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Key Points 14 

1.  Tree-ring series from ENSO rainfall impact regions reconstruct the tropical Pacific SST field 15 

with a high degree of skill back to 1100 CE. 16 

2. Two very different reconstruction methods produce similar results and each can only 17 

reconstruct the leading EOF mode of SST variability. 18 

3. Reconstructions extending back 1100 CE do not reveal any clear increase in El Niño variability, 19 

but do show a recent overall SST warming.  20 

  21 
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Abstract 22 

We present new climate field reconstructions (CFR) of tropical Pacific ENSO sea surface 23 

temperatures (HadISST) for the boreal winter season using a circum-Pacific tree-ring network 24 

from known El Niño rainfall impact regions. We used two different CFR methods: Point-by-Point 25 

Regression (PPR) and reduced-space Orthogonal Spatial Regression (OSR). Both methods have 26 

high levels of validation skill as far back as 1100 CE and exceptional skill back to 1500 CE. OSR 27 

is preferred because it has less spatial noise and is more efficient. Only the leading EOF of the 28 

SST field (EOF1) can be reconstructed with a very high level of skill; EOF2 does not validate 29 

using either method. The success of EOF1 reflects its importance for ENSO rainfall impacts; the 30 

failure with EOF2 reflects the lack of these impacts. EOF1 is shown to allow reconstruction of 31 

many ENSO indices, including the nonlinear ENSO Longitudinal Index (ELI). 32 

Plain Language Summary 33 

Earth’s climate is strongly affected by how warm the tropical Pacific Ocean ‘El Niño’ region is. 34 

This is especially true for the delivery of rainfall over many parts of the globe. Tree growth can 35 

thus be strongly affected by rainfall impacts of El Niños. We use this relationship to reconstruct 36 

tropical Pacific sea surface temperatures associated with El Niño over most of the past millennium 37 

from a network of annual tree-ring chronologies located in regions known to be impacted by El 38 

Niño rainfall. Only the leading mode of variability in Pacific sea surface temperatures associated 39 

with El Niño can be reconstructed well, but it reflects most of the long-term variability of El Niño 40 

exceptionally well. The reconstruction extends back to 1500 with exceptional skill and back to 41 

1100 with acceptable skill. We can thus compare recent El Niño variability, perhaps affected by 42 

global warming, with what happened over the previous centuries unaffected by human activity. 43 

We do not find clear evidence for an increase in El Niño activity, just an overall warming due to 44 

recent global warming. 45 

Index terms and keywords 46 

4922 El Nino 47 

4920 Dendrochronology 48 

4215 Climate and interannual variability 49 

3305  Climate change and variability 50 

1807  Climate impacts  51 
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1.  Introduction 52 

 Since anyone choosing to read this paper is aware of the global importance of the El Niño 53 

Southern Oscillation (ENSO), we dispense with that part of the introduction (see, e.g. Sarachik 54 

and Cane (2010) and McPhaden et al. (2020) for comprehensive reviews of ENSO). The somewhat 55 

trustworthy record of ENSO – the one based on instrumental data – extends back only until the 56 

mid-19th Century (e.g. Kaplan et al., 1998).  Since an El Niño event occurs roughly every 4 years 57 

on average, this record provides only ~40 cycles.  These recurrences show great variability in 58 

frequency and amplitude from decade to decade; differences in spatial pattern as well. The purpose 59 

of this paper is to develop a gridded field reconstruction of tropical Pacific SSTs to extend the 60 

record of ENSO variability back to 1100 CE (or 1500 CE for a more precise product) to better 61 

characterize this variability. This new product, which builds upon past climate field 62 

reconstructions of tropical Pacific SSTs (e.g. Evans et al., 2002; Furtado et al., 2009; Emile-Geay 63 

et al., 2013), excels in a wide range of validation tests.  64 

 An inescapable question for anything climate related is how it will be affected by global 65 

warming.  Though there is no firm consensus, the current leading answer is that ENSO events will 66 

become stronger and more frequent in the future (e.g. Cai et al., 2018).  This projection is 67 

necessarily based on Earth System Models (ESMs), the same models that have failed to match the 68 

observed record in the tropical Pacific since 1950, when the global warming signal begins to 69 

emerge from the natural background (e.g. Seager et al 2019, 2022). 70 

 This paper is about observations and does not mention ESMs again.  We extend the record 71 

of ENSO back to 1100 CE by inferring the state of the tropical Pacific from ENSO sensitive tree 72 

ring records associated with regional rainfall impacts. Then we use the ENSO SST field 73 

reconstruction to look at changes in ENSO variability over time as expressed by the ENSO 74 

Longitudinal Index (ELI) of Williams and Patricola (2018). Perhaps the past will shed light on 75 

ENSO’s future. 76 

2.  Data and Methods 77 

 We aim to skillfully reconstruct tropical Pacific sea surface temperatures (SSTs) from tree 78 

ring records over the past millennium. Accordingly, two types of data are used: (1) moisture-79 

sensitive tree-ring records used for developing circum-Pacific drought atlases (Cook et al., 2004, 80 

2010; Palmer et al., 2015; Stahle et al., 2016; Morales et al., 2020); (2) SSTs in the tropical Pacific 81 

region of (10N-10S, 80W-160E) from the 1°x1° HadISST analysis (Rayner et al., 2003) 82 

(henceforth HAD).  Globally, many thousands of tree-ring series are available as candidate 83 
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predictors of the ~150 years of SSTs since 1870. As a first step to address the common problem 84 

of overfitting we reduce the predictor set by statistical screening as described in SI Methods. We 85 

are then left with 544 chronologies from 1800 diminishing to 81 from 1100. 86 

 We target only the boreal winter (DJF) season SST, when ENSO has the strongest effect 87 

on global climate. To calibrate our reconstructions, we use SST data from 1930 through 2000, after 88 

which the number of chronologies diminishes considerably.   SST data from 1871 up to 1929 are 89 

withheld to validate the tree-ring estimates.  We check results against other SST datasets derived 90 

from instrumental records (ERSST5, Huang et al., 2017; KAP, Kaplan et al., 1998) and find no 91 

substantive changes in validation skill (Table S1). 92 

 We regress the target SSTs on the tree ring data using two different climate field 93 

reconstruction methods.  PPR (Point by Point Regression; Cook et al 1999) individually predicts 94 

the SST in each of the 2397 1°x1° grid boxes in the target domain.  The other, OSR (Orthogonal 95 

Spatial Regression; Briffa et al., 1986), first rotates the SST data over the calibration period into a 96 

set of EOFs and individually predicts the principal component (PC) associated with each EOF.  97 

Individual grid point SSTs are obtained by back-transforming from EOF space. Since there can be 98 

no more than 71 EOFs from data spanning 1930-2000 and far fewer account for most of the 99 

variance, OSR will involve many fewer individual predictions than PPR. An open question is what 100 

more, if anything, may be recovered by the more computationally intensive PPR method.  For 101 

OSR, we base the EOFs on the correlation matrix of the HAD grid points rather than the covariance 102 

matrix in order to give more weight to warmer points, which typically have less variance but more 103 

influence on teleconnected impacts. Results using covariance-based EOFs do not differ greatly 104 

(not shown). 105 

 In order to take full advantage of the longer tree-ring chronologies available for 106 

reconstruction, and thus produce the longest well-validated ENSO field reconstruction possible, 107 

PPR and OSR will be applied multiple times in a stepwise “nested” fashion to allow each 108 

reconstruction to be extended back in time as shorter tree-ring chronologies became unavailable. 109 

For both PPR and OSR the starting year of each reconstruction nest (tree rings over a fixed 110 

common interval) steps back at 100 year intervals, beginning in 1800 and extending back to 1100 111 

CE, with the calibration and validation skill of each new model individually evaluated. We label 112 

these reconstructions R18, R17, … R11. Prior to 1100 the reconstruction does not validate due to 113 

the loss of ENSO-sensitive chronologies from Southeast Asia (Buckley et al., 2017). 114 

 115 
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2.1.  OSR vs. PPR methods of reconstruction 116 

 OSR invites us to reconstruct only a limited number of SST EOFs.  As only three of the 117 

HAD EOFs for our target region are distinct according to the ‘North test’ (North et al., 1982; 118 

Figure S2) we initially reconstruct the first three EOFs using OSR, cumulatively accounting for 119 

88.4% of the total SST field variance. Taking HAD as “truth”, Figure 1 (top) shows maps of the 120 

OSR and PPR calibration and validation statistics using tree-ring chronologies available from 1800 121 

(R18). Both methods have high skill except at the western end of the domain, and, for validation, 122 

at the southeast, but OSR skill is high over a larger area. OSR shows less small-scale variability, 123 

a benefit of reduced space smoothing.  Overall, Figure 1 shows that OSR performs slightly better 124 

than PPR; the far greater computational burden of PPR failed to add desirable features.   125 

 126 
Figure 1. Top shows maps of the OSR and PPR calibration and validation statistics for the R18 tree-ring 127 
chronology nest. Their respective calibration/validation maps agree very well in pattern and magnitude over 128 
most of the target domain. The bottom plots compare the three principal components (PC1, PC2, PC3) 129 
corresponding to the EOFs from the OSR and PPR reconstructions with the PCs of HAD over the calibration 130 
(1930-2000) and the validation (1871-1929) periods.  Only OSR and PPR PC1 validate well. 131 
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 The PPR method takes no account of the spatial correlations within the domain; does it 132 

recover them?  To determine that we examine the EOFs and associated PCs of the HAD, OSR, 133 

and PPR fields over 1871-2000. By construction, OSR EOFs are very similar to HAD EOFs 134 

(Figure S3). PPR, which is not constrained a priori to match the HAD EOFs is nonetheless, also 135 

similar to HAD.  For HAD and OSR the first three EOFs are distinct (Figure S2). For the PPR 136 

method only the first EOF is distinct, revealing its inability to recover long-range spatial structure.  137 

 Figure 1 (bottom) compares the corresponding three PCs from the OSR and PPR 138 

reconstructions with the PCs of HAD over the calibration (1930-2000) and validation (1871-1929) 139 

periods.  PC1 from either is very highly correlated with HAD PC1 for both the calibration period 140 

(R~0.90) and the validation period (R~0.80).  PC2 and PC3 calibration period correlations are also 141 

high, but the validation statistics are clearly non-significant for PC2 and weak for PC3. 142 

Experiments with other ways of selecting predictors did not improve things. Both reconstruction 143 

methods are guilty of overfitting PC2 and PC3 in the calibration step.  In summary, both OSR and 144 

PPR do an excellent job of reconstructing the first PC from tree rings, but only the first PC.  They 145 

do only one thing, but do it very well.  146 

 It may be that our methodology is at fault for the failure to capture more than the first PC.  147 

However, the predictors we use are not in situ in the tropical Pacific, but rely on rainfall impacts 148 

distant from this target region. The influencers are likely to be large scale and not subtle, so it is 149 

plausible that only a single pattern, one most representative of ENSO, can be recovered by 150 

inverting ENSO’s influence on tree growth. Figure 2 supports this idea. PC1 is connected to 151 

rainfall in many parts of the world where we have tree-ring chronologies (Figure S1). In contrast, 152 

PC2 has little connection to rainfall except weakly in central Africa where there are no tree ring 153 

chronologies. This lack of correlation holds for the HAD instrumental data as well. We conclude 154 

that only PC1 can be reconstructed from moisture sensitive tree-ring records.  No other PC has a 155 

substantial relation to rainfall. 156 

 The top bar chart in Figure 3 shows the calibration, validation and overall skill of 157 

reconstructions of HAD NINO3.4 using PC1 from trees available (numbers in parentheses) for 158 

R18, R17, … R11. It also shows the correlation based on HAD PC1. The correlation of HAD PCI 159 

with HAD NINO3.4 is 0.98 even for the validation period; i.e., PC1 and NINO3.4 are effectively 160 

the same. There is also little change in skill among the reconstructions back to 1500.  In fact, the 161 

highest R (0.83 for the validation period) is for the R15 reconstruction, though the differences 162 

among them are not significant. There is very little difference in skill between the calibration and 163 
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validation periods, indicating that the calibration model is not overfitted.  Before 1500 skill 164 

decreases and validation skill is visibly less then calibration skill.  Nonetheless, the reconstruction 165 

back to 1100 accounts for 50% of the validation period variance, which is still useful. The R15 166 

and R11 reconstructions are further validated against ERSST and KAP SST data (Table S1) and 167 

the results are totally consistent with what is reported in Figure 3. 168 

 169 
Figure 2. Rainfall correlations with HAD, OSR, and PPR PC1 and PC2. Only PC1 shows strong 170 
correlations with rainfall over areas where the trees used for reconstruction are located. In contrast, PC2 171 
has very little correlation with rainfall globally and almost none where the trees used are growing. 172 

 The bottom bar chart in Figure 3 displays reconstructions of various common ENSO 173 

indices from HAD or R15. In addition to those on PC1 only, regressions on PC1 plus PC12 allow 174 

for nonlinear relations. For HAD we also do regressions on PC1 plus PC2 to see what is lost with 175 

the reconstructions by not having PC2.   Using HAD PC1 allows a near total account of NINO3 176 

and NINO3.4; PC1 is essentially interchangeable with these indices. It adds little to include PC2 177 

or PC12 in the regression.  NINO1+2 and NINO4 are slightly improved by including PC2, and 178 

adding PC12 to PC1 is almost as good.  With R15 PC1 the correlations for NINO3, NINO3.4 and 179 

NINO4 are above 0.8 and little is gained by adding PC12, but for NINO1+2 the correlation is 180 
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improved from 0.72 to 0.78 by adding PC12, compensating for the absence of PC2 in the R15 181 

reconstruction. We also include a correlation between an estimate of the ELI from our HAD DJF 182 

target field with DJF ELI available from Williams and Patricola (2018), the latter based on ERSST 183 

data (Huang et al., 2017). The correlation (R=0.93) is extremely high. 184 

 185 
Figure 3. Top bar chart shows the calibration, validation and overall skill of reconstructions of HAD 186 
NINO3.4 using PC1 from HAD and the reconstructions based on trees available (in parentheses) in the 187 
common period nests. The R15 reconstruction is the best overall. The bottom bar chart illustrates our ability 188 
to reconstruct various commonly used ENSO indices from either regressions on the PCs from HAD or R15. 189 
Also included is a correlation between our estimate of the ELI from HAD and that available from Williams 190 
and Patricola (2018). 191 

 Global correlations of rainfall with PC1 testifies to the skill of the reconstructions.  The 192 

correlation patterns for R15 and R11 (Figure S4) are very similar to that for HAD and also very 193 

similar to the PC1 rainfall correlation maps shown in Figure 2. However, this is not an entirely 194 

independent test, as much of the rainfall field overlaps geographically with the trees used in the 195 
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reconstructions.  In contrast, rainfall correlations over Africa, Europe, and the Middle East from 196 

HAD, R15, and R11 PC1s (Figure 4) provide a true out-of-sample comparison because no tree-197 

ring chronologies in the area shown were used in the reconstructions.  The pattern in the R15 panel 198 

is almost indistinguishable from that in the HAD panel.  R11, a reconstruction with less skill, is 199 

nonetheless very close to the other two in capturing this ENSO impact on rainfall. These findings 200 

are consistent with comparisons of NINO3.4 indices estimated from CRU and GPCC 201 

teleconnected precipitation data (van Oldenborgh et al., 2021) with HAD, R15, and R11 PC1 202 

(Figure S5). R15 has correlations >0.8 with GPCC and CRU NINO3.4 indices, which are almost 203 

the same as those for HAD. R11 correlations are lower, but still highly significant. 204 

 205 
Figure 4. Rainfall correlations over Africa, Europe, and the Middle East from HAD, R15, and R11 PC1s. 206 
This is a true out-of-sample comparison because no tree-ring chronologies in the area shown were used in 207 
the reconstructions. The pattern in the R15 panel is almost indistinguishable from that in the HAD panel.  208 
R11, a reconstruction with less skill, is nearly as good. 209 

 The final ENSO index investigated here is the ELI (ENSO Longitudinal Index) of Williams 210 

and Patricola (2018; W&P).  It is a continuous measure intended to capture ENSO diversity. W&P 211 

ELI has a strong quadratic relationship with HAD, R15, and R11 PC1s (Figure 3 bottom; Figure 212 

S6). (This could be anticipated in view of the relation between ELI and NINO3 shown in W&P; 213 

their Figure S6.). Given these strong relationships, we regressed our R15 and R11 PCs on W&P 214 

ELI to produce our own reconstructions of ELI back to 1500 and 1100 (Figure 5; Figure S6). 215 
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4. Summary and Discussion 216 

 We began this work with a number of questions.  The overarching one was how skillfully 217 

can we reconstruct DJF tropical Pacific (ENSO) SST fields from remote impacts on moisture 218 

sensitive trees without any in situ data – any data from the tropical Pacific? While this has been 219 

done several times before for ENSO indices (e.g. Stahle et al., 1998; D’Arrigo et al., 2005; Wilson 220 

et al., 2010; Li et al., 2013), we have taken an intensive new look at it as a spatial reconstruction 221 

problem, with emphasis placed on validation testing of our estimates. The resulting reconstructions 222 

are unusually skillful. We used two different reconstruction methods:  PPR uses the tree-ring 223 

chronologies to estimate each of the 2397 1°x1° SST boxes in our target area while OSR targets 224 

the leading EOFs of the SST field. Would PPR provide more information about the target SST 225 

field?  It turned out that they have roughly equivalent ability (Figure 1). We settled on OSR because 226 

it is somewhat less noisy and is far less computationally demanding.  227 

 The obvious next question is how many SST EOF/PCs can we reconstruct?  The answer 228 

is: just one, the leading mode. The inability to estimate PC2 from moisture sensitive trees is shown 229 

to be a consequence of the lack of any connection between rainfall and PC2 of tropical Pacific SST 230 

(Figure 2). Disappointing perhaps, but the reconstruction of this first PC is exceptionally skillful. 231 

Moreover, the leading mode accounts for almost 72% of the original SST field variance. 232 

Fortunately, PC1 is sufficient to allow excellent estimates of some common ENSO indices 233 

(NINO3, NINO3.4) and good estimates of others (NINO4, NINO1+2); see Figure 3 (bottom) and 234 

Table S1.  The nonlinear ELI is also well captured by a quadratic function of PC1 (Figure S6).  235 

 How far back in time can we go with useful skill?  We found little difference in skill 236 

between using all 544 chronologies from 1800 CE and using fewer than half as many (242) 237 

available back to 1500 CE (Figure 3 top). Over the validation period (1871-1929) the correlation 238 

of the instrumental HAD PC1 with this R15 reconstruction is R=0.83, accounting for almost 70% 239 

of the variance, making it one of the most skillful proxy reconstructions we know of. This out-of-240 

calibration skill is only slightly lower than the R=0.84 for the calibration period (1930-2000), 241 

indicating that there is little overfitting.  With only the 81 chronologies going back to 1100 CE the 242 

validation period correlation of R11 PC1 with HAD PC1 is 0.71, which is still high enough to be 243 

useful.  The higher R (0.79) in the calibration period is indicative of some overfitting.  244 

 A virtue of our reconstructions is the precision of the tree-ring dating.  All banded annual 245 

proxies – tree-rings, ice cores, corals, speleothems, lake sediments – are subject to dating errors.  246 

Annual bands can be missing or missed, intra-annual features can be counted as annual bands.  247 
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Dendrochronologists address this by replication within each chronology, which enables rigorous 248 

crossdating (Fritts, 1976).  Moreover, very many chronologies go into our estimates of ENSO PC1 249 

making it virtually certain that the annual dating of our reconstructions is correct. Replication is 250 

much more difficult with other proxies, but has been done for some, like corals (Hendy et al., 2003; 251 

Lough, 2004; DeLong et al., 2007).  252 

 Our reconstructions rely on remote impacts of tropical Pacific SST.  No in situ information 253 

is used. We speculate that our indices are consequently robust indicators of ENSO impacts, 254 

possibly as good or better than NINO3.4 or some other SST measure for this purpose.  Their 255 

relation to rainfall shown in Figure 2 and Figure 4 support this speculation, but how broadly it 256 

holds is unknown.  257 

 Figure 5 shows the R11 and R15 reconstructions of PC1 (equivalently, NINO3.4) and the 258 

ENSO Longitudinal Index (ELI) based on regression (Figure S6) back in time with smooth 259 

polynomial curves applied to highlight recent warming.  While the positive excursions (i.e. El 260 

Niño events) in recent decades are higher than any seen back to 1100, the variability does not 261 

appear to be unique in the record. Rather, recent variability is riding on an unprecedented warming 262 

trend. Thus, the reconstructions suggest that ENSO variability under global warming is high, but 263 

not clearly higher than at a number of times in the past millennium.  But the world is warmer, and 264 

these two impact-based indices suggest that the impacts are becoming more severe. 265 

 266 
Figure 5. PC1 and ELI series based on the R15 and R11 ENSO reconstructions. Overall warming in recent 267 
decades is indicated by smooth polynomial curves. Full overlap and pre-calibration correlations are shown. 268 
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Methods with Table S1, Figures S1 to S6, and References 400 

 Globally, many thousands of tree-ring series are available as candidate predictors of the 401 

~150 years of SSTs since 1870.  As a preliminary filter, we only use tree-ring records from places 402 

where ENSO has a predictable influence on rainfall (Lenssen et al., 2020; Figure S1A). There are 403 

1239 such tree-ring chronologies in those regions at our disposal beginning on or before 1800 CE, 404 

with the number diminishing to 151 before 1100 CE.  We further reduce this pool of candidate 405 

predictors by eliminating those that correlate at less than the 2-tailed 90% confidence level, this 406 

after first applying autoregressive modeling and prewhitening to both the tree rings and SSTs to 407 

avoid loss of degrees of freedom for testing due to autocorrelation (Dawdy and Matalas, 1964) and 408 

to correct for differences in short-lag persistence between tree rings and SSTs (sensu Meko, 1981; 409 

Cook et al., 1999). Screening the tree rings leaves 544 chronologies from 1800 and 81 from 1100. 410 

 Figure S1B shows as an example those chronologies beginning on or before 1500 CE that 411 

survived this screening step.  Note that our ENSO reconstruction experiment based on mostly 412 

extratropical moisture sensitive tree rings departs greatly from the network of precipitation proxies 413 

used by Furtado et al. (2009) to reconstruct ENSO; their network was largely restricted to the 414 

tropics and only included five tree-ring predictors.  415 

 The OSR method requires as input the number of predictand (HAD SST) EOFs to 416 

reconstruct. We use the ‘North test’ to determine how many HAD EOFs for our target region are 417 

distinct enough to reconstruction according to the ‘North test’ (North et al., 1982; Figure S2) and 418 

estimate that this number is the three leading EOFs accounting for 88.4% of the field variance. 419 

Using this information in OSR, we reconstruct these modes of SST variability using all tree-ring 420 

chronologies that begin on or before 1800 CE and pass the screening as described above. In 421 

contrast, the PPR method does not require any spatial information from the SST field to reconstruct 422 

it because each SST grid point is reconstructed separately. But because PPR does not take account 423 

of the spatial correlations within the domain, but how well does it recover them?  424 
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 To determine that we compare here the three leading EOFs of the HAD, OSR, and PPR 425 

fields and use as the basis period 1871-2000 for all data sets. For HAD the first three EOFs account 426 

for 71.8%, 12.3%, and 4.5% of the variance; after that, the EOFs are not distinct (Figure S2). For 427 

OSR the corresponding EOF percentages are 77.3, 14.6, and 6.1 and for PPR they are 77.6% and 428 

4.8%, and 3.0%, respectively. Only PPR EOF1 is distinct in this case, thus revealing a limit to the 429 

ability of this pointwise reconstruction method to cleanly recover long-range spatial structure. But 430 

for completeness all three PPR EOFs are considered in this initial comparison. 431 

 Figure S3 shows that the OSR EOFs are very similar to the HAD EOFs. This is expected 432 

by construction since OSR explicitly targets the HAD EOFs over the 1930-2000 calibration period. 433 

In contrast, PPR is not constrained a priori to match the EOFs of the target field. Nonetheless, the 434 

PPR EOFs are also similar to those of HAD (e.g. the correlations at the bottom of Figure S3).  435 

 Figure S4 shows near-global maps of correlation between CRU JFMA rainfall and PC1 436 

from HAD instrumental SST and the OSR and PPR R15 and R11 reconstructions. In this case only 437 

the leading EOF was reconstructed by OSR because EOF2 and EOF3 could not be reconstructed 438 

with any skill (Figure 1 in main paper). The similarities in map patterns between HAD, R15, and 439 

R11 are extremely good, which serves as another form of validation of the tree-ring 440 

reconstructions, even in the case of the weaker R11 reconstruction (Figure 3 in main paper). 441 

 Figure S5 shows correlations between NINO3.4 indices constructed from GPCC and CRU 442 

teleconnected El Niño rainfall signals (van Oldenborgh et al., 2021) and HAD, R15, and R11 PC1. 443 

Recall from the main paper (Figure 3 top) that HAD PC1 is effectively the same as the NINO3.4 444 

index based on instrumental SST data. Here we have an alternative estimate of NINO3.4 based on 445 

teleconnected rainfall signals similar to what has enabled us to reconstruct the HAD SST field 446 

form tree rings. The HAD and R15 correlations are almost the same and the R11 correlations are 447 

weaker, but still useful. These results further validate the use of PC1 from OSR reconstruction as 448 

a robust estimate of ENSO variability extending back almost a full millennium. 449 

 Figure S6 shows the nonlinear (quadratic) relationship between HAD, R15, and R11 PC1 450 

and the Williams and Patricola (2018; W&P) ELI for the DJF season (left-hand plot). The W&P 451 

ELI is based on ERSST data, thus making it data independent of the HadISST-based PC1s, but the 452 

fitted models are still excellent. The fitted relationships shown in Figure S6 have been used to 453 

estimate ELI from both R15 PC1 and R11 PC1 (Figure 5 in main paper). 454 

 455 

 456 
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 457 
Table S1. Calibration and validation tests of the NINO1+2, NINO3, NINO3.4, and NINO4 
indices extracted from the OSR R15 and R11 EOF1 SST field reconstructions. These ENSO 
indices are compared to those based on HAD, ERSST, and KAP instrumental SST data. 
Sources of these instrumental ENSO indices used for testing are provided at the bottom. 
The 1930-2000 and 1871-1929 tests conform to the calibration and validation periods 
used for developing and testing R15 and R11. Pearson correlations are reported. R15 
outperforms R11 in all cases, consistent with their OSR validation statistics in Figure 3. The 
weaker NINO1+2 correlations are consistent with those produced from LMR and PHYDA 
data assimilation SST fields (Luo et al., 2022, their Figure S4). 

HAD SST ENSO DJF Indices1 
 NINO4 NINO3.4 NINO3 NINO1+2 

ENSO 
Recon 

1871 
1929 

1930 
2000 

1871 
1929 

1930 
2000 

1871 
1929 

1930 
2000 

1871 
1929 

1930 
2000 

R15 0.81 0.83 0.83 0.89 0.81 0.88 0.69 0.73 
R11 0.69 0.76 0.69 0.83 0.66 0.82 0.57 0.69 

ERSST SST ENSO DJF Indices1 
 NINO4 NINO3.4 NINO3 NINO1+2 

ENSO 
Recon 

1871 
1929 

1930 
2000 

1871 
1929 

1930 
2000 

1871 
1929 

1930 
2000 

1871 
1929 

1930 
2000 

R15 0.72 0.79 0.84 0.88 0.82 0.87 0.56 0.60 
R11 0.53 0.67 0.67 0.78 0.66 0.79 0.45 0.55 

KAP SST ENSO DJF Indices2 
 NINO4 NINO3.4 NINO3 NINO1+2 

ENSO 
Recon 

1871 
1929 

1930 
2000 

1871 
1929 

1930 
2000 

1871 
1929 

1930 
2000 

1871 
1929 

1930 
2000 

R15 0.83 0.82 0.86 0.90 0.85 0.88 0.66 0.71 
R11 0.69 0.74 0.70 0.82 0.69 0.82 0.58 0.67 

HAD and ERSST NINO Indices1: http://climexp.knmi.nl/ 

KAP NINO Indices2: http://iridl.ldeo.columbia.edu/SOURCES/.Indices/.nino/.EXTENDED/ 
 458 

 459 
Figure S1. Rainfall impacts map (A) adapted from Lenssen et al. (2020; map downloaded from 460 

http://iridl.ldeo.columbia.edu/maproom/IFRC/FIC/ElNinoandRainfall220) and an example tree-461 

ring network beginning in 1500 CE used to reconstruct the indicated ENSO SST target field. 462 
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 463 
Figure S2. Eigenvalue traces of the HAD, OSR, and PPR SST fields with North ±2se limits applied 464 

to test for how many distinct EOFs can be determined. The HAD instrumental SSTs have three 465 

distinct EOFs. The OSR reconstructed SSTs have by construction three distinct EOFS because that 466 

many EOFs were chosen for reconstruction by OSR. The PPR reconstructed SSTs have only one 467 

distinct EOF, which reveals its inability to cleanly recover long-range spatial structure.  468 

 469 
Figure S3. Comparisons of HAD, OSR, and PPR EOFs. The three OSR EOFs are almost identical 470 

to HAD by construction. However, even though only one PPR EOF is distinct (Figure S2), all 471 

three PPR EOFs are similar in pattern to the HAD EOFs (see the correlations). 472 
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 474 

Figure S4. Maps showing the correlations between HAD, R15, and R11 PC1 with CRU JFMA 475 

precipitation (1901-2000). The patterns of correlation produced by R15 and R11 are extremely 476 

similar to that produced by PC1 of the HAD SST data. 477 
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Figure S5. Correlations between NINO3.4 indices estimated from CRU and GPCC teleconnected 479 

precipitation signals (van Oldenborgh et al., 2021; https://climexp.knmi.nl/) with HAD, R15, and 480 

R11 PC1. 481 
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 483 

 484 
Figure S6. Williams and Patricola (2018; W&P) ELI has a strong quadratic relationship with HAD, 485 

R15, and R11 PC1s (left-hand plot). Given these strong relationships, we regressed our R15 and 486 

R11 PC1s on W&P ELI to produce reconstructions of ELI back to 1500 and 1100 shown in Figure 487 

5 of the main paper. The estimates over the 1871-2000 calibration period are shown in the right-488 

hand plot. 489 
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