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Abstract

Idealized general circulation models (GCMs) suggest global-mean precipitation ceases to increase with warming in hot climates.

However, it is unclear if this occurs in more comprehensive GCMs. Here, we examine precipitation over a wide range of

climates simulated with comprehensive GCMs. We find that in the Community Atmosphere Model, global-mean precipitation

increases approximately linearly with global-mean surface temperatures up to about 330˜K, where it peaks at 5˜mm˜day$ˆ{-

1}$. Beyond 330˜K, global-mean precipitation decreases substantially despite increasing surface temperatures. This occurs

because of increased atmospheric shortwave absorption from water vapor, which limits shortwave radiation available for surface

evaporation. Precipitation decreases in the tropics and subtropics, but continues to increase in the extratropics due to increased

poleward moisture transport. Precipitable water increases everywhere, resulting in longer water-vapor residence times and

implying more episodic precipitation. Other GCMs indicate global-mean precipitation might exhibit a smaller maximum rate

and begin to decrease at lower surface temperatures.
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Key Points:6

• Global-mean precipitation increases approximately linearly with surface temperatures7

up to 330 K, then decreases with higher temperatures8

• Precipitation decreases at high temperatures due to increased atmospheric shortwave9

absorption from water vapor, limiting surface absorption10

• At high temperatures, precipitation decreases in the tropics and subtropics, but in-11

creases in the extratropics due to moisture transport12
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Abstract13

Idealized general circulation models (GCMs) suggest global-mean precipitation ceases to14

increase with warming in hot climates. However, it is unclear if this occurs in more com-15

prehensive GCMs. Here, we examine precipitation over a wide range of climates simulated16

with comprehensive GCMs. We find that in the Community Atmosphere Model, global-17

mean precipitation increases approximately linearly with global-mean surface temperatures18

up to about 330 K, where it peaks at 5 mm day−1. Beyond 330 K, global-mean precipi-19

tation decreases substantially despite increasing surface temperatures. This occurs because20

of increased atmospheric shortwave absorption from water vapor, which limits shortwave21

radiation available for surface evaporation. Precipitation decreases in the tropics and sub-22

tropics, but continues to increase in the extratropics due to increased poleward moisture23

transport. Precipitable water increases everywhere, resulting in longer water-vapor resi-24

dence times and implying more episodic precipitation. Other GCMs indicate global-mean25

precipitation might exhibit a smaller maximum rate and begin to decrease at lower surface26

temperatures.27

Plain Language Summary28

Earth’s climate has experienced substantial changes over its history, including periods of29

extremely cold temperatures where most regions contained ice, and periods of extremely30

warm temperatures where most regions contained no ice. In this study, we explore how31

precipitation changed in extremely cold and warm climates using a unique set of coupled32

climate model simulations. We find that global-mean precipitation increases linearly with33

global-mean surface temperatures up to 330 K, where it peaks and then decreases as surface34

temperatures further increase. This occurs because in hot climates, global-mean precipi-35

tation is almost entirely balanced by absorbed shortwave radiation at the surface. As the36

climate warms, the atmosphere contains more water vapor, resulting in increased absorption37

of shortwave radiation within the atmosphere and decreased absorption of shortwave radia-38

tion at the surface. This limits the energy available for surface evaporation. We show that39

other climate models exhibit qualitatively similar behavior but indicate the peak in global-40

mean precipitation could occur at lower surface temperatures. These results demonstrate41

the need to better understand Earth’s hydrological cycle in hot climates. These results also42

have large implications for understanding weathering in past climates and the habitability43

of other Earth-like planets.44
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1 Introduction45

Global-mean precipitation is expected to increase at a rate of 1–3 % per degree of warming46

in response to rising greenhouse-gas concentrations (Allen & Ingram, 2002; Held & Soden,47

2006; Vecchi & Soden, 2007; Jeevanjee & Romps, 2018). This relationship, often referred48

to as Earth’s global hydrological sensitivity, has been found to be remarkably similar across49

a variety of greenhouse-gas forcing experiments (Stephens & Ellis, 2008; Lambert & Webb,50

2008; Andrews & Forster, 2010; Andrews et al., 2010; O’Gorman et al., 2012; Pendergrass51

& Hartmann, 2014; DeAngelis et al., 2015; Fläschner et al., 2016; Raiter et al., 2023). This52

implies that global-mean precipitation in past climates, such as the early Eocene or the mid-53

Pliocene, can be inferred directly from paleoclimate temperature records. For example, it is54

estimated that early Eocene surface temperatures were 12–15 K warmer than the present-55

day climate (Caballero & Huber, 2013; Anagnostou et al., 2016; Inglis et al., 2020), which56

suggests that global-mean precipitation would have been 12–45 % larger than today.57

While the global hydrological sensitivity is a conceptually convenient metric, there is evi-58

dence that it varies as a function of climate state, implying that estimates from climates59

similar to today may not apply to past climates. For instance, O’Gorman and Schneider60

(2008) simulated a wide range of climates in an idealized GCM and showed that global-mean61

precipitation ceases to increase with warming in hot climates. Examination of the surface62

energy budget showed that in hot climates, global-mean precipitation is entirely balanced63

by absorbed shortwave radiation at the surface, which in the idealized GCM, is insensitive64

to warming (O’Gorman & Schneider, 2008). However, the idealized GCM simulations em-65

ployed a simple gray radiation scheme and contained no land, sea ice, or clouds, leaving66

questions about the behavior of precipitation in comprehensive GCMs.67

More recent work examined precipitation in comprehensive GCMs under various atmo-68

spheric carbon dioxide (CO2) levels and found that the global hydrological sensitivity ex-69

hibits weak climate state dependence. Good et al. (2012) used a coupled GCM and found70

that global-mean precipitation is only slightly less sensitive to warming in warm climates.71

Raiter et al. (2023) examined a broader suite of coupled GCMs and found that the global hy-72

drological sensitivity changes little under large CO2 forcing. However, these studies did not73

explore extremely high atmospheric CO2 concentrations and only simulated a narrow range74

of Cenozoic Era surface temperatures. Thus, in comprehensive GCMs, it remains unclear75

whether the global hydrological sensitivity is weaker in hot climates and whether precipita-76

tion exhibits significant climate state dependence. Notably, analytical radiative arguments77

introduced by Jeevanjee and Romps (2018) suggest that in hot climates, precipitation may78

decrease under warming. Yet, this hypothesis has not been confirmed in comprehensive79

GCMs, which contain clouds and other processes that can modulate radiative fluxes.80

In this study, we examine precipitation over a wide range of climates simulated with com-81

prehensive GCMs. We find that in the Community Atmosphere Model (CAM), global-mean82

precipitation increases approximately linearly with global-mean surface temperatures up to83

about 330 K, where it peaks at a rate of approximately 5 mm day−1. Beyond 330 K, global-84

mean precipitation decreases substantially despite increasing global-mean surface temper-85

atures. The decrease in precipitation occurs because in hot climates, Earth’s atmosphere86

contains more water vapor, resulting in increased absorption of shortwave radiation within87

the atmosphere and decreased absorption of shortwave radiation at the surface, thereby88

limiting the energy available for surface evaporation. Other GCMs indicate global-mean89

precipitation might exhibit a smaller maximum rate and begin to decrease at lower surface90

temperatures. We also find that extratropical precipitation continues to increase despite91

decreasing global-mean precipitation because of increased poleward latent energy transport.92

These results have large implications for understanding Earth’s hydrological cycle across93

various epochs, spanning from the recent past to the Hadean and Archaean eons, as well94

as for understanding weathering in past climates, and the habitability of other Earth-like95

planets.96
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2 Data and methods97

2.1 Climate model output98

We use simulation output from a suite of comprehensive GCMs that have participated in99

different phases of the Coupled Model Intercomparison Project. The simulations come from100

different GCMs and span a wide range of surface temperatures, enabling us to explore the101

impact of model physics on precipitation as a function of climate state.102

2.1.1 Community Atmosphere Model (CAM)103

We use a suite of simulations from CAM4, CAM5, and CAM6, which are state-of-the-art104

atmospheric models within the Community Earth System Model (CESM; Hurrell et al.,105

2013; Danabasoglu et al., 2020). CAM4 uses different radiative transfer code (Collins et106

al., 2006) from CAM5 and CAM6, which both use the rapid radiative transfer model for107

GCMs (Mlawer et al., 1997). CAM4, CAM5, and CAM6 also differ substantially in their108

physical parameterizations of convection and clouds, leading to different equilibrium climate109

sensitivities of 3.1 K, 4.2 K, and 5.3 K, respectively (Zhu & Poulsen, 2020).110

Each CAM simulation is performed with a slab-ocean model (SOM) and specified atmo-111

spheric CO2 concentration. The framework is described in more detail by Zhu and Poulsen112

(2020). In short, CAM6 simulations were carried out with 1×, 2×, and 4× the preindusi-113

trial CO2 concentration (284.7 ppmv); CAM5 simulations were carried out with 1×, 2×, 4×,114

and 8× CO2; and CAM4 simulations were carried out with 1×, 2×, 4×, 8×, 16×, 32× and115

64× CO2. With CAM4, we perform two additional simulations (128× and 256× CO2) not116

described by Zhu and Poulsen (2020). Note that model instability for CAM6 with 8×CO2117

and CAM5 with 16×CO2 prevented higher CO2 simulations. Each set of SOM simulations118

employ identical non-CO2 preindustrial boundary conditions and mixed layer depths and119

heat transport convergence derived from corresponding fully coupled preindustrial simula-120

tions with a dynamical ocean. All CAM4 and CAM5 simulations were run with a horizontal121

resolution of 1.9° × 2.5° (latitude × longitude) for 60 model years, except for the CAM4 64×,122

128×, and 256×CO2 simulations, which were run for 80 model years. All CAM6 simulations123

were run for 80 model years. The last 20 years of each simulation were used to calculate124

climatologies. The global-mean surface temperature range covered by these simulations is125

broadly comparable to paleoclimate temperatures over the Cenozoic Era and beyond.126

We also use a suite of climate simulations that are described in more detail by Wolf et al.127

(2018). These simulations use a modified version of CAM4 with a SOM and a horizontal128

resolution of 4° × 5°. The modified version of CAM4 uses a correlated-k radiative transfer129

model to accurately simulate extremely warm climates (Wolf & Toon, 2013). We use 22130

simulations with atmospheric CO2 concentrations starting from 1.40625 ppmv and doubling131

until 2,949,120 ppmv.132

2.1.2 LongRunMIP133

We use a set of simulations from LongRunMIP (Rugenstein et al., 2019), which is a model134

intercomparison project that aims to better understand centennial and millennial time scale135

atmosphere–ocean processes in comprehensive, coupled GCMs. We use all GCMs that136

provide a preindustrial control simulation and 2×, 4×, 8×, and 16× CO2. There are no137

simulations with higher CO2 forcing. We assume that each preindustrial control simulation138

has an atmospheric CO2 concentration of 284.7 ppmv. For all simulations, except those139

from CNRM-CM6-1, we average each variable over years 970–1,000. For the CNRM-CM6-1140

simulations, we average over years 720–750 as this is the longest available time period after141

2×CO2. Most simulations have little-to-no global-mean ocean heat uptake and are therefore142

close to equilibrium at this time period.143
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2.2 Energy budget diagnostics144

2.2.1 Global145

Global-mean precipitation can be examined through the surface energy budget. The global-146

mean (denoted by an overbar) surface energy budget can be expressed as147

0 = S̄ − L̄− LvĒ − H̄ − Ḡ, (1)

where S is the net downward shortwave flux, L is the net upward longwave flux, E is148

the surface evaporation flux, Lv is the latent heat of vaporization, H is the sensible heat149

flux from the surface into the atmosphere, and G is ocean heat uptake and storage. On150

interannual and longer timescales, Ē is equal to precipitation P̄ , which results in151

P̄ ≡ Ē =
1

Lv

(
S̄ − L̄− H̄ − Ḡ

)
. (2)

The radiative fluxes S and L can be further decomposed into clear-sky (clr) and cloud152

components (cld) such that S = Sclr + Scld and L = Lclr + Lcld. For the CAM simulations,153

we decompose S and L into clear-sky and cloud components, while for the LongRunMIP154

simulations, we cannot decompose S and L due to the lack of clear-sky surface flux output.155

O’Gorman and Schneider (2008) showed that Eq. (2) can explain the structure of global-156

mean precipitation as a function of climate state, including the processes controlling the157

maximum rate of precipitation in hot climates.158

2.2.2 Regional159

Regional precipitation can also be examined through the surface energy budget with the160

addition of the latent energy flux divergence ∇ · Flatent. On long time scales,161

P − E = − 1

Lv
∇ · Flatent, (3)

which means that, using the surface energy budget, regional precipitation can be expressed162

as163

P =
1

Lv
(S − L−H −G−∇ · Flatent) . (4)

We examine regional precipitation through the surface energy budget as it connects di-164

rectly to our approach for global-mean precipitation and provides a physically intuitive165

understanding of energetic constraints on evaporation, which is how moisture enters the166

atmosphere. Note that integrating Eq. (4) globally results in exactly Eq. (2). Global and167

regional precipitation can also be examined through the atmospheric energy budget (e.g.,168

Muller & O’Gorman, 2011; O’Gorman et al., 2012; Pendergrass & Hartmann, 2014; Bonan,169

Feldl, et al., 2023).170

3 Precipitation over a wide range of climates171

3.1 Global-mean precipitation172

We begin by examining global-mean precipitation as a function of atmospheric CO2 con-173

centration and global-mean surface temperature (Fig. 1). Under high CO2 concentrations,174

GCMs exhibit large intermodel differences in global-mean surface temperatures (Fig. 1a).175

For example, across GCMs, global-mean surface temperatures for CO2 concentrations near176

1,000 ppmv range from 289 K to 300 K. While the intermodel spread in surface tempera-177

tures is large, these simulations, with the exception of CAM4 (blue and red lines, Fig. 1a),178

only span a small range of Cenezoic Era paleoclimate temperatures. The two versions of179

CAM4 with different radiation schemes simulate an even larger range of global-mean sur-180

face temperatures, ranging from 265 K to 380 K (blue and red lines, Fig. 1a). Note these181
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simulations indicate that Earth’s climate sensitivity exhibits considerable state dependence182

for global-mean surface temperatures around 310 K, which has been noted in several other183

studies (e.g., Caballero & Huber, 2013; Wolf et al., 2018; Zhu & Poulsen, 2020; Seeley &184

Jeevanjee, 2021; Henry et al., 2023).185

GCMs also exhibit a large intermodel spread in global-mean precipitation as a function of186

atmospheric CO2 concentration (Fig. 1b). For example, across GCMs, global-mean precipi-187

tation for CO2 concentrations near 1,000 ppmv ranges from approximately 2.8 mm day−1 to188

approximately 4.0 mm day−1. Interestingly, for CO2 concentrations beyond 30,000 ppmv,189

the CAM4 simulations indicate that global-mean precipitation decreases (Fig. 1b) despite190

surface temperature increases (Fig. 1a). Both versions of CAM4 exhibit a global-mean191

precipitation decrease, despite having different radiation codes (blue and red lines, Fig. 1b).192

These results can be further understood by plotting global-mean precipitation as a function193

of global-mean surface temperature; the derivative of this function is the global hydrological194

sensitivity (Fig. 1c). From cold (∼ 270 K) to warm (∼ 320 K) climates, global-mean precip-195

itation exhibits a fairly linear relationship with global-mean surface temperature, with only196

slight decreases in the rate of global-mean precipitation increase. In hot (> 320 K) climates,197

the CAM4 simulations indicate that global-mean precipitation increases more slowly with198

global-mean surface temperature and eventually decreases at approximately 330 K (Fig.199

1c). In the CAM4 simulation with the more accurate radiation code, global-mean precip-200

itation continues to decrease substantially despite increasing surface temperatures. Note201

that other GCMs, such as MPI-ESM1.2 and HadCM3L, exhibit overall weaker increases in202

precipitation for the same surface temperature range as the CAM simulations (gold and203

light blue lines, Fig. 1c).204

To understand the mechanisms contributing to global-mean precipitation as a function of205

global-mean surface temperature, we examine the surface energy budget (see Section 2.2.1).206

Figure 2 shows the components of the surface energy budget (converted from W m−2 to mm207

day−1). The clear-sky and cloud components of the net surface shortwave and net surface208

longwave fluxes are shown in Figure S1.209

From cold to warm climates, the global-mean net surface shortwave flux exhibits relatively210

little change, though there is large intermodel spread (Fig. 2a). For example, the CAM211

simulations exhibit little change in the net surface shortwave flux, whereas MPI-ESM1.2212

exhibits a strong decrease. From cold to warm climates, both the net surface longwave flux213

and surface sensible heat flux approach zero with little intermodel spread (Fig. 2b and 2c).214

The net surface longwave flux change is almost entirely driven by the clear-sky component215

(Fig. S1).216

In hot climates, the net surface longwave flux and surface sensible heat flux are zero or217

slightly positive (Fig. 2b, 2c). This occurs because differences in surface and tropospheric air218

temperatures become small, and the atmosphere approaches the optically thick limit, where219

upward longwave emission at the surface and the downward longwave emission from within220

the atmosphere that reaches the surface occur at almost the same temperature (O’Gorman221

& Schneider, 2008). As a result, global-mean evaporation, and thus global-mean precipita-222

tion, is almost entirely balanced by the net surface shortwave flux, which exhibits a strong223

decrease in hot climates (Fig. 2a). The clear-sky component of the net surface shortwave224

flux decreases in hot climates (Fig. S1) because of increased shortwave absorption by the225

atmosphere due to water vapor (Fig. S2). The decrease in net surface shortwave flux occurs226

in both CAM4 simulations, though the decrease is stronger at high temperatures in the227

CAM4 simulations with the more accurate radiation code (blue and red lines, Fig. 2a).228

3.2 Zonal-mean precipitation229

We now examine zonal-mean precipitation as a function of global-mean surface temperature230

(Fig. 3). We focus on the CAM simulations to understand the regions contributing to the231

–6–



manuscript submitted to Geophysical Research Letters

decrease in global-mean precipitation for surface temperatures beyond 330 K. The same232

analysis for each simulation from LongRunMIP is shown in Figure S3.233

From cold to warm climates, precipitation increases in most regions, with substantial in-234

creases in the tropics and extratropics and small decreases in the subtropics (Fig. 3a). In235

hot climates (> 320 K), subtropical and tropical precipitation decreases substantially. The236

maximum tropical precipitation is approximately 10 mm day−1 in warm climates and de-237

creases to approximately 5 mm day−1 in hot climates. Similarly, subtropical precipitation238

decreases from approximately 6 mm day−1 in warm climates to approximately 0 mm day−1
239

in hot climates. Notably, from warm to hot climates, despite a decrease in global-mean240

precipitation, precipitation continues to increase in the extratropics, with the polar regions241

experiencing a substantial increase in precipitation (Fig. 3a). Precipitation in the Arctic,242

for instance, increases from approximately 2 mm day−1 in warm climates to approximately243

8 mm day−1 in hot climates.244

To understand the mechanisms contributing to regional precipitation as a function of global-245

mean surface temperature, we examine components of the surface energy budget and latent246

energy flux divergence (see Section 2.2.2). Figures 3b-e show the components of the zonal-247

mean surface energy budget and latent energy flux divergence (converted from W m−2 to248

mm day−1) for the CAM simulations.249

From cold to warm climates, the net surface shortwave flux remains relatively constant,250

exhibiting weak increases in the polar regions (Fig. 3b). Figure S4 shows the clear-sky and251

cloud components of the zonal-mean net surface shortwave flux and shows that this is related252

mainly to the clear-sky component. The overall increase in zonal-mean precipitation from253

cold to warm climates is contributed mainly by the net surface longwave flux, which becomes254

smaller under warming (Fig. 3c). The surface sensible heat flux contributes weakly to the255

overall increase in zonal-mean precipitation from cold to warm climates (Fig. 3d). The256

latent energy flux divergence contributes most to the zonal-mean pattern of precipitation,257

causing a precipitation increase in the tropics and extratropics, and a precipitation decrease258

in the subtropics (Fig. 3e). Note there are substantial changes in the latent energy flux259

divergence around 320 K that indicate meridional shifts in tropical rainfall, expansion of260

the subtropics, and poleward shifts of the midlatitude stormtracks.261

In hot climates (> 320 K), the net surface longwave flux and surface sensible heat flux262

become much smaller and approach zero (Fig. 3c, 3d). As a result, in hot climates, regional263

precipitation is almost entirely balanced by the net surface shortwave flux and latent energy264

flux divergence (Fig. 3b, 3e). In the subtropics, the weak export of moisture associated265

with increased poleward latent energy transport (Fig. 3e) is balanced almost entirely by the266

net surface shortwave flux, resulting in no precipitation (Fig. 3a). Note that the subtropics267

continue to see drying in extremely hot climates, largely due to the increased latent energy268

transport (Fig. 3e). In the extratropics, precipitation continues to increase in hot climates269

because of increased poleward latent energy transport. In the polar regions, the decrease270

in net surface shortwave flux is small (Fig. 3b), but the increase in poleward latent energy271

transport is large (Fig. 3e), resulting in a overall precipitation increase (Fig. 3a).272

3.3 Total precipitable water and precipitation intensity273

The decrease in global-mean precipitation for surface temperatures above 330 K has impor-274

tant implications for precipitation intensity and precipitation extremes. Scaling arguments275

and simulations suggest that precipitation extremes depend primarily on the atmospheric276

water vapor content (O’Gorman & Schneider, 2009; O’Gorman & Schneider, 2009), which277

should continue to increase with warming (O’Gorman & Schneider, 2008). A decrease in278

global-mean precipitation but increase in global-mean atmospheric water vapor content im-279

plies that precipitation would have to become more episodic and potentially more intense.280
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Due to the lack of high-frequency temporal output, we are unable to quantitatively examine281

precipitation extremes (e.g., O’Gorman & Schneider, 2009; O’Gorman & Schneider, 2009).282

However, we can examine the total precipitable water and calculate the water vapor resi-283

dence time, defined as the global-mean total precipitable water divided by the global-mean284

precipitation (Trenberth, 1998; Bosilovich et al., 2005). The water vapor residence time can285

help indicate precipitation intensity. For instance, a climate with the same mean precipi-286

tation as today but a longer water vapor residence time implies there is more episodic and287

intense precipitation.288

The global-mean total precipitable water (Fig. 4a) and global-mean water vapor residence289

time (Fig. 4b) increase with increasing global-mean surface temperatures. From cold to290

warm climates, total precipitable water increases at a rate of 6–7 % K−1 and the water291

vapor residence time increases at a rate of 4–5 % K−1. In hot climates, the total precipitable292

water continues to increase (Fig. 4a), resulting in a global-mean water vapor residence time293

of approximately one year at 350 K (Fig. 4b). The total precipitable water increases294

most in the tropics and subtropics (Fig. 4c), which likely results in regional variations of295

precipitation intensity. For climates between 320–330 K, precipitation is likely more intense296

and episodic due to the relatively similar global-mean precipitation (Fig. 1c) but increase297

in water vapor residence time (Fig. 4b).298

4 Discussion and conclusions299

In this study, we examined precipitation over a wide range of climates simulated with com-300

prehensive GCMs. Building on earlier work by O’Gorman and Schneider (2008), we showed301

that global-mean precipitation increases approximately linearly with global-mean surface302

temperatures from cold to warm climates and begins to increase more slowly in hot climates303

(Fig. 1c)—consistent with Good et al. (2012). However, in contrast to these studies, we304

found that global-mean precipitation decreases substantially after 330 K, despite increasing305

surface temperatures (Fig. 1c). This occurs because global-mean precipitation is almost306

entirely balanced by the absorbed shortwave radiation at the surface in hot climates (Fig.307

2). As the climate warms, Earth’s atmosphere contains more water vapor, resulting in in-308

creased absorption of shortwave radiation within the atmosphere and decreased absorption309

of shortwave radiation at the surface (Fig. 2a and Fig. S2). This limits the energy avail-310

able for surface evaporation and causes a decrease in global-mean precipitation with further311

warming. The results confirm the analytical radiative arguments of Jeevanjee and Romps312

(2018) but in comprehensive GCMs with cloud radiative processes.313

The decrease in global-mean precipitation for surface temperatures beyond 330 K is driven314

by a decrease in tropical and subtropical precipitation (Fig. 3a). Extratropical precipitation315

continues to increase, despite a decrease in global-mean precipitation (Fig. 3a). This occurs316

because of increases in poleward latent energy transport (Fig. 3e), which is a well-known317

feature of hot climates (Caballero & Langen, 2005; O’Gorman & Schneider, 2008). However,318

the increase in poleward latent energy transport exhibits significant deviations from the319

increase expected solely from the Clausius-Clapeyron relation (Held & Soden, 2006). These320

deviations include meridional shifts in tropical rainfall, expansions and contractions of the321

subtropical regions, and poleward migrations of the extratropical storm tracks. A series322

of studies have shown that a one-dimensional moist energy balance model can accurately323

simulate poleward moisture transport in comprehensive GCMs (Siler et al., 2018; Armour et324

al., 2019; Bonan, Siler, et al., 2023; Bonan et al., 2024), suggesting that downgradient energy325

transport might explain the range of poleward latent transport seen in CAM4, including326

dynamical changes associated with the Hadley circulations.327

While our results show considerable climate state dependence in precipitation, the simu-328

lations used are driven purely by changes in atmospheric CO2 concentrations and do not329

contain changes in other boundary conditions that impact hot climates (see review by Zhu et330

al., 2024). For example, the early Eocene experienced significant changes in orbital dynam-331
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ics (Lourens et al., 2005) as well as in continental land configurations and ocean circulation332

(Barron, 1987; Shellito et al., 2009; Green & Huber, 2013), each of which could potentially333

alter the surface energy budget. Examining the effect of other forcings on precipitation in334

hot climates might change these results.335

Despite this caveat, our work has implications for other aspects of Earth’s hydrological336

cycle. We showed that global-mean total precipitable water increases more strongly with337

warming when compared to global-mean precipitation (Fig. 4a and Fig. 1c), which results338

in a longer global-mean water vapor residence time (Fig. 4b). Thus, precipitation would339

have to become more episodic at high surface temperatures. However, due to the lack340

of higher-frequency output we are unable to quantitatively examine precipitation intensity341

and precipitation extremes. Note that recent work showed precipitation in hot climates is342

indeed more episodic and occurs in short and intense outbursts separated by multi-day dry343

spells (Seeley & Wordsworth, 2021; Dagan et al., 2023). However, these studies employed344

an idealized cloud-resolving model with limited domains. It remains unclear what episodic345

precipitation looks like in hot climates simulated with comprehensive GCMs. Future work346

should explore other characteristics of precipitation in hot climates. Such work will help to347

better understand mechanisms for hydrological change in past and future climates.348

Overall, our results show that precipitation is strongly dependent on the climate state. While349

the CAM simulations indicate that global-mean precipitation exhibits a maximum rate of350

approximately 5 mm day−1 and decreasing rates for surface temperatures beyond 330 K,351

other GCMs, like HadCM3L and MPI-ESM1.2, indicate that global-mean precipitation352

might exhibit a smaller maximum rate and begin to decrease at lower surface temperatures.353

These differences are attributable to shortwave radiation and may be related to water vapor354

absorption parameterizations in comprehensive GCMs (e.g., Yang et al., 2016). Hence, there355

is a need to examine Earth’s hydrological cycle in hot climates simulated with a broader suite356

of comprehensive GCMs. Such work will have large implications for understanding various357

climate epochs, spanning from the recent past to the Hadean and Archaean eons, as well358

as for understanding weathering in past climates, and the habitability of other Earth-like359

planets.360
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a b c

Figure 1. Global-mean precipitation over a wide range of climates. (a) Global-mean

surface temperature (K) as a function of the atmospheric CO2 concentration for the CAM slab-

ocean model simulations and fully-coupled LongRunMIP simulations. (b) Same as in (a) but for

global-mean precipitation (mm day−1). (c) Same as in (b) but for global-mean precipitation as a

function of global-mean surface temperature. The inset in (c) shows an enlarged version of the grey

dashed box.
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a b c

Figure 2. Contributions to global-mean precipitation over a wide range of climates.

The global-mean (a) net surface shortwave flux, (b) net surface longwave flux, and (c) surface

sensible heat flux as a function of global-mean surface temperature for the CAM slab-ocean model

simulations and fully-coupled LongRunMIP simulations. Ocean heat uptake is near-zero for all

simulations and is not shown.
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a

b

c

d

e

Figure 3. Zonal-mean precipitation over a wide range of climates. (a) The zonal-

mean precipitation as a function of global-mean surface temperature for the CAM4, CAM5, and

CAM6 simulations. The zonal-mean (b) net surface shortwave flux, (c) net surface longwave flux,

(d) surface sensible heat flux, and (e) latent energy flux divergence (converted from W m−2 to

mm day−1) as a function of global-mean surface temperature for the CAM4, CAM5, and CAM6

simulations. Ocean heat uptake is zero for all simulations and is not shown. Panels (b-e) add to

panel (a). The light grey hatching indicates no simulation data.
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a b

c

Figure 4. Residence time of water vapor over a wide range of climates. The global-

mean (a) total precipitable water and (b) residence time of water vapor. The (blue) CAM4, (orange)

CAM5, and (green) CAM6 simulations use a slab-ocean model with the Rapid Radiative Transfer

Model and the (red) CAM4 simulation uses a slab-ocean model with a more accurate radiation

model for high temperatures. (c) Zonal-mean total precipitable water as a function of global-

mean surface temperature for the CAM4, CAM5, and CAM6 simulations. The light grey hatching

indicates no simulation data.
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Key Points:6

• Global-mean precipitation increases approximately linearly with surface temperatures7

up to 330 K, then decreases with higher temperatures8

• Precipitation decreases at high temperatures due to increased atmospheric shortwave9

absorption from water vapor, limiting surface absorption10

• At high temperatures, precipitation decreases in the tropics and subtropics, but in-11

creases in the extratropics due to moisture transport12
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Abstract13

Idealized general circulation models (GCMs) suggest global-mean precipitation ceases to14

increase with warming in hot climates. However, it is unclear if this occurs in more com-15

prehensive GCMs. Here, we examine precipitation over a wide range of climates simulated16

with comprehensive GCMs. We find that in the Community Atmosphere Model, global-17

mean precipitation increases approximately linearly with global-mean surface temperatures18

up to about 330 K, where it peaks at 5 mm day−1. Beyond 330 K, global-mean precipi-19

tation decreases substantially despite increasing surface temperatures. This occurs because20

of increased atmospheric shortwave absorption from water vapor, which limits shortwave21

radiation available for surface evaporation. Precipitation decreases in the tropics and sub-22

tropics, but continues to increase in the extratropics due to increased poleward moisture23

transport. Precipitable water increases everywhere, resulting in longer water-vapor resi-24

dence times and implying more episodic precipitation. Other GCMs indicate global-mean25

precipitation might exhibit a smaller maximum rate and begin to decrease at lower surface26

temperatures.27

Plain Language Summary28

Earth’s climate has experienced substantial changes over its history, including periods of29

extremely cold temperatures where most regions contained ice, and periods of extremely30

warm temperatures where most regions contained no ice. In this study, we explore how31

precipitation changed in extremely cold and warm climates using a unique set of coupled32

climate model simulations. We find that global-mean precipitation increases linearly with33

global-mean surface temperatures up to 330 K, where it peaks and then decreases as surface34

temperatures further increase. This occurs because in hot climates, global-mean precipi-35

tation is almost entirely balanced by absorbed shortwave radiation at the surface. As the36

climate warms, the atmosphere contains more water vapor, resulting in increased absorption37

of shortwave radiation within the atmosphere and decreased absorption of shortwave radia-38

tion at the surface. This limits the energy available for surface evaporation. We show that39

other climate models exhibit qualitatively similar behavior but indicate the peak in global-40

mean precipitation could occur at lower surface temperatures. These results demonstrate41

the need to better understand Earth’s hydrological cycle in hot climates. These results also42

have large implications for understanding weathering in past climates and the habitability43

of other Earth-like planets.44
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1 Introduction45

Global-mean precipitation is expected to increase at a rate of 1–3 % per degree of warming46

in response to rising greenhouse-gas concentrations (Allen & Ingram, 2002; Held & Soden,47

2006; Vecchi & Soden, 2007; Jeevanjee & Romps, 2018). This relationship, often referred48

to as Earth’s global hydrological sensitivity, has been found to be remarkably similar across49

a variety of greenhouse-gas forcing experiments (Stephens & Ellis, 2008; Lambert & Webb,50

2008; Andrews & Forster, 2010; Andrews et al., 2010; O’Gorman et al., 2012; Pendergrass51

& Hartmann, 2014; DeAngelis et al., 2015; Fläschner et al., 2016; Raiter et al., 2023). This52

implies that global-mean precipitation in past climates, such as the early Eocene or the mid-53

Pliocene, can be inferred directly from paleoclimate temperature records. For example, it is54

estimated that early Eocene surface temperatures were 12–15 K warmer than the present-55

day climate (Caballero & Huber, 2013; Anagnostou et al., 2016; Inglis et al., 2020), which56

suggests that global-mean precipitation would have been 12–45 % larger than today.57

While the global hydrological sensitivity is a conceptually convenient metric, there is evi-58

dence that it varies as a function of climate state, implying that estimates from climates59

similar to today may not apply to past climates. For instance, O’Gorman and Schneider60

(2008) simulated a wide range of climates in an idealized GCM and showed that global-mean61

precipitation ceases to increase with warming in hot climates. Examination of the surface62

energy budget showed that in hot climates, global-mean precipitation is entirely balanced63

by absorbed shortwave radiation at the surface, which in the idealized GCM, is insensitive64

to warming (O’Gorman & Schneider, 2008). However, the idealized GCM simulations em-65

ployed a simple gray radiation scheme and contained no land, sea ice, or clouds, leaving66

questions about the behavior of precipitation in comprehensive GCMs.67

More recent work examined precipitation in comprehensive GCMs under various atmo-68

spheric carbon dioxide (CO2) levels and found that the global hydrological sensitivity ex-69

hibits weak climate state dependence. Good et al. (2012) used a coupled GCM and found70

that global-mean precipitation is only slightly less sensitive to warming in warm climates.71

Raiter et al. (2023) examined a broader suite of coupled GCMs and found that the global hy-72

drological sensitivity changes little under large CO2 forcing. However, these studies did not73

explore extremely high atmospheric CO2 concentrations and only simulated a narrow range74

of Cenozoic Era surface temperatures. Thus, in comprehensive GCMs, it remains unclear75

whether the global hydrological sensitivity is weaker in hot climates and whether precipita-76

tion exhibits significant climate state dependence. Notably, analytical radiative arguments77

introduced by Jeevanjee and Romps (2018) suggest that in hot climates, precipitation may78

decrease under warming. Yet, this hypothesis has not been confirmed in comprehensive79

GCMs, which contain clouds and other processes that can modulate radiative fluxes.80

In this study, we examine precipitation over a wide range of climates simulated with com-81

prehensive GCMs. We find that in the Community Atmosphere Model (CAM), global-mean82

precipitation increases approximately linearly with global-mean surface temperatures up to83

about 330 K, where it peaks at a rate of approximately 5 mm day−1. Beyond 330 K, global-84

mean precipitation decreases substantially despite increasing global-mean surface temper-85

atures. The decrease in precipitation occurs because in hot climates, Earth’s atmosphere86

contains more water vapor, resulting in increased absorption of shortwave radiation within87

the atmosphere and decreased absorption of shortwave radiation at the surface, thereby88

limiting the energy available for surface evaporation. Other GCMs indicate global-mean89

precipitation might exhibit a smaller maximum rate and begin to decrease at lower surface90

temperatures. We also find that extratropical precipitation continues to increase despite91

decreasing global-mean precipitation because of increased poleward latent energy transport.92

These results have large implications for understanding Earth’s hydrological cycle across93

various epochs, spanning from the recent past to the Hadean and Archaean eons, as well94

as for understanding weathering in past climates, and the habitability of other Earth-like95

planets.96
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2 Data and methods97

2.1 Climate model output98

We use simulation output from a suite of comprehensive GCMs that have participated in99

different phases of the Coupled Model Intercomparison Project. The simulations come from100

different GCMs and span a wide range of surface temperatures, enabling us to explore the101

impact of model physics on precipitation as a function of climate state.102

2.1.1 Community Atmosphere Model (CAM)103

We use a suite of simulations from CAM4, CAM5, and CAM6, which are state-of-the-art104

atmospheric models within the Community Earth System Model (CESM; Hurrell et al.,105

2013; Danabasoglu et al., 2020). CAM4 uses different radiative transfer code (Collins et106

al., 2006) from CAM5 and CAM6, which both use the rapid radiative transfer model for107

GCMs (Mlawer et al., 1997). CAM4, CAM5, and CAM6 also differ substantially in their108

physical parameterizations of convection and clouds, leading to different equilibrium climate109

sensitivities of 3.1 K, 4.2 K, and 5.3 K, respectively (Zhu & Poulsen, 2020).110

Each CAM simulation is performed with a slab-ocean model (SOM) and specified atmo-111

spheric CO2 concentration. The framework is described in more detail by Zhu and Poulsen112

(2020). In short, CAM6 simulations were carried out with 1×, 2×, and 4× the preindusi-113

trial CO2 concentration (284.7 ppmv); CAM5 simulations were carried out with 1×, 2×, 4×,114

and 8× CO2; and CAM4 simulations were carried out with 1×, 2×, 4×, 8×, 16×, 32× and115

64× CO2. With CAM4, we perform two additional simulations (128× and 256× CO2) not116

described by Zhu and Poulsen (2020). Note that model instability for CAM6 with 8×CO2117

and CAM5 with 16×CO2 prevented higher CO2 simulations. Each set of SOM simulations118

employ identical non-CO2 preindustrial boundary conditions and mixed layer depths and119

heat transport convergence derived from corresponding fully coupled preindustrial simula-120

tions with a dynamical ocean. All CAM4 and CAM5 simulations were run with a horizontal121

resolution of 1.9° × 2.5° (latitude × longitude) for 60 model years, except for the CAM4 64×,122

128×, and 256×CO2 simulations, which were run for 80 model years. All CAM6 simulations123

were run for 80 model years. The last 20 years of each simulation were used to calculate124

climatologies. The global-mean surface temperature range covered by these simulations is125

broadly comparable to paleoclimate temperatures over the Cenozoic Era and beyond.126

We also use a suite of climate simulations that are described in more detail by Wolf et al.127

(2018). These simulations use a modified version of CAM4 with a SOM and a horizontal128

resolution of 4° × 5°. The modified version of CAM4 uses a correlated-k radiative transfer129

model to accurately simulate extremely warm climates (Wolf & Toon, 2013). We use 22130

simulations with atmospheric CO2 concentrations starting from 1.40625 ppmv and doubling131

until 2,949,120 ppmv.132

2.1.2 LongRunMIP133

We use a set of simulations from LongRunMIP (Rugenstein et al., 2019), which is a model134

intercomparison project that aims to better understand centennial and millennial time scale135

atmosphere–ocean processes in comprehensive, coupled GCMs. We use all GCMs that136

provide a preindustrial control simulation and 2×, 4×, 8×, and 16× CO2. There are no137

simulations with higher CO2 forcing. We assume that each preindustrial control simulation138

has an atmospheric CO2 concentration of 284.7 ppmv. For all simulations, except those139

from CNRM-CM6-1, we average each variable over years 970–1,000. For the CNRM-CM6-1140

simulations, we average over years 720–750 as this is the longest available time period after141

2×CO2. Most simulations have little-to-no global-mean ocean heat uptake and are therefore142

close to equilibrium at this time period.143
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2.2 Energy budget diagnostics144

2.2.1 Global145

Global-mean precipitation can be examined through the surface energy budget. The global-146

mean (denoted by an overbar) surface energy budget can be expressed as147

0 = S̄ − L̄− LvĒ − H̄ − Ḡ, (1)

where S is the net downward shortwave flux, L is the net upward longwave flux, E is148

the surface evaporation flux, Lv is the latent heat of vaporization, H is the sensible heat149

flux from the surface into the atmosphere, and G is ocean heat uptake and storage. On150

interannual and longer timescales, Ē is equal to precipitation P̄ , which results in151

P̄ ≡ Ē =
1

Lv

(
S̄ − L̄− H̄ − Ḡ

)
. (2)

The radiative fluxes S and L can be further decomposed into clear-sky (clr) and cloud152

components (cld) such that S = Sclr + Scld and L = Lclr + Lcld. For the CAM simulations,153

we decompose S and L into clear-sky and cloud components, while for the LongRunMIP154

simulations, we cannot decompose S and L due to the lack of clear-sky surface flux output.155

O’Gorman and Schneider (2008) showed that Eq. (2) can explain the structure of global-156

mean precipitation as a function of climate state, including the processes controlling the157

maximum rate of precipitation in hot climates.158

2.2.2 Regional159

Regional precipitation can also be examined through the surface energy budget with the160

addition of the latent energy flux divergence ∇ · Flatent. On long time scales,161

P − E = − 1

Lv
∇ · Flatent, (3)

which means that, using the surface energy budget, regional precipitation can be expressed162

as163

P =
1

Lv
(S − L−H −G−∇ · Flatent) . (4)

We examine regional precipitation through the surface energy budget as it connects di-164

rectly to our approach for global-mean precipitation and provides a physically intuitive165

understanding of energetic constraints on evaporation, which is how moisture enters the166

atmosphere. Note that integrating Eq. (4) globally results in exactly Eq. (2). Global and167

regional precipitation can also be examined through the atmospheric energy budget (e.g.,168

Muller & O’Gorman, 2011; O’Gorman et al., 2012; Pendergrass & Hartmann, 2014; Bonan,169

Feldl, et al., 2023).170

3 Precipitation over a wide range of climates171

3.1 Global-mean precipitation172

We begin by examining global-mean precipitation as a function of atmospheric CO2 con-173

centration and global-mean surface temperature (Fig. 1). Under high CO2 concentrations,174

GCMs exhibit large intermodel differences in global-mean surface temperatures (Fig. 1a).175

For example, across GCMs, global-mean surface temperatures for CO2 concentrations near176

1,000 ppmv range from 289 K to 300 K. While the intermodel spread in surface tempera-177

tures is large, these simulations, with the exception of CAM4 (blue and red lines, Fig. 1a),178

only span a small range of Cenezoic Era paleoclimate temperatures. The two versions of179

CAM4 with different radiation schemes simulate an even larger range of global-mean sur-180

face temperatures, ranging from 265 K to 380 K (blue and red lines, Fig. 1a). Note these181
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simulations indicate that Earth’s climate sensitivity exhibits considerable state dependence182

for global-mean surface temperatures around 310 K, which has been noted in several other183

studies (e.g., Caballero & Huber, 2013; Wolf et al., 2018; Zhu & Poulsen, 2020; Seeley &184

Jeevanjee, 2021; Henry et al., 2023).185

GCMs also exhibit a large intermodel spread in global-mean precipitation as a function of186

atmospheric CO2 concentration (Fig. 1b). For example, across GCMs, global-mean precipi-187

tation for CO2 concentrations near 1,000 ppmv ranges from approximately 2.8 mm day−1 to188

approximately 4.0 mm day−1. Interestingly, for CO2 concentrations beyond 30,000 ppmv,189

the CAM4 simulations indicate that global-mean precipitation decreases (Fig. 1b) despite190

surface temperature increases (Fig. 1a). Both versions of CAM4 exhibit a global-mean191

precipitation decrease, despite having different radiation codes (blue and red lines, Fig. 1b).192

These results can be further understood by plotting global-mean precipitation as a function193

of global-mean surface temperature; the derivative of this function is the global hydrological194

sensitivity (Fig. 1c). From cold (∼ 270 K) to warm (∼ 320 K) climates, global-mean precip-195

itation exhibits a fairly linear relationship with global-mean surface temperature, with only196

slight decreases in the rate of global-mean precipitation increase. In hot (> 320 K) climates,197

the CAM4 simulations indicate that global-mean precipitation increases more slowly with198

global-mean surface temperature and eventually decreases at approximately 330 K (Fig.199

1c). In the CAM4 simulation with the more accurate radiation code, global-mean precip-200

itation continues to decrease substantially despite increasing surface temperatures. Note201

that other GCMs, such as MPI-ESM1.2 and HadCM3L, exhibit overall weaker increases in202

precipitation for the same surface temperature range as the CAM simulations (gold and203

light blue lines, Fig. 1c).204

To understand the mechanisms contributing to global-mean precipitation as a function of205

global-mean surface temperature, we examine the surface energy budget (see Section 2.2.1).206

Figure 2 shows the components of the surface energy budget (converted from W m−2 to mm207

day−1). The clear-sky and cloud components of the net surface shortwave and net surface208

longwave fluxes are shown in Figure S1.209

From cold to warm climates, the global-mean net surface shortwave flux exhibits relatively210

little change, though there is large intermodel spread (Fig. 2a). For example, the CAM211

simulations exhibit little change in the net surface shortwave flux, whereas MPI-ESM1.2212

exhibits a strong decrease. From cold to warm climates, both the net surface longwave flux213

and surface sensible heat flux approach zero with little intermodel spread (Fig. 2b and 2c).214

The net surface longwave flux change is almost entirely driven by the clear-sky component215

(Fig. S1).216

In hot climates, the net surface longwave flux and surface sensible heat flux are zero or217

slightly positive (Fig. 2b, 2c). This occurs because differences in surface and tropospheric air218

temperatures become small, and the atmosphere approaches the optically thick limit, where219

upward longwave emission at the surface and the downward longwave emission from within220

the atmosphere that reaches the surface occur at almost the same temperature (O’Gorman221

& Schneider, 2008). As a result, global-mean evaporation, and thus global-mean precipita-222

tion, is almost entirely balanced by the net surface shortwave flux, which exhibits a strong223

decrease in hot climates (Fig. 2a). The clear-sky component of the net surface shortwave224

flux decreases in hot climates (Fig. S1) because of increased shortwave absorption by the225

atmosphere due to water vapor (Fig. S2). The decrease in net surface shortwave flux occurs226

in both CAM4 simulations, though the decrease is stronger at high temperatures in the227

CAM4 simulations with the more accurate radiation code (blue and red lines, Fig. 2a).228

3.2 Zonal-mean precipitation229

We now examine zonal-mean precipitation as a function of global-mean surface temperature230

(Fig. 3). We focus on the CAM simulations to understand the regions contributing to the231
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decrease in global-mean precipitation for surface temperatures beyond 330 K. The same232

analysis for each simulation from LongRunMIP is shown in Figure S3.233

From cold to warm climates, precipitation increases in most regions, with substantial in-234

creases in the tropics and extratropics and small decreases in the subtropics (Fig. 3a). In235

hot climates (> 320 K), subtropical and tropical precipitation decreases substantially. The236

maximum tropical precipitation is approximately 10 mm day−1 in warm climates and de-237

creases to approximately 5 mm day−1 in hot climates. Similarly, subtropical precipitation238

decreases from approximately 6 mm day−1 in warm climates to approximately 0 mm day−1
239

in hot climates. Notably, from warm to hot climates, despite a decrease in global-mean240

precipitation, precipitation continues to increase in the extratropics, with the polar regions241

experiencing a substantial increase in precipitation (Fig. 3a). Precipitation in the Arctic,242

for instance, increases from approximately 2 mm day−1 in warm climates to approximately243

8 mm day−1 in hot climates.244

To understand the mechanisms contributing to regional precipitation as a function of global-245

mean surface temperature, we examine components of the surface energy budget and latent246

energy flux divergence (see Section 2.2.2). Figures 3b-e show the components of the zonal-247

mean surface energy budget and latent energy flux divergence (converted from W m−2 to248

mm day−1) for the CAM simulations.249

From cold to warm climates, the net surface shortwave flux remains relatively constant,250

exhibiting weak increases in the polar regions (Fig. 3b). Figure S4 shows the clear-sky and251

cloud components of the zonal-mean net surface shortwave flux and shows that this is related252

mainly to the clear-sky component. The overall increase in zonal-mean precipitation from253

cold to warm climates is contributed mainly by the net surface longwave flux, which becomes254

smaller under warming (Fig. 3c). The surface sensible heat flux contributes weakly to the255

overall increase in zonal-mean precipitation from cold to warm climates (Fig. 3d). The256

latent energy flux divergence contributes most to the zonal-mean pattern of precipitation,257

causing a precipitation increase in the tropics and extratropics, and a precipitation decrease258

in the subtropics (Fig. 3e). Note there are substantial changes in the latent energy flux259

divergence around 320 K that indicate meridional shifts in tropical rainfall, expansion of260

the subtropics, and poleward shifts of the midlatitude stormtracks.261

In hot climates (> 320 K), the net surface longwave flux and surface sensible heat flux262

become much smaller and approach zero (Fig. 3c, 3d). As a result, in hot climates, regional263

precipitation is almost entirely balanced by the net surface shortwave flux and latent energy264

flux divergence (Fig. 3b, 3e). In the subtropics, the weak export of moisture associated265

with increased poleward latent energy transport (Fig. 3e) is balanced almost entirely by the266

net surface shortwave flux, resulting in no precipitation (Fig. 3a). Note that the subtropics267

continue to see drying in extremely hot climates, largely due to the increased latent energy268

transport (Fig. 3e). In the extratropics, precipitation continues to increase in hot climates269

because of increased poleward latent energy transport. In the polar regions, the decrease270

in net surface shortwave flux is small (Fig. 3b), but the increase in poleward latent energy271

transport is large (Fig. 3e), resulting in a overall precipitation increase (Fig. 3a).272

3.3 Total precipitable water and precipitation intensity273

The decrease in global-mean precipitation for surface temperatures above 330 K has impor-274

tant implications for precipitation intensity and precipitation extremes. Scaling arguments275

and simulations suggest that precipitation extremes depend primarily on the atmospheric276

water vapor content (O’Gorman & Schneider, 2009; O’Gorman & Schneider, 2009), which277

should continue to increase with warming (O’Gorman & Schneider, 2008). A decrease in278

global-mean precipitation but increase in global-mean atmospheric water vapor content im-279

plies that precipitation would have to become more episodic and potentially more intense.280
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Due to the lack of high-frequency temporal output, we are unable to quantitatively examine281

precipitation extremes (e.g., O’Gorman & Schneider, 2009; O’Gorman & Schneider, 2009).282

However, we can examine the total precipitable water and calculate the water vapor resi-283

dence time, defined as the global-mean total precipitable water divided by the global-mean284

precipitation (Trenberth, 1998; Bosilovich et al., 2005). The water vapor residence time can285

help indicate precipitation intensity. For instance, a climate with the same mean precipi-286

tation as today but a longer water vapor residence time implies there is more episodic and287

intense precipitation.288

The global-mean total precipitable water (Fig. 4a) and global-mean water vapor residence289

time (Fig. 4b) increase with increasing global-mean surface temperatures. From cold to290

warm climates, total precipitable water increases at a rate of 6–7 % K−1 and the water291

vapor residence time increases at a rate of 4–5 % K−1. In hot climates, the total precipitable292

water continues to increase (Fig. 4a), resulting in a global-mean water vapor residence time293

of approximately one year at 350 K (Fig. 4b). The total precipitable water increases294

most in the tropics and subtropics (Fig. 4c), which likely results in regional variations of295

precipitation intensity. For climates between 320–330 K, precipitation is likely more intense296

and episodic due to the relatively similar global-mean precipitation (Fig. 1c) but increase297

in water vapor residence time (Fig. 4b).298

4 Discussion and conclusions299

In this study, we examined precipitation over a wide range of climates simulated with com-300

prehensive GCMs. Building on earlier work by O’Gorman and Schneider (2008), we showed301

that global-mean precipitation increases approximately linearly with global-mean surface302

temperatures from cold to warm climates and begins to increase more slowly in hot climates303

(Fig. 1c)—consistent with Good et al. (2012). However, in contrast to these studies, we304

found that global-mean precipitation decreases substantially after 330 K, despite increasing305

surface temperatures (Fig. 1c). This occurs because global-mean precipitation is almost306

entirely balanced by the absorbed shortwave radiation at the surface in hot climates (Fig.307

2). As the climate warms, Earth’s atmosphere contains more water vapor, resulting in in-308

creased absorption of shortwave radiation within the atmosphere and decreased absorption309

of shortwave radiation at the surface (Fig. 2a and Fig. S2). This limits the energy avail-310

able for surface evaporation and causes a decrease in global-mean precipitation with further311

warming. The results confirm the analytical radiative arguments of Jeevanjee and Romps312

(2018) but in comprehensive GCMs with cloud radiative processes.313

The decrease in global-mean precipitation for surface temperatures beyond 330 K is driven314

by a decrease in tropical and subtropical precipitation (Fig. 3a). Extratropical precipitation315

continues to increase, despite a decrease in global-mean precipitation (Fig. 3a). This occurs316

because of increases in poleward latent energy transport (Fig. 3e), which is a well-known317

feature of hot climates (Caballero & Langen, 2005; O’Gorman & Schneider, 2008). However,318

the increase in poleward latent energy transport exhibits significant deviations from the319

increase expected solely from the Clausius-Clapeyron relation (Held & Soden, 2006). These320

deviations include meridional shifts in tropical rainfall, expansions and contractions of the321

subtropical regions, and poleward migrations of the extratropical storm tracks. A series322

of studies have shown that a one-dimensional moist energy balance model can accurately323

simulate poleward moisture transport in comprehensive GCMs (Siler et al., 2018; Armour et324

al., 2019; Bonan, Siler, et al., 2023; Bonan et al., 2024), suggesting that downgradient energy325

transport might explain the range of poleward latent transport seen in CAM4, including326

dynamical changes associated with the Hadley circulations.327

While our results show considerable climate state dependence in precipitation, the simu-328

lations used are driven purely by changes in atmospheric CO2 concentrations and do not329

contain changes in other boundary conditions that impact hot climates (see review by Zhu et330

al., 2024). For example, the early Eocene experienced significant changes in orbital dynam-331
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ics (Lourens et al., 2005) as well as in continental land configurations and ocean circulation332

(Barron, 1987; Shellito et al., 2009; Green & Huber, 2013), each of which could potentially333

alter the surface energy budget. Examining the effect of other forcings on precipitation in334

hot climates might change these results.335

Despite this caveat, our work has implications for other aspects of Earth’s hydrological336

cycle. We showed that global-mean total precipitable water increases more strongly with337

warming when compared to global-mean precipitation (Fig. 4a and Fig. 1c), which results338

in a longer global-mean water vapor residence time (Fig. 4b). Thus, precipitation would339

have to become more episodic at high surface temperatures. However, due to the lack340

of higher-frequency output we are unable to quantitatively examine precipitation intensity341

and precipitation extremes. Note that recent work showed precipitation in hot climates is342

indeed more episodic and occurs in short and intense outbursts separated by multi-day dry343

spells (Seeley & Wordsworth, 2021; Dagan et al., 2023). However, these studies employed344

an idealized cloud-resolving model with limited domains. It remains unclear what episodic345

precipitation looks like in hot climates simulated with comprehensive GCMs. Future work346

should explore other characteristics of precipitation in hot climates. Such work will help to347

better understand mechanisms for hydrological change in past and future climates.348

Overall, our results show that precipitation is strongly dependent on the climate state. While349

the CAM simulations indicate that global-mean precipitation exhibits a maximum rate of350

approximately 5 mm day−1 and decreasing rates for surface temperatures beyond 330 K,351

other GCMs, like HadCM3L and MPI-ESM1.2, indicate that global-mean precipitation352

might exhibit a smaller maximum rate and begin to decrease at lower surface temperatures.353

These differences are attributable to shortwave radiation and may be related to water vapor354

absorption parameterizations in comprehensive GCMs (e.g., Yang et al., 2016). Hence, there355

is a need to examine Earth’s hydrological cycle in hot climates simulated with a broader suite356

of comprehensive GCMs. Such work will have large implications for understanding various357

climate epochs, spanning from the recent past to the Hadean and Archaean eons, as well358

as for understanding weathering in past climates, and the habitability of other Earth-like359

planets.360
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a b c

Figure 1. Global-mean precipitation over a wide range of climates. (a) Global-mean

surface temperature (K) as a function of the atmospheric CO2 concentration for the CAM slab-

ocean model simulations and fully-coupled LongRunMIP simulations. (b) Same as in (a) but for

global-mean precipitation (mm day−1). (c) Same as in (b) but for global-mean precipitation as a

function of global-mean surface temperature. The inset in (c) shows an enlarged version of the grey

dashed box.
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a b c

Figure 2. Contributions to global-mean precipitation over a wide range of climates.

The global-mean (a) net surface shortwave flux, (b) net surface longwave flux, and (c) surface

sensible heat flux as a function of global-mean surface temperature for the CAM slab-ocean model

simulations and fully-coupled LongRunMIP simulations. Ocean heat uptake is near-zero for all

simulations and is not shown.
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a

b

c

d

e

Figure 3. Zonal-mean precipitation over a wide range of climates. (a) The zonal-

mean precipitation as a function of global-mean surface temperature for the CAM4, CAM5, and

CAM6 simulations. The zonal-mean (b) net surface shortwave flux, (c) net surface longwave flux,

(d) surface sensible heat flux, and (e) latent energy flux divergence (converted from W m−2 to

mm day−1) as a function of global-mean surface temperature for the CAM4, CAM5, and CAM6

simulations. Ocean heat uptake is zero for all simulations and is not shown. Panels (b-e) add to

panel (a). The light grey hatching indicates no simulation data.
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a b

c

Figure 4. Residence time of water vapor over a wide range of climates. The global-

mean (a) total precipitable water and (b) residence time of water vapor. The (blue) CAM4, (orange)

CAM5, and (green) CAM6 simulations use a slab-ocean model with the Rapid Radiative Transfer

Model and the (red) CAM4 simulation uses a slab-ocean model with a more accurate radiation

model for high temperatures. (c) Zonal-mean total precipitable water as a function of global-

mean surface temperature for the CAM4, CAM5, and CAM6 simulations. The light grey hatching

indicates no simulation data.
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Supplemental Figure 1: Net surface clear-sky and cloud surface shortwave and longwave fluxes. Global-mean net surface
longwave and shortwave fluxes decomposed into clear-sky and cloud components as a function of global-mean surface temper-
ature for the CAM simulations.
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Supplemental Figure 2: Net top-of-atmosphere and surface shortwave fluxes. Global-mean net top-of-atmosphere (open
circles) and net surface (colored circles) shortwave fluxes as a function of global-mean surface temperature for the CAM and
LongRunMIP simulations.
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Supplemental Figure 3: Zonal-mean precipitation as a function of climate state. Zonal-mean precipitation as a function of
global-mean surface temperature for the LongRunMIP simulations. The light grey hatching indicates no simulation data.
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Supplemental Figure 4: Zonal-mean clear-sky and cloud components of the surface radiative fluxes. The zonal-mean (a)
net surface clear-sky shortwave flux, (b) net surface cloud shortwave flux, (c) net surface clear-sky longwave flux, and (d) net
surface cloud longwave flux (converted from W m−2 to mm day−1) as a function of global-mean surface temperature for the
CAM simulations. The light grey hatching indicates no simulation data.
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