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Abstract

This study investigates the effects of aerosol-radiation interaction on subseasonal prediction using the Unified Forecast System
(UFS) with an ocean, a sea ice and a wave component, coupled to an aerosol component. The aerosol component is from the
current NOAA operational GEFSv12-Aerosols model, which includes the GOCART aerosol modules simulating sulfate, dust,
black carbon, organic carbon, and sea-salt. The modeled aerosol optical depth (AOD) is compared to reanalysis from Modern-
Era Retrospective analysis for Research and Applications, Version 2 (MERRA2) and observations from Moderate Resolution
Imaging Spectro-radiometer (MODIS) satellite andAtmospheric Tomography (ATom) aircraft. Despite biases primarily in dust
and sea salt, a good agreement in AOD is achieved globally. The simulated radiative forcing (RF) from the total aerosols at
the top of the atmosphere is approximately -2.5 W/m2 or -16 W/m2 per unit AOD globally. This is consistent with previous
studies.

In subsequent simulations, prognostic aerosol component is substituted with climatological aerosol concentrations derived from

initial experiments. While regional differences in RF are noticeable in specific events between these two experiments, the re-

sulting RF, surface temperature, geopotential height at 500 hPa and precipitation, show similarities in multi-year subseasonal

applications. This suggests that given the current capacities of the aerosol modeling, adopting a climatology of aerosol concen-

trations as a cost-effective substitute for the intricate aerosol module may be a practical approach for subseasonal applications.
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• Substituting the interactive aerosol model with the aerosol climatology presents21

a cost-effective alternative in subseasonal applications22
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Abstract23

This study investigates the effects of aerosol-radiation interaction on subseasonal24

prediction using the Unified Forecast System (UFS) with an ocean, a sea ice and a wave25

component, coupled to an aerosol component. The aerosol component is from the cur-26

rent NOAA operational GEFSv12-Aerosols model, which includes the GOCART aerosol27

modules simulating sulfate, dust, black carbon, organic carbon, and sea-salt. The mod-28

eled aerosol optical depth (AOD) is compared to reanalysis from Modern-Era Retrospec-29

tive analysis for Research and Applications, Version 2 (MERRA2) and observations from30

Moderate Resolution Imaging Spectro-radiometer (MODIS) satellite and Atmospheric31

Tomography (ATom) aircraft. Despite biases primarily in dust and sea salt, a good agree-32

ment in AOD is achieved globally. The simulated radiative forcing (RF) from the total33

aerosols at the top of the atmosphere is approximately -2.5 W/m2 or -16 W/m2 per unit34

AOD globally. This is consistent with previous studies.35

In subsequent simulations, prognostic aerosol component is substituted with cli-36

matological aerosol concentrations derived from initial experiments. While regional dif-37

ferences in RF are noticeable in specific events between these two experiments, the re-38

sulting RF, surface temperature, geopotential height at 500 hPa and precipitation, show39

similarities in multi-year subseasonal applications. This suggests that given the current40

capacities of the aerosol modeling, adopting a climatology of aerosol concentrations as41

a cost-effective substitute for the intricate aerosol module may be a practical approach42

for subseasonal applications.43

Plain Language Summary44

This research explores how the interaction between aerosols and radiation influ-45

ences weather predictions over several weeks. Our forecast system consists of six com-46

ponents, including the atmosphere, land, ocean, sea ice, wave and aerosols. Despite some47

differences, the simulated aerosol optical depth aligns with observations. The impact of48

these aerosols on the Earth’s energy balance results in a net cooling effect.49

Furthermore, we conduct parallel experiments to assess a simpler method: prescrib-50

ing aerosol climatology instead of utilizing an interactive aerosol model. We find numer-51

ous similarities in its influence on radiation at the top of the atmosphere and on mete-52

orology at the subseasonal timescale between these two approaches, despite the absence53

of interannual variabilities in the aerosol climatology. Our findings suggest that adopt-54

ing this simplified approach of prescribing aerosol climatology for subseasonal predictions55

might offer cost-saving benefits without compromising accuracy.56

1 Introduction57

Climate change is driven by changes in the earth’s energy budget, which can be quan-58

tified by the radiative forcing (RF) measured at the top of the atmosphere (e.g., IPCC,59

2013). A positive RF indicates that the earth system is absorbing energy. The largest60

increase in RF in recent years has been from the concentration of well-mixed greenhouse61

gases (GHGs) in the atmosphere, estimated to be 2.8 W/m2 for 2011 or 3.3 W/m2 for62

2019 relative to 1750 (IPCC, 2013, 2021), where the total aerosol effective RF which in-63

cludes the interaction of aerosols with solar radiation and cloudiness, partially offsets this64

positive RF with negative estimates of -0.9 W/m2 for 2011 or –1.1 W/m2 for 2019.65

Atmospheric aerosols have an impact on weather and climate by interacting with66

solar radiation through scattering and absorbing light, affecting the three-dimensional67

temperature fields in the direct effect and influencing cloud properties, cloudiness, and68

precipitation in the indirect effect. Any changes in cloud properties resulting from aerosol-69

radiation interaction are classified as the semi-direct effect (e.g., J. M. Mitchell, 1971;70
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Twomey, 1974; IPCC, 2013). Aerosols originate from both natural and anthropogenic71

sources and are removed from the atmosphere by precipitation and other processes within72

a few days or weeks. Due to different aerosol species and particle sizes, they interact with73

climate in a far more complicated manner than GHGs.74

Climate models have integrated aerosol effects for several decades with varying com-75

plexity (e.g., Hansen et al., 1992; Le Treut et al., 1998; Ming et al., 2005; Stier et al., 2005).76

It is only with the recent development of online modeling systems that showed the im-77

portance of aerosol direct effects in numerical weather prediction (NWP) models (e.g.,78

Grell & Baklanov, 2011; Reale et al., 2011; Baklanov et al., 2014). For instance, includ-79

ing radiative effects of dust aerosols improved the radiation balance of NWP models (Haywood80

et al., 2005; Pérez et al., 2006) and helped forecast of African easterly Jet (Tompkins et81

al., 2005; Reale et al., 2011). Rodwell and Jung (2008) demonstrated an improvement82

in local medium-range forecast skill and a reduction in mean extratropical circulation83

errors in the ECMWF simulations when a more realistic dust aerosol climatology was84

employed. Grell et al. (2011) showed that aerosols resulting from wildfires had a signif-85

icant influence on NWP, using the Weather Research and Forecasting model coupled with86

Chemistry (WRF-Chem, Grell et al., 2005; Fast et al., 2006) with complex chemistry and87

direct/indirect effects. Haustein et al. (2012) provided evidence of a connection between88

dust emissions and weather patterns over synoptic-to-seasonal time scales. Mulcahy et89

al. (2014) noted large regional improvements in radiation and temperature forecasts from90

the direct and indirect effects of aerosols in the Met Office’s Unified Model for NWP, and91

recommended choosing an appropriate level of aerosol complexity that fits its applica-92

tions. Furthermore, aerosol effects have also been shown to impact extreme weather events,93

such as tornadoes and hurricanes, in weather forecast models (e.g., Sun et al., 2008; Reale94

et al., 2014; Saide et al., 2015; Pan et al., 2020). Recently, Murakami (2022) quantified95

the impact of anthropogenic aerosols on tropical cyclone activity using the System for96

Prediction and Earth System Research (SPEAR) model from Geophysical Fluid Dynam-97

ics Laboratory (GFDL). Benedetti and Vitart (2018) investigated the potential of includ-98

ing interactive aerosols to improve monthly prediction in the ECMWF’s IFS system, with99

a hypothesis that aerosol variability is connected to the different phases of the Madden–Julian100

oscillation (Madden & Julian, 1971).101

Despite a large uncertainty in aerosol observations and modeling (Carslaw et al.,102

2013; Mann et al., 2014; Reddington et al., 2017; Vogel et al., 2022), substantial progress103

has been made in global aerosol modeling for operational aerosol forecasts. For instance,104

the International Cooperative for Aerosol Prediction (ICAP) project with nine global105

aerosol models has shown a higher skill in the multi-model ensemble mean than in the106

individual model (Reid et al., 2011; Xian et al., 2019), even though it does not consider107

aerosol feedback on meteorology. ICAP has paved the way for establishing quasi-real time108

aerosol reanalysis from multi-model ensembles for numerical weather prediction (NWP)109

applications. On the other hand, there is an ongoing debate regarding the computational110

cost of modeling interactive aerosol impact compared to the benefits and whether us-111

ing some form of aerosol climatology or reanalysis is feasible. This is one question we112

attempt to address in this study from the perspective of aerosol-radiation interaction on113

subseasonal applications.114

The WMO Working Group on Numerical Experimentation (WGNE) initiated a project115

to evaluate the impacts of aerosols on numerical weather prediction. The project exam-116

ined how dust, smog and smoke scenarios affected surface radiation and temperature with117

eight models from six countries, including several operational NWP models (S. Freitas118

et al., 2015). Currently, the WGNE Aerosol project is in its second phase, focused on119

evaluating the impact of aerosols on subseasonal prediction (Frassoni et al., 2021). Our120

study is part of this project, and we use the coupled Unified Forecast System (UFS), NOAA’s121

next operational coupled atmosphere-ocean-sea ice-land system for S2S predictions. Our122

goal is to document these experiments with detailed analysis of the aerosol radiative ef-123
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fects on S2S prediction. The experimental setup is described in Section 2. Section 3 presents124

the results of the aerosol-radiation interaction analysis on both the global and regional125

scales, where two-way feedback between aerosols and meteorology is simulated with ei-126

ther an interactive aerosol model or a prescribed aerosol climatology. A summary and127

conclusion of findings are presented in Section 4.128

2 Model Setup and Experiments129

This study investigates the radiative forcing of direct and semi-direct aerosol-radiation130

interaction in the UFS using the GFDL single-moment microphysics parameterization.131

The indirect impact between aerosols and clouds is not considered here but will be the132

subject of future experiments when a double-moment microphysics parameterization is133

used.134

2.1 Model Components135

A community effort, including major contributions from the Environmental Mod-136

eling Center (EMC) at the National Centers for Environmental Prediction (NCEP), is137

underway in developing the UFS for seamless weather prediction across time scales, rang-138

ing from short-range to seasonal. The UFS model framework comprises the GFDL Finite-139

Volume cubed-sphere dynamical core (FV3) (Harris et al., 2021), the Global Forecast140

System (GFS) physics package, the land surface model, the GFDL Modular Ocean Model141

MOM6 (Harris et al., 2021), the Sea Ice Model CICE from Los Alamos National Lab-142

oratory (Hunke et al., 2015) and the wave model WAVEWATCH III (Tolman et al., 2002).143

Its subseasonal forecast skills are evaluated in Stefanova et al. (2022) through a series144

of incremental prototypes. This study is based on the version of Prototype 6 (P6), which145

uses FV3 with the GFS physics package version 16 (GFSv16, NOAA, 2021) via the Com-146

mon Community Physics Package (CCPP, Heinzeller et al., 2023), the Noah land sur-147

face model (K. Mitchell, 2005) and CICE6. We coupled a revised version of P6 to the148

aerosol component from the GEFSv12-Aerosols model as described in Zhang et al. (2022).149

Since the aerosol component is coupled inline using CCPP, we refer to the resulting model150

system as UFS-CCPP-Chem in this study, as shown in Table 1.151

2.2 Aerosol Component152

The aerosol component is based on WRF-Chem, which employs the aerosol mod-153

ules from the NASA Goddard Chemistry Aerosol Radiation and Transport model (GOCART,154

Chin et al., 2000, 2002). Five species of aerosols are included in this study, which are sul-155

fate, dust, black carbon (BC), organic carbon (OC) and sea-salt. GOCART uses a sim-156

plified sulfur chemistry for sulfate simulation, bulk aerosols of BC, OC, and sectional dust157

and sea-salt. GEFSv12-Aerosols updated the sea-salt scheme based on the 2nd-generation158

GOCART model (Colarco et al., 2010) and a new dust emission scheme called FENG-159

SHA, with a distinct approach to treat biomass burning and dust emissions (Zhang et160

al., 2022). Both dust and sea-salt have five size bins.161

During the inline coupling, the meteorological fields, including the land-sea mask,162

vegetation type, and surface fields, are imported from the atmospheric model to drive163

the aerosol component. The aerosol component updates the aerosol extinction coefficient,164

single scattering albedo, and asymmetry factor for each aerosol species and passes them165

to the radiation scheme in atmospheric physics.166

The monthly anthropogenic emission inventories from the Community Emissions167

Data System based on 2014 inventory (CEDS-2014, Hoesly et al., 2018) are used. The168

daily fire emissions are obtained from the ECMWF Global Fire Assimilation System (GFAS,169

Kaiser et al., 2012), which assimilates fire radiative power observations from satellite-170

based sensors of NASA Terra Moderate Resolution Imaging Spectro-radiometer (MODIS,171
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Table 1. Model components, resolutions and initial conditions used in the UFS-CCPP-Chem

experiments

Components Modules Resolutions Initial Conditions

Atmosphere FV3 & GFSv16 25km, 64 layers CFSR May 1 & Sept. 1, 2003-2019

Ocean MOM6 1/4◦, 75 layers CPC-3DVar (2011-2017) CFSR (other times)

Sea Ice CICE6 1/4◦ CPC-CSIS

Wave WW3 1/2◦ x 1/2◦ (rest)

Aerosol GEFSv12-Aerosols same as atmosphere 30-day free spin-up (from zero)

Levy et al., 2013; Sayer et al., 2014) and Aqua MODIS active fire products to produce172

daily estimates of emissions from wildfires and biomass burning. GEFSv12 Aerosols im-173

plements an updated one-dimensional time-dependent cloud module from WRF-Chem174

(Grell et al., 2011), which is also used at EMC in the High-Resolution Rapid Refresh (HRRR)-175

Smoke model to calculate injection heights and emission rates online (S. R. Freitas et176

al., 2007; Ahmadov et al., 2017). The resulting AOD from GEFSv12-Aerosols agrees well177

with satellite and aircraft observations in the short-range forecasts (Zhang et al., 2022;178

Bhattacharjee et al., 2023).179

Regarding the cost estimate for the aerosol component, the CCPP version of the180

GEFSv12-Aerosols model (Zhang et al., 2022), with the same aerosol component used181

in the UFS-CCPP-Chem in this study, takes approximately 1129 core hours for a 7-day182

forecast at a standalone atmospheric configuration. This is nearly double the core hours183

of running the same model without the active aerosol component, which consumes 580184

core hours. Both simulations employ 320 cores with an 8x8 grid layout and without cou-185

pling to ocean, ice and wave modules.186

2.3 Initial Conditions, Ensemble Members and Resolutions187

We followed the protocol from the WMO WGNE S2S (Frassoni et al., 2021), and188

initialized the model on May 1st and September 1st, respectively, from 2003 to 2019. The189

integration time is 32 days for all experiments. There are five ensemble members, in which190

the atmospheric initial conditions are time-shifted by up to ± 2 days, while the initial191

conditions for the rest of the modules remain the same.192

Table 1 displays the resolution of the atmospheric and aerosol modules in the UFS-193

CCPP-Chem model, which are approximately 25km (C384) and consist of 64 vertical194

layers. The ocean model has a resolution of 1/4◦ horizontally and includes 75 vertical195

layers. The ice model shares the horizontal grid with the ocean model. The wave model196

is on the 1/2◦ x 1/2◦ grid. Atmospheric and oceanic initial conditions rely on CFSR (Saha197

et al., 2010), except for the years 2011-2017, when the ocean initial conditions used the198

3DVar data from NCEP/CPC. NCEP/CPC also provides the sea ice initial conditions199

(CSIS, Liu et al., 2019). The wave model starts at rest. The aerosol initial conditions200

are from free spin-up runs by integrating the UFS-CCPP-Chem model for 30 days from201

zero aerosol concentration, prior to the scheduled initial date of May 1st or September202

1st.203
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Table 2. Three sets of experiments used in this study.

Experiments Aerosol Sources

Prognostic aerosols Aerosol module active
(ProgAer) (with prognostic aerosol)

Climatological aerosols Aerosol module inactive
(ClimAer) (use ProgAer monthly climatology)

No aerosols Aerosol module inactive
(NoAer) (no aerosol interaction considered)

2.4 Experimental Design204

Climate and weather models can integrate aerosol effects in multiple ways, and three205

commonly practiced methods aim to reduce computational costs:206

• Updating aerosol loadings as time changes,207

• Using climatological aerosols that is fixed in time or vary with season or month,208

• Ignoring aerosol loadings and its impact on meteorology.209

This study evaluates and quantifies the radiative forcing from aerosols and the impact210

on meteorology, in each of these three options. The first set of experiments employs UFS-211

CCPP-Chem with ‘prognostic aerosols’ (ProgAer) that simulates the evolution of five212

tropospheric aerosol species, while enabling the aerosol feedback on radiation. Two more213

parallel sets of experiments are conducted with UFS but exclude the costly aerosol com-214

ponent. They utilize either prescribed climatological aerosol concentrations (ClimAer)215

or zero aerosol concentration (NoAer) instead of the aerosol module. Note that the cli-216

matological aerosol concentrations used in ClimAer is a monthly model climatology gen-217

erated from Experiment ProgAer, as illustrated in Table 2. This is done to ensure that218

the mean aerosol concentrations in Experiments ClimAer and ProgAer are the same.219

2.5 Observations from Satellites and Aircrafts220

We verified our modeled AOD using the MODIS Collection 6.1 Level-3 AOD dataset221

(Levy et al., 2013) from the Aqua satellite, where the merged AOD product combines222

retrievals from the Dark Target and Deep Blue algorithms to provide a consistent data223

set that spans various surface types from oceans to bright deserts (Sayer et al., 2014).224

We compared each of the 5 modeled AOD components against the Modern-Era Retro-225

spective analysis for Research and Applications, Version 2 (MERRA2, Buchard et al.,226

2017), which is an assimilation product of the Global Modeling and Assimilation Office227

at NASA.228

The AOD dataset from the NASA Atmospheric Tomography Mission (ATom, Brock229

et al., 2021) comprises merged data from all instruments on aircraft flights during each230

of the four seasons from 2016 to 2018. It offers a comprehensive global-scale sampling231

of the atmosphere, profiling continuously from 0.2 to 12 km altitude and providing de-232

tailed latitude, longitude and altitude information. In this study we compared ATom-233

4 with our results, which overlaps with our experiments in May 2018.234

We use the Clouds and the Earth’s Radiant Energy System (CERES, Wielicki et235

al., 1996) data to validate radiative fluxes and cloud coverage in the model experiments.236

CERES provides global composite radiative fluxes, including top-of-atmosphere (TOA)237
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Figure 1. Monthly mean AOD at 550nm during 2003-2019 in May (upper) and September

(lower) from MODIS (left), MERRA2 (middle) and Experiment ProgAer (right). Global mean is

shown in the upper right corner.

shortwave and longwave, and cloud properties based on each CERES 20 km field of view.238

We employ the Edition 4.2 product of the CERES Energy Balance and Filled (EBAF)239

observations (Loeb et al., 2018) for the period of 2003-2019. The TOA fluxes and the240

cloud properties of CERES EBAF are monthly averages on a 1◦x1◦ latitude-longitude241

grid. The estimated uncertainty in the regional monthly mean all-sky TOA flux ranges242

from 2.5 W/m2 to 3 W/m2 in this product.243

The ERA5 global reanalysis (Hersbach et al., 2020) serves as the reference dataset244

for verifying the modeled surface temperature and geopotential height at 500 hPa (H500).245

Modeled precipitation is validated utilizing GPCP (Huffman et al., 2001), a composite246

dataset integrating in situ gauge data with satellite observations of daily precipitation.247

3 Model Results and Comparison to Observations248

All verification in each of the three experiments in this study is conducted using249

the ensemble means from the five members discussed earlier, after interpolated onto a250

1◦ horizontal resolution.251

3.1 Aerosol Optical Depth252

Fig. 1 presents monthly averages of aerosol optical depth at 550 nm1 from Exper-253

iment ProgAer compared with satellite estimates from MODIS and MERRA2 reanal-254

ysis for May and September during the period from 2003 to 2019. The modeled results255

1 All AODs in this manuscript are at 550 nm.
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Figure 2. Each of the five components in AOD at 550 nm, sulfate, dust, BC, OC and sea-salt

(top to bottom), from MERRA2 and Experiment ProgAer in May (left two rows) and September

(right two rows) averaged over years 2003-2019. Note that BC AOD is enlarged by a factor of 5

in order to share the colorbar.

effectively captured the geographic patterns of AOD shown in MODIS and MERRA2,256

with positive biases in North Africa as well as South and East Asia. The AOD distri-257

bution between MODIS and MERRA2 shows good agreement in general, considering that258

MODIS is one of the various datasets assimilated by MERRA2. However, it is notewor-259

thy that the magnitude of AOD from MERRA2 tends to be lower than that from MODIS260

across both months. Note that there are large values in MODIS over the Arctic region261

in May.262

To further investigate the root in AOD bias, the five AOD components used in the263

models, namely sulfate, dust, BC, OC and sea-salt, are compared to MERRA2 in May264

and September in Fig. 2, using the 2003-2019 monthly averages. Among these five com-265

ponents, the biggest bias is in dust AOD over the Saharan region, where it has an ex-266

cessive dust loading compared to MERRA2 in both months. This bias in the modeled267

dust AOD may be related to the bias in dust emission in the ‘FENGSHA’ scheme or in268

–8–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

0.12

0.14

0.16

0.18

0.2

0.22
(a) May Global

2003 2007 2011 2015 2019

MODIS   (ave=0.16)
MERRA2 (ave=0.14)
ClimAer (ave=0.18)
ProgAer (ave=0.18)

0.2

0.4

0.6

0.8
(c) May Northern Africa

2003 2007 2011 2015 2019

0.1

0.2

0.3

0.4

0.5

(e) May Southern Africa

2003 2007 2011 2015 2019

0.1

0.2

0.3

0.4

0.5

(g) May East Asia

2003 2007 2011 2015 2019

0.12

0.14

0.16

0.18

0.2

0.22
(b) Sept Global

2003 2007 2011 2015 2019

MODIS   (ave=0.16)
MERRA2 (ave=0.15)
ClimAer (ave=0.17)
ProgAer (ave=0.17)

0.2

0.4

0.6

0.8
(d) Sept Northern Africa

2003 2007 2011 2015 2019

0.1

0.2

0.3

0.4

0.5

(f) Sept Southern Africa

2003 2007 2011 2015 2019

0.1

0.2

0.3

0.4

0.5

(h) Sept East Asia

2003 2007 2011 2015 2019

Global/Regional AOD

Figure 3. AOD at 550 nm in May (left) and September (right) during 2003-2019 from

MODIS, MERRA2 and model experiments ProgAer and ClimAer globally and in three cho-

sen regions of northern Africa (0 - 30◦E, EQ - 30◦N), southern Africa (0 - 30◦E, EQ - 30◦S) and

east Asia (100◦E - 130◦E, 15◦N - 45◦N).

the modeled surface meteorology. The global mean sulfate AOD, shown in the upper right269

corner, is close to MERRA2, despite a larger local maximum over East Asia. The model270

underestimates OC/BC AOD in Central Africa and South America in May, likely from271

a weaker than observed biomass burning prescribed from the GFAS dataset. In contrast,272

the modeled sea-salt AOD is higher than MERRA2 over most of the ocean surface, par-273

ticularly in the north Indian Ocean.274

The global mean AOD values from MODIS, MERRA2, Experiments ProgAer and275

ClimAer are shown in the upper panel of Fig. 3 in May and September during the pe-276

riod from 2003 to 2019. The 17-year average for each product is listed in the upper right277

corner. The AOD from Experiment ProgAer shares a lot in common with that from MODIS,278

not only in the mean value but also in the interannual variabilities. As expected, the AOD279

from Experiments ClimAer is close to the average of that from Experiments ProgAer dur-280

ing this period, where the former uses the model climatology from the latter. The global281

mean AOD value from MERRA2 is the lowest among these products both in May and282

September during each of the 17 years. Additionally, Fig. 3 displays the area mean in283

several chosen regions with high AOD loading, including northern Africa (0 - 30◦E, EQ284

- 30◦N), southern Africa (0 - 30◦E, EQ - 30◦S) and east Asia (100◦E - 130◦E, 15◦N - 45◦N),285
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from MODIS, MERRA2 and Experiments ProgAer and ClimAer. The modeled AOD286

consistently exceeds satellite observations and reanalysis data in northern Africa in both287

May and September each year. This positive bias in AOD, primarily attributed to dust288

as shown in Fig. 2, contributes to the overall positive bias seen in the total AOD in the289

model experiments. Moreover, the AOD dominated by aerosols from biomass burning290

in southern Africa is much stronger in September than in May in all products. The mod-291

eled AOD over east Asia is relatively stable throughout the years and is somewhat higher292

than that from MODIS in both May and September, mostly from the sulfate components293

shown in Fig. 2.294

The zonal mean AOD average of 2003-2019 and its standard deviation during this295

period are shown in the top panel of Fig. 4, for MODIS, MERRA2 and Experiment Pro-296

gAer in May and September. As shown in Fig. 1, one notable aspect is that the model297

tends to overestimate AOD between 10◦N - 30◦N, compared to MODIS. This bias mostly298

comes from dust and somewhat from sulfate, as shown in Fig. 2. The interannual vari-299

abilities of the zonal mean AOD in Experiment ProgAer, shown by the standard devi-300

ation, match that in MODIS and MERRA2. A larger interannual variability of AOD is301

seen in May at high latitudes in the Northern Hemisphere from Experiment ProgAer.302

To explore its root, zonal mean AOD from each of the five components, sulfate, dust,303

BC, OC and sea-salt, and their standard deviations are also shown in Fig. 4. It turns304

out that it is the OC component that has a large standard deviation north of 40◦N, which305

indicates a large interannual variability of OC at mid-high latitudes in May. Among these306

five components, another source of discrepancy in AOD between the model and MERRA2307

is in the sea-salt, which occurred at most latitudes where the ocean exists. The relatively308

small standard deviation in most region makes it feasible to have consistent results when309

using time-varying aerosols versus climatological aerosols.310

Fig. 5 compares the total AOD and its components from Experiment ProgAer with311

a single flight circuit from the ATom-4 aircraft observations in the Pacific and Atlantic312

sections during May 2018. The modeled total AOD matches well with ATom-4 obser-313

vations at all latitudes in the Pacific and Atlantic sections, except for a positive bias at314

high latitudes in the Pacific and an even larger positive bias at low latitudes in the north-315

ern Atlantic. The component analysis reveals that the modeled AOD from combined sul-316

fate and OC mostly accounts for the large positive bias at high latitudes in the North317

Pacific and is in better agreement with ATom-4 in the Atlantic section, except for a spike318

near 45◦N. The positive bias in the Atlantic mostly comes from dust between the equa-319

tor and 20◦N. The modeled sea-salt AOD has a positive bias at most latitudes in both320

ocean basins. The modeled BC AOD, despite being smaller in magnitude compared to321

other components, is close to that from ATom-4 in both ocean basins. All the findings322

here are consistent with those in Fig. 4, where comparisons are against MODIS and MERRA2.323

In summary, the modeled AOD distributions in Experiment ProgAer with time-324

varying prognostic aerosols are generally consistent with satellite and aircraft observa-325

tions as well as reanalysis estimates, albeit with some noticeable biases. For instance,326

the model tends to overestimate dust AOD in West Africa and offshore compared to MODIS327

and ATom-4 data. Additionally, the model’s estimate of sea-salt AOD is higher over most328

ocean basins than what is observed by MODIS and ATom-4. The largest interannual vari-329

ability in modeled OC AOD among all components in May over the northern mid to high330

latitudes is consistent with that in MERRA2 over a 17-year period, despite being higher331

than ATom-4 observations in 2018 over the North Pacific. In addition, the AOD from332

Experiment ClimAer with a prescribed monthly climatology of aerosol concentrations333

derived from Experiment ProgAer, closely aligns with the 17-year mean seen in the lat-334

ter.335

Table 3 presents a global mean comparison of the five AOD components between336

the modeling study in Chin et al. (2002) and Experiment ProgAer. The annual mean in337

1990 from Chin et al. (2002) and the monthly mean averaged over 17 years from Exper-338
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Figure 4. The zonal mean and the standard deviation for total AOD550 from MODIS,

MERRA2 and Experiment ProgAer (top) and its components from sulfate, dust, BC, OC and

sea-salt from MERRA2 and Experiment ProgAer during 2003-2019 in May (left) and September

(right).
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Table 3. Five AOD components from Chin et al. (2002) and Experiment ProgAer in this

study.

AOD Chin et al. (2002) May/Sep
Year 1990 2003-2009

Dust 0.051 0.041/0.026
Sulfate 0.040 0.040/0.036
Sea salt 0.027 0.070/0.071
OC 0.017 0.024/0.031
BC 0.007 0.005/0.006

iment ProgAer show comparable magnitudes for each component, except for the sea-salt339

AOD, where Experiment ProgAer is approximately 2.5 times larger than in Chin et al.340

(2002). This difference is greater compared to both the MERRA2 and ATom compar-341

isons.342

3.2 Radiative Forcing at the Top of the Atmosphere343

The radiative forcing at the top of the atmosphere is defined as the difference be-344

tween the downward and upward radiative flux, expressed as345

RFTOA = FluxTOA
Downward − FluxTOA

Upward

In this fully coupled UFS-CCPP-Chem model, we don’t differentiate between RF346

and effective RF as in IPCC (2013) since both are typically the same and all surface con-347

ditions are allowed to adjust. Fig. 6 shows the RF at TOA in the CERES EBAF dataset,348

as well as the model bias against CERES EBAF for the three experiments mentioned349

earlier, all based on all-sky conditions. In May and September, the positive bias in RF350

(positive downward) is predominant in all three experiments, with a global mean rang-351

ing from 6 to 7 W/m2 in Experiments ProgAer and ClimAer and up to 10 W/m2 in Ex-352

periment NoAer. The bias is particularly large along the eastern boundary of the ocean353

basin off the coast of California, Chile and Angola. Comparison between the experiments354

with and without aerosols gives an estimate of the total aerosol effects on RF to be about355

-2.5 W/m2 globally, which is one order of magnitude bigger than the global mean dif-356

ference in RF between Experiments ProgAer and ClimAer. Meanwhile, the bias in RF357

from the model physics is several times larger than the total aerosol effects on RF.358

To further investigate the distribution of the aerosol-radiation effects, we use the359

equations below360

∆RFTOA
ProgAer = RFTOA

ProgAer − RFTOA
NoAer

361

∆RFTOA
ClimAer = RFTOA

ClimAer − RFTOA
NoAer

to represent the aerosol radiative effects in Experiments ProgAer and ClimAer, which362

is defined as the difference in RF from Experiment NoAer. The left and middle columns363

of Fig. 7 show ∆RFTOA
ProgAer and ∆RFTOA

ClimAer at TOA averaged for May and Septem-364

ber over 17 years. The patterns are dominated by the negative flux mostly at low lat-365

itudes. The difference between Experiments ProgAer and ClimAer shown on the right366

panel of Fig. 7 is much smaller, suggesting the model-simulated RF with prognostic aerosols367

is similar to that using aerosol climatology on the subseasonal time scale when evalu-368

ated over multiple years.369

To examine the correlation between ∆RFTOA
ProgAer and ∆RFTOA

ClimAer with respect370

to AOD values, we plotted the zonal mean of the left and middle columns in Fig. 7 as371
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Figure 5. Upper: geographic distribution of the total AOD550 from Experiment ProgAer

overlaying the ATom-4 observations; Lower: modeled AOD (red) shown in the upper panel and

its dust, sea-salt, sulfate+OC+smoke and BC components and its comparison to ATom4 (black)

in May 2018 in the Pacific (left) and Atlantic (right) section.
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Figure 6. The radiative forcing at TOA (W/m2, positive downward) in CERES EBAF and

biases in Experiments ProgAer, ClimAer and NoAer from CERES EBAF in May (upper) and

September (lower) over 17 years.

Figure 7. Difference in radiative forcing at TOA (W/m2, positive downward) of Experiments

ProgAer (upper) and ClimAer (lower) from Experiment NoAer, respectively, in May (upper) and

September (lower).
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Figure 8. Zonal mean radiative forcing at TOA (W/m2, positive downward) in Experiments

ProgAer and ClimAer from NoAer and their AOD in May (upper) and September (lower). Note

that ‘negative’ AOD is plotted.
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Figure 9. Upper: normalized radiative forcing at TOA per unit AOD, both are zonal mean,

from Experiments ProgAer and ClimAer in May (solid) and September (dashed). Lower: five

AOD components in May (left bar) and September (right bar).
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Figure 10. Cloud coverage (%) in CERES EBAF (left) and biases in Experiments ProgAer,

ClimAer and NoAer (2nd to 4th column) from CERES EBAF in May (upper) and September

(lower).

solid red and blue lines in Fig. 8, respectively, along with the zonal mean ‘negative’ AOD372

in dashed lines. The two pairs of curves are well correlated, with the maximum AOD373

and minimum ∆RFTOA co-located near 15◦N, and some discrepancies between the two374

at certain latitudes. It is worth noting that changes in RF per unit AOD depend on var-375

ious physical and chemical properties of the aerosols (Bellouin et al., 2020).376

To further investigate the efficiency of RF, we calculated the normalized ∆RFTOA,377

which is the ratio of ∆RFTOA and AOD, both zonal mean, and plotted it in Fig. 9(a)378

for May and September. The normalized ∆RFTOA between Experiments ProgAer and379

ClimAer are very close in magnitude in both months, varying from 0 to -30 W/m2 per380

unit AOD, depending on latitudes and seasons. The ratio becomes close to zero south381

of 45◦S, where the sea-salt component dominates. It seems that sea-salt has a relatively382

lower effect on RF than other components. There are two peak values occurring at the383

equator and 30◦S, with different magnitudes in May and September. The different ra-384

tios in season may be related to the time-varying aerosol compositions, as shown in Fig. 9(b),385

where the magnitude of each AOD component is shown with latitudes for May and Septem-386

ber averaged from 2003 to 2019. There are seasonal and latitudinal variabilities in the387

magnitude of each AOD component between May and September, particularly for OC388

and dust. These results are consistent with -23.7 ± 3.1 W/m2 per unit AOD reported389

in Myhre et al. (2013).390

3.3 Cloud Coverage391

Fig. 10 shows the total cloud coverage from the CERES EBAF dataset as the ‘truth’,392

along with the biases in modeled cloud cover from three experiments: ProgAer, ClimAer393

and NoAer. All products are monthly averages in May and September from 2003 to 2019.394

The global mean cloud coverage in May and September in the CERES EBAF is 67.7%395

and 67.0%, respectively. The modeled cloud coverage from all three model experiments396

has a similar negative bias, ranging from -6.0% to -5.8% globally in May and from -6.5%397

to -6.3% in September. The bias pattern in clouds is similar to that in RF at TOA shown398
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in Fig. 6, where the lack of clouds along the east boundary of ocean basins off the con-399

tinents explains the lack of upward radiation at TOA.400

There is little difference in cloud coverage among the three experiments featuring401

different aerosols, whereas the variance in RF at TOA can reach up to -2.5 W/m2. This402

suggests that the alteration in cloud coverage due to aerosol-radiation interaction, known403

as the semi-direct effect, remains negligible regardless of whether the aerosols are prog-404

nosed, based on climatology, or even absent. This is expected given that this version of405

the model employs a single-moment microphysics parameterization.406

It is worth noting that a model bias of approximately 6% in cloud coverage leads407

to a bias of about +12 W/m2 in RF in May and +6 W/m2 in September, which is sev-408

eral times larger than the estimated aerosol effects on RF of -2.5 W/m2. Evidently, clouds409

have a more substantial impact on RF than aerosols, although the significance of aerosols410

should not be overlooked.411

3.4 Hemispheric Surface Temperature, H500 and Precipitation412

With the analysis of radiative forcing and cloud coverage associated with differ-413

ent aerosols in Experiments NoAer, ClimAer and ProgAer shown above, we investigate414

the impact of aerosols on meteorological fields across these three experiments. Fig. 11415

presents the anomaly correlation coefficient (ACC) for the predicted surface tempera-416

ture at 2m (T2m) and H500 against ERA5 reanalysis, and precipitation against GPCP417

data. The analysis covers the 20◦N-80◦N (NHX) and 20◦S-80◦S (SHX) regions, with lead418

times ranging from weeks 1 to 4 and a combination of weeks 3 and 4, in May and Septem-419

ber from 2003 to 2019. At weeks 1 and 2, the ACC scores for T2m, H500 and precip-420

itation remain consistent across the experiments, irrespective of the variations in aerosol421

loadings. This pattern holds true for both May and September initializations, suggest-422

ing that the ACC scores at these lead times are minimally influenced by aerosol levels423

on a hemispheric scale. At longer lead times of weeks 3+4 in the SHX, Experiment Pro-424

gAer shows the highest ACC values for both T2m and H500 in May but the lowest in425

September. Meanwhile, in the NHX, the ACC scores for T2m and H500 are similar.426

In these experiments, precipitation is not influenced by aerosol-cloud interactions,427

as they are not parameterized. Instead, the impact of aerosols on precipitation primar-428

ily comes from the thermodynamic fields, which have a minimal effect. The precipita-429

tion skill beyond week 2 is low and no longer significant.430

The results presented suggest a number of implications. First, despite the well-understood431

and accurately simulated radiative forcing from the aerosol-radiation interaction within432

the model, its significant influence on surface temperature and H500 is not evident in433

these experiments. Second, the discrepancies in the ACC values from Experiment Pro-434

gAer across different hemispheres could be attributed to the accuracy of prescribed emis-435

sion sources and parameterized emission sinks, especially in the SHX during September.436

Additionally, the parameterization of aerosol-cloud interaction appears to be crucial in437

capturing the impact of aerosols on precipitation patterns.438

3.5 Aerosol Regional Impact439

As shown in the Figs 7 and 8, the modeled RF differences of Experiments Pro-440

gAer and ClimAer from NoAer (∆RFTOA
ProgAer and ∆RFTOA

ClimAer) shows similarities when441

assessed as averages over 17 years. However, there are significant interannual variabil-442

ities in AOD and its associated RF in regions such as Sahara. For instance, the AOD443

over northern Africa in Experiment ProgAer exceeds that in Experiment ClimAer by444

0.15 in May 2004, according to Fig. 3(c). As an example, we chose a domain over north-445

ern Africa larger than the one used in Fig. 3 to show the horizontal distribution of AOD,446

net radiative forcing at TOA and surface, as well as T2m in May 2004 in Experiment447
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Figure 11. Anomaly correlation coefficient for T2m, H500 and precipitation at different

lead times from Experiments ProgAer, ClimAer and NoAer, from 2003 to 2019, in May (a) and

September (b), for northern hemisphere (left) and southern hemisphere (right).
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Figure 12. From left to right: AOD, radiative forcing at TOA and surface (W/m2), and T2m

(◦C) in Experiment ClimAer (upper) and the difference of Experiments ProgAer and ClimAer

(lower), all monthly means in May 2004. Numbers in the upper-right corner are the means over

the displayed domain. Positive values are downward for fluxes.

Figure 13. ACC at lead time of week 1 and weeks 3 and 4 combined of T2m (leftmost two

columns), H500 (third and fourth columns) and precipitation (rightmost two columns) over

northern Africa for Experiments NoAer (top), ClimAer (middle) and ProgAer (bottom). All

model experiments are initialized on the first of May, 2003-2019.
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Figure 14. Same as Fig. 13, except for east Asia.

ClimAer when aerosol climatology is used in the upper row of Fig. 12. The impact of448

prognostic aerosols on these fields are shown as difference of Experiments ProgAer and449

ClimAer in the lower row of Fig. 12. The AOD in Experiment ProgAer exceeds the one450

from the aerosol climatology run, mostly over the Sahara and Sahel regions as shown in451

Fig. 12(e). A negative RF at TOA and surface is shown in the same regions in Fig. 12(f)452

and (g) as expected. Noteworthy correlations exist in the difference patterns between453

AOD and RF at TOA in Fig. 12(e) and (f), as well as between AOD and RF at the sur-454

face in Fig. 12(e) and (g). This suggests that the aerosol-radiation interaction and its455

variations with different aerosol loadings are well-captured in this episode over north-456

ern Africa. However, there is no apparent correlation in the difference patterns between457

AOD and surface temperature in Fig. 12(e) and (h), similar to what is discussed in Sec. 3.4.458

To further investigate the regional effects of aerosols on meteorological patterns,459

Fig. 13 shows the ACC scores for T2m (leftmost two columns), H500 (third and fourth460

columns) and precipitation (rightmost two columns), at lead times of week 1 and weeks461

3+4 in May from 2003 to 2019 over northern Africa. Despite large variations in aerosol462

loadings used in these simulations, as indicated in Fig. 3, the ACC scores for T2m, H500463

and precipitation are remarkably similar at week 1 among the three experiments. In the464

subsequent weeks 3+4, Experiment ProgAer shows marginally higher ACC scores for T2m465

and H500 in the Sahel region and adjacent to the Africa coast, yet these scores are re-466

duced over northern Africa when compared to the other two experiments. As anticipated,467

the ACC for precipitation remains notably low during weeks 3+4.468

East Asia, a region characterized by relatively high aerosol concentrations, as shown469

in Fig. 3. Fig. 14, is examined for its meteorological response. Fig. 14 shows the ACC470

scores for T2m, H500 and precipitation for this region in May, presented in a similar man-471

ner to Fig. 13. Consistency in the ACC scores at week-1 across the three experiments472

indicates a minimal influence of aerosol concentrations on these metrics at this lead time.473

However, during the weeks 3+4 period, Experiment ProgAer shows elevated ACC scores474

for T2m and H500 in Southeast Asia, while these scores are diminished over Central Asia475

when compared to the other experiments.476
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Figs. 13 and 14 reveal modest regional variations in skill for T2m and H500 within477

the prognostic aerosol experiments over a lead time of weeks 3+4. These findings are based478

on a limited set of experiments conducted from 2003 to 2019.479

4 Summary and Conclusion480

This study investigates the aerosol radiative effects on subseasonal prediction us-481

ing the UFS-CCPP-Chem, the Unified Forecast System integrated with a CCPP-based482

aerosol module from the GEFS-Aerosols model. We evaluated the top-of-the-atmosphere483

radiative forcing from tropospheric aerosols, including sulfate, dust, black carbon, or-484

ganic carbon, and sea-salt. Our research involved three sets of UFS-CCPP-Chem sim-485

ulations: ProgAer, featuring an interactive aerosol module, ClimAer, which applies aerosol486

climatology derived from Experiment ProgAer in place of the interactive aerosol mod-487

ule, and NoAer, which excludes aerosol effects. We used monthly mean estimates, includ-488

ing zonal or global average, for model evaluation, despite the recognized spatial and tem-489

poral heterogeneity of aerosol distributions.490

Our analysis, based on experiments initialized on May 1 and September 1 from 2003491

to 2019, reveals that the monthly mean AOD patterns and interannual variability from492

Experiment ProgAer align well with MODIS satellite observations, MERRA2 reanaly-493

sis, and ATom-4 aircraft observations, despite some discrepancies between these datasets.494

Model simulations reveal a positive bias in dust AOD over the Sahara and sea-salt AOD495

across most oceans, possibly due to biases in the aerosol module. Furthermore, modeled496

cloud coverage is less than that in the CERES EBAF dataset, likely from inadequate model497

physics parameterization, contributing to inaccuracies in the radiation.498

To correct for model bias, we compared the radiative forcing at the top-of-atmosphere499

between Experiment ProgAer and NoAer, using this as an indicator of the total aerosol500

radiative forcing. Our calculations suggest a global average of approximately -2.5 W/m2
501

at the TOA. This figure aligns with findings from prior research, such as the -1.0 W/m2
502

in IPCC (2013) and -1.2 W/m2 in Bellouin et al. (2020), which focus solely on the an-503

thropogenic component of radiative forcing since the pre-industrial era. In contrast, our504

model’s estimate includes both anthropogenic and natural aerosol sources. Additionally,505

we determined the normalized radiative forcing to be approximately -16 W/m2 per unit506

AOD globally.507

Contrary to expectations, incorporating aerosol-radiation interaction into the model508

simulations does not consistently improve the forecast skill for T2m and H500. The ACC509

for these variables at a 1-week lead time remains comparable across various aerosol sce-510

narios. With increasing lead times, the forecast outcomes become mixed, suggesting that511

the predictive accuracy for T2m and H500 is affected by the intricate relationship be-512

tween aerosols and meteorology. This variation in forecast skill over extended lead times513

highlights the complexity of the aerosol-meteorology interaction and emphasizes the im-514

portance of careful consideration of both aerosol-radiation and aerosol-cloud interactions,515

along with addressing biases in model physics for long-range forecasts and the accuracy516

in aerosol emission datasets.517

Moreover, the impact of aerosols on cloud formation and precipitation through ra-518

diative processes is not readily apparent due to the single-moment microphysics param-519

eterization employed in this version of the model. In the UFS-CCPP-Chem experiments,520

despite a global RF difference of approximately -2.5 W/m2 at the TOA with and with-521

out aerosol-radiation interaction, cloud coverage and precipitation patterns remain largely522

unchanged. This indicates that the modeled semi-direct effects of aerosol-radiation in-523

teraction on cloudiness and precipitation are minimal. Current efforts are focused on sim-524

ulating the indirect effects using a double-moment microphysics parameterization in the525

upcoming version of the UFS.526
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This study represents one of the initial efforts to evaluate the aerosol radiation ef-527

fects on subseasonal forecasts using the UFS. Notably, local regions exhibited significant528

radiative forcing discrepancies, particularly where the AOD differences between prog-529

nosed and climatological aerosols were exceptionally pronounced during certain events.530

The UFS-CCPP-Chem, utilizing modeled climatological aerosol concentrations, success-531

fully captures the average radiative forcing seen in simulations with prognosed aerosols532

over subseasonal timescales, albeit without the interannual aerosol variabilities. Never-533

theless, given the current constraints within this aerosol module, including demonstrated534

biases and uncertainties in time-varying aerosol emission datasets, the potential bene-535

fits of utilizing a prognostic aerosol module are limited. This prompts consideration for536

substituting the resource-intensive chemistry module with an aerosol climatology in sub-537

seasonal applications. Additionally, the development of a global, high-quality, and high-538

resolution aerosol climatology, derived from either observations or reanalysis, is essen-539

tial to mitigate uncertainties inherent in aerosol modeling.540

Open Research Section541

The model data from three sets of experiments used in this study, as well as the542

NCL and MATLAB scripts used to produce the figures, are available on GitHub at https://543

github.com/ShanSunNOAA/WGNE 2024. The MODIS dataset and MERRA2 reanalysis544

are available at Bhattacharjee et al. (2023). The aerosol dataset from ATom including545

AOD is available at Brock et al. (2021).546

Acknowledgments547

This research is supported by the base funds from the NOAA Global Systems Lab-548

oratory. LZ, SW, DH and HL are supported by NOAA cooperative agreements NA17OAR4320101549

and NA22OAR4320151. We thank the EMC group and the associated community for550

their multiyear effort of developing and improving the UFS model. The constructive sug-551

gestions from Dr. Dave Turner during the interval review is much appreciated. The au-552

thors acknowledge the NOAA Research and Development High Performance Comput-553

ing Program for providing computing and storage resources.554

References555

Ahmadov, R., Grell, G., James, E., Csiszar, I., Tsidulko, M., Pierce, B., . . .556

Goldberg, M. (2017). Using viirs fire radiative power data to simulate557

biomass burning emissions, plume rise and smoke transport in a real-time558

air quality modeling system. Ieee International Geoscience and Remote559

Sensing Symposium, IEEE International Geoscience and Remote Sens-560

ing Symposium (IGARSS). Retrieved from https://doi.org/10.1109/561

IGARSS.2017.8127581562

Baklanov, A., Schlünzen, K., Suppan, P., Baldasano, J., Brunner, D., Aksoyoglu, S.,563

. . . Zhang, Y. (2014). Online coupled regional meteorology chemistry models564

in europe: current status and prospects. Atmos. Chem. Phys., 14 , 317-398.565

Bellouin, N., Quaas, J., Gryspeerdt, E., Kinne, S., Stier, P., Watson-Parris, D.,566

. . . Stevens, B. (2020). Bounding global aerosol radiative forcing of cli-567

mate change. Reviews of Geophysics, 8 , e2019RG000660. Retrieved from568

https://doi.org/10.1029/2019RG000660569

Benedetti, A., & Vitart, F. (2018). Can the direct effect of aerosols improve subsea-570

sonal predictability? Mon. Wea. Rev., 146 , 3481-3498.571

Bhattacharjee, P. S., Zhang, L., Baker, B., Pan, L., Montuoro, R., Grell, G. A., &572

McQueen, J. T. (2023). Evaluation of aerosol optical depth forecasts from573

noaa’s global aerosol forecast model (gefs-aerosols) (Vol. 38) (No. 2). Retrieved574

–23–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

from https://doi.org/10.1175/waf-d-22-0083.1575

Brock, C. A., Froyd, K. D., Dollner, M., Williamson, C. J., Schill, G., Murphy,576

D. M., . . . Wofsy, S. C. (2021). Ambient aerosol properties in the re-577

mote atmosphere from global-scale in situ measurements. Atmos. Chem.578

Phys., 21 , 15023–15063. Retrieved from https://doi.org/10.5194/579

acp-21-15023-2021580

Buchard, V., Randles, C. A., da Silva, A. M., Darmenov, A., Colarco, P. R., Govin-581

daraju, R., . . . Yu, H. (2017). The merra-2 aerosol reanalysis, 1980-onward,582

part ii: Evaluation and case studies. J. Climate, 30 , 6851-6872. Retrieved from583

https://doi.org/10.1175/JCLI-D-16-0613.1584

Carslaw, K. S., Lee, L. A., Reddington, C. L., Pringle, K. J., Rap, A., Forster,585

P. M., . . . Pierce, J. R. (2013). Large contribution of natural aerosols586

to uncertainty in indirect forcing. Nature, 503 , 67–71. Retrieved from587

https://doi.org/10.1038/nature12674588

Chin, M., Ginoux, P., Kinne, S., Torres, O., Holben, B. N., Duncan, B. N., . . .589

Nakajima, T. (2002). Tropospheric aerosol optical thickness from the go-590

cart model and comparisons with satellite and sun photometer measurements.591

J. Atmos. Sci., 59 , 461-483.592

Chin, M., Rood, R. B., Lin, S.-J., Müller, J.-F., & Thompson, A. M. (2000). Atmo-593

spheric sulfur cycle in the global model gocart: Model description and global594

properties. J. Geophys. Res., 105 (24), 24,661-24,687.595

Colarco, P., da Silva, A., Chin, M., & Diehl, T. (2010). Online simulations of global596

aerosol distributions in the nasa geos-4 model and comparisons to satellite and597

ground-based aerosol optical depth. J. Geophys. Res., 115 , D14207. Retrieved598

from https://doi:10.1029/2009JD012820599

Fast, J., Jr., W. G., Easter, R., Zaveri, R., Barnard, J., Chapman, E., . . . Peckham,600

S. (2006). Evolution of ozone, particulates, and aerosol direct forcing in an ur-601

ban area using a new fully-coupled meteorology, chemistry, and aerosol model.602

J. Geophys. Res., 111 (5), D21305.603

Frassoni, A., Benedettio, A., Vitarto, F., & Engelbrecht, F. (2021). The second604

phase of the wgne aerosol project: Evaluating aerosol impacts on numerical605

weather and subseasonal prediction. Retrieved from https://wgne.net/606

bluebook/uploads/2019/docs/07 Frassoni Ariane The Second Phase of607

the WGNE Aerosol Project.pdf608

Freitas, S., da Silva, A., Benedetti, A., Grell, G., Jorba, O., & Mokhtari, M. (2015).609

Evaluating aerosol impacts on numerical weather prediction: A wgne initiative.610

Symposium on Coupled Chemistry-Meteorology/Climate Modeling, Switzer-611

land.612

Freitas, S. R., Longo, K. M., Chatfield, R., Latham, D., Silva Dias, M. A. F., An-613

dreae, M. O., . . . Carvalho Jr., J. A. (2007). Including the sub-grid scale614

plume rise of vegetation fires in low resolution atmospheric transport mod-615

els. Atmos. Chem. Phys., 7 , 3385–3398. Retrieved from https://doi.org/616

10.5194/acp-7-3385-2007617

Grell, G. A., & Baklanov, A. (2011). Integrated modeling for forecasting weather618

and air quality: A call for fully coupled approaches. Atmos. Environ., 45 ,619

6845–6851.620

Grell, G. A., Freitas, S. R., Stuefer, M., & Fast, J. D. (2011). Inclusion of biomass621

burning in wrf-chem: Impact of wildfires on weather forecasts. Atmos. Chem.622

Phys., 11 , 1–16. Retrieved from https://doi:10.5194/acp-11-1-2011623

Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G., Skamarock,624

W. C., & Eder, B. (2005). Fully coupled “online” chemistry within the wrf625

model. Atmos. Environ., 39 , 6957–6975.626

Hansen, J., Lacis, A., Ruedy, R., & Sato, M. (1992). Potential climate impact of627

mount pinatubo eruption. Geophys. Res. Lett., 19 , 215–218. Retrieved from628

https://doi.org/10.1029/91GL02788629

–24–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Harris, L., Chen, X., Putman, W., Zhou, L., & Chen, J. H. (2021). A scientific de-630

scription of the gfdl finite-volume cubed-sphere dynamical core. NOAA techni-631

cal memorandum OAR GFDL. Retrieved from https://doi.org/10.25923/632

6nhs-5897633

Haustein, K., Pèrez, C., Baldasano, J. M., Jorba, O., Basart, S., Miller, R. L., . . .634

Schladitz, A. (2012). Atmospheric dust modeling from meso to global scales635

with the online nmmb/bsc-dust model – part 2: Experimental campaigns636

in northern africa. Atmos. Chem. Phys., 12 , 2933–2958. Retrieved from637

https://doi.org/10.5194/acp-12-2933-2012638

Haywood, J. M., Allan, R. P., Culverwell, I., Slingo, T., Milton, S., Edwards, J., &639

Clerbaux, N. (2005). Can desert dust explain the outgoing longwave radiation640

anomaly over the sahara during july 2003? J. Geophys. Res., 110 , D05105.641

Heinzeller, D., Bernardet, L., Firl, G., Zhang, M., Sun, X., & Ek, M. (2023).642

The common community physics package (ccpp) framework v6. Geosci.643

Model Dev., 16 , 2235-2259. Retrieved from https://doi.org/10.5194/644

gmd-16-2235-2023645

Hersbach, H., Bell, B., Serrisford, P., Hirahara, S., Horànyi, A., noz Sabater,646
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Key Points:14

• The incorporation of aerosol-radiation interaction (ARI) in the coupled atmosphere-15

ocean-sea ice model UFS-CCPP-Chem indicates a net cooling effect at the top of16

the atmosphere on subseasonal prediction17

• Two simulations, one with an interactive aerosol model and the other using the18

prescribed aerosol climatology, demonstrated comparable ARI effects and corre-19

sponding meteorological impacts on weekly and monthly scales20

• Substituting the interactive aerosol model with the aerosol climatology presents21

a cost-effective alternative in subseasonal applications22
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Abstract23

This study investigates the effects of aerosol-radiation interaction on subseasonal24

prediction using the Unified Forecast System (UFS) with an ocean, a sea ice and a wave25

component, coupled to an aerosol component. The aerosol component is from the cur-26

rent NOAA operational GEFSv12-Aerosols model, which includes the GOCART aerosol27

modules simulating sulfate, dust, black carbon, organic carbon, and sea-salt. The mod-28

eled aerosol optical depth (AOD) is compared to reanalysis from Modern-Era Retrospec-29

tive analysis for Research and Applications, Version 2 (MERRA2) and observations from30

Moderate Resolution Imaging Spectro-radiometer (MODIS) satellite and Atmospheric31

Tomography (ATom) aircraft. Despite biases primarily in dust and sea salt, a good agree-32

ment in AOD is achieved globally. The simulated radiative forcing (RF) from the total33

aerosols at the top of the atmosphere is approximately -2.5 W/m2 or -16 W/m2 per unit34

AOD globally. This is consistent with previous studies.35

In subsequent simulations, prognostic aerosol component is substituted with cli-36

matological aerosol concentrations derived from initial experiments. While regional dif-37

ferences in RF are noticeable in specific events between these two experiments, the re-38

sulting RF, surface temperature, geopotential height at 500 hPa and precipitation, show39

similarities in multi-year subseasonal applications. This suggests that given the current40

capacities of the aerosol modeling, adopting a climatology of aerosol concentrations as41

a cost-effective substitute for the intricate aerosol module may be a practical approach42

for subseasonal applications.43

Plain Language Summary44

This research explores how the interaction between aerosols and radiation influ-45

ences weather predictions over several weeks. Our forecast system consists of six com-46

ponents, including the atmosphere, land, ocean, sea ice, wave and aerosols. Despite some47

differences, the simulated aerosol optical depth aligns with observations. The impact of48

these aerosols on the Earth’s energy balance results in a net cooling effect.49

Furthermore, we conduct parallel experiments to assess a simpler method: prescrib-50

ing aerosol climatology instead of utilizing an interactive aerosol model. We find numer-51

ous similarities in its influence on radiation at the top of the atmosphere and on mete-52

orology at the subseasonal timescale between these two approaches, despite the absence53

of interannual variabilities in the aerosol climatology. Our findings suggest that adopt-54

ing this simplified approach of prescribing aerosol climatology for subseasonal predictions55

might offer cost-saving benefits without compromising accuracy.56

1 Introduction57

Climate change is driven by changes in the earth’s energy budget, which can be quan-58

tified by the radiative forcing (RF) measured at the top of the atmosphere (e.g., IPCC,59

2013). A positive RF indicates that the earth system is absorbing energy. The largest60

increase in RF in recent years has been from the concentration of well-mixed greenhouse61

gases (GHGs) in the atmosphere, estimated to be 2.8 W/m2 for 2011 or 3.3 W/m2 for62

2019 relative to 1750 (IPCC, 2013, 2021), where the total aerosol effective RF which in-63

cludes the interaction of aerosols with solar radiation and cloudiness, partially offsets this64

positive RF with negative estimates of -0.9 W/m2 for 2011 or –1.1 W/m2 for 2019.65

Atmospheric aerosols have an impact on weather and climate by interacting with66

solar radiation through scattering and absorbing light, affecting the three-dimensional67

temperature fields in the direct effect and influencing cloud properties, cloudiness, and68

precipitation in the indirect effect. Any changes in cloud properties resulting from aerosol-69

radiation interaction are classified as the semi-direct effect (e.g., J. M. Mitchell, 1971;70
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Twomey, 1974; IPCC, 2013). Aerosols originate from both natural and anthropogenic71

sources and are removed from the atmosphere by precipitation and other processes within72

a few days or weeks. Due to different aerosol species and particle sizes, they interact with73

climate in a far more complicated manner than GHGs.74

Climate models have integrated aerosol effects for several decades with varying com-75

plexity (e.g., Hansen et al., 1992; Le Treut et al., 1998; Ming et al., 2005; Stier et al., 2005).76

It is only with the recent development of online modeling systems that showed the im-77

portance of aerosol direct effects in numerical weather prediction (NWP) models (e.g.,78

Grell & Baklanov, 2011; Reale et al., 2011; Baklanov et al., 2014). For instance, includ-79

ing radiative effects of dust aerosols improved the radiation balance of NWP models (Haywood80

et al., 2005; Pérez et al., 2006) and helped forecast of African easterly Jet (Tompkins et81

al., 2005; Reale et al., 2011). Rodwell and Jung (2008) demonstrated an improvement82

in local medium-range forecast skill and a reduction in mean extratropical circulation83

errors in the ECMWF simulations when a more realistic dust aerosol climatology was84

employed. Grell et al. (2011) showed that aerosols resulting from wildfires had a signif-85

icant influence on NWP, using the Weather Research and Forecasting model coupled with86

Chemistry (WRF-Chem, Grell et al., 2005; Fast et al., 2006) with complex chemistry and87

direct/indirect effects. Haustein et al. (2012) provided evidence of a connection between88

dust emissions and weather patterns over synoptic-to-seasonal time scales. Mulcahy et89

al. (2014) noted large regional improvements in radiation and temperature forecasts from90

the direct and indirect effects of aerosols in the Met Office’s Unified Model for NWP, and91

recommended choosing an appropriate level of aerosol complexity that fits its applica-92

tions. Furthermore, aerosol effects have also been shown to impact extreme weather events,93

such as tornadoes and hurricanes, in weather forecast models (e.g., Sun et al., 2008; Reale94

et al., 2014; Saide et al., 2015; Pan et al., 2020). Recently, Murakami (2022) quantified95

the impact of anthropogenic aerosols on tropical cyclone activity using the System for96

Prediction and Earth System Research (SPEAR) model from Geophysical Fluid Dynam-97

ics Laboratory (GFDL). Benedetti and Vitart (2018) investigated the potential of includ-98

ing interactive aerosols to improve monthly prediction in the ECMWF’s IFS system, with99

a hypothesis that aerosol variability is connected to the different phases of the Madden–Julian100

oscillation (Madden & Julian, 1971).101

Despite a large uncertainty in aerosol observations and modeling (Carslaw et al.,102

2013; Mann et al., 2014; Reddington et al., 2017; Vogel et al., 2022), substantial progress103

has been made in global aerosol modeling for operational aerosol forecasts. For instance,104

the International Cooperative for Aerosol Prediction (ICAP) project with nine global105

aerosol models has shown a higher skill in the multi-model ensemble mean than in the106

individual model (Reid et al., 2011; Xian et al., 2019), even though it does not consider107

aerosol feedback on meteorology. ICAP has paved the way for establishing quasi-real time108

aerosol reanalysis from multi-model ensembles for numerical weather prediction (NWP)109

applications. On the other hand, there is an ongoing debate regarding the computational110

cost of modeling interactive aerosol impact compared to the benefits and whether us-111

ing some form of aerosol climatology or reanalysis is feasible. This is one question we112

attempt to address in this study from the perspective of aerosol-radiation interaction on113

subseasonal applications.114

The WMO Working Group on Numerical Experimentation (WGNE) initiated a project115

to evaluate the impacts of aerosols on numerical weather prediction. The project exam-116

ined how dust, smog and smoke scenarios affected surface radiation and temperature with117

eight models from six countries, including several operational NWP models (S. Freitas118

et al., 2015). Currently, the WGNE Aerosol project is in its second phase, focused on119

evaluating the impact of aerosols on subseasonal prediction (Frassoni et al., 2021). Our120

study is part of this project, and we use the coupled Unified Forecast System (UFS), NOAA’s121

next operational coupled atmosphere-ocean-sea ice-land system for S2S predictions. Our122

goal is to document these experiments with detailed analysis of the aerosol radiative ef-123
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fects on S2S prediction. The experimental setup is described in Section 2. Section 3 presents124

the results of the aerosol-radiation interaction analysis on both the global and regional125

scales, where two-way feedback between aerosols and meteorology is simulated with ei-126

ther an interactive aerosol model or a prescribed aerosol climatology. A summary and127

conclusion of findings are presented in Section 4.128

2 Model Setup and Experiments129

This study investigates the radiative forcing of direct and semi-direct aerosol-radiation130

interaction in the UFS using the GFDL single-moment microphysics parameterization.131

The indirect impact between aerosols and clouds is not considered here but will be the132

subject of future experiments when a double-moment microphysics parameterization is133

used.134

2.1 Model Components135

A community effort, including major contributions from the Environmental Mod-136

eling Center (EMC) at the National Centers for Environmental Prediction (NCEP), is137

underway in developing the UFS for seamless weather prediction across time scales, rang-138

ing from short-range to seasonal. The UFS model framework comprises the GFDL Finite-139

Volume cubed-sphere dynamical core (FV3) (Harris et al., 2021), the Global Forecast140

System (GFS) physics package, the land surface model, the GFDL Modular Ocean Model141

MOM6 (Harris et al., 2021), the Sea Ice Model CICE from Los Alamos National Lab-142

oratory (Hunke et al., 2015) and the wave model WAVEWATCH III (Tolman et al., 2002).143

Its subseasonal forecast skills are evaluated in Stefanova et al. (2022) through a series144

of incremental prototypes. This study is based on the version of Prototype 6 (P6), which145

uses FV3 with the GFS physics package version 16 (GFSv16, NOAA, 2021) via the Com-146

mon Community Physics Package (CCPP, Heinzeller et al., 2023), the Noah land sur-147

face model (K. Mitchell, 2005) and CICE6. We coupled a revised version of P6 to the148

aerosol component from the GEFSv12-Aerosols model as described in Zhang et al. (2022).149

Since the aerosol component is coupled inline using CCPP, we refer to the resulting model150

system as UFS-CCPP-Chem in this study, as shown in Table 1.151

2.2 Aerosol Component152

The aerosol component is based on WRF-Chem, which employs the aerosol mod-153

ules from the NASA Goddard Chemistry Aerosol Radiation and Transport model (GOCART,154

Chin et al., 2000, 2002). Five species of aerosols are included in this study, which are sul-155

fate, dust, black carbon (BC), organic carbon (OC) and sea-salt. GOCART uses a sim-156

plified sulfur chemistry for sulfate simulation, bulk aerosols of BC, OC, and sectional dust157

and sea-salt. GEFSv12-Aerosols updated the sea-salt scheme based on the 2nd-generation158

GOCART model (Colarco et al., 2010) and a new dust emission scheme called FENG-159

SHA, with a distinct approach to treat biomass burning and dust emissions (Zhang et160

al., 2022). Both dust and sea-salt have five size bins.161

During the inline coupling, the meteorological fields, including the land-sea mask,162

vegetation type, and surface fields, are imported from the atmospheric model to drive163

the aerosol component. The aerosol component updates the aerosol extinction coefficient,164

single scattering albedo, and asymmetry factor for each aerosol species and passes them165

to the radiation scheme in atmospheric physics.166

The monthly anthropogenic emission inventories from the Community Emissions167

Data System based on 2014 inventory (CEDS-2014, Hoesly et al., 2018) are used. The168

daily fire emissions are obtained from the ECMWF Global Fire Assimilation System (GFAS,169

Kaiser et al., 2012), which assimilates fire radiative power observations from satellite-170

based sensors of NASA Terra Moderate Resolution Imaging Spectro-radiometer (MODIS,171
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Table 1. Model components, resolutions and initial conditions used in the UFS-CCPP-Chem

experiments

Components Modules Resolutions Initial Conditions

Atmosphere FV3 & GFSv16 25km, 64 layers CFSR May 1 & Sept. 1, 2003-2019

Ocean MOM6 1/4◦, 75 layers CPC-3DVar (2011-2017) CFSR (other times)

Sea Ice CICE6 1/4◦ CPC-CSIS

Wave WW3 1/2◦ x 1/2◦ (rest)

Aerosol GEFSv12-Aerosols same as atmosphere 30-day free spin-up (from zero)

Levy et al., 2013; Sayer et al., 2014) and Aqua MODIS active fire products to produce172

daily estimates of emissions from wildfires and biomass burning. GEFSv12 Aerosols im-173

plements an updated one-dimensional time-dependent cloud module from WRF-Chem174

(Grell et al., 2011), which is also used at EMC in the High-Resolution Rapid Refresh (HRRR)-175

Smoke model to calculate injection heights and emission rates online (S. R. Freitas et176

al., 2007; Ahmadov et al., 2017). The resulting AOD from GEFSv12-Aerosols agrees well177

with satellite and aircraft observations in the short-range forecasts (Zhang et al., 2022;178

Bhattacharjee et al., 2023).179

Regarding the cost estimate for the aerosol component, the CCPP version of the180

GEFSv12-Aerosols model (Zhang et al., 2022), with the same aerosol component used181

in the UFS-CCPP-Chem in this study, takes approximately 1129 core hours for a 7-day182

forecast at a standalone atmospheric configuration. This is nearly double the core hours183

of running the same model without the active aerosol component, which consumes 580184

core hours. Both simulations employ 320 cores with an 8x8 grid layout and without cou-185

pling to ocean, ice and wave modules.186

2.3 Initial Conditions, Ensemble Members and Resolutions187

We followed the protocol from the WMO WGNE S2S (Frassoni et al., 2021), and188

initialized the model on May 1st and September 1st, respectively, from 2003 to 2019. The189

integration time is 32 days for all experiments. There are five ensemble members, in which190

the atmospheric initial conditions are time-shifted by up to ± 2 days, while the initial191

conditions for the rest of the modules remain the same.192

Table 1 displays the resolution of the atmospheric and aerosol modules in the UFS-193

CCPP-Chem model, which are approximately 25km (C384) and consist of 64 vertical194

layers. The ocean model has a resolution of 1/4◦ horizontally and includes 75 vertical195

layers. The ice model shares the horizontal grid with the ocean model. The wave model196

is on the 1/2◦ x 1/2◦ grid. Atmospheric and oceanic initial conditions rely on CFSR (Saha197

et al., 2010), except for the years 2011-2017, when the ocean initial conditions used the198

3DVar data from NCEP/CPC. NCEP/CPC also provides the sea ice initial conditions199

(CSIS, Liu et al., 2019). The wave model starts at rest. The aerosol initial conditions200

are from free spin-up runs by integrating the UFS-CCPP-Chem model for 30 days from201

zero aerosol concentration, prior to the scheduled initial date of May 1st or September202

1st.203
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Table 2. Three sets of experiments used in this study.

Experiments Aerosol Sources

Prognostic aerosols Aerosol module active
(ProgAer) (with prognostic aerosol)

Climatological aerosols Aerosol module inactive
(ClimAer) (use ProgAer monthly climatology)

No aerosols Aerosol module inactive
(NoAer) (no aerosol interaction considered)

2.4 Experimental Design204

Climate and weather models can integrate aerosol effects in multiple ways, and three205

commonly practiced methods aim to reduce computational costs:206

• Updating aerosol loadings as time changes,207

• Using climatological aerosols that is fixed in time or vary with season or month,208

• Ignoring aerosol loadings and its impact on meteorology.209

This study evaluates and quantifies the radiative forcing from aerosols and the impact210

on meteorology, in each of these three options. The first set of experiments employs UFS-211

CCPP-Chem with ‘prognostic aerosols’ (ProgAer) that simulates the evolution of five212

tropospheric aerosol species, while enabling the aerosol feedback on radiation. Two more213

parallel sets of experiments are conducted with UFS but exclude the costly aerosol com-214

ponent. They utilize either prescribed climatological aerosol concentrations (ClimAer)215

or zero aerosol concentration (NoAer) instead of the aerosol module. Note that the cli-216

matological aerosol concentrations used in ClimAer is a monthly model climatology gen-217

erated from Experiment ProgAer, as illustrated in Table 2. This is done to ensure that218

the mean aerosol concentrations in Experiments ClimAer and ProgAer are the same.219

2.5 Observations from Satellites and Aircrafts220

We verified our modeled AOD using the MODIS Collection 6.1 Level-3 AOD dataset221

(Levy et al., 2013) from the Aqua satellite, where the merged AOD product combines222

retrievals from the Dark Target and Deep Blue algorithms to provide a consistent data223

set that spans various surface types from oceans to bright deserts (Sayer et al., 2014).224

We compared each of the 5 modeled AOD components against the Modern-Era Retro-225

spective analysis for Research and Applications, Version 2 (MERRA2, Buchard et al.,226

2017), which is an assimilation product of the Global Modeling and Assimilation Office227

at NASA.228

The AOD dataset from the NASA Atmospheric Tomography Mission (ATom, Brock229

et al., 2021) comprises merged data from all instruments on aircraft flights during each230

of the four seasons from 2016 to 2018. It offers a comprehensive global-scale sampling231

of the atmosphere, profiling continuously from 0.2 to 12 km altitude and providing de-232

tailed latitude, longitude and altitude information. In this study we compared ATom-233

4 with our results, which overlaps with our experiments in May 2018.234

We use the Clouds and the Earth’s Radiant Energy System (CERES, Wielicki et235

al., 1996) data to validate radiative fluxes and cloud coverage in the model experiments.236

CERES provides global composite radiative fluxes, including top-of-atmosphere (TOA)237
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Figure 1. Monthly mean AOD at 550nm during 2003-2019 in May (upper) and September

(lower) from MODIS (left), MERRA2 (middle) and Experiment ProgAer (right). Global mean is

shown in the upper right corner.

shortwave and longwave, and cloud properties based on each CERES 20 km field of view.238

We employ the Edition 4.2 product of the CERES Energy Balance and Filled (EBAF)239

observations (Loeb et al., 2018) for the period of 2003-2019. The TOA fluxes and the240

cloud properties of CERES EBAF are monthly averages on a 1◦x1◦ latitude-longitude241

grid. The estimated uncertainty in the regional monthly mean all-sky TOA flux ranges242

from 2.5 W/m2 to 3 W/m2 in this product.243

The ERA5 global reanalysis (Hersbach et al., 2020) serves as the reference dataset244

for verifying the modeled surface temperature and geopotential height at 500 hPa (H500).245

Modeled precipitation is validated utilizing GPCP (Huffman et al., 2001), a composite246

dataset integrating in situ gauge data with satellite observations of daily precipitation.247

3 Model Results and Comparison to Observations248

All verification in each of the three experiments in this study is conducted using249

the ensemble means from the five members discussed earlier, after interpolated onto a250

1◦ horizontal resolution.251

3.1 Aerosol Optical Depth252

Fig. 1 presents monthly averages of aerosol optical depth at 550 nm1 from Exper-253

iment ProgAer compared with satellite estimates from MODIS and MERRA2 reanal-254

ysis for May and September during the period from 2003 to 2019. The modeled results255

1 All AODs in this manuscript are at 550 nm.
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Figure 2. Each of the five components in AOD at 550 nm, sulfate, dust, BC, OC and sea-salt

(top to bottom), from MERRA2 and Experiment ProgAer in May (left two rows) and September

(right two rows) averaged over years 2003-2019. Note that BC AOD is enlarged by a factor of 5

in order to share the colorbar.

effectively captured the geographic patterns of AOD shown in MODIS and MERRA2,256

with positive biases in North Africa as well as South and East Asia. The AOD distri-257

bution between MODIS and MERRA2 shows good agreement in general, considering that258

MODIS is one of the various datasets assimilated by MERRA2. However, it is notewor-259

thy that the magnitude of AOD from MERRA2 tends to be lower than that from MODIS260

across both months. Note that there are large values in MODIS over the Arctic region261

in May.262

To further investigate the root in AOD bias, the five AOD components used in the263

models, namely sulfate, dust, BC, OC and sea-salt, are compared to MERRA2 in May264

and September in Fig. 2, using the 2003-2019 monthly averages. Among these five com-265

ponents, the biggest bias is in dust AOD over the Saharan region, where it has an ex-266

cessive dust loading compared to MERRA2 in both months. This bias in the modeled267

dust AOD may be related to the bias in dust emission in the ‘FENGSHA’ scheme or in268
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Figure 3. AOD at 550 nm in May (left) and September (right) during 2003-2019 from

MODIS, MERRA2 and model experiments ProgAer and ClimAer globally and in three cho-

sen regions of northern Africa (0 - 30◦E, EQ - 30◦N), southern Africa (0 - 30◦E, EQ - 30◦S) and

east Asia (100◦E - 130◦E, 15◦N - 45◦N).

the modeled surface meteorology. The global mean sulfate AOD, shown in the upper right269

corner, is close to MERRA2, despite a larger local maximum over East Asia. The model270

underestimates OC/BC AOD in Central Africa and South America in May, likely from271

a weaker than observed biomass burning prescribed from the GFAS dataset. In contrast,272

the modeled sea-salt AOD is higher than MERRA2 over most of the ocean surface, par-273

ticularly in the north Indian Ocean.274

The global mean AOD values from MODIS, MERRA2, Experiments ProgAer and275

ClimAer are shown in the upper panel of Fig. 3 in May and September during the pe-276

riod from 2003 to 2019. The 17-year average for each product is listed in the upper right277

corner. The AOD from Experiment ProgAer shares a lot in common with that from MODIS,278

not only in the mean value but also in the interannual variabilities. As expected, the AOD279

from Experiments ClimAer is close to the average of that from Experiments ProgAer dur-280

ing this period, where the former uses the model climatology from the latter. The global281

mean AOD value from MERRA2 is the lowest among these products both in May and282

September during each of the 17 years. Additionally, Fig. 3 displays the area mean in283

several chosen regions with high AOD loading, including northern Africa (0 - 30◦E, EQ284

- 30◦N), southern Africa (0 - 30◦E, EQ - 30◦S) and east Asia (100◦E - 130◦E, 15◦N - 45◦N),285
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from MODIS, MERRA2 and Experiments ProgAer and ClimAer. The modeled AOD286

consistently exceeds satellite observations and reanalysis data in northern Africa in both287

May and September each year. This positive bias in AOD, primarily attributed to dust288

as shown in Fig. 2, contributes to the overall positive bias seen in the total AOD in the289

model experiments. Moreover, the AOD dominated by aerosols from biomass burning290

in southern Africa is much stronger in September than in May in all products. The mod-291

eled AOD over east Asia is relatively stable throughout the years and is somewhat higher292

than that from MODIS in both May and September, mostly from the sulfate components293

shown in Fig. 2.294

The zonal mean AOD average of 2003-2019 and its standard deviation during this295

period are shown in the top panel of Fig. 4, for MODIS, MERRA2 and Experiment Pro-296

gAer in May and September. As shown in Fig. 1, one notable aspect is that the model297

tends to overestimate AOD between 10◦N - 30◦N, compared to MODIS. This bias mostly298

comes from dust and somewhat from sulfate, as shown in Fig. 2. The interannual vari-299

abilities of the zonal mean AOD in Experiment ProgAer, shown by the standard devi-300

ation, match that in MODIS and MERRA2. A larger interannual variability of AOD is301

seen in May at high latitudes in the Northern Hemisphere from Experiment ProgAer.302

To explore its root, zonal mean AOD from each of the five components, sulfate, dust,303

BC, OC and sea-salt, and their standard deviations are also shown in Fig. 4. It turns304

out that it is the OC component that has a large standard deviation north of 40◦N, which305

indicates a large interannual variability of OC at mid-high latitudes in May. Among these306

five components, another source of discrepancy in AOD between the model and MERRA2307

is in the sea-salt, which occurred at most latitudes where the ocean exists. The relatively308

small standard deviation in most region makes it feasible to have consistent results when309

using time-varying aerosols versus climatological aerosols.310

Fig. 5 compares the total AOD and its components from Experiment ProgAer with311

a single flight circuit from the ATom-4 aircraft observations in the Pacific and Atlantic312

sections during May 2018. The modeled total AOD matches well with ATom-4 obser-313

vations at all latitudes in the Pacific and Atlantic sections, except for a positive bias at314

high latitudes in the Pacific and an even larger positive bias at low latitudes in the north-315

ern Atlantic. The component analysis reveals that the modeled AOD from combined sul-316

fate and OC mostly accounts for the large positive bias at high latitudes in the North317

Pacific and is in better agreement with ATom-4 in the Atlantic section, except for a spike318

near 45◦N. The positive bias in the Atlantic mostly comes from dust between the equa-319

tor and 20◦N. The modeled sea-salt AOD has a positive bias at most latitudes in both320

ocean basins. The modeled BC AOD, despite being smaller in magnitude compared to321

other components, is close to that from ATom-4 in both ocean basins. All the findings322

here are consistent with those in Fig. 4, where comparisons are against MODIS and MERRA2.323

In summary, the modeled AOD distributions in Experiment ProgAer with time-324

varying prognostic aerosols are generally consistent with satellite and aircraft observa-325

tions as well as reanalysis estimates, albeit with some noticeable biases. For instance,326

the model tends to overestimate dust AOD in West Africa and offshore compared to MODIS327

and ATom-4 data. Additionally, the model’s estimate of sea-salt AOD is higher over most328

ocean basins than what is observed by MODIS and ATom-4. The largest interannual vari-329

ability in modeled OC AOD among all components in May over the northern mid to high330

latitudes is consistent with that in MERRA2 over a 17-year period, despite being higher331

than ATom-4 observations in 2018 over the North Pacific. In addition, the AOD from332

Experiment ClimAer with a prescribed monthly climatology of aerosol concentrations333

derived from Experiment ProgAer, closely aligns with the 17-year mean seen in the lat-334

ter.335

Table 3 presents a global mean comparison of the five AOD components between336

the modeling study in Chin et al. (2002) and Experiment ProgAer. The annual mean in337

1990 from Chin et al. (2002) and the monthly mean averaged over 17 years from Exper-338
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Figure 4. The zonal mean and the standard deviation for total AOD550 from MODIS,

MERRA2 and Experiment ProgAer (top) and its components from sulfate, dust, BC, OC and

sea-salt from MERRA2 and Experiment ProgAer during 2003-2019 in May (left) and September

(right).
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Table 3. Five AOD components from Chin et al. (2002) and Experiment ProgAer in this

study.

AOD Chin et al. (2002) May/Sep
Year 1990 2003-2009

Dust 0.051 0.041/0.026
Sulfate 0.040 0.040/0.036
Sea salt 0.027 0.070/0.071
OC 0.017 0.024/0.031
BC 0.007 0.005/0.006

iment ProgAer show comparable magnitudes for each component, except for the sea-salt339

AOD, where Experiment ProgAer is approximately 2.5 times larger than in Chin et al.340

(2002). This difference is greater compared to both the MERRA2 and ATom compar-341

isons.342

3.2 Radiative Forcing at the Top of the Atmosphere343

The radiative forcing at the top of the atmosphere is defined as the difference be-344

tween the downward and upward radiative flux, expressed as345

RFTOA = FluxTOA
Downward − FluxTOA

Upward

In this fully coupled UFS-CCPP-Chem model, we don’t differentiate between RF346

and effective RF as in IPCC (2013) since both are typically the same and all surface con-347

ditions are allowed to adjust. Fig. 6 shows the RF at TOA in the CERES EBAF dataset,348

as well as the model bias against CERES EBAF for the three experiments mentioned349

earlier, all based on all-sky conditions. In May and September, the positive bias in RF350

(positive downward) is predominant in all three experiments, with a global mean rang-351

ing from 6 to 7 W/m2 in Experiments ProgAer and ClimAer and up to 10 W/m2 in Ex-352

periment NoAer. The bias is particularly large along the eastern boundary of the ocean353

basin off the coast of California, Chile and Angola. Comparison between the experiments354

with and without aerosols gives an estimate of the total aerosol effects on RF to be about355

-2.5 W/m2 globally, which is one order of magnitude bigger than the global mean dif-356

ference in RF between Experiments ProgAer and ClimAer. Meanwhile, the bias in RF357

from the model physics is several times larger than the total aerosol effects on RF.358

To further investigate the distribution of the aerosol-radiation effects, we use the359

equations below360

∆RFTOA
ProgAer = RFTOA

ProgAer − RFTOA
NoAer

361

∆RFTOA
ClimAer = RFTOA

ClimAer − RFTOA
NoAer

to represent the aerosol radiative effects in Experiments ProgAer and ClimAer, which362

is defined as the difference in RF from Experiment NoAer. The left and middle columns363

of Fig. 7 show ∆RFTOA
ProgAer and ∆RFTOA

ClimAer at TOA averaged for May and Septem-364

ber over 17 years. The patterns are dominated by the negative flux mostly at low lat-365

itudes. The difference between Experiments ProgAer and ClimAer shown on the right366

panel of Fig. 7 is much smaller, suggesting the model-simulated RF with prognostic aerosols367

is similar to that using aerosol climatology on the subseasonal time scale when evalu-368

ated over multiple years.369

To examine the correlation between ∆RFTOA
ProgAer and ∆RFTOA

ClimAer with respect370

to AOD values, we plotted the zonal mean of the left and middle columns in Fig. 7 as371
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Figure 5. Upper: geographic distribution of the total AOD550 from Experiment ProgAer

overlaying the ATom-4 observations; Lower: modeled AOD (red) shown in the upper panel and

its dust, sea-salt, sulfate+OC+smoke and BC components and its comparison to ATom4 (black)

in May 2018 in the Pacific (left) and Atlantic (right) section.
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Figure 6. The radiative forcing at TOA (W/m2, positive downward) in CERES EBAF and

biases in Experiments ProgAer, ClimAer and NoAer from CERES EBAF in May (upper) and

September (lower) over 17 years.

Figure 7. Difference in radiative forcing at TOA (W/m2, positive downward) of Experiments

ProgAer (upper) and ClimAer (lower) from Experiment NoAer, respectively, in May (upper) and

September (lower).
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Figure 8. Zonal mean radiative forcing at TOA (W/m2, positive downward) in Experiments

ProgAer and ClimAer from NoAer and their AOD in May (upper) and September (lower). Note

that ‘negative’ AOD is plotted.
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Figure 9. Upper: normalized radiative forcing at TOA per unit AOD, both are zonal mean,

from Experiments ProgAer and ClimAer in May (solid) and September (dashed). Lower: five

AOD components in May (left bar) and September (right bar).

–16–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Figure 10. Cloud coverage (%) in CERES EBAF (left) and biases in Experiments ProgAer,

ClimAer and NoAer (2nd to 4th column) from CERES EBAF in May (upper) and September

(lower).

solid red and blue lines in Fig. 8, respectively, along with the zonal mean ‘negative’ AOD372

in dashed lines. The two pairs of curves are well correlated, with the maximum AOD373

and minimum ∆RFTOA co-located near 15◦N, and some discrepancies between the two374

at certain latitudes. It is worth noting that changes in RF per unit AOD depend on var-375

ious physical and chemical properties of the aerosols (Bellouin et al., 2020).376

To further investigate the efficiency of RF, we calculated the normalized ∆RFTOA,377

which is the ratio of ∆RFTOA and AOD, both zonal mean, and plotted it in Fig. 9(a)378

for May and September. The normalized ∆RFTOA between Experiments ProgAer and379

ClimAer are very close in magnitude in both months, varying from 0 to -30 W/m2 per380

unit AOD, depending on latitudes and seasons. The ratio becomes close to zero south381

of 45◦S, where the sea-salt component dominates. It seems that sea-salt has a relatively382

lower effect on RF than other components. There are two peak values occurring at the383

equator and 30◦S, with different magnitudes in May and September. The different ra-384

tios in season may be related to the time-varying aerosol compositions, as shown in Fig. 9(b),385

where the magnitude of each AOD component is shown with latitudes for May and Septem-386

ber averaged from 2003 to 2019. There are seasonal and latitudinal variabilities in the387

magnitude of each AOD component between May and September, particularly for OC388

and dust. These results are consistent with -23.7 ± 3.1 W/m2 per unit AOD reported389

in Myhre et al. (2013).390

3.3 Cloud Coverage391

Fig. 10 shows the total cloud coverage from the CERES EBAF dataset as the ‘truth’,392

along with the biases in modeled cloud cover from three experiments: ProgAer, ClimAer393

and NoAer. All products are monthly averages in May and September from 2003 to 2019.394

The global mean cloud coverage in May and September in the CERES EBAF is 67.7%395

and 67.0%, respectively. The modeled cloud coverage from all three model experiments396

has a similar negative bias, ranging from -6.0% to -5.8% globally in May and from -6.5%397

to -6.3% in September. The bias pattern in clouds is similar to that in RF at TOA shown398
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in Fig. 6, where the lack of clouds along the east boundary of ocean basins off the con-399

tinents explains the lack of upward radiation at TOA.400

There is little difference in cloud coverage among the three experiments featuring401

different aerosols, whereas the variance in RF at TOA can reach up to -2.5 W/m2. This402

suggests that the alteration in cloud coverage due to aerosol-radiation interaction, known403

as the semi-direct effect, remains negligible regardless of whether the aerosols are prog-404

nosed, based on climatology, or even absent. This is expected given that this version of405

the model employs a single-moment microphysics parameterization.406

It is worth noting that a model bias of approximately 6% in cloud coverage leads407

to a bias of about +12 W/m2 in RF in May and +6 W/m2 in September, which is sev-408

eral times larger than the estimated aerosol effects on RF of -2.5 W/m2. Evidently, clouds409

have a more substantial impact on RF than aerosols, although the significance of aerosols410

should not be overlooked.411

3.4 Hemispheric Surface Temperature, H500 and Precipitation412

With the analysis of radiative forcing and cloud coverage associated with differ-413

ent aerosols in Experiments NoAer, ClimAer and ProgAer shown above, we investigate414

the impact of aerosols on meteorological fields across these three experiments. Fig. 11415

presents the anomaly correlation coefficient (ACC) for the predicted surface tempera-416

ture at 2m (T2m) and H500 against ERA5 reanalysis, and precipitation against GPCP417

data. The analysis covers the 20◦N-80◦N (NHX) and 20◦S-80◦S (SHX) regions, with lead418

times ranging from weeks 1 to 4 and a combination of weeks 3 and 4, in May and Septem-419

ber from 2003 to 2019. At weeks 1 and 2, the ACC scores for T2m, H500 and precip-420

itation remain consistent across the experiments, irrespective of the variations in aerosol421

loadings. This pattern holds true for both May and September initializations, suggest-422

ing that the ACC scores at these lead times are minimally influenced by aerosol levels423

on a hemispheric scale. At longer lead times of weeks 3+4 in the SHX, Experiment Pro-424

gAer shows the highest ACC values for both T2m and H500 in May but the lowest in425

September. Meanwhile, in the NHX, the ACC scores for T2m and H500 are similar.426

In these experiments, precipitation is not influenced by aerosol-cloud interactions,427

as they are not parameterized. Instead, the impact of aerosols on precipitation primar-428

ily comes from the thermodynamic fields, which have a minimal effect. The precipita-429

tion skill beyond week 2 is low and no longer significant.430

The results presented suggest a number of implications. First, despite the well-understood431

and accurately simulated radiative forcing from the aerosol-radiation interaction within432

the model, its significant influence on surface temperature and H500 is not evident in433

these experiments. Second, the discrepancies in the ACC values from Experiment Pro-434

gAer across different hemispheres could be attributed to the accuracy of prescribed emis-435

sion sources and parameterized emission sinks, especially in the SHX during September.436

Additionally, the parameterization of aerosol-cloud interaction appears to be crucial in437

capturing the impact of aerosols on precipitation patterns.438

3.5 Aerosol Regional Impact439

As shown in the Figs 7 and 8, the modeled RF differences of Experiments Pro-440

gAer and ClimAer from NoAer (∆RFTOA
ProgAer and ∆RFTOA

ClimAer) shows similarities when441

assessed as averages over 17 years. However, there are significant interannual variabil-442

ities in AOD and its associated RF in regions such as Sahara. For instance, the AOD443

over northern Africa in Experiment ProgAer exceeds that in Experiment ClimAer by444

0.15 in May 2004, according to Fig. 3(c). As an example, we chose a domain over north-445

ern Africa larger than the one used in Fig. 3 to show the horizontal distribution of AOD,446

net radiative forcing at TOA and surface, as well as T2m in May 2004 in Experiment447
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Figure 11. Anomaly correlation coefficient for T2m, H500 and precipitation at different

lead times from Experiments ProgAer, ClimAer and NoAer, from 2003 to 2019, in May (a) and

September (b), for northern hemisphere (left) and southern hemisphere (right).
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Figure 12. From left to right: AOD, radiative forcing at TOA and surface (W/m2), and T2m

(◦C) in Experiment ClimAer (upper) and the difference of Experiments ProgAer and ClimAer

(lower), all monthly means in May 2004. Numbers in the upper-right corner are the means over

the displayed domain. Positive values are downward for fluxes.

Figure 13. ACC at lead time of week 1 and weeks 3 and 4 combined of T2m (leftmost two

columns), H500 (third and fourth columns) and precipitation (rightmost two columns) over

northern Africa for Experiments NoAer (top), ClimAer (middle) and ProgAer (bottom). All

model experiments are initialized on the first of May, 2003-2019.
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Figure 14. Same as Fig. 13, except for east Asia.

ClimAer when aerosol climatology is used in the upper row of Fig. 12. The impact of448

prognostic aerosols on these fields are shown as difference of Experiments ProgAer and449

ClimAer in the lower row of Fig. 12. The AOD in Experiment ProgAer exceeds the one450

from the aerosol climatology run, mostly over the Sahara and Sahel regions as shown in451

Fig. 12(e). A negative RF at TOA and surface is shown in the same regions in Fig. 12(f)452

and (g) as expected. Noteworthy correlations exist in the difference patterns between453

AOD and RF at TOA in Fig. 12(e) and (f), as well as between AOD and RF at the sur-454

face in Fig. 12(e) and (g). This suggests that the aerosol-radiation interaction and its455

variations with different aerosol loadings are well-captured in this episode over north-456

ern Africa. However, there is no apparent correlation in the difference patterns between457

AOD and surface temperature in Fig. 12(e) and (h), similar to what is discussed in Sec. 3.4.458

To further investigate the regional effects of aerosols on meteorological patterns,459

Fig. 13 shows the ACC scores for T2m (leftmost two columns), H500 (third and fourth460

columns) and precipitation (rightmost two columns), at lead times of week 1 and weeks461

3+4 in May from 2003 to 2019 over northern Africa. Despite large variations in aerosol462

loadings used in these simulations, as indicated in Fig. 3, the ACC scores for T2m, H500463

and precipitation are remarkably similar at week 1 among the three experiments. In the464

subsequent weeks 3+4, Experiment ProgAer shows marginally higher ACC scores for T2m465

and H500 in the Sahel region and adjacent to the Africa coast, yet these scores are re-466

duced over northern Africa when compared to the other two experiments. As anticipated,467

the ACC for precipitation remains notably low during weeks 3+4.468

East Asia, a region characterized by relatively high aerosol concentrations, as shown469

in Fig. 3. Fig. 14, is examined for its meteorological response. Fig. 14 shows the ACC470

scores for T2m, H500 and precipitation for this region in May, presented in a similar man-471

ner to Fig. 13. Consistency in the ACC scores at week-1 across the three experiments472

indicates a minimal influence of aerosol concentrations on these metrics at this lead time.473

However, during the weeks 3+4 period, Experiment ProgAer shows elevated ACC scores474

for T2m and H500 in Southeast Asia, while these scores are diminished over Central Asia475

when compared to the other experiments.476
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Figs. 13 and 14 reveal modest regional variations in skill for T2m and H500 within477

the prognostic aerosol experiments over a lead time of weeks 3+4. These findings are based478

on a limited set of experiments conducted from 2003 to 2019.479

4 Summary and Conclusion480

This study investigates the aerosol radiative effects on subseasonal prediction us-481

ing the UFS-CCPP-Chem, the Unified Forecast System integrated with a CCPP-based482

aerosol module from the GEFS-Aerosols model. We evaluated the top-of-the-atmosphere483

radiative forcing from tropospheric aerosols, including sulfate, dust, black carbon, or-484

ganic carbon, and sea-salt. Our research involved three sets of UFS-CCPP-Chem sim-485

ulations: ProgAer, featuring an interactive aerosol module, ClimAer, which applies aerosol486

climatology derived from Experiment ProgAer in place of the interactive aerosol mod-487

ule, and NoAer, which excludes aerosol effects. We used monthly mean estimates, includ-488

ing zonal or global average, for model evaluation, despite the recognized spatial and tem-489

poral heterogeneity of aerosol distributions.490

Our analysis, based on experiments initialized on May 1 and September 1 from 2003491

to 2019, reveals that the monthly mean AOD patterns and interannual variability from492

Experiment ProgAer align well with MODIS satellite observations, MERRA2 reanaly-493

sis, and ATom-4 aircraft observations, despite some discrepancies between these datasets.494

Model simulations reveal a positive bias in dust AOD over the Sahara and sea-salt AOD495

across most oceans, possibly due to biases in the aerosol module. Furthermore, modeled496

cloud coverage is less than that in the CERES EBAF dataset, likely from inadequate model497

physics parameterization, contributing to inaccuracies in the radiation.498

To correct for model bias, we compared the radiative forcing at the top-of-atmosphere499

between Experiment ProgAer and NoAer, using this as an indicator of the total aerosol500

radiative forcing. Our calculations suggest a global average of approximately -2.5 W/m2
501

at the TOA. This figure aligns with findings from prior research, such as the -1.0 W/m2
502

in IPCC (2013) and -1.2 W/m2 in Bellouin et al. (2020), which focus solely on the an-503

thropogenic component of radiative forcing since the pre-industrial era. In contrast, our504

model’s estimate includes both anthropogenic and natural aerosol sources. Additionally,505

we determined the normalized radiative forcing to be approximately -16 W/m2 per unit506

AOD globally.507

Contrary to expectations, incorporating aerosol-radiation interaction into the model508

simulations does not consistently improve the forecast skill for T2m and H500. The ACC509

for these variables at a 1-week lead time remains comparable across various aerosol sce-510

narios. With increasing lead times, the forecast outcomes become mixed, suggesting that511

the predictive accuracy for T2m and H500 is affected by the intricate relationship be-512

tween aerosols and meteorology. This variation in forecast skill over extended lead times513

highlights the complexity of the aerosol-meteorology interaction and emphasizes the im-514

portance of careful consideration of both aerosol-radiation and aerosol-cloud interactions,515

along with addressing biases in model physics for long-range forecasts and the accuracy516

in aerosol emission datasets.517

Moreover, the impact of aerosols on cloud formation and precipitation through ra-518

diative processes is not readily apparent due to the single-moment microphysics param-519

eterization employed in this version of the model. In the UFS-CCPP-Chem experiments,520

despite a global RF difference of approximately -2.5 W/m2 at the TOA with and with-521

out aerosol-radiation interaction, cloud coverage and precipitation patterns remain largely522

unchanged. This indicates that the modeled semi-direct effects of aerosol-radiation in-523

teraction on cloudiness and precipitation are minimal. Current efforts are focused on sim-524

ulating the indirect effects using a double-moment microphysics parameterization in the525

upcoming version of the UFS.526
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This study represents one of the initial efforts to evaluate the aerosol radiation ef-527

fects on subseasonal forecasts using the UFS. Notably, local regions exhibited significant528

radiative forcing discrepancies, particularly where the AOD differences between prog-529

nosed and climatological aerosols were exceptionally pronounced during certain events.530

The UFS-CCPP-Chem, utilizing modeled climatological aerosol concentrations, success-531

fully captures the average radiative forcing seen in simulations with prognosed aerosols532

over subseasonal timescales, albeit without the interannual aerosol variabilities. Never-533

theless, given the current constraints within this aerosol module, including demonstrated534

biases and uncertainties in time-varying aerosol emission datasets, the potential bene-535

fits of utilizing a prognostic aerosol module are limited. This prompts consideration for536

substituting the resource-intensive chemistry module with an aerosol climatology in sub-537

seasonal applications. Additionally, the development of a global, high-quality, and high-538

resolution aerosol climatology, derived from either observations or reanalysis, is essen-539

tial to mitigate uncertainties inherent in aerosol modeling.540
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K. Maycock, T. Waterfield, O. Yelekçi, R. Yu and B. Zhou (eds.)]. Cambridge671

University Press. In Press.672

Kaiser, J., Heil, A., Andreae, M., Benedetti, A., Chubarova, N., Jones, L., . . .673

van der Werf, G. (2012). Biomass burning emissions estimated with a global674

fire assimilation system based on observed fire radiative power. Biogeosciences,675

9 , 527–554.676

Le Treut, H., Forichon, M., Boucher, O., & Li, Z. (1998). Sulfate aerosol indirect677

effect and co2 greenhouse forcing: Equilibrium response of the lmd gcm and678

associated cloud feedbacks. J. Climate, 11 (7), 1673-1684.679

Levy, R. C., Mattoo, S., Munchak, L. A., Remer, L. A., Sayer, A. M., Pata-680

dia, F., & Hsu, N. (2013). The collection 6 modis aerosol products over681

land and ocean. Atmos. Meas. Tech., 6 , 2989–3034. Retrieved from682

https://doi.org/10.5194/amt-6-2989-2013683

Liu, Y., Wang, W., Kumar, A., & Collow, T. (2019). Assessment of cpc sea ice684

–25–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

initialization system (csis) and cpc weekly experimental sea ice forecasts. 44th685

NOAA Annual Climate Diagnostics and Prediction Workshop. Retrieved from686

https://www.nws.noaa.gov/ost/climate/STIP/44CDPW/44cdpw-YLiu.pdf687

Loeb, N. G., Doelling, D. R., Wang, H., Su, W., Nguyen, C., Corbett, J. G., . . .688

Kato, S. (2018). Clouds and the earth’s radiant energy system (ceres) energy689

balanced and filled (ebaf) top-of-atmosphere (toa) edition-4.0 data product.690

J. Climate, 31 (2), 895–918. Retrieved from https://doi.org/10.1175/691

JCLI-D-17-0208.1692

Madden, R. A., & Julian, P. R. (1971). Detection of a 40–50 day oscillation in the693

zonal wind in the tropical pacific. J. Atmos. Sci., 28 , 702–708. Retrieved from694

https://doi.org/10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2695

Mann, G. W., Carslaw, K. S., Reddington, C. L., Pringle, K. J., Schulz, M.,696

Asmi, A., . . . Henzing, J. S. (2014). Intercomparison and evaluation of697

global aerosol microphysical properties among aerocom models of a range698

of complexity. Atmos. Chem. Phys., 14 (9), 4679-4713. Retrieved from699

https://acp.copernicus.org/articles/14/4679/2014/700

Ming, Y., Ramaswamy, V., Ginoux, P. A., & Horowitz, L. H. (2005). Direct ra-701

diative forcing of anthropogenic organic aerosol. J. Geophys. Res.-Atmos., 110 ,702

D20208. Retrieved from doi.org/10.1029/2004JD005573703

Mitchell, J. M. (1971). The effect of atmospheric aerosols on climate with special704

reference to temperature near the earth’s surface. J. of Applied Meteorology ,705

703-714.706

Mitchell, K. (2005). The community noah land-surface model (lsm) user’s guide,707

public release version 2.7.1. Retrieved from https://ral.ucar.edu/708

sites/default/files/public/product-tool/unified-noah-lsm/709

Noah LSM USERGUIDE 2.7.1.pdf710

Mulcahy, J. P., Walters, D. N., Bellouin, N., & Milton, S. F. (2014). Impacts of711

increasing the aerosol complexity in the met office global numerical weather712

prediction model. Atmos. Chem. Phys., 14 (9), 4749-4778. Retrieved from713

doi:10.5194/acp-14-4749-2014714

Murakami, H. (2022). Substantial global influence of anthropogenic aerosols on715

tropical cyclones over the past 40 years. Sci Adv., 8 (19). doi: 10.1126/sciadv716

.abn9493717

Myhre, G., Samset, B. H., Schulz, M., Balkanski, Y., Bauer, S., & Berntsen,718

T. K. e. a. (2013). Radiative forcing of the direct aerosol effect from aero-719

com phase ii simulations. Atmos. Chem. Phys., 13 , 1853–1877. Retrieved from720

https://doi.org/10.5194/acp-13-1853-2013721

NOAA. (2021). Upgrade ncep global forecast systems (gfs) to v16: Effective march722

17, 2021. Service Change Notice 21-20, Updated. National Weather Ser-723

vice Headquarters, Silver Spring MD, https://www.weather.gov/media/724

notification/scn\ 21-20\ gfsv16.0\ aaa\ update.pdf.725

Pan, B., Wang, Y., Logan, T., Hsieh, J., Jiang, J. H., Li, Y., & Zhang, R. (2020).726

Determinant role of aerosols from industrial sources in hurricane harvey’s727

catastrophe. Geophysical Research Letters, 47 , e2020GL090014. Retrieved728

from https://doi.org/10.1029/2020GL090014729
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