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Abstract

Inverse problems are ubiquitous in hydrological modelling for parameter estimation, system understanding, sustainable water

resources management, and the operation of digital twins. While statistical inversion is especially popular, its sampling-based

nature often inhibits its application to computationally costly models, which has compromised the use of the Generalized

Likelihood Uncertainty Estimation (GLUE) methodology, e.g., for spatially distributed (partial) differential equation based

models. In this study we introduce multilevel GLUE (MLGLUE), which alleviates the computational burden of statistical

inversion by utilizing a hierarchy of model resolutions. Inspired by multilevel Monte Carlo, most parameter samples are

evaluated on lower levels with computationally cheap low-resolution models and only samples associated with a likelihood

above a certain threshold are subsequently passed to higher levels with costly high-resolution models for evaluation. Inferences

are made at the level of the highest-resolution model but substantial computational savings are achieved by discarding samples

with low likelihood already on levels with low resolution and low computational cost. Two example inverse problems, using a

rainfall-runoff model and groundwater flow model, demonstrate the substantially increased computational efficiency of MLGLUE

compared to GLUE as well as the similarity of inversion results. Findings are furthermore compared to inversion results from

Markov-chain Monte Carlo (MCMC) and multilevel delayed acceptance MCMC, a corresponding multilevel variant, to compare

the effects of the multilevel extension. All examples demonstrate the wide-range suitability of the approach and include

guidelines for practical applications.
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Abstract16

Inverse problems are ubiquitous in hydrological modelling for parameter estima-17

tion, system understanding, sustainable water resources management, and the operation18

of digital twins. While statistical inversion is especially popular, its sampling-based na-19

ture often inhibits its application to computationally costly models, which has compro-20

mised the use of the Generalized Likelihood Uncertainty Estimation (GLUE) method-21

ology, e.g., for spatially distributed (partial) differential equation based models. In this22

study we introduce multilevel GLUE (MLGLUE), which alleviates the computational23

burden of statistical inversion by utilizing a hierarchy of model resolutions. Inspired by24

multilevel Monte Carlo, most parameter samples are evaluated on lower levels with com-25

putationally cheap low-resolution models and only samples associated with a likelihood26

above a certain threshold are subsequently passed to higher levels with costly high-resolution27

models for evaluation. Inferences are made at the level of the highest-resolution model28

but substantial computational savings are achieved by discarding samples with low like-29

lihood already on levels with low resolution and low computational cost. Two example30

inverse problems, using a rainfall-runoff model and groundwater flow model, demonstrate31

the substantially increased computational efficiency of MLGLUE compared to GLUE32

as well as the similarity of inversion results. Findings are furthermore compared to in-33

version results from Markov-chain Monte Carlo (MCMC) and multilevel delayed accep-34

tance MCMC, a corresponding multilevel variant, to compare the effects of the multi-35

level extension. All examples demonstrate the wide-range suitability of the approach and36

include guidelines for practical applications.37

1 Introduction38

Inverse problems are ubiquitous in hydrological modelling, emerging in the context39

of parameter estimation, system understanding, sustainable water resources management,40

and the operation of digital twins (e.g., Leopoldina, 2022). Computational models are41

are often highly parameterized and non-linear, posing substantial challenges to param-42

eter inversion approaches. Furthermore, observations of system states are affected by mea-43

surement uncertainty and the knowledge about the underlying system is incomplete, re-44

sulting in uncertainties associated with computational models (Beven, 1993; Wagener45

& Gupta, 2005; Carrera et al., 2005; Beven, 2006; Vrugt et al., 2009; Laloy & Vrugt, 2012;46

Zhou et al., 2014; Mai, 2023). We need to quantify these uncertainties if models should47
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be used for scientific inquiry or in support of decision making (Blöschl et al., 2019). While48

process-based spatially distributed models are increasingly used to guide decision-making49

and to sustainably manage water resources, such modelling approaches are computation-50

ally costly (Doherty, 2015; Herrera et al., 2022), making uncertainty quantification (UQ)51

and statistical inversion especially challenging (Erdal & Cirpka, 2020; Kuffour et al., 2020;52

White, Hunt, et al., 2020). There is a need to develop computationally efficient approaches53

to UQ and statistical inversion to overcome the pressing challenges associated with cli-54

mate change and their impact on water resources.55

Various approaches to UQ have been developed and applied in that respect; the56

Bayesian approach to statistical inversion and UQ, however, is especially popular due57

to the ability to comprehensively treat uncertainties in state variables, parameters, and58

model output (Montanari, 2007; Vrugt, 2016; Linde et al., 2017; Page et al., 2023). Gen-59

eralized Likelihood Uncertainty Estimation (GLUE) (Beven & Binley, 1992, 2014) - as60

an informal Bayesian approach - and Markov-chain Monte Carlo sampling (MCMC) (Gallagher61

et al., 2009; Vrugt, 2016; Dodwell et al., 2019; Brunetti et al., 2023; Lykkegaard et al.,62

2023; Cui et al., 2024) - as a formal Bayesian approach - are frequently applied in the63

environmental sciences for statistical inversion. The Bayesian framework considers model64

parameters to be random variables that are associated with prior distributions, which65

are conditioned on system state observations using a likelihood function to posterior dis-66

tributions. The likelihood function may either be defined formally or informally, depend-67

ing on the belief and assumptions made about sources of error and the intended prop-68

erties of the likelihood function itself, and many different approaches exist to define such69

functions (Beven & Binley, 1992; Beven & Freer, 2001; Schoups & Vrugt, 2010; Nott et70

al., 2012; Sadegh & Vrugt, 2013; Beven, 2016; Vrugt & Beven, 2018).71

Approaches to statistical inversion generally rely on repeatedly running the com-72

putational model with different parameter values (i.e., repeatedly solving the forward73

problem) to obtain outputs that can be compared to observations of the same variable,74

if available. With computationally costly models, this approach quickly becomes intractable75

and there is a need to develop more efficient sampling approaches for statistical inver-76

sion. Different approaches have been developed to reduce computational cost of inver-77

sion, such as using data-driven surrogate or reduced-order models during inversion, which78

are the often often run instead of the computationally costly high-fidelity model (Doherty79

& Christensen, 2011; Asher et al., 2015; Burrows & Doherty, 2015; Linde et al., 2017;80
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Gosses & Wöhling, 2019, 2021; Allgeier, 2022). Reducing model spatial resolution can81

reduce model complexity and computational cost in general and the effect of horizon-82

tal (Wildemeersch et al., 2014; Savage et al., 2016; Reinecke et al., 2020) as well as ver-83

tical (White, Knowling, & Moore, 2020) discretization in model performance has been84

studied before, also in the context of accelerating inversion (von Gunten et al., 2014).85

Multilevel methods and multilevel Monte Carlo (MLMC) (Heinrich, 2001; Giles,86

2008; Cliffe et al., 2011; Giles, 2015), with extensions to multilevel MCMC and multi-87

level delayed acceptance MCMC (MLMCMC and MLDA, respectively) (Dodwell et al.,88

2019; Lykkegaard et al., 2023; Cui et al., 2024), were previously introduced with the mo-89

tivation of reducing the computational cost of Monte Carlo estimators. For spatially dis-90

tributed models, multilevel methods utilize multiple levels of spatial domain resolution.91

Together with the most finely discretized highest level model, several more coarsely dis-92

cretized lower level models are considered. Most solutions to the forward problem are93

then found using lower level models while the highest level model is executed far less fre-94

quently, harbouring the potential for large savings in overall computation time. Contrary95

to surrogate- or reduced-order-model-aided approaches to UQ, multilevel methods make96

no simplifying assumptions about the model and the relevant processes are simulated97

directly on all resolution levels. Another contrast is that the coarsely discretized mod-98

els are not used instead of the high-fidelity model but they are synergetically used to-99

gether. Linde et al. (2017) summarize first applications of MLMC for the forward prop-100

agation of uncertainties in hydrogeology and hydrogeophysics. We note that multilevel101

methods can be used with all types of models where a notion of model resolution exists.102

Typically, multilevel methods are applied to models based on (partial) differential equa-103

tions (PDEs) using different spatial grid resolutions (e.g., in numerical groundwater flow104

models) or different temporal resolutions (e.g., in rainfall-runoff models).105

Previous applications of multilevel methods focussed on models with different spa-106

tial resolutions (Cliffe et al., 2011; Linde et al., 2017; Dodwell et al., 2019; Lykkegaard107

et al., 2023; Cui et al., 2024), entailing challenges when transferring parameter fields from108

one spatial resolution to another. Geostatistical approaches are often used to (initially)109

assign parameters for spatially distributed groundwater flow- or other hydrological mod-110

els. This simultaneously reduces overparameterization as the number of geostatistical111

parameters is much lower than the number of parameters of the computational model.112

To this end, utilizing point measurements of parameters or the combination with other113
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predictor variables, Gaussian process regression is frequently used to generate conditioned114

parameter fields on any desired spatial resolution (Kitanidis & Vomvoris, 1983; Zimmer-115

man et al., 1998; Zhou et al., 2014; Doherty, 2003). Unconditioned random fields are also116

utilized, where parameter fields are generated on any desired spatial resolution (Y. Liu117

et al., 2019); using uncorrelated and spatially independent random variables, the Karhunen-118

Loéve expansion is frequently employed to parameterize the random field (Cliffe et al.,119

2011; Dodwell et al., 2019; Lykkegaard et al., 2023; Cui et al., 2024). The definition of120

hydrological respose units or internally homogeneous zones of parameters represents an-121

other strategy for parameterization (Kumar et al., 2013; Zhou et al., 2014; Anderson et122

al., 2015; White, 2018). To better constrain the parameter space during inversion and123

to reduce the aggravating effect of overparameterization, regularization can be employed124

in combination with different parameterization strategies (Tonkin & Doherty, 2005; Moore125

& Doherty, 2006; Pokhrel et al., 2008; Moore et al., 2010). Parameter scaling can be used126

to transfer parameter fields from one spatial resolution to another. While there is no gen-127

erally valid theory for upscaling (i.e., from fine to coarse grids) (Binley et al., 1989; Samaniego128

et al., 2010), various upscaling operators are used in practice (Binley et al., 1989; Samaniego129

et al., 2010; Colecchio et al., 2020).130

While multilevel methods have previously been used to accelerate MCMC algorithms131

(Dodwell et al., 2019; Lykkegaard & Dodwell, 2022; Lykkegaard et al., 2023; Cui et al.,132

2024) in a formal Bayesian framework, they have not yet been applied in connection with133

GLUE. In this study, we utilize ideas from multilevel Monte Carlo strategies to accel-134

erate statistical inversion of hydrological models with the GLUE methodology. After in-135

troducing multilevel GLUE (MLGLUE), two example inverse problems are considered.136

We subsequently apply conventional GLUE and MLGLUE as well as MCMC and MLDA137

to those problems and compare the results.138

2 Methods139

2.1 The Inverse Problem140

Consider observations Ỹ = [ỹ1, . . . , ỹk]
T ∈ Y ⊆ Rk of a real system and con-141

sider a model F that simulates the system response Y = [y1, . . . , yk]
T ∈ Y correspond-142

ing to Ỹ. The model output also depends on initial and boundary conditions Ci and Cb,143
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respectively, as well as on model parameters θ ∈ X ⊆ Rn
144

Ỹ = F(θ, Ci, Cb) + ε := F(θ) + ε (1)

F : Ci, Cb → Y ∈ Y is closed by the parameter vector θ (Kavetski et al., 2006; Vrugt145

et al., 2009), which is considered a random vector with an associated prior distribution146

pp(θ). ε ∈ Rk in this context represents the combined effect of conceptual model er-147

ror and measurement error (e.g., Kennedy & O’Hagan, 2001; Plumlee, 2017); subsequently148

we refer to ε simply as error and refer to the aforementioned references for more detailed149

discussions on errors.150

Solving the inverse problem in a Bayesian statistical framework means to obtain151

the posterior distribution of the parameters p(θ|Ỹ) via Bayes’ theorem152

p(θ|Ỹ) =
pp(θ)p(Ỹ|θ)

p(Ỹ)
∝ pp(θ)p(Ỹ|θ) (2)

where p(Ỹ|θ) is the likelihood function and p(Ỹ) is the proportionality factor called model153

evidence, which is the average likelihood of the model to have generated the data.154

Assuming that errors ri = yi−ỹi are mutually independent, identically distributed155

(i.i.d.) and follow a Gaussian distribution with constant variance σ2
r , the log-likelihood156

takes the form157

L(θ|Ỹ) = p(Ỹ|θ) = −k

2
ln(2π)− k

2
ln(σ2

r)−
1

2
σ−2
r ·

k∑
i=1

(yi − ỹi)
2. (3)

The assumptions of i.i.d. errors, however, usually does not hold as these errors of hydro-158

logical models often exhibit strong autocorrelation and heteroscedasticity (see, e.g., Beven159

(2006) for a discussion). Beven and Freer (2001) and Vrugt et al. (2009) give alterna-160

tive likelihood formulations for non-Gaussian errors that often come at the cost of ad-161

ditional hyperparameters.162

2.2 Multilevel Monte Carlo163

We will discuss the notion of multilevel methods from the perspective of multilevel164

Monte Carlo (MLMC), which is a method to efficiently compute the expectation of a quan-165

tity of interest that depends on (model) parameters (Heinrich, 2001; Giles, 2008; Cliffe166

et al., 2011; Giles, 2015). Consider the situation where we are given a distribution of model167

parameters, p(θ), and want to compute the expected value of some scalar quantity re-168

lated to the model output, Q = Q (F(θ)), with respect to p(θ). Here, Q represents some169
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function of the model output, e.g., it yields the system state at a certain location, or a170

more abstract quantity. As an example, consider Q to represent the groundwater level171

at some location in the model domain. Propagating the uncertainty contained in the pa-172

rameter distributions through the model to represent the uncertainty in Q is considered173

a problem of forward propagation of uncertainty, which is the opposite of the inverse prob-174

lem described in section 2.1. Yet, MLMC builds on a simple intuition that illustrates the175

idea behind MLGLUE.176

For simplicity and without loss of generality consider Q ∈ R for the remainder177

of this section. Instead of one single model for the system, assume that there is a hier-178

archy of models (approximations of the real system), which are denoted by {Fℓ}∞ℓ=0, where179

ℓ is the level index. Associated with each model in the hierarchy are values for the quan-180

tity of interest, {Qℓ}∞ℓ=0, such that Q̃ = limℓ→∞ Qℓ, where Q̃ represents the true value.181

In the context of PDE-based models, ℓ may be related to the grid size or time step length182

of the model, i.e., a larger ℓ corresponds to a higher domain resolution with smaller com-183

putational cells or smaller time steps, for example. We assume that the computational184

cost for evaluating Fℓ (or Qℓ) increases while the approximation error decreases as ℓ→185

L. Here L is the index of the highest level, which is often associated with the target model186

and all lower levels have lower resolution. We note that the most common form of the187

model hierarchy is a geometric series of computational grids, where the factor of refine-188

ment or coarsening between subsequent levels is constant across all levels (Cliffe et al.,189

2011; Giles, 2015). To estimate the expectation of Q efficiently, MLMC avoids the di-190

rect estimation of E[QL] on the highest level ℓ = L. Instead, the correction of the es-191

timation with respect to the next lower level is computed, based on the linearity of ex-192

pectation:193

E[QL] = E[Q0] +

L∑
ℓ=1

E[Qℓ −Qℓ−1] (4)

This approach generally results in substantial computational savings and different194

multilevel estimators for E[QL] exist (Giles, 2008; Cliffe et al., 2011; Giles, 2015; Dod-195

well et al., 2019; Lykkegaard et al., 2023; Cui et al., 2024). The original MLMC algo-196

rithm of Giles (2008) (as well as subsequently applied algorithms) takes a bottom-up ap-197

proach, i.e., sampling is started on ℓ = 0 and ℓ is only incremented if the algorithm has198

not yet converged on level ℓ. There, efficiency and variance reduction regarding the ex-199
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pectation of Q may be optimized by choosing an optimal refinement (e.g., the decrease200

of cell or time step size when going from ℓ to ℓ+ 1).201

In the context of MLMC, the behaviour of the variances V[Qℓ] and V[Qℓ−Qℓ−1]202

and expectations E[Qℓ] and E[Qℓ −Qℓ−1] as ℓ → L gives an indication of the overall203

quality and efficiency of the hierarchy {Qℓ}Lℓ=0 (Cliffe et al., 2011). V[Qℓ] and E[Qℓ] should204

be approximately constant as ℓ → L, ensuring that Qℓ is a good enough approxima-205

tion even on the coarsest level ℓ = 0. Furthermore, V[Qℓ − Qℓ−1] and E[Qℓ − Qℓ−1]206

should decay rapidly and be smaller than V[Qℓ] and E[Qℓ], respectively, as ℓ→ L, en-207

suring that the approximation error decreases with increasing level. V[Qℓ−Qℓ−1] may208

be expanded as209

V[Qℓ −Qℓ−1] = V[Qℓ] + V[Qℓ−1]− 2 · Cov(Qℓ,Qℓ−1), (5)

showing that it should be given that 2·Cov(Qℓ,Qℓ−1) > V[Qℓ−1], which requires210

Qℓ and Qℓ−1 to be sufficiently correlated.211

While those relations between levels are not formally required to hold for inversion,212

they ensure that the multilevel estimator for the expectation of Q has reduced variance213

and is computationally more efficient compared to a single-level estimator (Cliffe et al.,214

2011; Lykkegaard et al., 2023). While a deviation of the previously described optimal215

relations between levels does not necessarily indicate a poorly performing model hier-216

archy, without such a deviation the hierarchy may be said to be well behaved. We dis-217

cuss the design of the model hierarchy in more detail in section 2.4.2.218

2.3 Multilevel Markov-chain Monte Carlo219

The multilevel delayed acceptance (MLDA) MCMC algorithm was developed by220

Lykkegaard et al. (2023) on the basis of the delayed acceptance algorithm coupled with221

the randomized-length-subchain surrogate transition (Christen & Fox, 2005; J. S. Liu,222

2008) and includes many concepts similar to MLMC described in section 2.2. Delayed223

acceptance MCMC has been employed by Laloy et al. (2013) to accelerate Bayesian in-224

version for groundwater flow models using a generalized polynomial chaos surrogate model.225

The main functionality of MLDA is shown in Fig. 1 for a case with two levels. We use226

the Python implementation of MLDA by Lykkegaard (2022) with fixed-length subchains227
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and the option of running a number of nchains chains in parallel. In the remainder we228

also assume that the parameter vectors {θℓ}Lℓ=0 are comprised of the same model pa-229

rameters, i.e., we do not consider level-dependent or different coarse and fine (or nested)230

model parameter vectors.231

While other MCMC algorithms sample from a single (posterior) distribution as given232

in Eq. 2, MLDA considers a hierarchy of distributions p0(·), . . . , pℓ(·), . . . , pL(·) that are233

computationally cheap approximations of the target density p(·), where each pℓ(·) may234

be defined according to Eq. 2 corresponding to each model in {Fℓ}Lℓ=0. The MLDA al-235

gorithm then gets called on the highest level density pL(·). By recusively calling the MLDA236

algorithm on level ℓ − 1, subchains with length Jℓ are generated on levels 1 ≤ ℓ ≤ L237

until level ℓ = 0 is reached. We note that different subchain lengths may be used on238

different levels but the analysis here is restricted to the same Jℓ = J on all levels. On239

the lowest level ℓ = 0, a conventional MCMC sampler is invoked. The final state of a240

subchain on level ℓ − 1, θJℓ

ℓ−1, is finally passed as a proposal to the higher-level chain241

on level ℓ. Subsequently, only samples from the highest level are considered for inference.242

A conventional single-level MCMC sampler may be obtained with using MLDA if only243

the highest-level model is considered. We note that for MLDA the relation between dif-244

ferent levels is not formally required to show decaying variance and mean as described245

in section 2.2. Aspects of the design of the model (or posterior) hierarchy are discussed246

in more detail in section 2.4.2.247

To assess convergence of the Markov-chains on the highest level, the Gelman-Rubin248

statistic R̂ is frequently used for multi-chain samplers (Gelman & Rubin, 1992; Lykkegaard249

et al., 2023). A value of R̂ ≤ 1.2 is often deemed sufficient to ensure convergence (e.g.,250

Vrugt, 2016). MCMC (and MLDA) samples from converged chains are naturally corre-251

lated and may show dependence on initial samples, requiring that an initial number of252

samples is burned and that that samples are thinned (e.g., every other sample may be253

omitted to reduce autocorrelation) to obtain approximately independent samples (e.g.,254

Vrugt, 2016; Lykkegaard et al., 2023). The number of approximately intependent sam-255

ples is termed the estimated effective sample size and can be calculated as shown in Geyer256

(1992, 2011). We obtain effective samples by burning initial samples such that R̂ ≤ 1.2257

for all chains, followed by thinning such that the resulting number of samples is approx-258

imately equal to the estimated effective sample size. We denote this set of effective sam-259
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ples by matrix B with each column representing a single variable and each of the Nb rows260

representing a single sample.261

2.4 Multilevel Generalized Likelihood Uncertainty Estimation262

2.4.1 The MLGLUE Algorithm263

The Generalized Likelihood Uncertainty Estimation (GLUE) methodology rejects264

the formal (Bayesian) statistical basis of inference and instead seeks to identify a set of265

system representations (combinations of model inputs, model structures, model param-266

eters, errors) that are sufficiently consistent with the observations of that system (Beven267

& Freer, 2001; Vrugt et al., 2009; Beven & Binley, 2014; Mirzaei et al., 2015).268

The likelihood function in GLUE aggregates all aspects of error and consistency269

as a generalized fuzzy belief. It serves as a decision threshold to separate behavioural270

(i.e., good agreement between Y and Ỹ) and non-behavioural (i.e., poor agreement be-271

tween Y and Ỹ) simulations. Beven and Binley (1992) and (Beven & Freer, 2001) in-272

troduced a number of different functions for this purpose. The following likelihood is fre-273

quently used (Vrugt et al., 2009):274

L̃(θ|Ỹ) := (σ2
r)

−W =

(∑k
i=1(yi − ỹi)

2

k − 2

)−W

(6)

where W is a shape parameter of the likelihood function defined by the user. Note275

that for W = 0, every simulation will have an equal likelihood and for W → ∞, the276

emphasis will be placed on a single best simulation while the other solutions are assigned277

a negligible likelihood.278

Parameter and model output uncertainty is estimated in GLUE by running the model279

with N parameter samples, {θ(j)}Nj=1, randomly drawn from the prior distribution and280

evaluating the likelihood function for each sample. The likelihood threshold may either281

be defined a-priori (as a certain value above which a model realization is considered be-282

havioural) or may be defined as a percentage based on the set of all likelihood correspond-283

ing to the evaluated parameter samples (by setting the threshold to, e.g., the top 10%284

of the likelihood values) (Beven & Binley, 1992; Beven & Freer, 2001; Vrugt et al., 2009).285

Using only behavioural solutions, (cumulative) probability distributions of model out-286
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puts are generated, from which uncertainty estimates are finally computed. Behavioural287

parameter samples are used to estimate the posterior distribution of model parameters.288

MLGLUE is generally similar to MLDA (or MLMCMC) as shown in Fig. 1. As with289

MLDA, a parameter sample θ(j) is only finally stored if it is accepted on the highest level.290

While MLDA makes use of an acceptance probability on all levels (as it is typical in MCMC291

algorithms), MLGLUE uses a level-dependent likelihood threshold on all levels to dis-292

tinguish between samples being accepted (i.e., behavioural solutions) and samples be-293

ing discarded (i.e., non-behavioural solutions).294

Figure 1. Schematic representation of multilevel sampling strategies for the case of three

levels; (a) MLGLUE approach, green rings indicate a likelihood that is above the level-dependent

threshold, red rings indicate the contrary; (b) Multilevel Delayed Acceptance MCMC; circles

represent the state or current parameter sample

MLGLUE requires that likelihood thresholds are available for every level prior to295

sampling, although pre-defined likelihood thresholds can optionally be used. MLGLUE296

considers a simple Monte Carlo estimator to compute likelihood thresholds, where the297

same set of parameter samples is evaluated on each level using the likelihood function.298
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The number of those parameter samples, Nt, should be substantially smaller than the299

overall number of samples being evaluated with MLGLUE, N . We denote the set of cor-300

responding likelihoods on a single level by {L̃(i,ℓ)}Nt
i=1 and the combined set for all lev-301

els by {{L̃(i,ℓ)}Nt
i=1}Lℓ=0. The likelihood thresholds on the different levels are then obtained302

by computing a pre-defined percentile estimate from the level-dependent likelihood sam-303

ples (for example, for a threshold corresponding to the top 5% the 95%-percentile is com-304

puted). We denote the set of likelihood thresholds on each level by {L̃T,ℓ}Lℓ=0. We re-305

fer to this step as tuning. For two example problems we discuss the choice of Nt (see sec-306

tion 4). We also note that the tuning phase can be omitted entirely if level-dependent307

likelihood thresholds can be pre-defined, e.g., from expert knowledge.308

From the set of likelihood values on each level, {{L̃(i,ℓ)}Nt
i=1}Lℓ=0, sample estimates309

of V[L̃ℓ], E[L̃ℓ], V[L̃ℓ−L̃ℓ−1], and E[L̃ℓ−L̃ℓ−1] for ℓ = 0, . . . , L are computed to ana-310

lyze the relation between levels regarding the likelihood. This is equvalent to setting Qℓ =311

L̃ℓ, bridging the gap between MLMC and MLGLUE in this context (see section 2.2).312

Afterwards, sampling is started and parameter samples θ(j) are initially evaluated313

with the model on the coarsest level, ℓ = 0. If the corresponding likelihood is greater314

or equal to the level-dependent threshold, the sample is passed to the next higher level315

and is evaluated again. This process is repeated until the highest level is reached and316

the sample is finally considered behavioural or non-behavioural. If the likelihood is smaller317

than the level-dependent threshold on any level, the sample is immediately regarded as318

non-behavioural and rejected. Therefore, samples with low likelihoods are already dis-319

regarded on lower levels, leading to substantial computational savings. In the support-320

ing information, the reasoning for using level-dependent likelihood thresholds as well as321

the structure of the algorithm is clarified in more detail. The MLGLUE algorithm is pre-322

sented in algorithm 1 with tuning excluded and schematically shown in Fig. 2.323

2.4.2 Designing the Model Hierarchy324

During multilevel inversion, no explicit approach exists yet to optimally pre-define325

the number of levels or the difference in resolution between the levels. In their example326

applications of multilevel MCMC and MLDA, Dodwell et al. (2019) and Lykkegaard et327

al. (2023) arbitrarily pre-define the coarsening as well as the number of levels considered328

but give some analysis of the effect regarding the number of levels. In similar examples329
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Algorithm 1: Multilevel Generalized Likelihood Uncertainty Estimation

1 Draw a sample Θ0 of N points from the (typically uniform) prior distribution

pp(θ)

2 for j = 0, . . . , N do

3 for ℓ = 0, . . . , L do

4 Compute the likelihood L̃(j,ℓ) = L̃(θ(j)|Ỹ) with sample θ(j) from Θ0 and

with the model on level ℓ

5 if ℓ = L and L̃(j,ℓ) ≥ L̃T,ℓ then

6 Store θ(j) in matrix B, store the corresponding simulation results Y in

S, increment j ← j + 1, and break the loop over the levels

7 if L̃(j,ℓ) ≥ L̃T,ℓ then

8 Increment ℓ← ℓ+1, continuing the loop over the levels for sample θ(j)

9 if L̃(j,ℓ) < L̃T,ℓ then

10 Increment j ← j + 1, breaking the loop over the levels

11 for b(i), i = 1, . . . , Nb in B do

12 Normalize the corresponding likelihood as L̃′(b(i)|Ỹ) such that∑Nb

i=1 L̃′(b(i)|Ỹ) = 1, e.g., via L̃′(b(i)|Ỹ) = L̃(b(i)|Ỹ)/
∑Nb

i′=1 L̃(b(i′)|Ỹ)

13 for Y(i), i = 1, . . . , Nb in S do

14 Assign the corresponding weight L̃′(b(i)|Ỹ)

15 Sort the Y(i), i = 1, . . . , Nb increasingly according to their weights and create

uncertainty estimates from the empirical distribution obtained this way (e.g., as

quantiles)
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Figure 2. Schematic representation of the multilevel Generalized Likelihood Uncertainty Esti-

mation algorithm; tuning refers to the (optional) Monte Carlo estimation of likelihood thresholds,

sampling refers to the repeated evaluation of parameter samples (see the description of algorithm

steps)

to our subsequently considered benchmark example of groundwater flow (see section 3.2),330

Cliffe et al. (2011) consider 5 levels for MLMC, Dodwell et al. (2019) consider up to 5331

levels for multilevel MCMC, Lykkegaard and Dodwell (2022) consider 2 levels with MLDA,332

and Lykkegaard et al. (2023) consider 3 levels with MLDA. In the following we give guide-333

lines on how to design a hierarchy of models and also show directions for further research.334

A geometric series of resolutions for the computational grids (in space or time or335

both) is often most suitable in the context of MLMC (also see section 2.2), where the336

factor of grid refinement (when going from ℓ to ℓ+1) or coarsening (when going from337

ℓ to ℓ−1) between subsequent levels is constant (Giles, 2015). We also adopt this method338

in this study.339

In MLGLUE, a parameter sample that is accepted on the highest level with the340

highest resolution model is evaluated on all lower levels with lower resolution models be-341
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fore. Therefore, the number of levels in the model hierarchy should be as low as possi-342

ble and the coarsening factor as large as possible to obtain a high computational efficiency343

of the multilevel hierarchy. Those aspects are then restricted by the quality of the coarsest-344

level model being sufficiently high, by the required resolution on the highest level, and345

by the requirement for sufficiently high correlation between subsequent levels. Those cri-346

teria can be analyzed via the relations between levels regarding {{L̃(i,ℓ)}Nt
i=1}Lℓ=0 (see also347

section 2.2).348

In this study we consider cases where a target resolution is given for the highest349

level model and lower resolution models are obtained by subsequent coarsening. After-350

wards, in practical applications, the coarsest possible model resolution for the lowest level351

should be determined approximately. With the highest and lowest resolutions specified,352

the number of levels is determined through finding an appropriate coarsening factor that353

results in sufficiently high correlation between the levels (see section 2.2). We investi-354

gate and discuss those aspects in more detail for the results of the test problems in sec-355

tion 4.356

An alternative strategy for the design of the hierarchy is presented in Vidal-Codina357

et al. (2015) and Giles (2015) for non-geometric MLMC. It relies on generating a set of358

test models for a large number of levels, {Fℓ}Lℓ=0, and then selecting a subset of levels359

that satisfy some conditions on the relation between levels, similar to the conditions used360

in the tuning phase of MLGLUE. In any case, this approach requires additional com-361

putational resources to optimize the hierarchy, being associated with a large number of362

degrees of freedom in the design. This strategy can potentially be applied for MLGLUE363

as well but is not the focus of the current study. This approach is left open for further364

research as it has become apparent in this study that a geometric series generally serves365

as a robust starting point under various conditions.366

2.4.3 Parallelization367

Like the conventional formulation of GLUE, MLGLUE can be parallelized in a straight-368

forward manner to accelerate computation. We utilize Ray v2.2.0 (Team, 2022) for par-369

allelization with its multiprocessing.Pool API. Parallelization is achieved by using Ray370

Actors instead of local processes. For MLGLUE and GLUE, the function (or task) be-371

ing parallelized corresponds to the evaluation of a single parameter sample, starting on372
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ℓ = 0 and including all subsequent model runs on higher levels (see the MLGLUE al-373

gorithm). MLGLUE considers running the hierarchy of models {F0(θi), . . . ,FL(θi)} for374

a single parameter sample θi as one iteration. As the parallelization is implemented on375

the level of these iterations, it allows for evaluating multiple parameter samples in par-376

allel. For the case of using MLGLUE with a single level (i.e., conventional GLUE), the377

iteration reduces to running the target model, {FL(θi)}, for multiple parameter samples378

in parallel.379

For MLDA and MCMC, however, the parallelization is implemented on the level380

of individual chains. While the MLDA implementation (tinyDA v0.9.8, Lykkegaard (2022))381

does not use the multiprocessing.Pool API, it still relies on Ray Actors for paralleliza-382

tion, implemented via remote functions. Therefore, the underlying mechanism for par-383

allelization are identical for GLUE, MLGLUE, MCMC, and MLDA. Still, differences re-384

garding the increase in computational efficiency may be observed when comparing se-385

quential and parallelized algorithm run times for GLUE and MLGLUE with those for386

MCMC and MLDA. This is due to (1) the differences in the implementation of paral-387

lelization and (2) the differences in the algorithms themselves.388

2.5 Analysis of Posterior Convergence389

In order to compare the different methods of statistical inference in our study, we390

assess the convergence to a stable posterior distribution and monitor the number of model391

evaluations and the computational time required for convergence. We introduce a sim-392

ple way of assessing convergence that works for any method that returns a - possibly or-393

dered - sequence of values in Rn, which are assumed here to be samples from a proba-394

bility distribution. In the context of MCMC, the introduced methodology is not to be395

mistaken for a way of assessing the convergence of (Markov-) chains.396

The central concept of the methodology is to analyze the ratio of mean and vari-397

ance of the (marginal) posterior distribution, estimated from a subset of the set of all398

available samples, to mean and variance estimated from the set of all available samples399

(Nb samples in B). As the subset gets larger, and eventually becomes equal to B, this400

quantity allows for the analysis of convergence behaviour. The subset is taken to be the401

first s samples from the posterior samples returned by a method of statistical inference.402

We denote the estimate of the mean or any higher-order moment around the mean by403
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µs
m, where s represents the size of the subset and m represents the moment order. We404

define the relative deviation Ds
m of moment m, computed with a subset of size s, from405

the globally estimated moment as406

Ds
m :=

µs
m

µNb
m

− 1 (7)

By definition, Ds
m → 0 as s→ Nb; however, the analysis regarding how and how407

quickly Ds
m tends towards zero as s increases allows for the analysis of convergence be-408

haviour. We assume convergence at s = sc if −0.05 ≤ Ds
m ≤ 0.05 for all s ≥ sc. As-409

suming that the samples are obtained uniformly over time during inference or compu-410

tation enables the assessment of convergence against computation time instead of sam-411

ple size.412

3 Test Problems413

The test problems discussed in sections 3.1 and 3.2 are used to illustrate the dif-414

ferences between the methods of statistical inference (MLGLUE, GLUE, MLDA, MCMC)415

regarding obtained posterior distributions, uncertainty estimates for model outputs, and416

computational efficiency. An identical number of prior parameter samples is used for all417

methods to ensure comparability. For GLUE and MLGLUE, an informal likelihood func-418

tion (Eq. 6) is used for each problem. MCMC and MLDA are used with a formal like-419

lihood function (Eq. 3). We analyze the tuning phase separately for both examples us-420

ing two threshold settings (selecting the top 2 % and 7 %) for different Nt.421

For reasons of reproducibility, seeds are used for pseudo-random number genera-422

tion, which is used in multiple places (e.g., drawing samples form a distribution); for each423

problem, the same seeds are used for all methods of inference in the example under study.424

All methods of inference are implemented in the Python programming language.425

The tinyDA v0.9.8 (Lykkegaard, 2022) package is used for MLDA and MCMC sam-426

pling with a DREAM(Z)-sampler, which is similar to the DREAM(ZS)-sampler (Vrugt,427

2016; Lykkegaard, 2022), using Ray v2.2.0 (Team, 2022) for parallelization. ArviZ v0.12.1428

(Kumar et al., 2019) is used for the analysis of MLDA and MCMC results regarding chain429

convergence and effective sample size (see section 2.3); in tinyDA, the initial sample is430

returned additionally to the N drawn samples. MLGLUE is implemented as a Python431
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package and also enabled for parallel computing with Ray v2.2.0 (Team, 2022). We note432

that we subsequently refer to the processed posterior samples from MCMC and MLDA433

(i.e., after burn-in and thinning, see section 2.3) as effective samples. The same term is434

also used for unprocessed GLUE and MLGLUE posterior samples.435

3.1 Rainfall-Runoff Modelling436

The first case study considers rainfall-runoff modelling using the conceptual model437

HYMOD (Boyle, 2001), which is schematically shown in Fig. 3. The model has five pa-438

rameters (explained in Fig. 3), takes time series of precipitation, P (t) [LT−1], and po-439

tential evaporation, PET (t) [LT−1], as inputs and outputs a time series of discharge,440

Q(t) [LT−1]. This model has been frequently and similarly used in the in the context441

of statistical inference, uncertainty analysis, and sensitivity analysis (Boyle, 2001; Wa-442

gener et al., 2001; Vrugt et al., 2003, 2005; Blasone et al., 2008; Vrugt et al., 2008, 2009;443

Herman et al., 2013). We apply the model to data from the Leaf River catchment near444

Collins, Mississippi, USA, which has been studied with the same model multiple times445

before (Wagener et al., 2001; Vrugt et al., 2003, 2005; Blasone et al., 2008; Vrugt et al.,446

2008, 2009). We refer the reader to the aforementioned references for detailed descrip-447

tions of the HYMOD model and the study area. Contrary to other studies we consider448

time series with hourly instead of daily resolution (Gauch et al., 2020, 2021) and use the449

hydrological year of data from 2009-10-01 to 2010-09-30. The first 25 days are consid-450

ered a warm-up period, being simulated but not used to calculate likelihoods.451

The model is implemented in the Python programming language following Knoben452

et al. (2019); Trotter et al. (2022); Trotter and Knoben (2022) and the differential equa-453

tions are solved using the explicit Euler method (e.g., Braun, 1993). The highest-level454

model uses an hourly time step equal to the data time steps. Two additional lower-level455

models are considered with time steps of two and four hours, respectively (i.e., time step456

lengths are doubled when going to the next lower level). On levels ℓ = 0 and ℓ = 1,457

resulting time series of discharge are linearly interpolated to the time steps of the model458

on level ℓ = 2 to allow for the calculation of likelihoods with the original data time steps.459

The prior distribution p0(θ) is chosen to be a uniform distribution over the param-460

eters θ = [Cmax, β, α, κs, κq]
T with lower bounds θl = [1.0, 0.1, 0.0, 0.0, 0.0] and up-461

per bounds θu = [1000.0, 2.0, 1.0, 0.1, 0.5]. Length units of [mm] and time units of [h]462
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Figure 3. (a) Schematic representation of the HYMOD model (Vrugt et al., 2009); Cmax [L]

is the maximum catchment storage, β [−] is the spatial variability of soil moisture storage, α [−]

is the distribution factor between reservoirs, and κq [T−1] and κs [T−1] are discharge coefficients

of the quick-flow and slow-flow reservoirs, respectively; (b) discharge simulated by models on all

three levels for two consecutive events, only every fifth time step is marked

are used throughout the model and for all datasets. A total number of Nt+N = 5, 000+463

995, 000 = 1, 000, 000 samples are drawn from pp(θ) with each inference method, where464

Nt = 5, 000 samples are used to estimate the level-dependent likelihood thresholds (see465

section 2.4) and to analyze the relations between the levels (see section 2.2) in MLGLUE.466

The choice of Nt is discussed in section 4.1. A constant variance equal to the constant467

additive Gaussian noise variance (σ2 = 1.0 mm2h−2) is used for the Gaussian likeli-468

hood (see Eq. 3); for the likelihood used in MLGLUE and GLUE (see Eq. 6) W = 1469

is used. The likelihood thresholds are estimated to correspond to the best 2% of sim-470

ulations. For MLDA, the sub-sampling rate is set to 5. MLDA and MCMC are run with471

10 independent chains. All methods are run on 32 dual-core CPUs (64 total threads).472

3.2 Groundwater Flow473

The second example considers steady-state two-dimensional groundwater flow in474

an aquifer with inhomogeneous horizontal hydraulic conductivity, Dirichlet-type (fixed475

potentials), Neumann-type (no-flow conditions, recharge), Robin-type (river), and nodal476

sink type (wells) boundary conditions:477
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∂

∂x

(
Kxx

∂h

∂x

)
+

∂

∂y

(
Kyy

∂h

∂y

)
+R = 0 (8)

h = hc ∀y ∈ ∂Ω, x = 0 m (9)

∂h

∂y
= 0 ∀x ∈ ∂Ω, y ∈ {0 m, 5, 000 m} (10)

∂h

∂x
= 0 ∀y ∈ ∂Ω, x = 10, 000 m (11)

friv = criv∆h ∀0 m ≤ x ≤ 10, 000 m, y = 1, 000 m (12)

where K [LT−1] is the hydraulic conductivity field, h [L] is the hydraulic head478

field, R [LT−1] is the recharge flux, friv [LT−1] is river inflow, and criv [T−1] is riverbed479

conductance. The model is set up with the finite-differences code MODFLOW-NWT and the480

reader is referred to Harbaugh (2005) and Niswonger et al. (2011) for a detailed descrip-481

tion of the model and boundary condition implementations.482

The reference model is discretized as a regular structured grid with a cell-size of483

25 m × 25 m, having 200 rows and 400 columns. The aquifer bottom is horizontal at484

10.0 m above the reference datum; the aquifer top represents a tilted plane falling lin-485

early from 55.0 m on the left side of the domain to 45.0 m above the reference datum486

on the right side of the domain. A river crosses the domain along a single row, having487

a constant water level at 6.0 m below the aquifer top and a river bottom at 9.0 m be-488

low the aquifer top. 5 wells are placed in the model domain with a total extraction rate489

of 700 md−1. Spatially uniform recharge is applied with a rate of 2 · 10−5 md−1. A490

constant head of 45.0 m above the reference datum is assigned to the leftmost column491

of cells. 12 observation points as well as 1 prediction point are placed in the domain.492

The hydraulic conductivity in every cell is obtained in the reference model using493

a regular grid of pilot points (e.g., Doherty, 2003), linearly spaced (5 along columns, 10494

along rows) starting on the domain boundaries. Reference values of pilot point log10-hydraulic495

conductivities are obtained by sampling from a log-normal distribution with µ = 0.3496

and σ = 0.7. Gaussian process regression (GPR), as implemented in scikit-learn v1.2.0497

(Pedregosa et al., 2011), is used to interpolate log10-hydraulic conductivities at cell cen-498

ters of the reference model with a radial basis function kernel with a fixed length scale499

of 600 m. The model domain and its main characteristics are shown in Fig. 4 for the500

models on levels ℓ = 0 and ℓ = 3.501
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The reference model is also the highest-level model. Besides this model, three lower-502

level models are considered, resulting in ℓ = 0, 1, 2, 3. Lower-level models are obtained503

via grid coarsening, where cell sizes are doubled going from ℓ to ℓ−1. Lower-level hy-504

draulic conductivity values at each cell are obtained by using the geometric mean of cor-505

responding higher-level cells.506

Figure 4. Groundwater flow model domain; head contours obtained with true parameters on

level ℓ = 0 (a) and on level ℓ = 3 (b); horizontal hydraulic conductivity field on level ℓ = 0 (c)

and on level ℓ = 3 (d); specific characteristics are: constant head cells (blue), river cells (purple),

wells (red), observation points (circles), prediction point (diamond)

Besides the 50 pilot point parameters, the GPR length scale is considered a model507

parameter as well; θ = [θ1,PP , . . . , θ50,PP , θ51,GPR]
T . We denote the parameter-to-observable508

map (i.e., Eqs. 8 to 12) by F(θ). Adding Gaussian random noise to the observations then509

leads to Ỹ = F(θ) + ε, ε ∼ N (µ = 0, σ = 0.5).510

As a prior distribution pp(θ), a uniform distribution is chosen with lower bounds511

θl = [1 · 10−2, . . . , 1 · 10−2, 5 · 102] and upper bounds θu = [1 · 101, . . . , 1 · 101, 1 · 103].512

A total number of Nt+N = 2, 000+98, 000 = 100, 000 samples are drawn from pp(θ)513

with each inference method, where Nt = 2, 000 samples are used to estimate the level-514

dependent likelihood thresholds (see section 2.4) and to analyze the relations between515
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the levels (see section 2.2) in MLGLUE. The choice of Nt is discussed in section 4.2. A516

constant variance equal to the constant additive Gaussian noise variance (σ2 = 1.0 m2)517

is used for the Gaussian likelihood (see Eq. 3); for informal likelihoods (see Eq. 6) W =518

1 is used. The likelihood thresholds are estimated to correspond to the best 7% of all519

simulations. For MLDA, the sub-sampling rate is set to 5. All methods are run on 32520

dual-core CPUs (64 total threads).521

4 Results522

For the two examples considered, we now present results of inversion with the method-523

ologies of MLGLUE, GLUE, MLDA, and MCMC. We analyze how models on different524

levels are related and how the results obtained with a multilevel approach differ from the525

conventional approach using a single model. Differences between MLGLUE and GLUE526

on one hand, and between MLDA and MCMC on the other hand, are discussed regard-527

ing posterior parameter and model output distributions, as well as computational effi-528

ciency.529

MCMC chains typically exhibit a transition period where the samples approach the530

posterior distribution. The samples of this transition period are discarded as burn-in (Gallagher531

et al., 2009; Brunetti et al., 2023). GLUE and MLGLUE both result in independent pos-532

terior samples, while MCMC and MLDA result in correlated posterior samples. To com-533

pare both groups (GLUE & MLGLUE and MCMC & MLDA) on an equal basis, inde-534

pendent samples are obtained from MCMC and MLDA samples via thinning ; only ev-535

ery K-th sample is considered for subsequent analysis. We apply thinning such that the536

thinned number of samples is approximately equal to the estimated effective sample size537

of unthinned samples (see section 2.3).538

4.1 Rainfall-Runoff Modelling539

In this example, likelihood thresholds are not pre-defined but are estimated dur-540

ing the tuning phase of the MLGLUE algorithm. For two threshold settings the estimated541

likelihood thresholds are shown in Fig. S1 in the supplementary information for differ-542

ent numbers of tuning samples, Nt. For the smaller threshold setting of 2 % (i.e., higher543

likelihood threshold values), likelihood thresholds stabilize at Nt = 5, 000 after show-544

ing initial oscillations. For the larger threshold setting of 7 %, likelihood values tend to545
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decrease successively, stabilizing at Nt = 2, 000. The ratio of the likelihood thresholds546

on the three levels, however, remains approximately equal for both threshold settings,547

even for smaller Nt. From this analysis and with the threshold setting being 2 %, we548

set Nt = 5, 000 in this example.549

The relations between the three levels are shown in Fig. S2 in the supplementary550

information. V[L̃ℓ] and E[L̃ℓ] are approximately constant across all levels and V[L̃ℓ−551

L̃ℓ−1] and E[L̃ℓ − L̃ℓ−1] decay across all levels. The correlation coefficients are 0.9102552

between levels ℓ = 0 and ℓ = 1 and 0.9958 between levels ℓ = 1 and ℓ = 2 and there-553

fore increase with increasing level index. Consequently, the approximation error of the554

likelihoods decreases as ℓ→ L.555

The sampling efficiencies of all methods are shown in Fig. 5; detailed results of MLDA556

and MCMC chain convergence (Gelman-Rubin statistic) and the recovery of effective sam-557

ples is described in Text S3 in the supplementary information. With MLGLUE the over-558

all computation time is reduced by ≈ 58 % and the number of effective samples per minute559

is ≈ 74 % higher compared to GLUE. With MLDA the overall computation time is re-560

duced by ≈ 18 % and the number of effective samples per minute is ≈ 39 % lower com-561

pared to conventional MCMC. While the number of effective samples per minute is lower562

for MLDA compared to MCMC, the ratio between the number of effective samples to563

the total number of posterior samples on the highest level is higher, indicating lower sam-564

ple autocorrelation before thinning. More detailed alayses of MLDA and MCMC results565

are presented in the supporting information.566

The results of convergence analysis (see section 2.5) are shown in Fig. 6. Results567

are obtained by splitting the original sets of effective parameter samples into 200 con-568

secutive subsets, independently of the method of inference. Multilevel approaches (ML-569

GLUE and MLDA) generally converge after a shorter computation time compared to570

their conventional counterparts (GLUE and MCMC), respectively. The deviation of mean571

and variance, however, is larger for small sample sizes with MLGLUE compared to GLUE572

with the set of prior samples being equal for MLGLUE and GLUE. Compared to MLDA,573

MCMC results show a larger deviation of the mean even for larger sample sizes.574

Estimated cumulative distribution functions (CDFs) of the parameter posteriors575

are shown in Fig. 7 (a) - (d). Posteriors obtained with multilevel methods (MLGLUE576

and MLDA) are virtually identical to their conventional counterparts (GLUE and MCMC).577
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Figure 5. Sampling efficiencies for the rainfall-runoff modelling example; (a) computation

times with percentual reductions compared to conventional methods; (b) No. of model calls

on the highest level (dashed), No. of posterior samples (light colors), No. of effective posterior

samples (dark colors); (c) No. of effective posterior samples per minute with percentual increase

compared to conventional methods

Figure 6. Convergence analysis for the rainfall-runoff modelling example (Eq. 7); for the

different methods of inference (a) - (d) shows the deviation of the mean and (e) - (h) shows the

deviation of the variance; grey regions represent the region where convergence is achieved; black

vertical lines represent the computational time at which convergence is achieved for all parame-

ters

Uncertainty estimates of MLGLUE are different from those of GLUE in that they have578

smaller range, which is particularly visible at peak flow events (e.g., around 2009-12-17).579

Uncertainty estimates from MLDA and MCMC are virtually identical, also at peak flow580

events. The Nash-Sutcliffe model efficiency (Nash & Sutcliffe, 1970), computed with the581
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median of the simulations, is virtually identical for MLGLUE and GLUE and slightly582

higher for MLDA compared to MCMC.583

Figure 7. CDFs of model parameters for the rainfall-runoff modelling example for MLGLUE

and GLUE (a to e), for MLDA and MCMC (f to j) and 99% − 1% uncertainty estimates around

the median value for MLGLUE and GLUE (k) and for MLDA and MCMC (l)

4.2 Groundwater Flow584

In this example, likelihood thresholds are not pre-defined but are estimated dur-585

ing the tuning phase of the MLGLUE algorithm. For two threshold settings the estimated586

likelihood thresholds are shown in Fig. S3 in the supplementary information for differ-587

ent numbers of tuning samples, Nt. For the smaller threshold setting (2 %, correspond-588

ing to a higher likelihood threshold), the likelihood thresholds on all levels generally in-589

crease as Nt increases and stabilize at Nt = 5, 000. For the setting with a larger threhsold590

setting (7 %), the likelihood values also increase as Nt increases but remain at smaller591

values compared to the smaller threshold setting and stabilize at Nt = 2, 000. The ra-592

tio of the likelihood thresholds on the four levels remains approximately equal only for593
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the larger threshold setting, even for smaller Nt. See section 4.1 for a more detailed dis-594

cussion on the tuning phase. With the threshold setting being set to 7 % in this exam-595

ple, we set Nt = 2, 000 here to keep Nt as small as possible to reduce overall compu-596

tational cost but ensure reasonably stable likelihood threshold estimates.597

The relations between the three levels are shown in Fig. S4 in the supplementary598

information. V[L̃ℓ] and E[L̃ℓ] are approximately constant and V[L̃ℓ−L̃ℓ−1] and E[L̃ℓ−599

L̃ℓ−1] decay across all levels. The variance of the sampled likelihoods on level ℓ = 0,600

however, is smaller than on higher levels. The correlation coefficients are 0.9954 between601

levels ℓ = 0 and ℓ = 1, 0.9989 between levels ℓ = 1 and ℓ = 2, and 0.9997 between602

levels ℓ = 2 and ℓ = 3 and therefore increase with increasing level index.603

The sampling efficiencies of all methods are shown in Fig. 8; detailed results of MLDA604

and MCMC chain convergence (Gelman-Rubin statistic) and the recovery of effective sam-605

ples is described in Text S4 in the supplementary information. The overall computation606

time is reduced by ≈ 63 % and the number of effective samples per minute is ≈ 122 %607

higher with MLGLUE compared to GLUE. The overall computation time is reduced by608

≈ 70 % and the number of effective samples per minute is ≈ 206 % higher with MLDA609

compared to conventional MCMC. The ratio between the number of effective samples610

to the total number of posterior samples on the highest level is substantially higher for611

MLDA compared to MCMC, indicating lower sample autocorrelation before thinning.612

More detailed analyses of MLDA and MCMC results are presented in the supporting in-613

formation.614

The results of convergence analysis (see section 2.5) are shown in Fig. 9. Results615

are obtained by splitting the original sets of effective parameter samples into 200 con-616

secutive subsets, independently of the method of inference. Multilevel approaches (ML-617

GLUE and MLDA) generally converge after a shorter computation time compared to618

their conventional counterparts (GLUE and MCMC), respectively. The deviation of mean619

and variance is larger with MLGLUE compared to GLUE, especially for small sample620

sizes, although the set of prior samples is equal for MLGLUE and GLUE. MLDA and621

MCMC results show similar convergence behaviour, except for the length scale param-622

eter. MLDA results show larger deviations of the length scale mean and variance for smaller623

sample sizes.624
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Figure 8. Sampling efficiencies for the groundwater flow example; (a) computation times with

percentual reductions compared to conventional methods; (b) No. of model calls on the highest

level (dashed), No. of posterior samples (light colors), No. of effective posterior samples (dark

colors); (c) No. of effective posterior samples per minute with percentual increase compared to

conventional methods

Figure 9. Convergence analysis for the groundwater flow example (Eq. 7); for the different

methods of inference (a) - (d) shows the deviation of the mean and (e) - (h) shows the deviation

of the variance; grey regions represent the region where convergence is achieved; black vertical

lines represent the computational time at which convergence is achieved for all parameters

Estimated CDFs of the parameter posteriors are shown in Fig. 10 (a) - (d). Pos-625

teriors obtained with MLGLUE are substantially more conditioned than GLUE poste-626

riors (indicated by the deviations of the cumulative distributions from the straight line627

representing a uniform distribution). The length scale posterior, however, is similar for628

MLGLUE and GLUE. MLDA and MCMC posteriors are virtually identical. Uncertainty629
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estimates of MLGLUE are different from those of GLUE as they show slightly larger ranges630

and less bias towards higher values, which can be attributed to the differences in the pos-631

terior distributions. Uncertainty estimates from MLDA and MCMC are similarly dif-632

ferent in that they have smaller range and less bias towards higher values for MLDA.633

As evaluated with the coefficient of determination (R2), MLGLUE results are slightly634

more accurate compared to GLUE. Similarly, MLDA results are slightly more accurate635

compared to MCMC.636

Figure 10. CDFs of model parameters for the groundwater flow example (a, b, c, d) and

99% − 1% uncertainty estimates around the median value for observation points (e) and for the

prediction point(f)

5 Discussion637

We applied MLGLUE to two test problems and subsequently compared the results638

to conventional GLUE as well as to MCMC and MLDA. These applications illustrate639

the capabilities of the multilevel extension but also identifies aspects that need careful640

consideration for practical applications. The examples considered here are comparable641
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to other examples used to study multilevel methods found in, e.g., Cliffe et al. (2011),642

Dodwell et al. (2019), Lykkegaard et al. (2023), and (Cui et al., 2024). However, although643

groundwater flow is a frequently used example case, the system used here (see section644

3.2) is far more complex compared to previous applications. Additionally, other previ-645

ous studies only considered synthetic cases where the underlying truth is known; our rainfall-646

runoff modelling example considers a real system.647

For both examples it was identified that the number of tuning samples, Nt, required648

to obtain stable and accurate estimates of likelihood thresholds increases with decreas-649

ing threshold percentage although the parameter space dimensions were greatly differ-650

ent (n = 5 for rainfall-runoff modelling and n = 51 for groundwater flow). For a thresh-651

old setting of 2 %, Nt = 5, 000 tuning samples were needed for accurate estimation in652

both examples. For a threshold setting of 7 %, however, only Nt = 2, 000 tuning sam-653

ples were required for accurate estimation in both examples. This behaviour is in agree-654

ment with the fact that Monte-Carlo estimators generally do not perform well at rare655

event estimation (e.g., Beck & Zuev, 2015), which can be translated to the present case656

of estimating values in the tails of the distribution of likelihood values (i.e., estimating657

large percentiles). We hypothesize that using a Latin hypercube design or quasi-Monte658

Carlo sampling during the tuning phase increases robustness as well as computational659

efficiency.660

The model hierarchies were designed for both examples using a coarsening factor661

of 2. While for the rainfall-runoff modelling this choice resulted in increased computa-662

tional efficiency of MLGLUE compared to GLUE, a coarsening factor of 3 (results not663

shown) resulted in a substantially reduced acceptance ratio. This was especially evident664

from a large difference between highest-level model runs and finally accepted samples.665

The consideration of a fourth level, being even coarser than the current level ℓ = 0, was666

not successful as the correlation between the two lowest levels then was found to be very667

low, again leading to low acceptance rations. Similar behaviour was identified for the ground-668

water flow example, where the likelihood variance on the lowest level with the coarsest669

resolution was smaller than on subsequently higher levels. As described by Cliffe et al.670

(2011), further hypothetical grid coarsening beyond the current level ℓ = 0 for such a671

case can result in the graphs of V[L̃ℓ] and V[L̃ℓ−L̃ℓ−1] to eventually intersect, result-672

ing in V[L̃ℓ−L̃ℓ−1] > V[L̃ℓ] for some ℓ. In the context of MLMC (forward problems),673

this then leads to an increased computational cost compared to conventional MC. As in-674
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dicated by Eq. 5, if V[L̃ℓ] decreases and V[L̃ℓ−L̃ℓ−1] increases with decreasing ℓ, then675

Cov(L̃ℓ, L̃ℓ−1) must decrease as well. Insufficient correlation between the likelihood val-676

ues on subsequent levels in MLGLUE would then result in lower acceptance rates on lev-677

els ℓ > 0, affecting the overall computational efficiency of the algorithm. Therefore, the678

characteristics of the relation between levels as described for MLMC in section 2.2 should679

also be considered for MLGLUE to ensure computational efficiency. We hypothesize at680

this point that a non-geometric construction of the hierarchies can potentially further681

increase computational efficiency (Vidal-Codina et al., 2015; Giles, 2015). The analy-682

sis required for this, however, demands additional computational resources to optimize683

the design as it is associated with a large number of degrees of freedom.684

Differences exist in the number of posterior samples between MLGLUE and GLUE.685

This can be attributed to parameter samples being occasionally discarded on lower lev-686

els with lower resolution models although they would be accepted on higher levels. This687

is due to the fact that the likelihoods on subsequent levels are not perfectly correlated688

in both example applications. This effect is reduced as the correlation between subse-689

quent levels increases; it can be controlled through careful design of the model hierar-690

chy (see section 2.4.2). This behaviour is also reflected in the convergence analysis where,691

using the same set of prior samples, MLGLUE initially shows larger deviations of pos-692

terior mean and variance. Differences in posterior samples also result in small deviations693

regarding posterior parameter distributions and uncertainty estimates of model outputs.694

6 Conclusions695

In the hydrological sciences, the popularity of statistical inference and inversion has696

remained high. However, the applicability of corresponding approaches to more complex697

models and in the context of digital twins has been limited by the associated computa-698

tional cost of solving inverse problems. The goal of our study was to introduce and test699

an extension to the GLUE methodology for Bayesian inversion that alleviates the prob-700

lems associated with computationally costly models through considering multiple lev-701

els of model resolution (MLGLUE). Inspired by multilevel Monte Carlo, in MLGLUE702

most parameter samples are evaluated on lower levels with computationally cheaper low-703

resolution models instead of using a (data-driven) surrogate model that is decoupled from704

the high-fidelity or target model. Only samples associated with a likelihood above a cer-705

tain threshold, which can optionally be estimated during a tuning phase of the algorithm,706
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are subsequently passed to higher levels with costly high-resolution models for evalua-707

tion. Inferences are made at the level of the highest-resolution model but substantial com-708

putational savings are achieved by discarding samples with low likelihood already on lev-709

els with low resolution and low computational cost.710

MLGLUE is evaluated using example inverse problems involving a rainfall-runoff711

model and a groundwater flow model. The results of statistical inversion with MLGLUE712

are compared to the results from GLUE, Markov-chain Monte Carlo (MCMC), as well713

as multilevel delayed acceptance (MLDA) MCMC. Identical numbers of prior samples714

are considered for all methods to ensure comparability. We show that the results (pa-715

rameter posteriors, uncertainty estimates, convergence behaviour) obtained with mul-716

tilevel approaches (MLGLUE and MLDA) are highly similar to conventional approaches717

(GLUE and MCMC), respectively. MLGLUE showed the resulted in the lowest compu-718

tation time and the highest number of posterior samples per minute for both example719

problems and compared to all other methods of inference.720

We identified in both example applications that MLGLUE and MLDA generally721

result in less precise estimates of parameter posteriors for small effective sample sizes com-722

pared to GLUE and MCMC, respectively. This effect, however, vanishes for larger sam-723

ple sizes required in practical applications. For both examples, MLGLUE resulted in the724

lowest computational time for inversion and the highest number of effective samples per725

minute compared to all other methods. We expect the computational benefit of using726

MLGLUE to increase as the computational cost of a single model call increases, which727

has been previously identified for multilevel Monte Carlo and multilevel inversion (Cliffe728

et al., 2011; Giles, 2015; Dodwell et al., 2019; Lykkegaard et al., 2023).729

Our results demonstrate that:730

• By considering a hierarchy of models with decreasing (spatial) resolution, MLGLUE731

can substantially reduce the computational cost of statistical inversion for differ-732

ent kinds of hydrological models.733

• MLGLUE is most effective for differential-equation-based models, such as they are734

often encountered in the hydrological sciences; notions of grid or time-step refine-735

ment and coarsening are well understood in such cases and MLGLUE may be di-736

rectly applied.737
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• Although rigorous criteria on the choice of the number of levels and the coarsen-738

ing factor do not exist, for MLGLUE there should be as few levels as possible with739

differences in resolution being as large as possible. Those aspects are restricted740

by the quality of the coarsest-level model being sufficiently high, the required res-741

olution on the highest level, and the requirement for sufficiently high correlation742

between subsequent levels. A non-geometric construction of the hierarchy promises743

to be an alternative, however being associated with elevated computational cost744

to optimize the hierarchy (see section 2.4.2).745

• Statistical analysis of model outputs on all levels can potentially reveal various746

aspects such as the impact of model resolution on quantities of interest or the pos-747

sibility for model simplification. This offers an interesting direction for future re-748

search with multilevel methods.749

Open Research Section750

Relevant resources needed to reproduce the results as well as figures are openly avail-751

able and can be found under the DOI 10.5281/zenodo.10963983 (Rudolph et al., 2024).752

The MLGLUE algorithm is available as a Python package under https://github.com/753

iGW-TU-Dresden/MLGLUE.754
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Karls Universität Tübingen, Tübingen). Retrieved from http://dx.doi.org/766

10.15496/publikation-76913767

–32–



manuscript submitted to Water Resources Research

Anderson, M. P., Woessner, W. W., & Hunt, R. J. (2015). Applied groundwater768

modeling: simulation of flow and advective transport (Second edition ed.). Lon-769

don ; San Diego, CA: Academic Press. (OCLC: ocn921253555)770

Asher, M. J., Croke, B. F. W., Jakeman, A. J., & Peeters, L. J. M. (2015, August).771

A review of surrogate models and their application to groundwater modeling:772

SURROGATES OF GROUNDWATER MODELS. Water Resources Re-773

search, 51 (8), 5957–5973. Retrieved 2022-07-13, from http://doi.wiley.com/774

10.1002/2015WR016967 doi: 10.1002/2015WR016967775

Beck, J. L., & Zuev, K. M. (2015). Rare-Event Simulation. In R. Ghanem, D. Hig-776

don, & H. Owhadi (Eds.), Handbook of Uncertainty Quantification (pp. 1–777

26). Cham: Springer International Publishing. Retrieved 2024-02-21, from778

https://link.springer.com/10.1007/978-3-319-11259-6 24-1 doi:779

10.1007/978-3-319-11259-6 24-1780

Beven, K. (1993). Prophecy, reality and uncertainty in distributed hydrological mod-781

elling. Advances in Water Resources, 16 (1), 41–51. Retrieved 2023-05-23, from782

https://linkinghub.elsevier.com/retrieve/pii/030917089390028E doi:783

10.1016/0309-1708(93)90028-E784

Beven, K. (2006, March). A manifesto for the equifinality thesis. Journal785

of Hydrology , 320 (1-2), 18–36. Retrieved 2022-02-25, from https://786

linkinghub.elsevier.com/retrieve/pii/S002216940500332X doi:787

10.1016/j.jhydrol.2005.07.007788

Beven, K. (2016, July). Facets of uncertainty: epistemic uncertainty, non-789

stationarity, likelihood, hypothesis testing, and communication. Hydro-790

logical Sciences Journal , 61 (9), 1652–1665. Retrieved 2023-10-04, from791

http://www.tandfonline.com/doi/full/10.1080/02626667.2015.1031761792

doi: 10.1080/02626667.2015.1031761793

Beven, K., & Binley, A. (1992, July). The future of distributed models: Model794

calibration and uncertainty prediction. Hydrological Processes, 6 (3), 279–795

298. Retrieved 2022-05-25, from https://onlinelibrary.wiley.com/doi/796

10.1002/hyp.3360060305 doi: 10.1002/hyp.3360060305797

Beven, K., & Binley, A. (2014, November). GLUE: 20 years on. Hy-798

drological Processes, 28 (24), 5897–5918. Retrieved 2023-01-09, from799

https://onlinelibrary.wiley.com/doi/10.1002/hyp.10082 doi:800

–33–



manuscript submitted to Water Resources Research

10.1002/hyp.10082801

Beven, K., & Freer, J. (2001). Equifinality, data assimilation, and uncertainty esti-802

mation in mechanistic modelling of complex environmental systems using the803

GLUE methodology. Journal of Hydrology , 19.804

Binley, A., Beven, K., & Elgy, J. (1989, June). A physically based model of hetero-805

geneous hillslopes: 2. Effective hydraulic conductivities. Water Resources Re-806

search, 25 (6), 1227–1233. Retrieved 2023-05-26, from http://doi.wiley.com/807

10.1029/WR025i006p01227 doi: 10.1029/WR025i006p01227808

Blasone, R.-S., Vrugt, J. A., Madsen, H., Rosbjerg, D., Robinson, B. A., &809

Zyvoloski, G. A. (2008, April). Generalized likelihood uncertainty esti-810

mation (GLUE) using adaptive Markov Chain Monte Carlo sampling. Ad-811

vances in Water Resources, 31 (4), 630–648. Retrieved 2022-06-16, from812

https://linkinghub.elsevier.com/retrieve/pii/S0309170807001856813

doi: 10.1016/j.advwatres.2007.12.003814
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Gosses, M., & Wöhling, T. (2021, September). Robust Data Worth Analysis with918

Surrogate Models. Groundwater , 59 (5), 728–744. Retrieved 2022-05-12,919

from https://onlinelibrary.wiley.com/doi/10.1111/gwat.13098 doi:920

10.1111/gwat.13098921

Harbaugh, A. W. (2005). MODFLOW-2005, The U.S. Geological Survey Modular922

Ground-Water Model—the Ground-Water Flow Process (Tech. Rep. No. U.S.923

Geological Survey Techniques and Methods 6–A16). Reston, VA: USGS.924

Heinrich, S. (2001). Multilevel Monte Carlo Methods. In S. Margenov,925
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This supporting information provides additional text and figures describing the results

shown and discussed in the main article ”Extending GLUE with Multilevel Methods

to Accelerate Statistical Inversion of Hydrological Models”. Texts S1 and S2 provide

additional details on the derivation of MLGLUE. Texts S3 and S4 provide more detailed

descriptions of results for the example inverse problems with a rainfall-runoff model and a

groundwater flow model, respectively. Figures S1 and S2 illustrate results for the rainfall-
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runoff modelling example. Figures S3 and S4 illustrate results for the groundwater flow

modelling example.

Text S1 - Derivation of MLGLUE, the Wrong Combination of MLMC and

GLUE

Assuming that likelihood thresholds are given on each level prior to sampling, a straight-

forward approach to combining MLMC and GLUE would be to use an MLMC algorithm

(e.g., Giles, 2015) directly. Then, only model simulations would be considered that corre-

spond to likelihoods that are above the level-dependent likelihood threshold. With that, as

most MLMC samples come from lower levels, posterior parameter samples would mainly

be comprised of samples from the posterior distribution corresponding to the coarser-level

models. We aim, however, at generating samples that come from the posterior distribu-

tion on the finest level. This combination is therefore not purposeful. Otherwise we could

directly use the model on level ℓ = 0 to perform statistical inversion on a single level,

which contradicts the actual aim of the methodology.

Text S2 - Derivation of MLGLUE, Level-Dependent Likelihood Thresholds

Using level-dependent likelihood thresholds instead of the highest-level threshold for all

levels is motivated by the construction of the MLDA algorithm (Lykkegaard et al., 2023)

as well as by the original delayed acceptance MCMC algorithm (Christen & Fox, 2005).

In MLDA, different target densities are considered on each level because the likelihood

function - seen as a (hyper-) surface in the parameter space - depends on the model used

on a corresponding level. In the sense of Bayes’ theorem, those densities can be considered

to be Bayesian posterior densities. This is an intuitive construction; conside evaluations
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of the quantity of interest on different levels, made with the same parameter samples,

{Qℓ(θ
(i)),Qℓ+1(θ

(i))}Ni=1, as well as corresponding likelihods {L̃ℓ(θ
(i)|Ỹ), L̃ℓ+1(θ

(i)|Ỹ)}Ni=1:

Qℓ(θi) ̸= Qℓ+1(θi) (1)

⇒L̃ℓ(θ
(j)|Ỹ) ̸= L̃ℓ+1(θ

(j)|Ỹ) (2)

⇒L̃T,ℓ ̸= L̃T,ℓ+1 (3)

Therefore, level-dependent likelihood thresholds instead of a single highest-level thresh-

old used on all levels need to be considered to accurately reflect the variations within the

hierarchy of models.

Text S3 - Additional Description of Results, Rainfall-Runoff Modelling

With MLDA, a total number of Nℓ=L = 2, 000 samples were computed on the highest

level using nchains = 20 and a subsampling rate of 5, resulting in a total of NMLDA =

2, 000·52·20 = 1, 000, 000 samples from the prior distribution. No samples were burnt from

the 20 MLDA chains on the highest level, resulting in R̂ = 1.0 for all 5 parameters. Out

of the 40, 020 remaining samples (including randomly initialized samples on the highest

level), only 8, 204 effective samples could be used (mean effective sample size estimate

for the bulk of the posterior). Therefore, a thinning of 5 was applied, resulting in 8, 020

effective samples. With MCMC, a total number of Nℓ=L = 50, 000 samples were computed

on the highest level using nchains = 20, resulting in a total of NMCMC = 50, 000 · 20 =

1, 000, 000 samples from the prior distribution. No samples are burnt from the 20 MCMC

chains, resulting in R̂ = 1.00 for all parameters. Out of the 1, 000, 020 remaining samples

(including randomly initialized samples), only 16, 353 effective samples could be used

April 12, 2024, 2:39pm



X - 4 :

(mean effective sample size estimate for the bulk of the posterior). Therefore, a thinning

of 62 was applied, resulting in 16, 140 effective samples.

Text S4 - Additional Description of Results, Groundwater Flow

With MLDA, a total number of Nℓ=L = 250 samples were computed on the highest

level using nchains = 32, resulting in a total of NMLDA = 250 · 53 · 32 = 1, 000, 000 samples

from the prior distribution. No sample was burnt from the 32 MLDA chains, resulting in

a mean Gelman-Rubin statistic of R̂ = 1.02 (R̂min = 1.01, R̂max = 1.03), averaged over

all 51 parameters. Out of the 8, 032 remaining samples (including randomly initialized

samples on the highest level), only 1, 982 effective samples could be used (mean effective

sample size estimate for the bulk of the posterior). Therefore, a thinning of 4 was applied,

resulting in 2, 008 effective samples. With MCMC, a total number of Nℓ=L = 31, 250

samples were computed on the highest level using nchains = 32 and a subsampling rate

of 5, resulting in a total of NMCMC = 31, 250 · 32 = 1, 000, 000 samples from the prior

distribution. The initial sample was burnt from the 32 MCMC chains, resulting in a mean

Gelman-Rubin statistic of R̂ = 1.02 (R̂min = 1.01, R̂max = 1.03), averaged over all 51

parameters. Out of the 1, 000, 000 remaining sample, only 2, 080 effective samples can

be used (mean effective sample size estimate for the bulk of the posterior). Therefore, a

thinning of 481 was applied, resulting in 2, 080 effective samples.
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Figure S1. Level-dependent likelihood thresholds for the rainfall-runoff modelling example,

estimated with different numbers of tuning samples for threshold settings corresponding to the

top 2 % (left) and the top 7 % (right)

Figure S2. Relations between levels for the linear regression example, using an informal

likelihood
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Figure S3. Level-dependent likelihood thresholds for the groundwater flow example, estimated

with different numbers of tuning samples for threshold settings corresponding to the top 2 %

(left) and the top 7 % (right)

Figure S4. Relations between levels for the groundwater flow example, using an informal

definition of the likelihood
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