (Ziesolleck & McDiarmid, 1994) are of large amplitude (reach-55

ing 100 nT). According to the study conducted by Samson et al. (1971), the sense of Pc556

pulsations polarization and their amplitude spectra exhibit marked latitude dependence.57

Therefore, the maximum Pc5 amplitude occurs around magnetic latitude (MLat) between58

65◦ and 75◦ (Kleimenova et al., 2010). In the auroral strip, Pc5 polarization fluctuates59

near noon and at the latitude of maximum amplitude. Thus, the ground magnetic field60

perturbations are in principle the field due to the ionospheric Hall currents. These mea-61

surements show that the perturbation of the northward magnetic field component peaks62

near the resonant field line location and ∼ 180◦ phase shift across the resonant latitude63

(Lee et al., 2007). The fast-mode surface waves arrive at the resonance point via the field64

lines, oscillating them in the transverse direction. In principle, the ground-based obser-65

vation of Pc5 pulsations would show that they travel with a small azimuthal wave num-66
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ber westward in the morning and eastward in the afternoon. Therefore, the maximum67

Pc5 amplitudes and intensity always peak along 73◦ MLat (Pilipenko et al., 2001).68

Consequently, in the auroral oval, there are two unrelated electrodynamic phenom-69

ena; Pc5 pulsations and auroral electrojets (AEJ). AEJs are part of 3-D ionospheric cur-70

rent systems resulting from solar wind-magnetosphere couplings. These currents also flow71

either westward or eastward and are latitudinally confined by the Hall current. It was72

noted that AEJ intensity and Pc5 power peak at the same latitude and determined by73

unrelated processes. The Pc5 maximum intensity and position shift in latitude remained74

within the strips of AEJ of about 8◦ wide. Rostoker and Lam (1978) proposed an ex-75

planation for this consistency, reporting these waves are the eigenmodes of a 3-dimensional76

terrestrial magnetosphere-ionosphere current system. Pilipenko et al. (2001) findings were77

similar to that of Rostoker and Lam (1978); Pc5 pulsation temporal and spatial varia-78

tions in the prenoon or morning sectors are intimately related to the intensity and lo-79

cation of auroral electrojet currents. Implying possible modulation of Pc5 waves from80

the magnetic contribution of AEJs in the region. Omondi et al. (2023) piloted a study81

on the automatic detection of auroral Pc5 pulsations guided by wavelet technique in the82

region separating Pc5 pulsation from raw data. Their findings were consistent with tra-83

ditional results reporting large amplitudes of detected Pc5 pulsations.84

Studies of geomagnetic activities using geomagnetic indices have shown that the85

magnetosphere behaves as a nonlinear dynamic system (Kamide et al., 1998). Various86

methods based on the physical, analytical or empirical relationships between geomag-87

netic parameters and solar wind, artificial intelligence, and correlations have been used88

to forecast geomagnetic activities (Williscroft & Poole, 1996; Wu & Lundstedt, 1996; Wu89

et al., 1998; Weigel et al., 1999; Gholipour et al., 2004; Uwamahoro & Habarulema, 2014;90

Eastwood et al., 2017; Wintoft et al., 2017; Chandorkar et al., 2017). The nonlinear au-91

toregressive with exogenous input (NARX) model has widely been used for forecasting92

and modeling nonlinear systems. The NARX model performs well in the recognition of93

nonlinear systems by selecting the high-ranked model terms from a dictionary compris-94

ing numerous candidate model terms (Billings, 2013). Given that the magnetosphere is95

a nonlinear process, NARX presents itself to be the most efficient method for space weather96

predictions. The NARX models have been successfully used in the prediction of various97

geomagnetic indices, for instance, the AE index (Gu et al., 2019), Kp index (Ayala So-98

lares et al., 2016), and the Dst index (Balikhin et al., 2011; Boynton et al., 2011; Wei99

et al., 2004) with great performance. Cai et al. (2009) studied storms by forecasting SYMH100

using ACE data which yielded a good performance with RMSE of 14nT2 and a corre-101

lation coefficient of about 0.9. Bhaskar and Vichare (2019) extended Cai et al. (2009)102

studies to predict the ASYH index by use of the NARX network. In that, they used ASYH103

and SYMH indices during the great geomagnetic storms occurring between 1998-2015104

in two solar cycles, 23 and 24. The results were astounding as the forecasting model re-105

produces the entire time profiles of ASYH and SYMH with small time variations of about106

10-30 min within noise level tolerance.107

Several studies on Pc5 pulsations have pointed out its significance to space weather108

monitoring. Currently, there is no report on an ANN-based forecasting model available109

for ground Pc5 pulsations using solar wind parameters. The ANN-based prediction of110

ground Pc5 pulsations will be useful in understanding the contribution of internal and111

external drivers in the observed asymmetries. The forecasting model can be deployed112

to complement the issue of data loss and integrity problems in one station based on ob-113

servations in others within the same network. The current work complements Omondi114

et al. (2023) studies in the Svalbard network utilizing the same dataset of solar cycle 23115

and 24 to perform the auroral Pc5 prediction. Therefore, the main objective of the study116

is to develop a ground Pc5 prediction model using a dynamic NARX simulation model117

in the Svalbard network trained with solar wind parameters as input and feedback from118

the output. The robustness of the NARX model’s performance in previous studies was119

–3–
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the motivation for its selection in the current study. The current paper is organized into120

5 sections: Section 2 introduces time series NARX feedback neural networks, section 3121

describes the data and methodology, section 4 gives results and discussion, and finally122

conclusion.123

2 Time Series NARX Feedback Neural Networks124

Artificial neural networks (ANN) are computation simulations that mimic biolog-125

ical neural networks in the brain (Poulton, 2002). They were first suggested by McCulloch126

and Pitts (1943) to study non-linear systems problems. There are numerous kinds of ANNs127

for modeling physical systems. In particular, the most frequently used ANN for mod-128

eling physical time series data is the MultiLayer Perceptron (MLP) Network. Feed-forward129

neural networks have been more effective than MLP in modeling nonlinear time series130

(Omondi et al., 2023). When simulating nonlinear time series, recurrent dynamic net-131

works with feedback are preferred. Therefore, the suitable and powerful type of recur-132

rent Network for nonlinear systems (time-series) is a nonlinear autoregressive network133

with exogenous inputs (NARX). Normally nonlinear systems are selected the same way134

as linear systems by considering the right parameters. Thus, in nonlinear systems, one135

can reconstruct the relation of the kind136

o[t] = g(o[t− 1], o[t− 2], ..., o[t− no], x[t− 1], x(t− 2), ..., x[t− nx] + e[t]) (1)

Equation 1 shows a time series NARX model (nonlinear ARX), where g is a nonlinear137

function of fixed inputs and outputs. In the event of training NARX, the data are de-138

fined sequentially as χj = [o[t− j], o[t− j − 1], ..., o[k− j − (no − 1)], x[t− j], x[t− j −139

1], ..., x[t − j − (nx − 1)]]T and γj = o[t − j + 1], for j=1,..., M (Ayala Solares et al.,140

2016). Where χj defines the context outputs and inputs while the γj is the target data.141

Once the training is done and the model has learned with good results. Next, the model142

is ready and saved for deployment. In the event of prediction or forecasting future val-143

ues of o[t], the previous values o[t − 1], o[t − 2], ..., o[k − no], x[t − 1], o[t − 2], ..., x[t −144

nx] grouped in one (no+nx)-dimensional input vector are passed along with external145

inputs,x. Therefore, in this study, the simulation model here functions as a multiple in-146

put single output (MISO) system for prediction. The resultant model architectural de-147

sign used in the current work is schematically presented in Figure 1.148

To make steps ahead predictions by estimating o[t] at time t, and re-using the o[t]149

estimates in the input vector to forecast o[t+1] without using true o[t], target, the NARX150

simulation functions as a recurrent neural network. This way the output of the network151

will always depend on the input attributes (Billings, 2013). In essence the o(t + 1) is152

dependent on the previous values of an independent (exogenous) input signal x[t], and153

previous values of the output signal o[t]; no and nx are time delays of the output and154

input variables, and e(t) is the model error or residual between the target and forecasted155

values.156

The output of the hidden layer at time t is determined by Eqn.2 (Cai et al., 2009):157

hj(t) = tanh

[
nx∑
k=0

wjkx(t− k) +

no∑
l=1

wjlo(t− l) + aj

]
(2)

wjk is the weight connection between input, x(t−k) and the jth hidden neurons while158

that between hidden and output layers, o(t−l) is given by wjl. aj is the bias in the jth159

hidden layer neuron.160

Figure 1 shows a simple NARX simulation architectural model designed using re-161

sults from Figure 2. This model consists of one input layer comprising four input nodes162

defined by the number of input attributes x1 − x4 and feedback inputs fb, one hidden163

layer composed of 11 nodes, and one output node,o, in the output layer. The feedback164
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[x1, fb]

[x2, fb]

[x3, fb]

[x4, fb]

o

fb

HiddenInput output

Figure 1. The simulation model architecture for NARX network. Where x1-x4 are the input

values to the model input neurons (faint orange), the 11 green nodes in the middle are the hidden

layer neurons while the teal node is the output layer neuron with o denoting the predictions.

Finally, the feedback is denoted by fb.

loop represented by fb is the previous values from the model output, o[t− 1], ..., o[t−165

4]. Essentially, a dynamic neural network with the time steps synchronized data, o[t] and166

x[t] is illustrated by Figure 1. Figure 2 demonstrates the internal validation outcome of167

the NARX model performance on data during learning to obtain the optimum model168

with the best performance and less computation time. The first model’s performance eval-169

–5–



manuscript submitted to JGR: Space Physics

uation step was based on root mean square errors (RMSE) versus the number of nodes170

in the hidden layer. It became hard to select the model based on the first evaluation as171

there were many optimal model candidates based on this evaluation. Therefore, the sec-172

ond selection criterion on the regression against the number of neurons in the hidden layer173

was examined. Generally, we noticed all models qualify for learning machines except those174

below N=8. Where N is the number of nodes in the hidden layer. The argument on the175

error difference in RMSE and R values being less than a unit left the best choice to rely176

on the computation time. Keeping the same N and monitoring their computation time177

with a reasonable number of epochs to ensure no underfitting and overfitting in the learn-178

ing. Then that of fast computation time was selected. In principle, each dot plotted in179

Figure 2 represented a trained network against the number of hidden layer neurons in180

the x-axis and performance in the y-axis, upon which the optimal model is taken after181

25 trials. The selected optimal NARX model for the current work was the one with 11182

neurons in the hidden layers and an RMSE of 3.44 nT and R=0.75 as shown with the183

teal dashed line and red point in Figure 2 (a) and (b).

Figure 2. NARX model optimization profile of root mean square error and R versus the

number of neurons in the hidden layer. The teal color dashed line indicates the selected number

of neurons versus RMSE values for the present model for the prediction of Pc5 pulsation. The

optimal model was (11,3.44) and (11,0.75) in terms of computation time.

184

3 Data and methodolgy185

The ground magnetic field data of one minute resolution was obtained from the Sval-186

bard network for a period of 25 years from 1996 to 2020. These data were preprocessed187

and transformed into H-magnetic field coordinates from their X and Y-corrected geo-188

magnetic components. Svalbard network comprises 5 observatories, Bear Island (BJN),189

Hopen Island (HOP), Hornsund (HOR), Longyearbyen (LYR), and Ny Alesund (NAL).190

Pc5 pulsations were extracted by bandpass filtration technique from the H-component191

using Butterworth digital filter design (Omondi et al., 2023). The space events polar-192
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ized east-westward and south-northward are all captured by the H-component. There-193

fore, the H-component accounts for both local and global Pc5 pulsation beatings that194

would be observed worldwide during geomagnetic activity. Figure 3 illustrates the ge-

Figure 3. Topographical map of Svalbard network in the auroral region. The green-colored

meridian is a line corresponding to the geomagnetic latitude recording the maximum amplitude

and intensity of Pc5 pulsations, 73◦.

195

ographical map of ground-based space monitoring stations of the Svalbard network. The196

green-colored meridian corresponds to the geomagnetic meridian of maximum Pc5 am-197

plitude and intensity receptions (Pilipenko et al., 2001).198

Benchmark of the previous study conducted by Omondi et al. (2023) to detect au-199

roral Pc5 pulsations using machine learning; they found that the Pc5 pulsations under200

investigation were recorded simultaneously in the Svalbard network. Therefore, the same201

conclusion is applied in the current study. For this work, we used the NAL station in202

modeling machine learning algorithms in the training phase and the other four stations203

were used in the deployment of the model during the testing phase. The northward ge-204

olocation of the NAL observatory (75.25◦) to other stations in the Svalbard network was205
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of interest as it is on the outer or near outer edge of the auroral oval strip (65◦-75◦ mag-206

netic latitude) since it records fairly clean space events relative to others in the auroral207

oval. Deployment of the machine learning model in other stations in the Svalbard net-208

work aside from the used to train it presents an interesting evaluation of the capability209

of the machine learning model in the complex data environment. Given that stations in210

the network receive the same Pc5 waves in terms of the frequency band, they are polar-211

ized differently (phases) with fluctuating powers dependent on the L-shell values.212

The solar wind parameters observed near the Lagrange’s (L-1) point of 1 minute213

cadence starting from 1996 to 2020 were employed. In particular, to train our machine214

learning algorithms, we selected four solar wind parameters measured near L-1 point;215

these parameters are regarded as the most important drivers triggering geomagnetic ac-216

tivity causing Pc5 pulsations. These variables comprise the Z-component of the inter-217

planetary magnetic field magnitude (IMF-Bz) in GSM coordinate, the plasma temper-218

ature (Te), the proton density (np), and the earthward solar wind velocity ( Vx). The219

Z-component of the interplanetary magnetic field (IMF-Bz) contributes largely to the220

amount of momentum and energy transport from the solar wind to the Earth’s magne-221

tosphere by magnetic reconnection at the dayside magnetopause (Dungey, 1961). Thus,222

the knowledge of (IMF-Bz) fields is key for monitoring and forecasting the energy in-223

put into the magnetosphere-ionosphere system. Therefore, to guide the modeling of the224

non-linear system, the machine was to learn from the solar wind parameters with the225

Pc5 waves as the target.226

The input datasets were wrangled to remove missing data and transformed into in-227

telligible data suitable for machine learning, finally, synchronized with the Pc5 pulsa-228

tions to have the same data frames. The data were partitioned into two categories, the229

training set spanning 17 years and shuffled 8 years of data from two solar cycles,23 and230

24 for testing or deployment purposes. In the training phase, we partition data 70% train-231

ing, 15% internal testing, and 15% validation. The training dataset was randomly ex-232

tracted from the 17 years of simulation time series distributed over two solar cycles, 23233

and 24. The validation was done using Kp and F-10.7 indices, 27 days averaged with the234

model evaluation results from the test data. The Kp and F10.7 indices data set of 25235

years from 1996 synchronized with 8 years of test data from two solar cycles. The train-236

ing algorithm was based on the error back-propagation algorithm. The Levenberg-Marquardt237

backpropagation which uses trainml to learn was utilized because it is faster to train (Omondi238

et al., 2023). For every epoch, the loss function (cost function) is calculated by Eqn. 3.239

E =
1

2

M∑
j=1

(Tj −Oj)
2

(3)

where Tj and Oj are the true output and prediction output, where M is the number of240

the training samples (Cai et al., 2009). The prediction performance was obtained using241

the mean square error (MSE):242

MSE(O, Ô) =
1

m

m∑
j=1

(
Oj − Ôj

)2
(4)

where the Oj is the jth of m output of the initial open net network with Te, IMF-Bz, np243

and Vx as its input, and Ôj is corresponding output as predicted by NARX. The root244

mean square error was calculated from the square root of MSE in equation 4. The cross-245

correlation coefficient, R, is given by equation 5.246

R(O, Ô) =
1

m

m∑
j=1

(
Oj − µ(O)

σ(O)

)
×
(
Ôj − µ(Ô)

σ(Ô)

)
(5)

The R values are used to determine the prediction accuracy of the neural network. where247

µ(Ô) and µ(O) represent the mean values of the predictions results and observations,248

respectively. σ(Ô) and σ(O) are the standard deviations.249
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Time series comprising nonstationary power at many distinct frequencies can be250

analyzed by wavelet transform (Daubechies 1990). Supposing that one has a time series251

observation, ym, with equal time spacing δt and m=0. . .M-1. If one also has wavelet functions,ψ(ξ),252

which is dependent on a non-dimensional ‘time’ parameter ξ. To be permitted as a wavelet,253

this function must be localized in both frequency and time space and also have zero mean254

(Farge 1992). Consider the Morlet wavelet, consisting of a plane wave modulated by a255

Gaussian:256

ψ0(ξ) = π− 1
4 · eiω0ξ · e− ξ2

2 (6)

where nondimensional frequency is given by ω0 and taken to be 6 to satisfy the admis-257

sibility condition (Farge 1992). The continuous wavelet transform of ym discrete signal258

is defined as the convolution of ym with a translated and scaled version of ψ0(ξ):259

Wm(s) =

M−1∑
m′=0

ym′ψ∗
[
(m′ −m)δt

s

]
(7)

where the complex conjugate is indicated by (∗).260

ψ̂(sωk) =

{
2πs

δt

}2

ψ̂0(sωk) (8)

For morlet wavelet, the function ψ̂0(sωk) = π− 1
4 ·H(ω)·e− (sω−ω0)2

2 and each of the un-261

scaled ψ̂0is defined to have
∫ +∞
−∞ | ˆψ0(ω′)|2dω′ = 1, i.e they have to be normalized to a262

unit energy. Utilizing Normalizations at every scale s one has263

J−1∑
k=0

|ψ̂(swk)|2 = J (9)

where the number of points is given by J. Using the convolution formula in equation 7,264

the normalization of the wavelet function is given by:265

ψ

[
(m′ −m)δt

s

]
=

(
δt

s

)
ψ0

[
(m′ −m)δt

s

]
(10)

where energy of ψ0(ξ) is normalized to unity. If the wavelet function ψ(ξ) is complex,266

then its transform will also be complex, Wm(s). Therefore, the real and complex com-267

ponents of wavelet transform are expressed as ℜ{Wm(s)} and ℑ{Wm(s)} respectively.268

The amplitude and phase of the wavelet transform are obtained as |Wm(s)| and tan−1
[
ℑ{Wm(s)}
ℜ{Wm(s)}

]
269

correspondingly. Consequently, the wavelet power spectrum is defined by |Wm(s)|2. Af-270

ter the successful selection of the wavelet function, the immediate task is to choose scales,s,271

to use in the wavelet transform. Therefore, wavelet scales are written as a set of frac-272

tional powers of 2 shown in equations 11 and 12.273

sn = s02
nδn, n=0,1,2,..,N (11)

274

N =
δ

n
log2(Jδt/s0) (12)

Where N and s0 are the largest and smallest scales. In the Morlet wavelet, δn = 0.5275

is the largest permitted value that gives enough sampling in scales. Given that wavelet276

transform is essentially a bandpass filter with a known wavelet function (response func-277

tion). The original time series can be reconstructed after wavelet transformation using278

either an inverse or deconvolution filter. In our case, the original signal was reconstructed279

by taking the sum of the real part of the wavelet transform over all scales.280

ym =
δnδ

1
2
t

Cδψ0(0)

N∑
n=0

ℜ [Wm(sn)]

s
1
2
n

(13)

–9–



manuscript submitted to JGR: Space Physics

The energy scaling is removed by ψ0(0) and the conversion of wavelet transform to en-281

ergy density is performed by s
1
2
n . The Cδ is the reconstruction factor of δ from its wavelet282

transformation using ψ0(ξ). Given a new wavelet function, Cδ can be derived by tak-283

ing time series of a δ function at times m = 0 provided ym = δm0
. Therefore, the wavelet284

transform becomes:285

Wδ(b) =
1

M

M−1∑
k′=0

ym′ψ∗ (sωk) (14)

The reconstruction of equation 14 is:286

Cδ =
δnδ

1
2
t

ψ0(0)

N∑
n=0

ℜ{Wδ(sn)}
s

1
2
n

(15)

where, the Cδ is constant and scale dependent for every wavelet function. Following the287

energy conservation principle the total energy is conserved and Parseval’s theorem for288

wavelet analytics is:289

σ2 =
δnδ

1
2
t

CδM

M−1∑
m=0

N∑
n=0

|Wm(sn) |2

s
1
2
n

(16)

where δ is for the reconstruction and σ2 is the variance.290

W 2
m =

δnδ
1
2
t

Cδ

n2∑
n=n1

|Wm(sn)|2

s
1
2
n

(17)

Equation 17 and 16 illustrates wavelet scaled power averaging of a wavelet transform in291

the signal transformation and reconstruction formulations. After training the ML model,292

its performance was evaluated by wavelet power spectrum analysis. Thresholds for dis-293

tinguishing predicted events and non-events were set guided by wavelet power transform294

techniques. This technique was performed by passing the machine learning output sig-295

nal through a filter-like algorithm (wavelet power transform) to define the predicted Pc5296

events from background noise. This concept is visualized in the schematic diagram shown297

in Figure 4.

Wavelet
Power

Transform

Pc5 Predictions,
Pc5 Observation

Non-Events

Events

P
<

0.0
01

n
T

2

P≥ 0.001 nT2

Figure 4. Ilustration of Pc5 Event definition from forecast results

298
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4 Results and Discussion299

4.1 Network Peroformance300

In the current study, we present the NARX neural network as a machine learning301

(ML) tool in predicting Pc5 pulsations. The network took 142 out of 1000 epochs to train302

the model with a performance of MSE=11.90 nT2. The overall training time of about303

00:18:25 hours was observed. The number of epochs and time taken to train the model304

was fair enough to qualify good learning indicating that there were no overfitting and305

underfitting. Therefore, it was arguably convincing to state that the model indeed found306

it easy to learn from the data and regularize with the target data to yield a good per-307

formance. The resultant model’s intelligible weights and biases were pictorially presented308

using the Hinton diagram shown in Figure 5. The color coding of the squares represents309

the weight and bias signs values, whereby red and green colors correspond to negative310

and positive values respectively. The scale size of each square is equivalent to the weight311

and bias magnitude values in each layer having a maximum magnitude equal to 1. The312

Hinton diagram demonstrates neuron connections of the learned model between inputs,313

hidden layer, and output giving more insight into trained weights distribution. To un-314

ravel the black box of the artificial network or network intelligence of the trained model,315

Figure 5 gives the intuition. In layer 1 of Figure 5 there are 8 parallel inputs in input316

1 comprising of connection from 4 external inputs and 4 context inputs (feedback) to the317

11 hidden nodes in the hidden layer forming an 8 by 11 network matrix. Hence, the over-318

all distribution of weights in layer 1, input 1, is 88 connections and 88 weights. In the319

input 2, layer 1, there are 11 biases and 22 weights. In Layer 2 (the connection between320

the hidden layer and output) there are 11 weights and 1 bias. Contrary to Figure 1, the321

same arrangement as in Figure 5 was expected but there are only 4 inputs defined by322

input attributes looped with feedback. At the initial condition, the extra 4 context in-323

put does not exist as there is no output. These context inputs are automatically created324

during the machine-learning process. Therefore Hinton diagram comes in handy to give325

the resultant picture of the trained model weights and network distributions with more326

details. Overall, the ML model demonstrated a strong node connection.

Figure 5. Hinton diagram of ML model showing trained weights and biases with their corre-

sponding values and magnitudes. The diagram demonstrates strongly connected neurons present-

ing good learning. Where green and red colors are positive and negative values respectively. The

size of the square represents the element magnitude.
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Figure 6. Machine Learning training results for 17 years of the two cycles, 23 and 24. Where

(a)-(d) are scatter plots for training, testing, validation, and finally the overall performance.

327

Figure 6 shows the internal network evaluation in the training phase. Hence, the328

regression coefficient of the training, testing, validation, and general performances yielded329

an overall of 0.75. Hence, scaling well with big data. Despite high amplitude spikes and330

outliers in the data, the model responded with a good performance in the training phase.331

The model generalizes well with R values of 0.7495 indicating good learning. Validation332

and internal testing showed a good consistency between prediction and observation hav-333

ing R values of 0.75 overall. The metric measurement of the model training realizes an334

RMSE of 3.44 nT and MSE of 11.90 nT2.335

4.2 Model Performance on test data336

After the training phase, the resultant simulation model was deployed on test data337

to evaluate its performance and robustness. Figure 7 shows the regression between ob-338

servation (target) and the prediction for both high and low solar activities from some339

selected years in the ascending and descending phases of solar cycles 23 and 24. Figure340

7 (a-c) illustrates the network model performances for the years 1999, 2002, and 2010341

with an averaged R-value of 0.76 while Figure 7 (d) shows the yield for the year 2020342

having R-value of 0.57. The metric evaluation on MSE also yielded 9.15 nT2, 8.23 nT2,343

3.70 nT2, and 24.52 nT2 for 1999, 2002, 2010, and 2020 respectively. The performance344

in the year 2020 was unusual compared with other years in the test case, possibly due345

to the complexity of the dataset. Comparing 2020 performance generally with other years’346

test data as shown in Figure 15, the number of prediction events was also anomalous con-347

trary to the expectation as observed in the year 2009. This points out the dynamic re-348

sponse of the model to different dataset complexities. Overall, there was a good corre-349
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lation between prediction and observation with a performance of MSE= 11.40 nT2 de-350

spite uncertainties in the datasets.351

Figure 7. Machine learning test performance on a fresh data set of both active and high so-

lar wind activities spanning both phases of solar cycle 23 and 24. Where (a),(b), (c), and (d)

are test responses of the years 1999, 2002, 2010, and 2020 response from the NAL observatory

respectively.

The model was also deployed to study the response to a strong geomagnetic storm.352

Therefore, the geomagnetic storm of St. Patrick’s Day of March 17th, 2015 with max-353

imum Ap and Kp indices of 108 and 8- (7 2
3 ) respectively was picked as an illustrious case354

study. This storm was strong and caused disturbances in the magnetospheric current sys-355

tem and energy injection into the magnetosphere cavity. As a consequence, the injected356

energy resulted in the generation of plasma waves. These waves contribute to the trans-357

portation of momentum, mass, and energy in the entire geospace. Given that Pc5 waves358

are giant plasma waves of ultra-low frequency with wider bands generated from field line359

resonances. Thus, this became the first step of the model deployment of the Pc5 predic-360

tion in the nonlinear conditions of the magnetospheric system. Figure 8 shows the spec-361

tral analysis of the machine learning prediction outcome and Pc5 observation on the St.partrick362

day. The zoomed plot of Figure 8 highlights a clear visualization of the relationship be-363

tween ML output and the observations. There exists a strong match between the obser-364

vation and ML outcome throughout the day with some small amount of outlier spikes.365

Overall , the predicted Pc5 wave patterns were excellently reproduced and had a good366

correlation with observation. Time-frequency and spectral characteristics of the predic-367

tion against the observation were studied in Figures (9 and 10) using the time window368

of intense Pc5 pulsation highlighted in teal color in Figure 8.369

–13–



manuscript submitted to JGR: Space Physics

Figure 8. Time series prediction and observation plot on the geomagnetic storm of March

17, 2015 at NAL observatory. The zoomed graph shows the correlation between observation and

prediction highlighted in light olive color.

Figure 9 shows wavelet analytics of the Pc5 prediction and observations correspond-370

ingly. Whereby, Figure 9 (a) & (b) are the scalograms of the actual observations and pre-371

dictions of Pc5 pulsations of the Morlet wavelet continuous transformation. The scalo-372

grams were of the signals highlighted in teal color in Figure 8. The signature of high am-373

plitudes seen in Figure 8 both for observation and predicted Pc5 dominated as well in374

the scalogram presenting high energy pulsations. Surprisingly, the prediction scalogram375

is more filtered than the observation one with clear patches, this is because of the wavelet376

time-frequency duality property. Fundamentally, the wavelet transformation works on377

the identification of real signals from noise-infested signals on the principle of time-frequency378

features. Figure 9 (a) and (b) show Pc5 signals corresponding to their frequencies and379

the approximation in green color. On the other hand, the Pc5 prediction event defini-380

tion was based on the analyses of Figure 9, 10 and 11. Therefore, carrying out the scale-381

averaged wavelet power spectrum analyses, the wavelet filter banks and signal in the in-382

put of the scaled-averaged wavelet function return the scales-averaged signals with their383

frequency and period coefficients. Figure 10 (c) & (d) are the scaled-averaged wavelet384

power spectra of Pc5 pulsations and predictions respectively. The results in 9 (a) & (b)385

and Figure 10 (c) & (d) showed that the detected Pc5 signals in the scalograms corre-386

spond to the energized power wavelet coefficients of the same signals having a good match.387

These report that the predicted signal was indeed Pc5 pulsations piloting further anal-388

yses to define the pure waves based on wavelet power analysis. To identify clean Pc5 pul-389

sations predictions against actual observation, the forecasted data were threshold at 0.001390

nT2 against observations schematically demonstrated in Figure 4.391

On the other hand, the event definition using the wavelet power spectrum technique392

was employed on a minor geomagnetic storm of January, 5th 2015 as a bare minimum393

of geomagnetic conditions. This was to account for Pc5 pulsations occurring due to magnetosphere-394

solar wind coupling dynamics other than the coronal mass ejections. Figure 11 (a) and395

(b) shows the Wavelet scale-average wavelet power spectrum of Pc5 pulsations of Jan-396
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uary, 5th 2015 minor geomagnetic storm. In comparison to Figure 10 (a) and (b), it was397

observed that the magnitude of normalized Pc5 pulsations was ten times as to the re-398

sponse in Figure 11 (a) and (b). This demonstrates the strength of St. Patrick’s strong399

geomagnetic storm to minor storm. For this reason, the Pc5 events were defined using400

the observation in Figure 11 (a) and (b). In the previous study, Omondi et al. (2023)401

defined their Pc5 prediction events on the threshold above 20 nT. Historically in the au-402

roral zone, it is well known to record large Pc5 pulsations. Therefore their threshold was403

to exclude ULF waves contributed by background noise as well as maintaining pulsations404

recorded in the quiet days. In the current study, ULF waves were detected using mor-405

let wavelet transform to observe time-frequency response and invite further diagnosis.406

Observing that these signals within the Pc5 band for both, there was a need to exclude407

those that mimic Pc5 waves by using wavelet power spectrum as they represent the back-408

ground noise.

Figure 9. Wavelet analyses of Pc5 pulsations. Panels (a) and (b) are scalograms of actual Pc5

and Predicted. The measurement recorded on the geomagnetic storm occurred on St. Partrick

day of March 17, 2015. The analysis presented corresponds to the highlighted section in cyan

color in Figure 8.

409

Figure 12 (a) & (b) demonstrates the Pc5 events and non-events of the predictions410

and actual measurements respectively. These observations give more insights into Fig-411

ure 9 as hot colors corresponding to Pc5 events with a higher power as in Figure 12 (a).412

Consequently, the cool colors in the scalograms are background noise which is consid-413

ered non-events. Whereby, the hot colors are those greater than 5 while the cool ones414

are those within or less than 5 as indicated in the color bar. Therefore, wavelet power415

spectra and continuous wavelet transformation of the Pc5 pulsations analyses were im-416

portant in the determination of the number of Pc5 pulsations predicted in each station417

in the Svalbard network. Figure 12 (a) shows that there are more actual Pc5 events com-418
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Figure 10. Wavelet scale-average wavelet power spectrum of Pc5 pulsations. Panels (c) and

(d) are scaled-averaged wavelet power spectra. of prediction and observation. The highlighted

area with cyan color corresponds to the study presented in Figure 9 and 8

Figure 11. Wavelet scale-average wavelet power spectrum of Pc5 pulsations. Panels (a) and

(b) are scaled-averaged wavelet power spectra of prediction and observation recorded on January,

Tth 2015.
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Figure 12. Pc5 event definition by wavelet power transform. Panels (c) and (d) are the pre-

dicted scaled-averaged Pc5 events and non-events respectively. These measurements are extracted

from the response illustrated in Figure 11

pared to the number of predictions. This is accounted for by the loss function, given that419

we had a regression of 0.75 on average, implying that 0.25 of the original signals were420

lost. Nevertheless, the model was within an acceptable level and the prediction results421

showed similar results seen in Figure 12 (a). Table 4.2 illustrates the number of Pc5 pre-422

diction outcomes from the Svalbard network with NAL recording the least and HOP the423

highest in the year 1996. These unique results correspond to the latitudinal distributions424

of stations in the auroral strip and the geomagnetic activity in the region. Field line res-425

onance theory dictates that these ULF waves are produced by remote Alfven oscillations426

in the magnetospheric Alfvenic resonator excited by MHD fluctuations from the local427

part of the magnetosphere. Hence, Pc5 waves peak at the latitude where the external428

disturbance frequency resonates with the local Alfven frequency. Pilipenko et al. (2001)429

reported a possible relationship between AEJ current and Pc5 waves in the auroral lat-430

itude of maximum peak and intensity of the events, 73◦. They argued that the Pc5 re-431

sponse is stimulated by the intensification of eastward AEJ with a noticeably lower mag-432

nitude compared to the westward AEJ. Given that the HOP station lies on the latitude433

of field line resonance, consequently had to record the highest corresponding to the pre-434

diction results.435

The model was tested in a quiet geomagnetic condition of a weak auroral geomag-436

netic activity of October 23rd, 1996. This was a minor geomagnetic storm with a max-437

imum kp index of +7 and Ap=37. Generally, 1996 was a quiet geomagnetic year in the438

minimum phase of solar cycle 23. Deploying the model in other Svalbard stations ex-439

cept for the NAL station on the storm of October 23rd, 1996 provided astonishing re-440

sults. Thus, the time series prediction against actual measurements in the Svalbard net-441
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Table 1. Number of Pc5 pulsations predicted in the Svalbard network for the year 1996.

Where Mlat is the magnetic latitude.

Station code Mlat Station Name Number of Pc5 Predictions

NAL 75.25 NyAlesund 2091

LYR 75.12 Longyearbyen 3584

HOR 74.13 Hornsund 6181

HOP 73.06 HopenIsland 6949

BJN 71.09 BearIsland 6625

work was illustrated by Figure 13 and 14. Whereby, the time series observations and pre-442

dictions are shown by red dotted and blue solid lines respectively.443

Figure 13 (a)-(b) and Figure 13 (c)-(d) shows the model test results predicted from444

LYR & HOR, and HOP & BJN correspondingly. It was observed that each ground ob-445

servatory observation showed a good match with the predictions illustrating the stabil-446

ity and integrity of the model in terms of performance. In the Four observatories, it was447

also noted that the HOP station’ prediction response to pulsations observations recorded448

maximum amplitudes with more than 100 nT than other stations. The BJN & HOR recorded449

second and third highest, and finally, LYR recorded the lowest. The finding supports the450

previous studies on the auroral Pc5 pulsation characteristics (Pahud et al., 2009). This451

was possibly contributed by the electrodynamic convection processes resulting from ionosphere-452

magnetosphere current systems in the auroral strip (Rostoker & Lam, 1978). The spa-453

tial and temporal variation of Pc5 ULF waves is co-related to the location of the auro-454

ral electrojet, therefore, the maximum Pc5 wave responses are observed at the latitude455

of the maximum AEJ peak. Overall, the fundamental feature of auroral Pc5 pulsation456

such as frequency component and amplitude was predicted with higher accuracy. At last,457

despite complexities in the data, the model deployed in those observatories performed458

well with a high degree of accuracy. The spikes and inherent features of each signal in459

the Svalbard network were reproduced with a good consistency to the original signal. Demon-460

strating the power of the NARX model in nonlinear system modeling (Billings, 2013).461

462

ULF wave power has shown dependence on L-shell and solar wind activity. There463

exists a strong consistency between ULF wave power and solar activity (Kessel et al.,464

2004), especially in the declining phase of the solar cycle having the highest correlation465

when the radiation belts are active (Li et al., 2011; Mann et al., 2004). Most studies have466

demonstrated that solar wind is the key external source and control of the geomagnetic467

pulsations (Mathie & Mann, 2001). Mathie and Mann (2001) pointed out that Pc5 waves468

decay exponentially with a declining L shell, and the decay rate increases with solar wind469

speed, showing a stronger dependence of ULF wave power on solar wind speed at higher470

L shells of the band L=3.75–6.79. The decreasing Pc5 amplitude from HOP to BJN and471

LYR observatories on either side of the auroral magnitude latitude (73◦) as illustrated472

in Figure 13 and 14 are in agreement with the Rae et al. (2012) findings. Rae et al. (2012)473

broadened the range of L-shells in the study of Mathie and Mann (2001) to both higher474

and lower values and found that the ULF wave power decreases toward the higher L-shells475

(L=8) as well as toward lower L shells.476

Ozeke et al. (2014) used statistical THEMIS and GOES observations to come up477

with the analytic expression for L against power for different geomagnetic activity lev-478
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Figure 13. The prediction and Observation of Pc5 pulsations in the Svalbard network. Where

panels (a), and (b) are model test results from LYR and HOR observatories in 1996.

Figure 14. The prediction and Observation of Pc5 pulsations in the Svalbard network. Where

panels (c), and (d) are model test results from HOP, and BJN observatories in 1996.

els, which can easily be used in the global radiation belt models. Recently, Dimitrakoudis479

et al. (2015) reported that the Kp-index is the single best parameter to investigate the480
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statistical ULF wave power driving radial diffusion. Therefore, we utilized the same con-481

cept in choosing Kp-index as the qualifying validation model for our model outcome. Fig-482

ure 15 illustrates the validation results of Pc5 prediction outcomes on testing deployment483

with Kp indices for two solar cycles, 23 and 24. Amongst the 8-year test datasets, 1996484

emerged as the most active year while 2009 was the least. There was a good correlation485

between Kp-index and model predictions. This implies that the ML model had good per-486

formance. It was observed that the number of occurrences of Pc5 pulsation was high in

Figure 15. Kp profile index with the selected number year number of Pc5 prediction events

correlation for two solar cycles. The bar graphs indicate the number of predicted Pc5 events for 8

different years of model testing while the line plot is 27days averaged Kp indices for 25 years

487

the low solar activity. The same results are reflected in the prediction of Pc5 undulations.488

In the ascending phase of solar cycle 23 indicated by the F10.7 index in Figure 15 shows489

a decreasing trend in the number of Pc5 predictions. In contrast, solar cycle 24 provided490

an interesting observation contrary to that of solar cycle 23. Whereby the minimum phase491

for solar cycle 23 recorded 264 and ascending phase 2022 Pc5 prediction events while so-492

lar cycle 24 was 1382 events in 2020. It can be noted that in both cycles there was a high493

geomagnetic activity in solar cycle 23 ascending phase indicated by Kp-index and low494

solar activity. On the other hand, the solar cycle 23 and 24 minimum phase had both495

minimum solar and geomagnetic activities. In relevance to machine model performance496

on the test set. Overall, there was good coherence between the solar activity models (F10.7),497

Pc5 predictions, and geomagnetic activity models (Kp).498

5 Conclusion499

In the current study, we have developed a machine learning model based on the NARX500

recurrent neural network to predict time series ground Pc5 pulsations in the Svalbard501

network using solar wind parameters. The model was trained with 17 years of datasets502

and tested on 8 years of data shuffled from solar cycles 23 and 24. After the training phase,503

the model’s internal evaluation yielded R=0.75 and MSE=11.90 nT2. It was also deployed504

in various geomagnetic conditions, solar activities, and finally in different locations in505

the Svalbard network. Studies on the St.patrick storm day on March 17, 2015, demon-506

strated good coherence between the observation and the prediction. Consequently, the507

ML model showed also good performance in the four other ground observatories on the508
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minor storm of October 23rd, 1996. Therefore, these were in agreement with the other509

studies on this region, given that Pc5 waves recorded in one observatory are simultane-510

ously observed in other stations (Omondi et al., 2023). On the contrary, given that the511

geomagnetic Pulsations monitored in the auroral oval are the same in terms of frequency512

information but unique in terms of amplitude and phase. Therefore, presenting complex-513

ities in data. Provided the model was trained with different data from one observatory514

and deployed in different observatories and still able to give excellent performance de-515

spite uncertainties in data. This demonstrates the power of machine learning in pattern516

recognition from complex and large volumes of data. For example, the HOP station pro-517

duced a higher number of predictions compared to other stations. It also had maximum518

amplitude predicted Pc5 pulsations with a decaying amplitude in other stations in high519

and low magnetic latitudes from HOP. Given that, there were good results despite data520

complexity in the year 2020 and 1996. Comparing the observation in Figure 15 with Fig-521

ure 17 in Omondi et al. (2023) studies, there is a common trend in solar 23 and 24 pre-522

dictions except in 2020. Thus, in the current study, 2020 became an outlier performing523

average with R= 0.57. On the contrary, more predictions were observed deviating from524

the trend with other observations. We conclude that the model performance was robust525

and fit for deployment in space weather forecasting. This was the first ground-based Pc5526

prediction in the auroral zone using a machine-learning technique using solar wind pa-527

rameters. Overall, the ML model yielded good results and useful tool in the magneto-528

spheric community. Therefore, to improve the model’s performance, future work would529

focus on probabilistic prediction and forecasting.530
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Abstract15

The coupling between the magnetosphere and solar wind contributes to the energy, mo-16

mentum, and mass transfer between the systems. However, geomagnetic pulsations fa-17

cilitate the continuation of this process in the magnetosphere and the production of dis-18

crete auroral arcs. Therefore, remote-sensing the magnetospheric conditions. Data an-19

alytics with machine learning (ML) gives insight into scalability, adaptability, and fea-20

ture extraction compared to traditional empirical models. The availability of big data21

in the Svalbard network spanning 25 years from 1996 motivated the current study. Hence,22

we present the forecasting of auroral Pc5 pulsations from solar wind parameters using23

the ML technique. In the training phase, there was a regression of 0.75 and MSE=11.9024

nT2. The relationship between Pc5 forecast and observations in low and high geomag-25

netic activity and solar activity showed good consistency with R=0.76 and MSE= 11.426

nT2 For instance, the model adapted well to the St. Patrick geomagnetic storm of March27

17th, 2015 despite uncertainties in the data. In addition, the model also adapted well with28

stunning performance in all Svalbard observatories with HOP leading with 6949 predic-29

tion events and NAL with the least. Thus, this was consistent with previous studies in30

terms of Pc5 pulsations latitudinal or L-shell dependence. Finally, validation with Kp31

and F10.7 indices presented excellent coherence between the models. Overall, The ML32

studied the connection between solar wind and interplanetary magnetic field properties33

to the ground magnetic field perturbations with good correlation results. Hence, the model34

will be fit for use by the magnetospheric community for space weather studies.35

1 Introduction36

Geomagnetic pulsations of the frequency band (1.7-6.7) mHz are generated by mag-37

netospheric ultra-low frequency (ULF) waves. These waves contribute to the momen-38

tum, mass, and energy transfer and in the discrete auroral arcs production (Samson et39

al., 1996). The characteristics of Pc5 waves, majorly determined by the length of and40

plasma distribution along magnetic flux tubes, give means of remote-sensing magneto-41

spheric conditions, for example, the radial spreading of the equatorial plasma density in42

the inner magnetosphere (Waters et al., 1995). The field line resonance theory explains43

the generation of Pc5 undulations (Chen & Hasegawa, 1974; Southwood, 1974). Shear44

velocity in the plasma flow on the magnetopause excites the Kelvin-Helmholtz instabil-45

ity, and the resulting surface waves propagate and penetrate the Earth’s magnetosphere46

as fast compressional mode waves. When the compressional waves meet the region where47

the local field line eigenfrequency matches the fast mode frequency, the energy of com-48

pressional waves is coupled into shear Alfvén waves by the field line resonances. Con-49

sequently, waveguide theory (Harrold & Samson, 1992) and Cavity mode theory (Kivelson50

et al., 1984) also explain the discrete frequency field resonances. Overall, field line res-51

onances theory has successfully been adopted to explain numerous features of in situ and52

ground observation of geomagnetic pulsations (Baddeley et al., 2007).53

Pc5 pulsations frequently monitored at the auroral latitudes mostly using radars54

and ground magnetometers (Ziesolleck & McDiarmid, 1994) are of large amplitude (reach-55

ing 100 nT). According to the study conducted by Samson et al. (1971), the sense of Pc556

pulsations polarization and their amplitude spectra exhibit marked latitude dependence.57

Therefore, the maximum Pc5 amplitude occurs around magnetic latitude (MLat) between58

65◦ and 75◦ (Kleimenova et al., 2010). In the auroral strip, Pc5 polarization fluctuates59

near noon and at the latitude of maximum amplitude. Thus, the ground magnetic field60

perturbations are in principle the field due to the ionospheric Hall currents. These mea-61

surements show that the perturbation of the northward magnetic field component peaks62

near the resonant field line location and ∼ 180◦ phase shift across the resonant latitude63

(Lee et al., 2007). The fast-mode surface waves arrive at the resonance point via the field64

lines, oscillating them in the transverse direction. In principle, the ground-based obser-65

vation of Pc5 pulsations would show that they travel with a small azimuthal wave num-66
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ber westward in the morning and eastward in the afternoon. Therefore, the maximum67

Pc5 amplitudes and intensity always peak along 73◦ MLat (Pilipenko et al., 2001).68

Consequently, in the auroral oval, there are two unrelated electrodynamic phenom-69

ena; Pc5 pulsations and auroral electrojets (AEJ). AEJs are part of 3-D ionospheric cur-70

rent systems resulting from solar wind-magnetosphere couplings. These currents also flow71

either westward or eastward and are latitudinally confined by the Hall current. It was72

noted that AEJ intensity and Pc5 power peak at the same latitude and determined by73

unrelated processes. The Pc5 maximum intensity and position shift in latitude remained74

within the strips of AEJ of about 8◦ wide. Rostoker and Lam (1978) proposed an ex-75

planation for this consistency, reporting these waves are the eigenmodes of a 3-dimensional76

terrestrial magnetosphere-ionosphere current system. Pilipenko et al. (2001) findings were77

similar to that of Rostoker and Lam (1978); Pc5 pulsation temporal and spatial varia-78

tions in the prenoon or morning sectors are intimately related to the intensity and lo-79

cation of auroral electrojet currents. Implying possible modulation of Pc5 waves from80

the magnetic contribution of AEJs in the region. Omondi et al. (2023) piloted a study81

on the automatic detection of auroral Pc5 pulsations guided by wavelet technique in the82

region separating Pc5 pulsation from raw data. Their findings were consistent with tra-83

ditional results reporting large amplitudes of detected Pc5 pulsations.84

Studies of geomagnetic activities using geomagnetic indices have shown that the85

magnetosphere behaves as a nonlinear dynamic system (Kamide et al., 1998). Various86

methods based on the physical, analytical or empirical relationships between geomag-87

netic parameters and solar wind, artificial intelligence, and correlations have been used88

to forecast geomagnetic activities (Williscroft & Poole, 1996; Wu & Lundstedt, 1996; Wu89

et al., 1998; Weigel et al., 1999; Gholipour et al., 2004; Uwamahoro & Habarulema, 2014;90

Eastwood et al., 2017; Wintoft et al., 2017; Chandorkar et al., 2017). The nonlinear au-91

toregressive with exogenous input (NARX) model has widely been used for forecasting92

and modeling nonlinear systems. The NARX model performs well in the recognition of93

nonlinear systems by selecting the high-ranked model terms from a dictionary compris-94

ing numerous candidate model terms (Billings, 2013). Given that the magnetosphere is95

a nonlinear process, NARX presents itself to be the most efficient method for space weather96

predictions. The NARX models have been successfully used in the prediction of various97

geomagnetic indices, for instance, the AE index (Gu et al., 2019), Kp index (Ayala So-98

lares et al., 2016), and the Dst index (Balikhin et al., 2011; Boynton et al., 2011; Wei99

et al., 2004) with great performance. Cai et al. (2009) studied storms by forecasting SYMH100

using ACE data which yielded a good performance with RMSE of 14nT2 and a corre-101

lation coefficient of about 0.9. Bhaskar and Vichare (2019) extended Cai et al. (2009)102

studies to predict the ASYH index by use of the NARX network. In that, they used ASYH103

and SYMH indices during the great geomagnetic storms occurring between 1998-2015104

in two solar cycles, 23 and 24. The results were astounding as the forecasting model re-105

produces the entire time profiles of ASYH and SYMH with small time variations of about106

10-30 min within noise level tolerance.107

Several studies on Pc5 pulsations have pointed out its significance to space weather108

monitoring. Currently, there is no report on an ANN-based forecasting model available109

for ground Pc5 pulsations using solar wind parameters. The ANN-based prediction of110

ground Pc5 pulsations will be useful in understanding the contribution of internal and111

external drivers in the observed asymmetries. The forecasting model can be deployed112

to complement the issue of data loss and integrity problems in one station based on ob-113

servations in others within the same network. The current work complements Omondi114

et al. (2023) studies in the Svalbard network utilizing the same dataset of solar cycle 23115

and 24 to perform the auroral Pc5 prediction. Therefore, the main objective of the study116

is to develop a ground Pc5 prediction model using a dynamic NARX simulation model117

in the Svalbard network trained with solar wind parameters as input and feedback from118

the output. The robustness of the NARX model’s performance in previous studies was119
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the motivation for its selection in the current study. The current paper is organized into120

5 sections: Section 2 introduces time series NARX feedback neural networks, section 3121

describes the data and methodology, section 4 gives results and discussion, and finally122

conclusion.123

2 Time Series NARX Feedback Neural Networks124

Artificial neural networks (ANN) are computation simulations that mimic biolog-125

ical neural networks in the brain (Poulton, 2002). They were first suggested by McCulloch126

and Pitts (1943) to study non-linear systems problems. There are numerous kinds of ANNs127

for modeling physical systems. In particular, the most frequently used ANN for mod-128

eling physical time series data is the MultiLayer Perceptron (MLP) Network. Feed-forward129

neural networks have been more effective than MLP in modeling nonlinear time series130

(Omondi et al., 2023). When simulating nonlinear time series, recurrent dynamic net-131

works with feedback are preferred. Therefore, the suitable and powerful type of recur-132

rent Network for nonlinear systems (time-series) is a nonlinear autoregressive network133

with exogenous inputs (NARX). Normally nonlinear systems are selected the same way134

as linear systems by considering the right parameters. Thus, in nonlinear systems, one135

can reconstruct the relation of the kind136

o[t] = g(o[t− 1], o[t− 2], ..., o[t− no], x[t− 1], x(t− 2), ..., x[t− nx] + e[t]) (1)

Equation 1 shows a time series NARX model (nonlinear ARX), where g is a nonlinear137

function of fixed inputs and outputs. In the event of training NARX, the data are de-138

fined sequentially as χj = [o[t− j], o[t− j − 1], ..., o[k− j − (no − 1)], x[t− j], x[t− j −139

1], ..., x[t − j − (nx − 1)]]T and γj = o[t − j + 1], for j=1,..., M (Ayala Solares et al.,140

2016). Where χj defines the context outputs and inputs while the γj is the target data.141

Once the training is done and the model has learned with good results. Next, the model142

is ready and saved for deployment. In the event of prediction or forecasting future val-143

ues of o[t], the previous values o[t − 1], o[t − 2], ..., o[k − no], x[t − 1], o[t − 2], ..., x[t −144

nx] grouped in one (no+nx)-dimensional input vector are passed along with external145

inputs,x. Therefore, in this study, the simulation model here functions as a multiple in-146

put single output (MISO) system for prediction. The resultant model architectural de-147

sign used in the current work is schematically presented in Figure 1.148

To make steps ahead predictions by estimating o[t] at time t, and re-using the o[t]149

estimates in the input vector to forecast o[t+1] without using true o[t], target, the NARX150

simulation functions as a recurrent neural network. This way the output of the network151

will always depend on the input attributes (Billings, 2013). In essence the o(t + 1) is152

dependent on the previous values of an independent (exogenous) input signal x[t], and153

previous values of the output signal o[t]; no and nx are time delays of the output and154

input variables, and e(t) is the model error or residual between the target and forecasted155

values.156

The output of the hidden layer at time t is determined by Eqn.2 (Cai et al., 2009):157

hj(t) = tanh

[
nx∑
k=0

wjkx(t− k) +

no∑
l=1

wjlo(t− l) + aj

]
(2)

wjk is the weight connection between input, x(t−k) and the jth hidden neurons while158

that between hidden and output layers, o(t−l) is given by wjl. aj is the bias in the jth159

hidden layer neuron.160

Figure 1 shows a simple NARX simulation architectural model designed using re-161

sults from Figure 2. This model consists of one input layer comprising four input nodes162

defined by the number of input attributes x1 − x4 and feedback inputs fb, one hidden163

layer composed of 11 nodes, and one output node,o, in the output layer. The feedback164
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[x1, fb]

[x2, fb]

[x3, fb]

[x4, fb]

o

fb

HiddenInput output

Figure 1. The simulation model architecture for NARX network. Where x1-x4 are the input

values to the model input neurons (faint orange), the 11 green nodes in the middle are the hidden

layer neurons while the teal node is the output layer neuron with o denoting the predictions.

Finally, the feedback is denoted by fb.

loop represented by fb is the previous values from the model output, o[t− 1], ..., o[t−165

4]. Essentially, a dynamic neural network with the time steps synchronized data, o[t] and166

x[t] is illustrated by Figure 1. Figure 2 demonstrates the internal validation outcome of167

the NARX model performance on data during learning to obtain the optimum model168

with the best performance and less computation time. The first model’s performance eval-169
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uation step was based on root mean square errors (RMSE) versus the number of nodes170

in the hidden layer. It became hard to select the model based on the first evaluation as171

there were many optimal model candidates based on this evaluation. Therefore, the sec-172

ond selection criterion on the regression against the number of neurons in the hidden layer173

was examined. Generally, we noticed all models qualify for learning machines except those174

below N=8. Where N is the number of nodes in the hidden layer. The argument on the175

error difference in RMSE and R values being less than a unit left the best choice to rely176

on the computation time. Keeping the same N and monitoring their computation time177

with a reasonable number of epochs to ensure no underfitting and overfitting in the learn-178

ing. Then that of fast computation time was selected. In principle, each dot plotted in179

Figure 2 represented a trained network against the number of hidden layer neurons in180

the x-axis and performance in the y-axis, upon which the optimal model is taken after181

25 trials. The selected optimal NARX model for the current work was the one with 11182

neurons in the hidden layers and an RMSE of 3.44 nT and R=0.75 as shown with the183

teal dashed line and red point in Figure 2 (a) and (b).

Figure 2. NARX model optimization profile of root mean square error and R versus the

number of neurons in the hidden layer. The teal color dashed line indicates the selected number

of neurons versus RMSE values for the present model for the prediction of Pc5 pulsation. The

optimal model was (11,3.44) and (11,0.75) in terms of computation time.

184

3 Data and methodolgy185

The ground magnetic field data of one minute resolution was obtained from the Sval-186

bard network for a period of 25 years from 1996 to 2020. These data were preprocessed187

and transformed into H-magnetic field coordinates from their X and Y-corrected geo-188

magnetic components. Svalbard network comprises 5 observatories, Bear Island (BJN),189

Hopen Island (HOP), Hornsund (HOR), Longyearbyen (LYR), and Ny Alesund (NAL).190

Pc5 pulsations were extracted by bandpass filtration technique from the H-component191

using Butterworth digital filter design (Omondi et al., 2023). The space events polar-192
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ized east-westward and south-northward are all captured by the H-component. There-193

fore, the H-component accounts for both local and global Pc5 pulsation beatings that194

would be observed worldwide during geomagnetic activity. Figure 3 illustrates the ge-

Figure 3. Topographical map of Svalbard network in the auroral region. The green-colored

meridian is a line corresponding to the geomagnetic latitude recording the maximum amplitude

and intensity of Pc5 pulsations, 73◦.

195

ographical map of ground-based space monitoring stations of the Svalbard network. The196

green-colored meridian corresponds to the geomagnetic meridian of maximum Pc5 am-197

plitude and intensity receptions (Pilipenko et al., 2001).198

Benchmark of the previous study conducted by Omondi et al. (2023) to detect au-199

roral Pc5 pulsations using machine learning; they found that the Pc5 pulsations under200

investigation were recorded simultaneously in the Svalbard network. Therefore, the same201

conclusion is applied in the current study. For this work, we used the NAL station in202

modeling machine learning algorithms in the training phase and the other four stations203

were used in the deployment of the model during the testing phase. The northward ge-204

olocation of the NAL observatory (75.25◦) to other stations in the Svalbard network was205
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of interest as it is on the outer or near outer edge of the auroral oval strip (65◦-75◦ mag-206

netic latitude) since it records fairly clean space events relative to others in the auroral207

oval. Deployment of the machine learning model in other stations in the Svalbard net-208

work aside from the used to train it presents an interesting evaluation of the capability209

of the machine learning model in the complex data environment. Given that stations in210

the network receive the same Pc5 waves in terms of the frequency band, they are polar-211

ized differently (phases) with fluctuating powers dependent on the L-shell values.212

The solar wind parameters observed near the Lagrange’s (L-1) point of 1 minute213

cadence starting from 1996 to 2020 were employed. In particular, to train our machine214

learning algorithms, we selected four solar wind parameters measured near L-1 point;215

these parameters are regarded as the most important drivers triggering geomagnetic ac-216

tivity causing Pc5 pulsations. These variables comprise the Z-component of the inter-217

planetary magnetic field magnitude (IMF-Bz) in GSM coordinate, the plasma temper-218

ature (Te), the proton density (np), and the earthward solar wind velocity ( Vx). The219

Z-component of the interplanetary magnetic field (IMF-Bz) contributes largely to the220

amount of momentum and energy transport from the solar wind to the Earth’s magne-221

tosphere by magnetic reconnection at the dayside magnetopause (Dungey, 1961). Thus,222

the knowledge of (IMF-Bz) fields is key for monitoring and forecasting the energy in-223

put into the magnetosphere-ionosphere system. Therefore, to guide the modeling of the224

non-linear system, the machine was to learn from the solar wind parameters with the225

Pc5 waves as the target.226

The input datasets were wrangled to remove missing data and transformed into in-227

telligible data suitable for machine learning, finally, synchronized with the Pc5 pulsa-228

tions to have the same data frames. The data were partitioned into two categories, the229

training set spanning 17 years and shuffled 8 years of data from two solar cycles,23 and230

24 for testing or deployment purposes. In the training phase, we partition data 70% train-231

ing, 15% internal testing, and 15% validation. The training dataset was randomly ex-232

tracted from the 17 years of simulation time series distributed over two solar cycles, 23233

and 24. The validation was done using Kp and F-10.7 indices, 27 days averaged with the234

model evaluation results from the test data. The Kp and F10.7 indices data set of 25235

years from 1996 synchronized with 8 years of test data from two solar cycles. The train-236

ing algorithm was based on the error back-propagation algorithm. The Levenberg-Marquardt237

backpropagation which uses trainml to learn was utilized because it is faster to train (Omondi238

et al., 2023). For every epoch, the loss function (cost function) is calculated by Eqn. 3.239

E =
1

2

M∑
j=1

(Tj −Oj)
2

(3)

where Tj and Oj are the true output and prediction output, where M is the number of240

the training samples (Cai et al., 2009). The prediction performance was obtained using241

the mean square error (MSE):242

MSE(O, Ô) =
1

m

m∑
j=1

(
Oj − Ôj

)2
(4)

where the Oj is the jth of m output of the initial open net network with Te, IMF-Bz, np243

and Vx as its input, and Ôj is corresponding output as predicted by NARX. The root244

mean square error was calculated from the square root of MSE in equation 4. The cross-245

correlation coefficient, R, is given by equation 5.246

R(O, Ô) =
1

m

m∑
j=1

(
Oj − µ(O)

σ(O)

)
×
(
Ôj − µ(Ô)

σ(Ô)

)
(5)

The R values are used to determine the prediction accuracy of the neural network. where247

µ(Ô) and µ(O) represent the mean values of the predictions results and observations,248

respectively. σ(Ô) and σ(O) are the standard deviations.249

–8–



manuscript submitted to JGR: Space Physics

Time series comprising nonstationary power at many distinct frequencies can be250

analyzed by wavelet transform (Daubechies 1990). Supposing that one has a time series251

observation, ym, with equal time spacing δt and m=0. . .M-1. If one also has wavelet functions,ψ(ξ),252

which is dependent on a non-dimensional ‘time’ parameter ξ. To be permitted as a wavelet,253

this function must be localized in both frequency and time space and also have zero mean254

(Farge 1992). Consider the Morlet wavelet, consisting of a plane wave modulated by a255

Gaussian:256

ψ0(ξ) = π− 1
4 · eiω0ξ · e− ξ2

2 (6)

where nondimensional frequency is given by ω0 and taken to be 6 to satisfy the admis-257

sibility condition (Farge 1992). The continuous wavelet transform of ym discrete signal258

is defined as the convolution of ym with a translated and scaled version of ψ0(ξ):259

Wm(s) =

M−1∑
m′=0

ym′ψ∗
[
(m′ −m)δt

s

]
(7)

where the complex conjugate is indicated by (∗).260

ψ̂(sωk) =

{
2πs

δt

}2

ψ̂0(sωk) (8)

For morlet wavelet, the function ψ̂0(sωk) = π− 1
4 ·H(ω)·e− (sω−ω0)2

2 and each of the un-261

scaled ψ̂0is defined to have
∫ +∞
−∞ | ˆψ0(ω′)|2dω′ = 1, i.e they have to be normalized to a262

unit energy. Utilizing Normalizations at every scale s one has263

J−1∑
k=0

|ψ̂(swk)|2 = J (9)

where the number of points is given by J. Using the convolution formula in equation 7,264

the normalization of the wavelet function is given by:265

ψ

[
(m′ −m)δt

s

]
=

(
δt

s

)
ψ0

[
(m′ −m)δt

s

]
(10)

where energy of ψ0(ξ) is normalized to unity. If the wavelet function ψ(ξ) is complex,266

then its transform will also be complex, Wm(s). Therefore, the real and complex com-267

ponents of wavelet transform are expressed as ℜ{Wm(s)} and ℑ{Wm(s)} respectively.268

The amplitude and phase of the wavelet transform are obtained as |Wm(s)| and tan−1
[
ℑ{Wm(s)}
ℜ{Wm(s)}

]
269

correspondingly. Consequently, the wavelet power spectrum is defined by |Wm(s)|2. Af-270

ter the successful selection of the wavelet function, the immediate task is to choose scales,s,271

to use in the wavelet transform. Therefore, wavelet scales are written as a set of frac-272

tional powers of 2 shown in equations 11 and 12.273

sn = s02
nδn, n=0,1,2,..,N (11)

274

N =
δ

n
log2(Jδt/s0) (12)

Where N and s0 are the largest and smallest scales. In the Morlet wavelet, δn = 0.5275

is the largest permitted value that gives enough sampling in scales. Given that wavelet276

transform is essentially a bandpass filter with a known wavelet function (response func-277

tion). The original time series can be reconstructed after wavelet transformation using278

either an inverse or deconvolution filter. In our case, the original signal was reconstructed279

by taking the sum of the real part of the wavelet transform over all scales.280

ym =
δnδ

1
2
t

Cδψ0(0)

N∑
n=0

ℜ [Wm(sn)]

s
1
2
n

(13)
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The energy scaling is removed by ψ0(0) and the conversion of wavelet transform to en-281

ergy density is performed by s
1
2
n . The Cδ is the reconstruction factor of δ from its wavelet282

transformation using ψ0(ξ). Given a new wavelet function, Cδ can be derived by tak-283

ing time series of a δ function at times m = 0 provided ym = δm0
. Therefore, the wavelet284

transform becomes:285

Wδ(b) =
1

M

M−1∑
k′=0

ym′ψ∗ (sωk) (14)

The reconstruction of equation 14 is:286

Cδ =
δnδ

1
2
t

ψ0(0)

N∑
n=0

ℜ{Wδ(sn)}
s

1
2
n

(15)

where, the Cδ is constant and scale dependent for every wavelet function. Following the287

energy conservation principle the total energy is conserved and Parseval’s theorem for288

wavelet analytics is:289

σ2 =
δnδ

1
2
t

CδM

M−1∑
m=0

N∑
n=0

|Wm(sn) |2

s
1
2
n

(16)

where δ is for the reconstruction and σ2 is the variance.290

W 2
m =

δnδ
1
2
t

Cδ

n2∑
n=n1

|Wm(sn)|2

s
1
2
n

(17)

Equation 17 and 16 illustrates wavelet scaled power averaging of a wavelet transform in291

the signal transformation and reconstruction formulations. After training the ML model,292

its performance was evaluated by wavelet power spectrum analysis. Thresholds for dis-293

tinguishing predicted events and non-events were set guided by wavelet power transform294

techniques. This technique was performed by passing the machine learning output sig-295

nal through a filter-like algorithm (wavelet power transform) to define the predicted Pc5296

events from background noise. This concept is visualized in the schematic diagram shown297

in Figure 4.

Wavelet
Power

Transform

Pc5 Predictions,
Pc5 Observation

Non-Events

Events

P
<

0.0
01

n
T

2

P≥ 0.001 nT2

Figure 4. Ilustration of Pc5 Event definition from forecast results

298
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4 Results and Discussion299

4.1 Network Peroformance300

In the current study, we present the NARX neural network as a machine learning301

(ML) tool in predicting Pc5 pulsations. The network took 142 out of 1000 epochs to train302

the model with a performance of MSE=11.90 nT2. The overall training time of about303

00:18:25 hours was observed. The number of epochs and time taken to train the model304

was fair enough to qualify good learning indicating that there were no overfitting and305

underfitting. Therefore, it was arguably convincing to state that the model indeed found306

it easy to learn from the data and regularize with the target data to yield a good per-307

formance. The resultant model’s intelligible weights and biases were pictorially presented308

using the Hinton diagram shown in Figure 5. The color coding of the squares represents309

the weight and bias signs values, whereby red and green colors correspond to negative310

and positive values respectively. The scale size of each square is equivalent to the weight311

and bias magnitude values in each layer having a maximum magnitude equal to 1. The312

Hinton diagram demonstrates neuron connections of the learned model between inputs,313

hidden layer, and output giving more insight into trained weights distribution. To un-314

ravel the black box of the artificial network or network intelligence of the trained model,315

Figure 5 gives the intuition. In layer 1 of Figure 5 there are 8 parallel inputs in input316

1 comprising of connection from 4 external inputs and 4 context inputs (feedback) to the317

11 hidden nodes in the hidden layer forming an 8 by 11 network matrix. Hence, the over-318

all distribution of weights in layer 1, input 1, is 88 connections and 88 weights. In the319

input 2, layer 1, there are 11 biases and 22 weights. In Layer 2 (the connection between320

the hidden layer and output) there are 11 weights and 1 bias. Contrary to Figure 1, the321

same arrangement as in Figure 5 was expected but there are only 4 inputs defined by322

input attributes looped with feedback. At the initial condition, the extra 4 context in-323

put does not exist as there is no output. These context inputs are automatically created324

during the machine-learning process. Therefore Hinton diagram comes in handy to give325

the resultant picture of the trained model weights and network distributions with more326

details. Overall, the ML model demonstrated a strong node connection.

Figure 5. Hinton diagram of ML model showing trained weights and biases with their corre-

sponding values and magnitudes. The diagram demonstrates strongly connected neurons present-

ing good learning. Where green and red colors are positive and negative values respectively. The

size of the square represents the element magnitude.
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Figure 6. Machine Learning training results for 17 years of the two cycles, 23 and 24. Where

(a)-(d) are scatter plots for training, testing, validation, and finally the overall performance.

327

Figure 6 shows the internal network evaluation in the training phase. Hence, the328

regression coefficient of the training, testing, validation, and general performances yielded329

an overall of 0.75. Hence, scaling well with big data. Despite high amplitude spikes and330

outliers in the data, the model responded with a good performance in the training phase.331

The model generalizes well with R values of 0.7495 indicating good learning. Validation332

and internal testing showed a good consistency between prediction and observation hav-333

ing R values of 0.75 overall. The metric measurement of the model training realizes an334

RMSE of 3.44 nT and MSE of 11.90 nT2.335

4.2 Model Performance on test data336

After the training phase, the resultant simulation model was deployed on test data337

to evaluate its performance and robustness. Figure 7 shows the regression between ob-338

servation (target) and the prediction for both high and low solar activities from some339

selected years in the ascending and descending phases of solar cycles 23 and 24. Figure340

7 (a-c) illustrates the network model performances for the years 1999, 2002, and 2010341

with an averaged R-value of 0.76 while Figure 7 (d) shows the yield for the year 2020342

having R-value of 0.57. The metric evaluation on MSE also yielded 9.15 nT2, 8.23 nT2,343

3.70 nT2, and 24.52 nT2 for 1999, 2002, 2010, and 2020 respectively. The performance344

in the year 2020 was unusual compared with other years in the test case, possibly due345

to the complexity of the dataset. Comparing 2020 performance generally with other years’346

test data as shown in Figure 15, the number of prediction events was also anomalous con-347

trary to the expectation as observed in the year 2009. This points out the dynamic re-348

sponse of the model to different dataset complexities. Overall, there was a good corre-349
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lation between prediction and observation with a performance of MSE= 11.40 nT2 de-350

spite uncertainties in the datasets.351

Figure 7. Machine learning test performance on a fresh data set of both active and high so-

lar wind activities spanning both phases of solar cycle 23 and 24. Where (a),(b), (c), and (d)

are test responses of the years 1999, 2002, 2010, and 2020 response from the NAL observatory

respectively.

The model was also deployed to study the response to a strong geomagnetic storm.352

Therefore, the geomagnetic storm of St. Patrick’s Day of March 17th, 2015 with max-353

imum Ap and Kp indices of 108 and 8- (7 2
3 ) respectively was picked as an illustrious case354

study. This storm was strong and caused disturbances in the magnetospheric current sys-355

tem and energy injection into the magnetosphere cavity. As a consequence, the injected356

energy resulted in the generation of plasma waves. These waves contribute to the trans-357

portation of momentum, mass, and energy in the entire geospace. Given that Pc5 waves358

are giant plasma waves of ultra-low frequency with wider bands generated from field line359

resonances. Thus, this became the first step of the model deployment of the Pc5 predic-360

tion in the nonlinear conditions of the magnetospheric system. Figure 8 shows the spec-361

tral analysis of the machine learning prediction outcome and Pc5 observation on the St.partrick362

day. The zoomed plot of Figure 8 highlights a clear visualization of the relationship be-363

tween ML output and the observations. There exists a strong match between the obser-364

vation and ML outcome throughout the day with some small amount of outlier spikes.365

Overall , the predicted Pc5 wave patterns were excellently reproduced and had a good366

correlation with observation. Time-frequency and spectral characteristics of the predic-367

tion against the observation were studied in Figures (9 and 10) using the time window368

of intense Pc5 pulsation highlighted in teal color in Figure 8.369

–13–



manuscript submitted to JGR: Space Physics

Figure 8. Time series prediction and observation plot on the geomagnetic storm of March

17, 2015 at NAL observatory. The zoomed graph shows the correlation between observation and

prediction highlighted in light olive color.

Figure 9 shows wavelet analytics of the Pc5 prediction and observations correspond-370

ingly. Whereby, Figure 9 (a) & (b) are the scalograms of the actual observations and pre-371

dictions of Pc5 pulsations of the Morlet wavelet continuous transformation. The scalo-372

grams were of the signals highlighted in teal color in Figure 8. The signature of high am-373

plitudes seen in Figure 8 both for observation and predicted Pc5 dominated as well in374

the scalogram presenting high energy pulsations. Surprisingly, the prediction scalogram375

is more filtered than the observation one with clear patches, this is because of the wavelet376

time-frequency duality property. Fundamentally, the wavelet transformation works on377

the identification of real signals from noise-infested signals on the principle of time-frequency378

features. Figure 9 (a) and (b) show Pc5 signals corresponding to their frequencies and379

the approximation in green color. On the other hand, the Pc5 prediction event defini-380

tion was based on the analyses of Figure 9, 10 and 11. Therefore, carrying out the scale-381

averaged wavelet power spectrum analyses, the wavelet filter banks and signal in the in-382

put of the scaled-averaged wavelet function return the scales-averaged signals with their383

frequency and period coefficients. Figure 10 (c) & (d) are the scaled-averaged wavelet384

power spectra of Pc5 pulsations and predictions respectively. The results in 9 (a) & (b)385

and Figure 10 (c) & (d) showed that the detected Pc5 signals in the scalograms corre-386

spond to the energized power wavelet coefficients of the same signals having a good match.387

These report that the predicted signal was indeed Pc5 pulsations piloting further anal-388

yses to define the pure waves based on wavelet power analysis. To identify clean Pc5 pul-389

sations predictions against actual observation, the forecasted data were threshold at 0.001390

nT2 against observations schematically demonstrated in Figure 4.391

On the other hand, the event definition using the wavelet power spectrum technique392

was employed on a minor geomagnetic storm of January, 5th 2015 as a bare minimum393

of geomagnetic conditions. This was to account for Pc5 pulsations occurring due to magnetosphere-394

solar wind coupling dynamics other than the coronal mass ejections. Figure 11 (a) and395

(b) shows the Wavelet scale-average wavelet power spectrum of Pc5 pulsations of Jan-396
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uary, 5th 2015 minor geomagnetic storm. In comparison to Figure 10 (a) and (b), it was397

observed that the magnitude of normalized Pc5 pulsations was ten times as to the re-398

sponse in Figure 11 (a) and (b). This demonstrates the strength of St. Patrick’s strong399

geomagnetic storm to minor storm. For this reason, the Pc5 events were defined using400

the observation in Figure 11 (a) and (b). In the previous study, Omondi et al. (2023)401

defined their Pc5 prediction events on the threshold above 20 nT. Historically in the au-402

roral zone, it is well known to record large Pc5 pulsations. Therefore their threshold was403

to exclude ULF waves contributed by background noise as well as maintaining pulsations404

recorded in the quiet days. In the current study, ULF waves were detected using mor-405

let wavelet transform to observe time-frequency response and invite further diagnosis.406

Observing that these signals within the Pc5 band for both, there was a need to exclude407

those that mimic Pc5 waves by using wavelet power spectrum as they represent the back-408

ground noise.

Figure 9. Wavelet analyses of Pc5 pulsations. Panels (a) and (b) are scalograms of actual Pc5

and Predicted. The measurement recorded on the geomagnetic storm occurred on St. Partrick

day of March 17, 2015. The analysis presented corresponds to the highlighted section in cyan

color in Figure 8.

409

Figure 12 (a) & (b) demonstrates the Pc5 events and non-events of the predictions410

and actual measurements respectively. These observations give more insights into Fig-411

ure 9 as hot colors corresponding to Pc5 events with a higher power as in Figure 12 (a).412

Consequently, the cool colors in the scalograms are background noise which is consid-413

ered non-events. Whereby, the hot colors are those greater than 5 while the cool ones414

are those within or less than 5 as indicated in the color bar. Therefore, wavelet power415

spectra and continuous wavelet transformation of the Pc5 pulsations analyses were im-416

portant in the determination of the number of Pc5 pulsations predicted in each station417

in the Svalbard network. Figure 12 (a) shows that there are more actual Pc5 events com-418
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Figure 10. Wavelet scale-average wavelet power spectrum of Pc5 pulsations. Panels (c) and

(d) are scaled-averaged wavelet power spectra. of prediction and observation. The highlighted

area with cyan color corresponds to the study presented in Figure 9 and 8

Figure 11. Wavelet scale-average wavelet power spectrum of Pc5 pulsations. Panels (a) and

(b) are scaled-averaged wavelet power spectra of prediction and observation recorded on January,

Tth 2015.
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Figure 12. Pc5 event definition by wavelet power transform. Panels (c) and (d) are the pre-

dicted scaled-averaged Pc5 events and non-events respectively. These measurements are extracted

from the response illustrated in Figure 11

pared to the number of predictions. This is accounted for by the loss function, given that419

we had a regression of 0.75 on average, implying that 0.25 of the original signals were420

lost. Nevertheless, the model was within an acceptable level and the prediction results421

showed similar results seen in Figure 12 (a). Table 4.2 illustrates the number of Pc5 pre-422

diction outcomes from the Svalbard network with NAL recording the least and HOP the423

highest in the year 1996. These unique results correspond to the latitudinal distributions424

of stations in the auroral strip and the geomagnetic activity in the region. Field line res-425

onance theory dictates that these ULF waves are produced by remote Alfven oscillations426

in the magnetospheric Alfvenic resonator excited by MHD fluctuations from the local427

part of the magnetosphere. Hence, Pc5 waves peak at the latitude where the external428

disturbance frequency resonates with the local Alfven frequency. Pilipenko et al. (2001)429

reported a possible relationship between AEJ current and Pc5 waves in the auroral lat-430

itude of maximum peak and intensity of the events, 73◦. They argued that the Pc5 re-431

sponse is stimulated by the intensification of eastward AEJ with a noticeably lower mag-432

nitude compared to the westward AEJ. Given that the HOP station lies on the latitude433

of field line resonance, consequently had to record the highest corresponding to the pre-434

diction results.435

The model was tested in a quiet geomagnetic condition of a weak auroral geomag-436

netic activity of October 23rd, 1996. This was a minor geomagnetic storm with a max-437

imum kp index of +7 and Ap=37. Generally, 1996 was a quiet geomagnetic year in the438

minimum phase of solar cycle 23. Deploying the model in other Svalbard stations ex-439

cept for the NAL station on the storm of October 23rd, 1996 provided astonishing re-440

sults. Thus, the time series prediction against actual measurements in the Svalbard net-441
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Table 1. Number of Pc5 pulsations predicted in the Svalbard network for the year 1996.

Where Mlat is the magnetic latitude.

Station code Mlat Station Name Number of Pc5 Predictions

NAL 75.25 NyAlesund 2091

LYR 75.12 Longyearbyen 3584

HOR 74.13 Hornsund 6181

HOP 73.06 HopenIsland 6949

BJN 71.09 BearIsland 6625

work was illustrated by Figure 13 and 14. Whereby, the time series observations and pre-442

dictions are shown by red dotted and blue solid lines respectively.443

Figure 13 (a)-(b) and Figure 13 (c)-(d) shows the model test results predicted from444

LYR & HOR, and HOP & BJN correspondingly. It was observed that each ground ob-445

servatory observation showed a good match with the predictions illustrating the stabil-446

ity and integrity of the model in terms of performance. In the Four observatories, it was447

also noted that the HOP station’ prediction response to pulsations observations recorded448

maximum amplitudes with more than 100 nT than other stations. The BJN & HOR recorded449

second and third highest, and finally, LYR recorded the lowest. The finding supports the450

previous studies on the auroral Pc5 pulsation characteristics (Pahud et al., 2009). This451

was possibly contributed by the electrodynamic convection processes resulting from ionosphere-452

magnetosphere current systems in the auroral strip (Rostoker & Lam, 1978). The spa-453

tial and temporal variation of Pc5 ULF waves is co-related to the location of the auro-454

ral electrojet, therefore, the maximum Pc5 wave responses are observed at the latitude455

of the maximum AEJ peak. Overall, the fundamental feature of auroral Pc5 pulsation456

such as frequency component and amplitude was predicted with higher accuracy. At last,457

despite complexities in the data, the model deployed in those observatories performed458

well with a high degree of accuracy. The spikes and inherent features of each signal in459

the Svalbard network were reproduced with a good consistency to the original signal. Demon-460

strating the power of the NARX model in nonlinear system modeling (Billings, 2013).461

462

ULF wave power has shown dependence on L-shell and solar wind activity. There463

exists a strong consistency between ULF wave power and solar activity (Kessel et al.,464

2004), especially in the declining phase of the solar cycle having the highest correlation465

when the radiation belts are active (Li et al., 2011; Mann et al., 2004). Most studies have466

demonstrated that solar wind is the key external source and control of the geomagnetic467

pulsations (Mathie & Mann, 2001). Mathie and Mann (2001) pointed out that Pc5 waves468

decay exponentially with a declining L shell, and the decay rate increases with solar wind469

speed, showing a stronger dependence of ULF wave power on solar wind speed at higher470

L shells of the band L=3.75–6.79. The decreasing Pc5 amplitude from HOP to BJN and471

LYR observatories on either side of the auroral magnitude latitude (73◦) as illustrated472

in Figure 13 and 14 are in agreement with the Rae et al. (2012) findings. Rae et al. (2012)473

broadened the range of L-shells in the study of Mathie and Mann (2001) to both higher474

and lower values and found that the ULF wave power decreases toward the higher L-shells475

(L=8) as well as toward lower L shells.476

Ozeke et al. (2014) used statistical THEMIS and GOES observations to come up477

with the analytic expression for L against power for different geomagnetic activity lev-478
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Figure 13. The prediction and Observation of Pc5 pulsations in the Svalbard network. Where

panels (a), and (b) are model test results from LYR and HOR observatories in 1996.

Figure 14. The prediction and Observation of Pc5 pulsations in the Svalbard network. Where

panels (c), and (d) are model test results from HOP, and BJN observatories in 1996.

els, which can easily be used in the global radiation belt models. Recently, Dimitrakoudis479

et al. (2015) reported that the Kp-index is the single best parameter to investigate the480
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statistical ULF wave power driving radial diffusion. Therefore, we utilized the same con-481

cept in choosing Kp-index as the qualifying validation model for our model outcome. Fig-482

ure 15 illustrates the validation results of Pc5 prediction outcomes on testing deployment483

with Kp indices for two solar cycles, 23 and 24. Amongst the 8-year test datasets, 1996484

emerged as the most active year while 2009 was the least. There was a good correlation485

between Kp-index and model predictions. This implies that the ML model had good per-486

formance. It was observed that the number of occurrences of Pc5 pulsation was high in

Figure 15. Kp profile index with the selected number year number of Pc5 prediction events

correlation for two solar cycles. The bar graphs indicate the number of predicted Pc5 events for 8

different years of model testing while the line plot is 27days averaged Kp indices for 25 years

487

the low solar activity. The same results are reflected in the prediction of Pc5 undulations.488

In the ascending phase of solar cycle 23 indicated by the F10.7 index in Figure 15 shows489

a decreasing trend in the number of Pc5 predictions. In contrast, solar cycle 24 provided490

an interesting observation contrary to that of solar cycle 23. Whereby the minimum phase491

for solar cycle 23 recorded 264 and ascending phase 2022 Pc5 prediction events while so-492

lar cycle 24 was 1382 events in 2020. It can be noted that in both cycles there was a high493

geomagnetic activity in solar cycle 23 ascending phase indicated by Kp-index and low494

solar activity. On the other hand, the solar cycle 23 and 24 minimum phase had both495

minimum solar and geomagnetic activities. In relevance to machine model performance496

on the test set. Overall, there was good coherence between the solar activity models (F10.7),497

Pc5 predictions, and geomagnetic activity models (Kp).498

5 Conclusion499

In the current study, we have developed a machine learning model based on the NARX500

recurrent neural network to predict time series ground Pc5 pulsations in the Svalbard501

network using solar wind parameters. The model was trained with 17 years of datasets502

and tested on 8 years of data shuffled from solar cycles 23 and 24. After the training phase,503

the model’s internal evaluation yielded R=0.75 and MSE=11.90 nT2. It was also deployed504

in various geomagnetic conditions, solar activities, and finally in different locations in505

the Svalbard network. Studies on the St.patrick storm day on March 17, 2015, demon-506

strated good coherence between the observation and the prediction. Consequently, the507

ML model showed also good performance in the four other ground observatories on the508
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minor storm of October 23rd, 1996. Therefore, these were in agreement with the other509

studies on this region, given that Pc5 waves recorded in one observatory are simultane-510

ously observed in other stations (Omondi et al., 2023). On the contrary, given that the511

geomagnetic Pulsations monitored in the auroral oval are the same in terms of frequency512

information but unique in terms of amplitude and phase. Therefore, presenting complex-513

ities in data. Provided the model was trained with different data from one observatory514

and deployed in different observatories and still able to give excellent performance de-515

spite uncertainties in data. This demonstrates the power of machine learning in pattern516

recognition from complex and large volumes of data. For example, the HOP station pro-517

duced a higher number of predictions compared to other stations. It also had maximum518

amplitude predicted Pc5 pulsations with a decaying amplitude in other stations in high519

and low magnetic latitudes from HOP. Given that, there were good results despite data520

complexity in the year 2020 and 1996. Comparing the observation in Figure 15 with Fig-521

ure 17 in Omondi et al. (2023) studies, there is a common trend in solar 23 and 24 pre-522

dictions except in 2020. Thus, in the current study, 2020 became an outlier performing523

average with R= 0.57. On the contrary, more predictions were observed deviating from524

the trend with other observations. We conclude that the model performance was robust525

and fit for deployment in space weather forecasting. This was the first ground-based Pc5526

prediction in the auroral zone using a machine-learning technique using solar wind pa-527

rameters. Overall, the ML model yielded good results and useful tool in the magneto-528

spheric community. Therefore, to improve the model’s performance, future work would529

focus on probabilistic prediction and forecasting.530
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