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Abstract

Accurate state estimation of the high-dimensional, chaotic Earth atmosphere marks a Sisyphean task, yet is indispensable

for initiating weather forecast and gauging climate variability. While much effort is devoted to assimilating observations

and forecasts to infer weather state, the inherent low-dimensional statistical structure in atmospheric circulation, shaped by

geophysical laws and geographic boundaries, is underutilized as informative prior for state inference, or as reference for assessing

representative of existing observations and planning new ones. We realize these potential by learning climatological distribution

from climate reanalysis/simulation, using deep generative model. For a case study of estimating 2 m temperature spatial

patterns, the learned distribution faithfully reproduces climatology statistics. A combination of the learned climatological prior

with few station observations yields strong posterior of spatial pattern estimates, which are spatially coherent, faithful and

adaptive to observation constraints, and uncertainty-aware. This allows us to evaluate each observation’s value in reducing

state estimation uncertainty, and guide optimal observation network design by pinpointing the most informative sites. Our

study showcases how generative models can extract and utilize information produced in the chaotic evolution of climate system.
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Key Points:15

• Deep generative model enables accurate spatial interpolation of weather variables16
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• The model quantifies the value of observations for reducing uncertainty, guiding20

optimal observation network design.21
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De�ciencies in observation render it an ill-posed task to estimate the state of the71

high-dimensional Earth atmosphere, calling for strong prior to achieve feasible solution.72

Forecasts from previous time steps are frequently applied to serve this mission, carry-73

ing information from previous step observations to the current step via a process-based74

model (Wang et al., 2000). As a result, the state estimation accuracy depends on an in-75

tricate interplay among model biases, background uncertainty, and observation error, which76

cannot be e�ectively disentangled or controlled (Law et al., 2015). Moreover, to provide77

multi-scale background information using forecasting models requires operational run78

of large ensemble high-resolution numerical simulations, which is prohibitively expen-79

sive and burdensome (Toth et al., 2003; Palmer, 2017).80

Is there extra information source for inferring the state of the high-dimensional,81

chaotic Earth atmosphere? It turns out that, the inherent low-dimensional statistical struc-82

ture in atmospheric circulation, shaped by the underlying geophysical laws and quasi-83

static geographic boundaries, can serve as an informative prior for state inference. The84

Earth climate system, like any other chaotic system, is an information producer: it grad-85

ually reveals the characteristic structure of its phase space at ever-�ner scales (Gilpin,86

2024). By identifying and parameterizing this characteristic structure, we can potentially87

bypass the curse of high dimensionality, and make more e�cient use of limited obser-88

vations for the state inference task.89

Some pioneering works have explored this direction, leveraging the inherent struc-90

ture of climate data to �ll in missing observations and rebuild historical climate records.91

For instance, Kadow et al. (2020) developed a partial convolution method to reconstruct92

historical global temperature patterns based on partial observations and climate simu-93

lation. Kanngie�er and Fiedler (2024) applied a similar methodology to restore the spa-94

tial extent of dust plumes in cloud-masked satellite images. Most of these practices con-95

sider deterministic models, which are designed for speci�c \reconstruction" problem con-96

�gurations, yielding deterministic results regardless of whether observations can adequately97

constrain the estimation uncertainty. As a result, these methodologies generalize poorly98

to state inference tasks where the number or layout of observations change, fail to re-99

produce extremes or apply for scenarios where only limited observations are available.100

A solution to these dilemmas is to shift from deterministic model to probabilistic101

model (B. Pan et al., 2021). Speci�cally, we prefer to build a probabilistic model that102

explicitly represents the inherent statistical structure of the atmosphere as revealed by103

climate observations or simulations. Thereafter, we hope to e�ectively and e�ciently com-104

bine the learned climatological prior with incomplete observations, so as to obtain strong105

posterior of spatial pattern estimates. This problem setup poses two stringent require-106

ments on the underlying probabilistic model. First, the model must faithfully approx-107

imate the high-dimensional climatological distribution as generated by the chaotic evo-108

lution of climate dynamics. Second, the model must enable exible probabilistic infer-109

ence, allowing us to e�ciently obtain posterior atmospheric state estimates given arbi-110

trary observational constraints.111

To ful�ll these requirements, we resort to generative machine learning, in partic-112

ular, probabilistic di�usion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song, Sohl-113

Dickstein, et al., 2020; Kingma et al., 2021). Probabilistic di�usion models learn to ap-114

proximate complex, high-dimensional probability distributions in an iterative manner,115

achieving unprecedented �tting capacity and controlling exibility (B. Pan et al., 2023;116

Nai et al., 2024). To demonstrate the idea, we consider a case example of inferring the117

spatial pattern of 2 m temperature based on sparse observations from operational me-118

teorology stations. We learn probabilistic di�usion models to approximate the climato-119

logical distribution of 2 m temperature spatial patterns from climate reanalysis or sim-120

ulation data. After carefully assessing the model's ability to reproduce climatology, we121

develop tools to \inpaint" arbitrary observation constraints into the sample generation122

process, yielding probabilistic 2 m temperature spatial pattern estimates. Finally, we ap-123
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Deficiencies in observation render it an ill-posed task to estimate the state of the71

high-dimensional Earth atmosphere, calling for strong prior to achieve feasible solution.72

Forecasts from previous time steps are frequently applied to serve this mission, carry-73

ing information from previous step observations to the current step via a process-based74

model (Wang et al., 2000). As a result, the state estimation accuracy depends on an in-75

tricate interplay among model biases, background uncertainty, and observation error, which76

cannot be effectively disentangled or controlled (Law et al., 2015). Moreover, to provide77

multi-scale background information using forecasting models requires operational run78

of large ensemble high-resolution numerical simulations, which is prohibitively expen-79

sive and burdensome (Toth et al., 2003; Palmer, 2017).80

Is there extra information source for inferring the state of the high-dimensional,81

chaotic Earth atmosphere? It turns out that, the inherent low-dimensional statistical struc-82

ture in atmospheric circulation, shaped by the underlying geophysical laws and quasi-83

static geographic boundaries, can serve as an informative prior for state inference. The84

Earth climate system, like any other chaotic system, is an information producer: it grad-85

ually reveals the characteristic structure of its phase space at ever-finer scales (Gilpin,86

2024). By identifying and parameterizing this characteristic structure, we can potentially87

bypass the curse of high dimensionality, and make more efficient use of limited obser-88

vations for the state inference task.89

Some pioneering works have explored this direction, leveraging the inherent struc-90

ture of climate data to fill in missing observations and rebuild historical climate records.91

For instance, Kadow et al. (2020) developed a partial convolution method to reconstruct92

historical global temperature patterns based on partial observations and climate simu-93

lation. Kanngießer and Fiedler (2024) applied a similar methodology to restore the spa-94

tial extent of dust plumes in cloud-masked satellite images. Most of these practices con-95

sider deterministic models, which are designed for specific “reconstruction” problem con-96

figurations, yielding deterministic results regardless of whether observations can adequately97

constrain the estimation uncertainty. As a result, these methodologies generalize poorly98

to state inference tasks where the number or layout of observations change, fail to re-99

produce extremes or apply for scenarios where only limited observations are available.100

A solution to these dilemmas is to shift from deterministic model to probabilistic101

model (B. Pan et al., 2021). Specifically, we prefer to build a probabilistic model that102

explicitly represents the inherent statistical structure of the atmosphere as revealed by103

climate observations or simulations. Thereafter, we hope to effectively and efficiently com-104

bine the learned climatological prior with incomplete observations, so as to obtain strong105

posterior of spatial pattern estimates. This problem setup poses two stringent require-106

ments on the underlying probabilistic model. First, the model must faithfully approx-107

imate the high-dimensional climatological distribution as generated by the chaotic evo-108

lution of climate dynamics. Second, the model must enable flexible probabilistic infer-109

ence, allowing us to efficiently obtain posterior atmospheric state estimates given arbi-110

trary observational constraints.111

To fulfill these requirements, we resort to generative machine learning, in partic-112

ular, probabilistic diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song, Sohl-113

Dickstein, et al., 2020; Kingma et al., 2021). Probabilistic diffusion models learn to ap-114

proximate complex, high-dimensional probability distributions in an iterative manner,115

achieving unprecedented fitting capacity and controlling flexibility (B. Pan et al., 2023;116

Nai et al., 2024). To demonstrate the idea, we consider a case example of inferring the117

spatial pattern of 2 m temperature based on sparse observations from operational me-118

teorology stations. We learn probabilistic diffusion models to approximate the climato-119

logical distribution of 2 m temperature spatial patterns from climate reanalysis or sim-120

ulation data. After carefully assessing the model’s ability to reproduce climatology, we121

develop tools to “inpaint” arbitrary observation constraints into the sample generation122

process, yielding probabilistic 2 m temperature spatial pattern estimates. Finally, we ap-123
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ply this methodology to evaluate each observation’s value in reducing state estimation124

uncertainty, and guide optimal observation network design by pinpointing the most in-125

formative sites.126

2 Methodology127

2.1 Data and problem setup128

We consider the task of inferring the spatial pattern of 2 m temperature over East129

Asia (15◦N− 45◦N, 95◦E− 125◦E), using station observations covering ∼ 1% grids of130

the considered region. To achieve this, we learn climatological distribution of 2 m tem-131

perature spatial pattern using climate reanalysis or simulation data. The reanalysis data132

are hourly, 0.25◦ 2 m temperature data from the fifth-generation global climate and weather133

reanalysis (ERA5) developed at European Centre for Medium-Range Weather Forecasts134

(Hersbach et al., 2020, ECMWF). The simulation data are 3-hourly, 0.25◦ 2 m temper-135

ature historical simulation from the Flexible Global Ocean-Atmosphere-Land System Model136

version f3-H (Bao et al., 2020, FGOALS-f3-H), which participates in the sixth phase of137

the Coupled Model Intercomparison Project (Eyring et al., 2016, CMIP6). The station138

observation data are obtained from the Chinese National Climatic Data Center (X. Pan139

et al., 2021).140

Formally, we denote the spatial pattern of 2 m temperature for the target region
as x, which is a 120 × 120 dimensional random variable here. Our objective is to ap-
proximate the distribution of x, based on large number of samples from climate reanal-
ysis or simulation:

pθ∗ = argmax
pθ

∑
log pθ(x) (1)

Here pθ is parameterized probability density function approximator, θ∗ is the optimal141

parameter, optimized by maximizing the overall likelihood of pθ assigned to the train-142

ing samples.143

Given pθ∗ and sparse observations, we need to provide probabilistic estimates of144

2 m temperature spatial patterns, i.e., pθ∗(x|x⊙m). Here, ⊙ is dot product, m is ob-145

servation mask, with value 1/0 denoting the existence/absence of observations for each146

geogrid. pθ∗(x|x⊙m) should yield samples that are spatially coherent and faithful to147

observational constraints. Also, pθ∗(x|x⊙m) should offer accurate uncertainty quan-148

tification. For instance, geogrids close to observation stations should typically have low149

state estimate uncertainties, while distant ones have high uncertainties. Finally, we pre-150

fer pθ∗(x|x ⊙m) to be adaptive to changes in observation configurations, such as the151

abortion or inclusion of observation stations, or rearrangement of station network lay-152

out. Below we illustrate how to achieve these requirements using the proposed method-153

ology.154

2.2 Learning climatology with probabilistic diffusion model155

We elucidate how to learn climatological distribution of the target random vari-156

able using probabilistic diffusion model, thereafter leverage this learned prior for the in-157

ference task (Sec. 2.3). For clarity, we only cover key steps necessary for establishing our158

methodology. Details can be found in the literature referenced through the description.159

To approximate a target distribution using probabilistic diffusion model, we train160

a series of deep neural networks that can be chained to establish bijective mapping be-161

tween the target distribution and a prior distribution (Sohl-Dickstein et al., 2015; Ho et162

al., 2020). Specifically, we define the following Gaussian process:163

q(xt|xt−1) = N (xt;
√

(1− βt)xt−1, βtI) (2)
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Figure 1. Overview of the Climate Inpainting (CLIN) methodology. A pre-defined forward

Gaussian process (left) turns distribution of target climate variable into a prior distribution, i.e.,

standard Gaussian. A learned reverse Gaussian process (right) turns the prior distribution into

the distribution of the target climate variable. We “inpaint” sparse observations throughout the

reverse Gaussian process (right top), so as to obtain spatial pattern estimates of the target vari-

able.

Here p(x0) = p(x), which is the target distribution; p(xT ) is the prior distribution; we164

bridge x0 and xT using xt∈[1,T ], which are latent variables with increasing noise level;165

N is Gaussian distribution; I is identity matrix; βt is diffusion coefficient, which is pre-166

defined so that, give large enough T , p(xT |x0) is drawn close to p(xT ), which is x0 ag-167

nostic. This setup offers analytical solution for p(xt+τ |xt),∀τ ∈ [0, T − t], t ∈ [0, T ],168

facilitating convenient inference as detailed in Sec. 2.3.169

To achieve generative modeling, we reverse Eq. 2 using the following variation dis-
tributions:

pθ(xt−1|xt) = N (xt−1;µθ,Σθ) (3)

Here Σθ is represented as an interpolation between its analytical lower and upper bound170

(Dhariwal & Nichol, 2021); µθ can be optimized by maximizing the variational lower bound171

(ELBO) on the log-likelihood of the training samples (Sohl-Dickstein et al., 2015; Kingma172

et al., 2021). In practice, we represent µθ as function of neural network parameteriza-173

tion for ∇p(xt|x0), which is known as the score function (Song, Garg, et al., 2020; Song,174

Sohl-Dickstein, et al., 2020). This simplifies the ELBO objective function to the follow-175

ing form:176

L = Et∈[1,T ],x0∼p(x0)||∇p(xt|x0)− ϵθ||2 (4)

Here ϵθ is a neural network parameterization for ∇p(xt|x0). Given the trained score es-177

timates, we can derive pθ(xt−1|xt) = N (xt−1;µθ,Σθ) and sample it, starting with p(xT ),178

ending with p(x0).179

2.3 CLIN: inferring weather states using partial observations180

We combine the learned climatology prior with station observations to infer the pos-181

terior probability distribution of the target variable, using a repainting methodology (Lugmayr182

et al., 2022; Zhang et al., 2023). Specifically, given a pre-trained diffusion model that se-183

quentially applies pθ∗(xt|xt+1) = N (xt;µθ∗ ,Σθ∗) to transform p(xT ) to p(x0), within184

a pre-selected time window of Ω, for grid points where we have observations, we replace185

–5–
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values of xt with observations noisified to time step t, by sampling p(xt⊙m|x0⊙m).186

This replacement does not consider the generated parts of xt, therefore, the observations187

could not explicitly constrain the variability of unobserved parts.188

To address this issue, for any t ∈ Ω, after the replacement, instead of progress-189

ing to t − 1 directly, we rewind to time step t − τ by sampling p(xt−τ |xt). We there-190

after repeat the denoising steps from t−τ to t for k rounds, and carry out observation191

replacement for xt at each round. This allows us to jointly modify both observed and192

unobserved regions throughout the denoising steps, yielding generated samples that are193

spatially coherent, faithful and adaptive to observation constraints, and uncertainty-aware.194

This methodology is referred to as inpainting, we hence name our methodology as CLIN,195

short for Climate Inpainting. A formal algorithm description is given below. Details for196

data processing, neural network architecture, hyperparameters for training and inference,197

are given in Supporting Information.198

Algorithm 1 CLIN

Require: trained diffusion model pθ∗ , observations x0 ⊙ m, repainting time step set Ω,
rewinding step τ , rewinding round K

Ensure: observation constrained, spatially coherent sample x0

1: Initialize xT ∼ N (0, I)
2: for t = T − 1, . . . , 1 do
3: xt ∼ pθ∗(xt|xt+1) ▷ Reverse sampling
4: if t ∈ Ω then:
5: for k = 1, . . . ,K do
6: xobser

t ∼ p(xt ⊙m|x0 ⊙m)
7: xt ← xt ⊙ (I−m) + xobser

t ▷ Condition on observations
8: xt+τ ∼ p(xt+τ |xt) ▷ Rewind in time by τ steps
9: for i = t+ τ − 1, . . . , t do

10: xi ∼ pθ∗(xi|xi+1) ▷ Reverse sampling within a rewinding round
11: end for
12: end for
13: end if
14: end for
15: return x0

3 Results199

The accuracy for state estimation depends on 1) how well we can approximate the200

climatological distribution, and 2) based on a learned climatological prior, how well we201

can combine it with limited observations to obtain probabilistic state estimates. Below202

we assess model’s performance for these two aspects (Sec. 3.1 and 3.2). We further em-203

ploy the model to quantify the extent to which observations reduce uncertainty in state204

estimation, offering insights for optimal observation design (Sec. 3.3).205

3.1 Climatology206

We compare grid-scale and field-scale statistics of 10,000 reference/generated sam-207

ples to evaluate how well the probabilistic diffusion models reproduce their training data’s208

climatology. Two models trained with climate reanalysis (ERA5) and historical climate209

simulation (FGOALS) data, hereafter referred to as CLINERA5 and CLINFGOALS, are210

deployed and evaluated.211
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The grid-scale assessment considers the mean, variance, skewness, minimum, and212

maximum of climatological distribution at each grid (Fig. 2). These statistics from ERA5213

(Fig. 2 Row 1) and FGOALS (Fig. 2 Row 3) generally agree well, due to shared constraints214

from geophysical laws and geographic boundaries. The key spatial patterns are the lat-215

itudinal gradient, the influence of topography (e.g., the Tibetan Plateau), and the land-216

sea contrast, which are most evident in the mean, minimum and maximum maps. The217

variance and skewness maps reveal more regional variations. A notable discrepancy is218

that, compared to ERA5, FGOALS tends to hold larger skewness for most of the land219

regions in Southern China and Philippine Island, implying a more frequent present of220

high 2 m temperature for these regions.221

CLINERA5 (Fig. 2 Row 2) and CLINFGOALS (Fig. 2 Row 4) can well reproduce the222

considered statistics of their training data, achieving high spatial correlation coefficient223

(∼ 0.99) and low root mean squared error (∼ 0.1◦C) in matching these statistics. Be-224

sides reproducing the large scale patterns, both models accurately capture high frequency225

local variations influenced by complex topography, such as for mountainous regions and226

coastal areas. Also, the climatology difference between ERA5 and FGOALS are well re-227

produced by the corresponding CLIN models.228

We further carry out grid-wise Kolmogorov-Smirnov tests to assess whether the gen-229

erated and referential samples are likely to have come from the same underlying distri-230

bution: 96/76% grid points (stippled grids in Fig. 2) within the considered region pass231

a 95% confidence interval test for the CLINERA5 and CLINFGOALS model. These results232

suggest that the CLIN model can well reproduce climatological distribution of its train-233

ing data at grid scale.234

We hereafter compare the referential and generated distributions using field-scale235

statistics. We first examine the linear spatial structure of the 2 m temperature spatial236

patterns using a principal component analysis (Supporting Information Fig. S2): we de-237

compose the spatial pattern of the target random variable into a set of orthogonal modes238

that capture the maximum amount of variance, and compare the spatial modes (Em-239

pirical Orthogonal Functions, EOFs), as well as the variance explained by these modes.240

For EAR5, the first to third leading principal components explained 90/2.7/2.0% of the241

total variance. While for CLINERA5, the first to third leading principal components ex-242

plained 91/2.6/1.5% of the total variance, which closely matches results for the ERA5243

referential data. More importantly, we obtain spatial correlation coefficient of 0.994/0.990/0.986244

between the first to third EOF of EAR5 and CLINERA5. While the spatial modes of FGOALS245

differs considerably with ERA5, CLINFGOALS closely matches FGOALS: the first to third246

leading principal components explained 83.6/5.1/2.2% or 83.9/4.9/2.1% of the total vari-247

ance for FGOALS or CLINFGOALS. The spatial correlation coefficient between the first248

to third EOF of FGOALS and CLINFGOALS are 0.999/0.997/0.994. These results sug-249

gest that the CLIN model can well reproduce the linear spatial mode of the considered250

climatological distribution.251

Lastly, we examine the distribution of spatial variability across different spatial scales252

in the referential/generated dataset: we carry out 2D Fourier transform on the referen-253

tial/generated samples, and draw the radial averaged squared magnitude of the complex254

Fourier coefficients as function of wave numbers (Fig. 3). The radially averaged power255

spectrum density of the considered referential and generated data samples follow a sim-256

ilar power-law scaling, suggesting that the CLIN model can well reproduce the spatial257

variability across scales.258

To sum up, the analysis of both grid-scale and field-scale statistics demonstrates259

that the CLIN methodology accurately reproduces the essential characteristics and pat-260

terns of the climatological distribution present in the training data. We can thereafter261

leverage this learned climatological prior for the state inference task.262
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Figure 2. Grid-scale comparison of climatological statistics for climate reanalysis (ERA5,

Row 1), climate simulation (FGOALS, Row 3), and probabilistic diffusion models trained us-

ing these datasets (CLINERA5, Row 2; and CLINFGOALS, Row 4). The considered statistics are

mean, variance, skewness, minimum, and maximum. The spatial correlation coefficient (corr) and

root mean squared error (RMSE) between the referential dataset statistics and generated dataset

statistics are labeled. Stipples denote grids that pass the Kolmogorov-Smirnov test at 95% confi-

dence interval.
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Figure 3. Radial averaged power spectrum density as function of wave number for 2 m tem-

perature spatial pattern. a: results for ERA5, FGOALS, CLINERA5, and CLINFGOALS averaged

over 100 ensemble members. b-d: probability distribution of power spectrum density at wave

number 21, 23, 25 for ERA5, FGOALS, CLINERA5, and CLINFGOALS.
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3.2 Inferring weather states using partial observations263

Given a learned climatological prior, we assess how well we can combine it with par-264

tial observations to obtain probabilistic estimate of the 2 m temperature spatial patterns.265

The climatological priors are probabilistic diffusion models trained using climate reanal-266

ysis (ERA5) and climate simulation (FGOALS) data. The observations are from 131 op-267

erational meteorological stations across China. We randomly select 120 of these stations268

to inpaint into the generation process, and leave the rest 11 stations for test. For regions269

without station observations, we consider ERA5 data as benchmark. Below we report270

case example results (Sec. 3.2.1) and a 1-year round skill assessment (Sec. 3.2.2) .271

3.2.1 Case study272

We consider four case examples covering different hours of a day and different sea-273

sons (Fig. 4). To make probabilistic inference of spatial patterns using partial observa-274

tions, we gradually inpaint station observations into the generation process of CLINERA5275

and CLINFGOALS, creating 100 ensemble members for each model and each case. We re-276

port the ERA5 spatial pattern (Fig. 4 Row 1), the ensemble mean (Fig. 4 Row 2 and277

5), the standard deviation of the ensemble (Fig. 4 Row 3 and 6), the mean squared er-278

ror between ERA5 and the ensemble members (Fig. 4 Row 4 and 7) for CLINERA5 and279

CLINFGOALS.280

Both the repainted CLINERA5 and CLINFGOALS ensemble mean results closely match281

the ERA5 spatial pattern, regarding latitudinal gradient, influence of topography, and282

the land-sea contrast, yielding spatial correlation coefficient of 0.980±0.02/0.977±0.02283

for the four considered case examples. These results suggest that the proposed method-284

ology allows effectively propagation of information from limited (∼ 1%) observed loca-285

tions to a broad range of unobserved parts.286

Next, we test if the CLIN methodology offers reliable uncertainty quantification287

(Fig, 4 Row 3 and 6). A larger ensemble variance indicates greater uncertainty in the288

estimate, while a smaller variance suggests more confidence in the estimate. As is ex-289

pected, geogrids close to observation stations tend to have low ensemble variance, while290

distant ones may have relatively higher ensemble variance. The information constraint291

from observations may be blocked by topography, such as for Tibetan Plateau and Tian292

Shan Mountains. While for plain regions, we can expect a larger extension of observa-293

tion constraints. We further examine the relationship between the spread of the ensem-294

ble members and their estimation skill, by computing the correlation between ensem-295

ble variance and ensembles’ mean squared error score. The high spread skill correlation296

for CLINERA5 (0.90±0.08) and CLINFGOALS (0.94±0.04) suggest that ensemble spread297

is a good predictor of model’s estimation skill. This means that the CLIN model can cap-298

ture the underlying uncertainties and provide reliable estimates of spatial estimation con-299

fidence.300

To sum up, the case studies confirm that the CLIN methodology can make success-301

ful probabilistic inference of 2 m temperature spatial patterns using limited observations.302

The results are spatially coherent, well-constrained by observations, and offer reliable303

uncertainty quantification. It is worth noting that there are unneglectable mismatches304

between station observations and ERA5/FGOALS, regarding either climatological statis-305

tics or values. These mismatches introduce domain shift error, which is frequently en-306

countered as we deploy a machine learning model in real-world scenarios where the data307

distribution differs from the training data. Below we dissect this error source by inpaint-308

ing with different data sources in a 1-year round evaluation.309
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Figure 4. Case examples for probabilistic inference for 2 m temperature spatial pattern using

partial observations. For CLINERA5 and CLINFGOALS, 100 ensemble members are created by

repainting observations. The ERA5 spatial pattern (Row 1), the ensemble mean (Row 2 and 5),

the standard deviation of the ensemble (Row 3 and 6), the mean squared error between ERA5

and the ensemble members (Row 4 and 7) for CLINERA5 and CLINFGOALS are plotted.
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3.2.2 Skill evaluation310

We conduct a year-long evaluation of the models’ performance in inferring spatial311

patterns, using data from Year 2021, which are not included in the models’ training pro-312

cess. We compare ERA5 with CLINERA5 and CLINFGOALS, both inpainted using sta-313

tion observations, and present the spatial distribution of their RMSE in Fig. 5a and Fig. 5b.314

To further investigate different uncertainty sources in the state inference task, we also315

consider inpainting CLINERA5 using ERA5 data at the observation stations. The RMSE316

between this inpainted CLINERA5 and the ERA5 whole-field data is shown in Fig. 5c.317

a b c

d e

Figure 5. Skill evaluation for CLIN models to estimate spatial pattern of 2 m tempera-

ture using data for Year 2021. a: root mean squared error (RMSE) between ERA5 reanalysis

and CLINERA5 inpainted using station observations; b: RMSE between ERA5 reanalysis and

CLINFGOALS inpainted using station observations; c: RMSE between ERA5 reanalysis and

CLINERA5 inpainted using ERA5 data at station observations; d: distribution of RMSE as func-

tion of grid’s distance to nearest observation station for the three considered methods; e: Taylor

diagram comparing the left-out station observations with CLINERA5 (orange) and CLINFGOALS

(blue) results. Both CLINERA5 and CLINFGOALS are constrained by 120 station observations

here. We delineate three representative regions to evaluate the value of observations in Sec. 3.3

The RMSE between ERA5 and observation inpainted CLINERA5/CLINFGOALS is318

0.25±0.21◦C/0.31±0.20◦C, suggesting that the CLIN methodology enables accurate319

spatial pattern estimates. Both models exhibit low uncertainty in plain terrain regions320

or over the ocean, despite that no ocean observations were applied. This suggests that321

the learned climatological prior effectively captures the spatial patterns and variability322

in these regions, allowing the models to make confident estimates using limited and far-323

away observational constraints. On the other hand, both models exhibit higher uncer-324

tainty in regions with complex terrain, such as the Tibetan Plateau and the mountain-325

ous areas of Southeast China. Additionally, land areas with complicated terrain but lack-326
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ing observational constraints, such as Southeast Asia, also show large uncertainty in the327

model estimates.328

The uncertainty in state inference comes from the following three sources (Tab. 1).329

The first is domain shift error, which is due to distribution mismatch among data ap-330

plied for model training, data applied for inpainting, and data applied for skill evalua-331

tion. The second is model error, which is due to the approximation/optimization/statistical332

error in applying probabilistic diffusion model to fit climatological prior, or due to er-333

rors in inpainting. These two types of uncertainties are epistemic, as they could be re-334

duced by gathering more data, improving the model, or incorporating knowledge about335

data distribution differences. The third source of uncertainty is intrinsic/aleatoric, which336

is due to existence of multiple plausible spatial patterns given partial observational con-337

straints, reflecting the inherent randomness in the system being modeled.338

To disentangle these uncertainty sources, we consider the following comparisons.339

1. We compare the RMSE of CLINERA5 (Fig. 5a) and CLINFGOALS (Fig. 5b). CLINERA5340

achieves an overall lower RMSE, which can be attributed to a relieved domain shift341

error from the following two aspects: a. compared to FGOALS, ERA5 better matches342

the “true” climatology as partially revealed by the scattered observations; b. we343

consider ERA5 data as “ground truth” for evaluating model performance, which344

gives advantage to CLIN model trained using ERA5 data.345

2. We compare CLINERA5 inpainted using observation data (Fig. 5a) and CLINERA5346

inpainted using scattered ERA5 data (Fig. 5c). The latter achieve significantly347

lower RMSE (0.19± 0.12◦C), suggesting a relatively low model error and a rel-348

atively low intrinsic uncertainty of the considered task. The difference between349

these cases highlights the domain shift error as the observation distribution dif-350

fers from ERA5.351

3. We compare the performance of CLINERA5 and CLINFGOALS in predicting the352

observations at test stations that are excluded during repainting (Fig. 5e). For these353

test stations, both CLINERA5 and CLINFGOALS results show high correlation co-354

efficient (0.87-0.99) and low root mean squared error (0.2-0.4◦C) with the obser-355

vations , with CLINERA5 performing slightly better than CLINFGOALS; CLINERA5356

holds a normalized standard deviation close to 1, which closely matches the ob-357

servations, while CLINFGOALS holds a normalized standard deviation slightly less358

than 1, suggesting a smaller temporal variability.359

Table 1. Uncertainty sources for state inference using partial observations

Uncertainty source Type Illustration

Domain shift Epistemic Distribution mismatch among data applied for model training,
data applied for inpainting, and data applied for skill evaluation.

Model error Epistemic 1. Approximation/optimization/statistical error in fitting climatological prior.
2. Error in constraining the prior with observations.

Intrinsic uncertainty Aleatoric Existence of multiple plausible spatial patterns given observational constraints.

Finally, we quantify the spatial extension of observational constrains by showing360

models’ RMSE skill as function of grid’s distance to nearest observation station (Fig. 5d).361

We consider CLINERA5 inpainted using observation data and ERA5 data, as well as CLINFGOALS362

inpainted using observation data. For all these cases, models’ performances at an arbi-363

trary grid depends closely on the grid’s proximity to observations. Meanwhile, there is364

large variation of models’ RMSE skills for grids that are at least 1◦ away from any ob-365

servation stations. Below we further investigate the value of individual observations in366

–13–



manuscript submitted to AGU advances

constraining the variability of its nearby spatial patterns, and offer guidelines for bet-367

ter observation planning.368

3.3 On the value of observations369

We apply the CLIN methodology to quantify the value of observations in constrain-370

ing state estimation uncertainty, using three representative regions delineated in Fig. 5a.371

To achieve this, we add or remove observational stations and evaluate the impact on the372

estimation error (Fig. 6). Here, the first column shows the RMSE spatial pattern for the373

original CLINERA5 model estimates in each target region; the second column (Adding)374

demonstrates the impact of adding an observation station in a high-error area; the third375

column (Removing) illustrates the effect of removing an existing observation station; the376

fourth column (Terrain) provides a topographical context for each target region.377
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Figure 6. Evaluation of CLIN in reconstructing 2m temperature spatial pattern using dif-

ferent observation setups. Column 1: RMSE between CLINERA5 inpainted using observation

data and ERA5 for three selected regions delineated in Fig. 5. Column 2: RMSE after including

a pseudo new observation. This new observation data is from ERA5. Column 3: RMSE after

including a pseudo new observation. Column 4: elevation map of the considered regions. The

results are based on a year-long (Year 2021) evaluation.

For the case of Tibetan Plateau (first row), where the terrain is highly complex,378

with average elevations exceeding 4500 meters, we obtain a relatively high RMSE given379

existing observation constrains, particularly in the central and eastern parts of the re-380

gion. Adding a station in the high-error area significantly reduces the RMSE for a broad381

range of the considered region, this impact is more pronounced here as compared to the382

other two cases, highlighting the importance of observational constraints in areas with383

complex terrain. Removing a station results in a noticeable increase in RMSE in the sur-384

rounding areas. Similarly, the effect of station removal is more evident compared to the385
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other two cases, suggesting that the model heavily relies on the limited observational data386

to constrain its estimates in this complex terrain. The loss of a station in a critical lo-387

cation can greatly impact the model’s ability to capture the local temperature patterns.388

For the case of Peal River Delta (second row), the terrain is characterized by a mix389

of lowlands and hilly regions, with elevations ranging from 0 to 1000 meters. The orig-390

inal RMSE is low overall, with some higher values in the central and northwest moun-391

tain regions. Adding a station in the high-error area effectively reduces the RMSE. Mean-392

while, removing a station leads to a hardly noticeable increase in RMSE in the surround-393

ing areas.394

For the case of North China Plain (third row), the northern part is featured by moun-395

tainous terrains exceeding 1000 meters, and the southern part has flat topography and396

homogeneous terrain. Adding a station in the central of southern plain area reduces the397

RMSE significantly, as existing observations are either from the northern mountain ar-398

eas, or is too far away. Same as previous case, removing a station has minimal impact399

on the RMSE distribution.400

To sum up, we discusses the application of the CLIN methodology to evaluate the401

impact of observational data on state estimation uncertainty across three diverse regions.402

It emphasizes the importance of strategic addition and removal of observational stations403

in improving estimation accuracy, particularly in areas with complex terrain. The find-404

ings highlight how existing observation constraints influence RMSE distribution, with405

significant reductions observed when stations are added in high-error areas. Conversely,406

removal of stations leads to increased RMSE, underscoring the model’s reliance on lim-407

ited observational data. Overall, we provide valuable insights for optimizing the design408

of observation networks, leading to a reduction in uncertainties and biases in weather409

and climate analysis.410

4 Conclusion411

Accurate state estimation of Earth atmosphere marks a daunting task due to its412

high-dimensionality and chaotic nature. We demonstrated the potential of deep gener-413

ative models, specifically probabilistic diffusion models, in learning the inherent low-dimensional414

statistical structure of atmospheric circulation from climate reanalysis and simulation415

data. By leveraging this learned climatological prior, we developed a methodology named416

CLIN (Climate Inpainting) to effectively infer weather states from partial observations.417

For the case study of estimating 2 m temperature spatial patterns, the learned cli-418

matological prior accurately reproduced the essential characteristics and patterns of the419

training data at both grid-scale and field-scale. This learned prior effectively captured420

multi-scale climate patterns, providing regularization and stability to the state estima-421

tion task.422

Combining the learned climatological prior with station observations, CLIN yielded423

strong posterior estimates of 2 m temperature spatial patterns. The estimates were spa-424

tially coherent, well-constrained by observations, and provided reliable uncertainty quan-425

tification. Regions near observation stations exhibited low ensemble variance, indicat-426

ing high confidence in the estimates, while distant regions showed relatively higher en-427

semble variance. The high spread-skill correlation confirmed that the ensemble spread428

was a good predictor of the model’s estimation skill.429

Moreover, CLIN allowed us to quantify the value of each observation station in re-430

ducing state estimation uncertainty. By adding or removing stations and evaluating the431

impact on the estimation error, we demonstrated the potential of this approach in guid-432

ing the design of optimal observation networks.433
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Our study showcases the power of deep generative models in extracting and uti-434

lizing the information produced by the chaotic evolution of the climate system. The pro-435

posed CLIN methodology opens up new opportunities for data-driven weather state es-436

timation, potentially complementing traditional data assimilation approaches.437

Future work could focus on extending CLIN to handle indirect observations (i.e.,438

remote sensing) and multiple interdependent variables, incorporating temporal dynam-439

ics, and adapting to long-term climate trends. Addressing the computational demands440

and data requirements of diffusion models is another important direction for making this441

approach more practical and accessible.442

In conclusion, this study demonstrates the immense potential of deep generative443

models in advancing climate data exploration and tackling complex inference tasks in444

atmospheric sciences. By learning the intrinsic statistical structure of the climate sys-445

tem, these models can effectively bridge the gap between sparse observations and com-446

plete weather state estimates, paving the way for more accurate and efficient climate mon-447

itoring and prediction.448

5 Data Availability449

The ERA5 reanalysis data are obtained from the Copernicus Climate Change Ser-450

vice (C3S) Climate Data Store (CDS), accessible at https://cds.climate.copernicus.eu/.451

The FGOALS model data are obtained from the Coupled Model Intercomparison452

Project Phase 6 (CMIP6), hosted by the Program for Climate Model Diagnosis and In-453

tercomparison (PCMDI) at Lawrence Livermore National Laboratory (LLNL), acces-454

sible at https://pcmdi.llnl.gov/CMIP6/.455

The observational data are freely available for download from the following web-456

site: http://www.ncdc.noaa.gov/oa/ncdc.html. The site information used in this study457

was obtained from the China Meteorological Data Network, hosted by the China National458

Meteorological Science Data Center (NMDC), accessible at http://data.cma.cn/.459

6 Open Research460

Model configuration, analysis scripts, data files used for this study will be publicly461

available upon accept of the work.462
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Abstract22

Accurate state estimation of the high-dimensional, chaotic Earth atmosphere marks a23

Sisyphean task, yet is indispensable for initiating weather forecast and gauging climate24

variability. While much effort is devoted to assimilating observations and forecasts to25

infer weather state, the inherent low-dimensional statistical structure in atmospheric cir-26

culation, shaped by geophysical laws and geographic boundaries, is underutilized as in-27

formative prior for state inference, or as reference for assessing representative of exist-28

ing observations and planning new ones. We realize these potential by learning clima-29

tological distribution from climate reanalysis/simulation, using deep generative model.30

For a case study of estimating 2 m temperature spatial patterns, the learned distribu-31

tion faithfully reproduces climatology statistics. A combination of the learned climato-32

logical prior with few station observations yields strong posterior of spatial pattern es-33

timates, which are spatially coherent, faithful and adaptive to observation constraints,34

and uncertainty-aware. This allows us to evaluate each observation’s value in reducing35

state estimation uncertainty, and guide optimal observation network design by pinpoint-36

ing the most informative sites. Our study showcases how generative models can extract37

and utilize information produced in the chaotic evolution of climate system.38

Plain Language Summary39

Accurate estimation of weather conditions across a large area is crucial but chal-40

lenging due to the complex and chaotic nature of the atmosphere. Traditional methods41

rely on combining observations with forecasts, which can be computationally expensive42

and sensitive to model biases. We propose a new approach called Climate Inpainting (CLIN)43

that learns the inherent spatial patterns of the atmosphere from climate data using ma-44

chine learning techniques. CLIN can effectively combine the learned patterns with lim-45

ited observations to reconstruct complete spatial maps of weather variables, such as tem-46

perature. We demonstrate that CLIN can accurately reproduce the key spatial features47

and variability of temperature over East Asia. Moreover, CLIN can quantify the uncer-48

tainty in the estimated weather maps and evaluate the importance of each observation49

site in reducing the overall uncertainty. This information can guide the optimal design50

of weather station networks. Our approach showcases the potential of machine learning51

in utilizing the rich information contained in climate data to improve weather estima-52

tion and observation planning.53

1 Introduction54

The state of the Earth atmosphere, which concerns a broad range of socioeconomic55

sectors and the overall environment, is characterized by the spatial distribution of a spe-56

cific set of physical properties, including temperature, pressure, wind speed and direc-57

tion, density, concentration of water of different phases, composition of aerosol, green-58

house gas, etc (Holton & Hakim, 2012). To determine the atmosphere state at 50 km59

grid resolution requires estimating the value for all the above-mentioned physical prop-60

erties at around ∼ 107 grids (Schneider et al., 2017). Doubling the resolution increases61

the total number of grids by a factor of 8. This high dimensionality poses a daunting chal-62

lenge for monitoring the atmosphere (Ghil, 2020).63

Current operational forecasting centers routinely update their atmosphere state es-64

timates by combining multi-source observations and previous forecasts, so as to reboot65

weather forecast and gauge climate variability (Carrassi et al., 2018). Ground based ob-66

servations offer direct meteorological measurements, yet come with limited spatial cov-67

erage and high maintenance cost. Remote sensing offers broader spatial coverage, yet68

is indirect and error prone, requiring careful calibration based on ground-based obser-69

vations.70
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Deficiencies in observation render it an ill-posed task to estimate the state of the71

high-dimensional Earth atmosphere, calling for strong prior to achieve feasible solution.72

Forecasts from previous time steps are frequently applied to serve this mission, carry-73

ing information from previous step observations to the current step via a process-based74

model (Wang et al., 2000). As a result, the state estimation accuracy depends on an in-75

tricate interplay among model biases, background uncertainty, and observation error, which76

cannot be effectively disentangled or controlled (Law et al., 2015). Moreover, to provide77

multi-scale background information using forecasting models requires operational run78

of large ensemble high-resolution numerical simulations, which is prohibitively expen-79

sive and burdensome (Toth et al., 2003; Palmer, 2017).80

Is there extra information source for inferring the state of the high-dimensional,81

chaotic Earth atmosphere? It turns out that, the inherent low-dimensional statistical struc-82

ture in atmospheric circulation, shaped by the underlying geophysical laws and quasi-83

static geographic boundaries, can serve as an informative prior for state inference. The84

Earth climate system, like any other chaotic system, is an information producer: it grad-85

ually reveals the characteristic structure of its phase space at ever-finer scales (Gilpin,86

2024). By identifying and parameterizing this characteristic structure, we can potentially87

bypass the curse of high dimensionality, and make more efficient use of limited obser-88

vations for the state inference task.89

Some pioneering works have explored this direction, leveraging the inherent struc-90

ture of climate data to fill in missing observations and rebuild historical climate records.91

For instance, Kadow et al. (2020) developed a partial convolution method to reconstruct92

historical global temperature patterns based on partial observations and climate simu-93

lation. Kanngießer and Fiedler (2024) applied a similar methodology to restore the spa-94

tial extent of dust plumes in cloud-masked satellite images. Most of these practices con-95

sider deterministic models, which are designed for specific “reconstruction” problem con-96

figurations, yielding deterministic results regardless of whether observations can adequately97

constrain the estimation uncertainty. As a result, these methodologies generalize poorly98

to state inference tasks where the number or layout of observations change, fail to re-99

produce extremes or apply for scenarios where only limited observations are available.100

A solution to these dilemmas is to shift from deterministic model to probabilistic101

model (B. Pan et al., 2021). Specifically, we prefer to build a probabilistic model that102

explicitly represents the inherent statistical structure of the atmosphere as revealed by103

climate observations or simulations. Thereafter, we hope to effectively and efficiently com-104

bine the learned climatological prior with incomplete observations, so as to obtain strong105

posterior of spatial pattern estimates. This problem setup poses two stringent require-106

ments on the underlying probabilistic model. First, the model must faithfully approx-107

imate the high-dimensional climatological distribution as generated by the chaotic evo-108

lution of climate dynamics. Second, the model must enable flexible probabilistic infer-109

ence, allowing us to efficiently obtain posterior atmospheric state estimates given arbi-110

trary observational constraints.111

To fulfill these requirements, we resort to generative machine learning, in partic-112

ular, probabilistic diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song, Sohl-113

Dickstein, et al., 2020; Kingma et al., 2021). Probabilistic diffusion models learn to ap-114

proximate complex, high-dimensional probability distributions in an iterative manner,115

achieving unprecedented fitting capacity and controlling flexibility (B. Pan et al., 2023;116

Nai et al., 2024). To demonstrate the idea, we consider a case example of inferring the117

spatial pattern of 2 m temperature based on sparse observations from operational me-118

teorology stations. We learn probabilistic diffusion models to approximate the climato-119

logical distribution of 2 m temperature spatial patterns from climate reanalysis or sim-120

ulation data. After carefully assessing the model’s ability to reproduce climatology, we121

develop tools to “inpaint” arbitrary observation constraints into the sample generation122

process, yielding probabilistic 2 m temperature spatial pattern estimates. Finally, we ap-123
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ply this methodology to evaluate each observation’s value in reducing state estimation124

uncertainty, and guide optimal observation network design by pinpointing the most in-125

formative sites.126

2 Methodology127

2.1 Data and problem setup128

We consider the task of inferring the spatial pattern of 2 m temperature over East129

Asia (15◦N− 45◦N, 95◦E− 125◦E), using station observations covering ∼ 1% grids of130

the considered region. To achieve this, we learn climatological distribution of 2 m tem-131

perature spatial pattern using climate reanalysis or simulation data. The reanalysis data132

are hourly, 0.25◦ 2 m temperature data from the fifth-generation global climate and weather133

reanalysis (ERA5) developed at European Centre for Medium-Range Weather Forecasts134

(Hersbach et al., 2020, ECMWF). The simulation data are 3-hourly, 0.25◦ 2 m temper-135

ature historical simulation from the Flexible Global Ocean-Atmosphere-Land System Model136

version f3-H (Bao et al., 2020, FGOALS-f3-H), which participates in the sixth phase of137

the Coupled Model Intercomparison Project (Eyring et al., 2016, CMIP6). The station138

observation data are obtained from the Chinese National Climatic Data Center (X. Pan139

et al., 2021).140

Formally, we denote the spatial pattern of 2 m temperature for the target region
as x, which is a 120 × 120 dimensional random variable here. Our objective is to ap-
proximate the distribution of x, based on large number of samples from climate reanal-
ysis or simulation:

pθ∗ = argmax
pθ

∑
log pθ(x) (1)

Here pθ is parameterized probability density function approximator, θ∗ is the optimal141

parameter, optimized by maximizing the overall likelihood of pθ assigned to the train-142

ing samples.143

Given pθ∗ and sparse observations, we need to provide probabilistic estimates of144

2 m temperature spatial patterns, i.e., pθ∗(x|x⊙m). Here, ⊙ is dot product, m is ob-145

servation mask, with value 1/0 denoting the existence/absence of observations for each146

geogrid. pθ∗(x|x⊙m) should yield samples that are spatially coherent and faithful to147

observational constraints. Also, pθ∗(x|x⊙m) should offer accurate uncertainty quan-148

tification. For instance, geogrids close to observation stations should typically have low149

state estimate uncertainties, while distant ones have high uncertainties. Finally, we pre-150

fer pθ∗(x|x ⊙m) to be adaptive to changes in observation configurations, such as the151

abortion or inclusion of observation stations, or rearrangement of station network lay-152

out. Below we illustrate how to achieve these requirements using the proposed method-153

ology.154

2.2 Learning climatology with probabilistic diffusion model155

We elucidate how to learn climatological distribution of the target random vari-156

able using probabilistic diffusion model, thereafter leverage this learned prior for the in-157

ference task (Sec. 2.3). For clarity, we only cover key steps necessary for establishing our158

methodology. Details can be found in the literature referenced through the description.159

To approximate a target distribution using probabilistic diffusion model, we train160

a series of deep neural networks that can be chained to establish bijective mapping be-161

tween the target distribution and a prior distribution (Sohl-Dickstein et al., 2015; Ho et162

al., 2020). Specifically, we define the following Gaussian process:163

q(xt|xt−1) = N (xt;
√

(1− βt)xt−1, βtI) (2)
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Figure 1. Overview of the Climate Inpainting (CLIN) methodology. A pre-defined forward

Gaussian process (left) turns distribution of target climate variable into a prior distribution, i.e.,

standard Gaussian. A learned reverse Gaussian process (right) turns the prior distribution into

the distribution of the target climate variable. We “inpaint” sparse observations throughout the

reverse Gaussian process (right top), so as to obtain spatial pattern estimates of the target vari-

able.

Here p(x0) = p(x), which is the target distribution; p(xT ) is the prior distribution; we164

bridge x0 and xT using xt∈[1,T ], which are latent variables with increasing noise level;165

N is Gaussian distribution; I is identity matrix; βt is diffusion coefficient, which is pre-166

defined so that, give large enough T , p(xT |x0) is drawn close to p(xT ), which is x0 ag-167

nostic. This setup offers analytical solution for p(xt+τ |xt),∀τ ∈ [0, T − t], t ∈ [0, T ],168

facilitating convenient inference as detailed in Sec. 2.3.169

To achieve generative modeling, we reverse Eq. 2 using the following variation dis-
tributions:

pθ(xt−1|xt) = N (xt−1;µθ,Σθ) (3)

Here Σθ is represented as an interpolation between its analytical lower and upper bound170

(Dhariwal & Nichol, 2021); µθ can be optimized by maximizing the variational lower bound171

(ELBO) on the log-likelihood of the training samples (Sohl-Dickstein et al., 2015; Kingma172

et al., 2021). In practice, we represent µθ as function of neural network parameteriza-173

tion for ∇p(xt|x0), which is known as the score function (Song, Garg, et al., 2020; Song,174

Sohl-Dickstein, et al., 2020). This simplifies the ELBO objective function to the follow-175

ing form:176

L = Et∈[1,T ],x0∼p(x0)||∇p(xt|x0)− ϵθ||2 (4)

Here ϵθ is a neural network parameterization for ∇p(xt|x0). Given the trained score es-177

timates, we can derive pθ(xt−1|xt) = N (xt−1;µθ,Σθ) and sample it, starting with p(xT ),178

ending with p(x0).179

2.3 CLIN: inferring weather states using partial observations180

We combine the learned climatology prior with station observations to infer the pos-181

terior probability distribution of the target variable, using a repainting methodology (Lugmayr182

et al., 2022; Zhang et al., 2023). Specifically, given a pre-trained diffusion model that se-183

quentially applies pθ∗(xt|xt+1) = N (xt;µθ∗ ,Σθ∗) to transform p(xT ) to p(x0), within184

a pre-selected time window of Ω, for grid points where we have observations, we replace185
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values of xt with observations noisified to time step t, by sampling p(xt⊙m|x0⊙m).186

This replacement does not consider the generated parts of xt, therefore, the observations187

could not explicitly constrain the variability of unobserved parts.188

To address this issue, for any t ∈ Ω, after the replacement, instead of progress-189

ing to t − 1 directly, we rewind to time step t − τ by sampling p(xt−τ |xt). We there-190

after repeat the denoising steps from t−τ to t for k rounds, and carry out observation191

replacement for xt at each round. This allows us to jointly modify both observed and192

unobserved regions throughout the denoising steps, yielding generated samples that are193

spatially coherent, faithful and adaptive to observation constraints, and uncertainty-aware.194

This methodology is referred to as inpainting, we hence name our methodology as CLIN,195

short for Climate Inpainting. A formal algorithm description is given below. Details for196

data processing, neural network architecture, hyperparameters for training and inference,197

are given in Supporting Information.198

Algorithm 1 CLIN

Require: trained diffusion model pθ∗ , observations x0 ⊙ m, repainting time step set Ω,
rewinding step τ , rewinding round K

Ensure: observation constrained, spatially coherent sample x0

1: Initialize xT ∼ N (0, I)
2: for t = T − 1, . . . , 1 do
3: xt ∼ pθ∗(xt|xt+1) ▷ Reverse sampling
4: if t ∈ Ω then:
5: for k = 1, . . . ,K do
6: xobser

t ∼ p(xt ⊙m|x0 ⊙m)
7: xt ← xt ⊙ (I−m) + xobser

t ▷ Condition on observations
8: xt+τ ∼ p(xt+τ |xt) ▷ Rewind in time by τ steps
9: for i = t+ τ − 1, . . . , t do

10: xi ∼ pθ∗(xi|xi+1) ▷ Reverse sampling within a rewinding round
11: end for
12: end for
13: end if
14: end for
15: return x0

3 Results199

The accuracy for state estimation depends on 1) how well we can approximate the200

climatological distribution, and 2) based on a learned climatological prior, how well we201

can combine it with limited observations to obtain probabilistic state estimates. Below202

we assess model’s performance for these two aspects (Sec. 3.1 and 3.2). We further em-203

ploy the model to quantify the extent to which observations reduce uncertainty in state204

estimation, offering insights for optimal observation design (Sec. 3.3).205

3.1 Climatology206

We compare grid-scale and field-scale statistics of 10,000 reference/generated sam-207

ples to evaluate how well the probabilistic diffusion models reproduce their training data’s208

climatology. Two models trained with climate reanalysis (ERA5) and historical climate209

simulation (FGOALS) data, hereafter referred to as CLINERA5 and CLINFGOALS, are210

deployed and evaluated.211
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The grid-scale assessment considers the mean, variance, skewness, minimum, and212

maximum of climatological distribution at each grid (Fig. 2). These statistics from ERA5213

(Fig. 2 Row 1) and FGOALS (Fig. 2 Row 3) generally agree well, due to shared constraints214

from geophysical laws and geographic boundaries. The key spatial patterns are the lat-215

itudinal gradient, the influence of topography (e.g., the Tibetan Plateau), and the land-216

sea contrast, which are most evident in the mean, minimum and maximum maps. The217

variance and skewness maps reveal more regional variations. A notable discrepancy is218

that, compared to ERA5, FGOALS tends to hold larger skewness for most of the land219

regions in Southern China and Philippine Island, implying a more frequent present of220

high 2 m temperature for these regions.221

CLINERA5 (Fig. 2 Row 2) and CLINFGOALS (Fig. 2 Row 4) can well reproduce the222

considered statistics of their training data, achieving high spatial correlation coefficient223

(∼ 0.99) and low root mean squared error (∼ 0.1◦C) in matching these statistics. Be-224

sides reproducing the large scale patterns, both models accurately capture high frequency225

local variations influenced by complex topography, such as for mountainous regions and226

coastal areas. Also, the climatology difference between ERA5 and FGOALS are well re-227

produced by the corresponding CLIN models.228

We further carry out grid-wise Kolmogorov-Smirnov tests to assess whether the gen-229

erated and referential samples are likely to have come from the same underlying distri-230

bution: 96/76% grid points (stippled grids in Fig. 2) within the considered region pass231

a 95% confidence interval test for the CLINERA5 and CLINFGOALS model. These results232

suggest that the CLIN model can well reproduce climatological distribution of its train-233

ing data at grid scale.234

We hereafter compare the referential and generated distributions using field-scale235

statistics. We first examine the linear spatial structure of the 2 m temperature spatial236

patterns using a principal component analysis (Supporting Information Fig. S2): we de-237

compose the spatial pattern of the target random variable into a set of orthogonal modes238

that capture the maximum amount of variance, and compare the spatial modes (Em-239

pirical Orthogonal Functions, EOFs), as well as the variance explained by these modes.240

For EAR5, the first to third leading principal components explained 90/2.7/2.0% of the241

total variance. While for CLINERA5, the first to third leading principal components ex-242

plained 91/2.6/1.5% of the total variance, which closely matches results for the ERA5243

referential data. More importantly, we obtain spatial correlation coefficient of 0.994/0.990/0.986244

between the first to third EOF of EAR5 and CLINERA5. While the spatial modes of FGOALS245

differs considerably with ERA5, CLINFGOALS closely matches FGOALS: the first to third246

leading principal components explained 83.6/5.1/2.2% or 83.9/4.9/2.1% of the total vari-247

ance for FGOALS or CLINFGOALS. The spatial correlation coefficient between the first248

to third EOF of FGOALS and CLINFGOALS are 0.999/0.997/0.994. These results sug-249

gest that the CLIN model can well reproduce the linear spatial mode of the considered250

climatological distribution.251

Lastly, we examine the distribution of spatial variability across different spatial scales252

in the referential/generated dataset: we carry out 2D Fourier transform on the referen-253

tial/generated samples, and draw the radial averaged squared magnitude of the complex254

Fourier coefficients as function of wave numbers (Fig. 3). The radially averaged power255

spectrum density of the considered referential and generated data samples follow a sim-256

ilar power-law scaling, suggesting that the CLIN model can well reproduce the spatial257

variability across scales.258

To sum up, the analysis of both grid-scale and field-scale statistics demonstrates259

that the CLIN methodology accurately reproduces the essential characteristics and pat-260

terns of the climatological distribution present in the training data. We can thereafter261

leverage this learned climatological prior for the state inference task.262
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Figure 2. Grid-scale comparison of climatological statistics for climate reanalysis (ERA5,

Row 1), climate simulation (FGOALS, Row 3), and probabilistic diffusion models trained us-

ing these datasets (CLINERA5, Row 2; and CLINFGOALS, Row 4). The considered statistics are

mean, variance, skewness, minimum, and maximum. The spatial correlation coefficient (corr) and

root mean squared error (RMSE) between the referential dataset statistics and generated dataset

statistics are labeled. Stipples denote grids that pass the Kolmogorov-Smirnov test at 95% confi-

dence interval.
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Figure 3. Radial averaged power spectrum density as function of wave number for 2 m tem-

perature spatial pattern. a: results for ERA5, FGOALS, CLINERA5, and CLINFGOALS averaged

over 100 ensemble members. b-d: probability distribution of power spectrum density at wave

number 21, 23, 25 for ERA5, FGOALS, CLINERA5, and CLINFGOALS.
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3.2 Inferring weather states using partial observations263

Given a learned climatological prior, we assess how well we can combine it with par-264

tial observations to obtain probabilistic estimate of the 2 m temperature spatial patterns.265

The climatological priors are probabilistic diffusion models trained using climate reanal-266

ysis (ERA5) and climate simulation (FGOALS) data. The observations are from 131 op-267

erational meteorological stations across China. We randomly select 120 of these stations268

to inpaint into the generation process, and leave the rest 11 stations for test. For regions269

without station observations, we consider ERA5 data as benchmark. Below we report270

case example results (Sec. 3.2.1) and a 1-year round skill assessment (Sec. 3.2.2) .271

3.2.1 Case study272

We consider four case examples covering different hours of a day and different sea-273

sons (Fig. 4). To make probabilistic inference of spatial patterns using partial observa-274

tions, we gradually inpaint station observations into the generation process of CLINERA5275

and CLINFGOALS, creating 100 ensemble members for each model and each case. We re-276

port the ERA5 spatial pattern (Fig. 4 Row 1), the ensemble mean (Fig. 4 Row 2 and277

5), the standard deviation of the ensemble (Fig. 4 Row 3 and 6), the mean squared er-278

ror between ERA5 and the ensemble members (Fig. 4 Row 4 and 7) for CLINERA5 and279

CLINFGOALS.280

Both the repainted CLINERA5 and CLINFGOALS ensemble mean results closely match281

the ERA5 spatial pattern, regarding latitudinal gradient, influence of topography, and282

the land-sea contrast, yielding spatial correlation coefficient of 0.980±0.02/0.977±0.02283

for the four considered case examples. These results suggest that the proposed method-284

ology allows effectively propagation of information from limited (∼ 1%) observed loca-285

tions to a broad range of unobserved parts.286

Next, we test if the CLIN methodology offers reliable uncertainty quantification287

(Fig, 4 Row 3 and 6). A larger ensemble variance indicates greater uncertainty in the288

estimate, while a smaller variance suggests more confidence in the estimate. As is ex-289

pected, geogrids close to observation stations tend to have low ensemble variance, while290

distant ones may have relatively higher ensemble variance. The information constraint291

from observations may be blocked by topography, such as for Tibetan Plateau and Tian292

Shan Mountains. While for plain regions, we can expect a larger extension of observa-293

tion constraints. We further examine the relationship between the spread of the ensem-294

ble members and their estimation skill, by computing the correlation between ensem-295

ble variance and ensembles’ mean squared error score. The high spread skill correlation296

for CLINERA5 (0.90±0.08) and CLINFGOALS (0.94±0.04) suggest that ensemble spread297

is a good predictor of model’s estimation skill. This means that the CLIN model can cap-298

ture the underlying uncertainties and provide reliable estimates of spatial estimation con-299

fidence.300

To sum up, the case studies confirm that the CLIN methodology can make success-301

ful probabilistic inference of 2 m temperature spatial patterns using limited observations.302

The results are spatially coherent, well-constrained by observations, and offer reliable303

uncertainty quantification. It is worth noting that there are unneglectable mismatches304

between station observations and ERA5/FGOALS, regarding either climatological statis-305

tics or values. These mismatches introduce domain shift error, which is frequently en-306

countered as we deploy a machine learning model in real-world scenarios where the data307

distribution differs from the training data. Below we dissect this error source by inpaint-308

ing with different data sources in a 1-year round evaluation.309
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Figure 4. Case examples for probabilistic inference for 2 m temperature spatial pattern using

partial observations. For CLINERA5 and CLINFGOALS, 100 ensemble members are created by

repainting observations. The ERA5 spatial pattern (Row 1), the ensemble mean (Row 2 and 5),

the standard deviation of the ensemble (Row 3 and 6), the mean squared error between ERA5

and the ensemble members (Row 4 and 7) for CLINERA5 and CLINFGOALS are plotted.
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3.2.2 Skill evaluation310

We conduct a year-long evaluation of the models’ performance in inferring spatial311

patterns, using data from Year 2021, which are not included in the models’ training pro-312

cess. We compare ERA5 with CLINERA5 and CLINFGOALS, both inpainted using sta-313

tion observations, and present the spatial distribution of their RMSE in Fig. 5a and Fig. 5b.314

To further investigate different uncertainty sources in the state inference task, we also315

consider inpainting CLINERA5 using ERA5 data at the observation stations. The RMSE316

between this inpainted CLINERA5 and the ERA5 whole-field data is shown in Fig. 5c.317

a b c

d e

Figure 5. Skill evaluation for CLIN models to estimate spatial pattern of 2 m tempera-

ture using data for Year 2021. a: root mean squared error (RMSE) between ERA5 reanalysis

and CLINERA5 inpainted using station observations; b: RMSE between ERA5 reanalysis and

CLINFGOALS inpainted using station observations; c: RMSE between ERA5 reanalysis and

CLINERA5 inpainted using ERA5 data at station observations; d: distribution of RMSE as func-

tion of grid’s distance to nearest observation station for the three considered methods; e: Taylor

diagram comparing the left-out station observations with CLINERA5 (orange) and CLINFGOALS

(blue) results. Both CLINERA5 and CLINFGOALS are constrained by 120 station observations

here. We delineate three representative regions to evaluate the value of observations in Sec. 3.3

The RMSE between ERA5 and observation inpainted CLINERA5/CLINFGOALS is318

0.25±0.21◦C/0.31±0.20◦C, suggesting that the CLIN methodology enables accurate319

spatial pattern estimates. Both models exhibit low uncertainty in plain terrain regions320

or over the ocean, despite that no ocean observations were applied. This suggests that321

the learned climatological prior effectively captures the spatial patterns and variability322

in these regions, allowing the models to make confident estimates using limited and far-323

away observational constraints. On the other hand, both models exhibit higher uncer-324

tainty in regions with complex terrain, such as the Tibetan Plateau and the mountain-325

ous areas of Southeast China. Additionally, land areas with complicated terrain but lack-326
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ing observational constraints, such as Southeast Asia, also show large uncertainty in the327

model estimates.328

The uncertainty in state inference comes from the following three sources (Tab. 1).329

The first is domain shift error, which is due to distribution mismatch among data ap-330

plied for model training, data applied for inpainting, and data applied for skill evalua-331

tion. The second is model error, which is due to the approximation/optimization/statistical332

error in applying probabilistic diffusion model to fit climatological prior, or due to er-333

rors in inpainting. These two types of uncertainties are epistemic, as they could be re-334

duced by gathering more data, improving the model, or incorporating knowledge about335

data distribution differences. The third source of uncertainty is intrinsic/aleatoric, which336

is due to existence of multiple plausible spatial patterns given partial observational con-337

straints, reflecting the inherent randomness in the system being modeled.338

To disentangle these uncertainty sources, we consider the following comparisons.339

1. We compare the RMSE of CLINERA5 (Fig. 5a) and CLINFGOALS (Fig. 5b). CLINERA5340

achieves an overall lower RMSE, which can be attributed to a relieved domain shift341

error from the following two aspects: a. compared to FGOALS, ERA5 better matches342

the “true” climatology as partially revealed by the scattered observations; b. we343

consider ERA5 data as “ground truth” for evaluating model performance, which344

gives advantage to CLIN model trained using ERA5 data.345

2. We compare CLINERA5 inpainted using observation data (Fig. 5a) and CLINERA5346

inpainted using scattered ERA5 data (Fig. 5c). The latter achieve significantly347

lower RMSE (0.19± 0.12◦C), suggesting a relatively low model error and a rel-348

atively low intrinsic uncertainty of the considered task. The difference between349

these cases highlights the domain shift error as the observation distribution dif-350

fers from ERA5.351

3. We compare the performance of CLINERA5 and CLINFGOALS in predicting the352

observations at test stations that are excluded during repainting (Fig. 5e). For these353

test stations, both CLINERA5 and CLINFGOALS results show high correlation co-354

efficient (0.87-0.99) and low root mean squared error (0.2-0.4◦C) with the obser-355

vations , with CLINERA5 performing slightly better than CLINFGOALS; CLINERA5356

holds a normalized standard deviation close to 1, which closely matches the ob-357

servations, while CLINFGOALS holds a normalized standard deviation slightly less358

than 1, suggesting a smaller temporal variability.359

Table 1. Uncertainty sources for state inference using partial observations

Uncertainty source Type Illustration

Domain shift Epistemic Distribution mismatch among data applied for model training,
data applied for inpainting, and data applied for skill evaluation.

Model error Epistemic 1. Approximation/optimization/statistical error in fitting climatological prior.
2. Error in constraining the prior with observations.

Intrinsic uncertainty Aleatoric Existence of multiple plausible spatial patterns given observational constraints.

Finally, we quantify the spatial extension of observational constrains by showing360

models’ RMSE skill as function of grid’s distance to nearest observation station (Fig. 5d).361

We consider CLINERA5 inpainted using observation data and ERA5 data, as well as CLINFGOALS362

inpainted using observation data. For all these cases, models’ performances at an arbi-363

trary grid depends closely on the grid’s proximity to observations. Meanwhile, there is364

large variation of models’ RMSE skills for grids that are at least 1◦ away from any ob-365

servation stations. Below we further investigate the value of individual observations in366
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constraining the variability of its nearby spatial patterns, and offer guidelines for bet-367

ter observation planning.368

3.3 On the value of observations369

We apply the CLIN methodology to quantify the value of observations in constrain-370

ing state estimation uncertainty, using three representative regions delineated in Fig. 5a.371

To achieve this, we add or remove observational stations and evaluate the impact on the372

estimation error (Fig. 6). Here, the first column shows the RMSE spatial pattern for the373

original CLINERA5 model estimates in each target region; the second column (Adding)374

demonstrates the impact of adding an observation station in a high-error area; the third375

column (Removing) illustrates the effect of removing an existing observation station; the376

fourth column (Terrain) provides a topographical context for each target region.377

Target Adding Removing Terrain

T
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et
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× ×

P
ea
rl
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× ×

N
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th
C
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P
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in

× ×

Figure 6. Evaluation of CLIN in reconstructing 2m temperature spatial pattern using dif-

ferent observation setups. Column 1: RMSE between CLINERA5 inpainted using observation

data and ERA5 for three selected regions delineated in Fig. 5. Column 2: RMSE after including

a pseudo new observation. This new observation data is from ERA5. Column 3: RMSE after

including a pseudo new observation. Column 4: elevation map of the considered regions. The

results are based on a year-long (Year 2021) evaluation.

For the case of Tibetan Plateau (first row), where the terrain is highly complex,378

with average elevations exceeding 4500 meters, we obtain a relatively high RMSE given379

existing observation constrains, particularly in the central and eastern parts of the re-380

gion. Adding a station in the high-error area significantly reduces the RMSE for a broad381

range of the considered region, this impact is more pronounced here as compared to the382

other two cases, highlighting the importance of observational constraints in areas with383

complex terrain. Removing a station results in a noticeable increase in RMSE in the sur-384

rounding areas. Similarly, the effect of station removal is more evident compared to the385
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other two cases, suggesting that the model heavily relies on the limited observational data386

to constrain its estimates in this complex terrain. The loss of a station in a critical lo-387

cation can greatly impact the model’s ability to capture the local temperature patterns.388

For the case of Peal River Delta (second row), the terrain is characterized by a mix389

of lowlands and hilly regions, with elevations ranging from 0 to 1000 meters. The orig-390

inal RMSE is low overall, with some higher values in the central and northwest moun-391

tain regions. Adding a station in the high-error area effectively reduces the RMSE. Mean-392

while, removing a station leads to a hardly noticeable increase in RMSE in the surround-393

ing areas.394

For the case of North China Plain (third row), the northern part is featured by moun-395

tainous terrains exceeding 1000 meters, and the southern part has flat topography and396

homogeneous terrain. Adding a station in the central of southern plain area reduces the397

RMSE significantly, as existing observations are either from the northern mountain ar-398

eas, or is too far away. Same as previous case, removing a station has minimal impact399

on the RMSE distribution.400

To sum up, we discusses the application of the CLIN methodology to evaluate the401

impact of observational data on state estimation uncertainty across three diverse regions.402

It emphasizes the importance of strategic addition and removal of observational stations403

in improving estimation accuracy, particularly in areas with complex terrain. The find-404

ings highlight how existing observation constraints influence RMSE distribution, with405

significant reductions observed when stations are added in high-error areas. Conversely,406

removal of stations leads to increased RMSE, underscoring the model’s reliance on lim-407

ited observational data. Overall, we provide valuable insights for optimizing the design408

of observation networks, leading to a reduction in uncertainties and biases in weather409

and climate analysis.410

4 Conclusion411

Accurate state estimation of Earth atmosphere marks a daunting task due to its412

high-dimensionality and chaotic nature. We demonstrated the potential of deep gener-413

ative models, specifically probabilistic diffusion models, in learning the inherent low-dimensional414

statistical structure of atmospheric circulation from climate reanalysis and simulation415

data. By leveraging this learned climatological prior, we developed a methodology named416

CLIN (Climate Inpainting) to effectively infer weather states from partial observations.417

For the case study of estimating 2 m temperature spatial patterns, the learned cli-418

matological prior accurately reproduced the essential characteristics and patterns of the419

training data at both grid-scale and field-scale. This learned prior effectively captured420

multi-scale climate patterns, providing regularization and stability to the state estima-421

tion task.422

Combining the learned climatological prior with station observations, CLIN yielded423

strong posterior estimates of 2 m temperature spatial patterns. The estimates were spa-424

tially coherent, well-constrained by observations, and provided reliable uncertainty quan-425

tification. Regions near observation stations exhibited low ensemble variance, indicat-426

ing high confidence in the estimates, while distant regions showed relatively higher en-427

semble variance. The high spread-skill correlation confirmed that the ensemble spread428

was a good predictor of the model’s estimation skill.429

Moreover, CLIN allowed us to quantify the value of each observation station in re-430

ducing state estimation uncertainty. By adding or removing stations and evaluating the431

impact on the estimation error, we demonstrated the potential of this approach in guid-432

ing the design of optimal observation networks.433
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Our study showcases the power of deep generative models in extracting and uti-434

lizing the information produced by the chaotic evolution of the climate system. The pro-435

posed CLIN methodology opens up new opportunities for data-driven weather state es-436

timation, potentially complementing traditional data assimilation approaches.437

Future work could focus on extending CLIN to handle indirect observations (i.e.,438

remote sensing) and multiple interdependent variables, incorporating temporal dynam-439

ics, and adapting to long-term climate trends. Addressing the computational demands440

and data requirements of diffusion models is another important direction for making this441

approach more practical and accessible.442

In conclusion, this study demonstrates the immense potential of deep generative443

models in advancing climate data exploration and tackling complex inference tasks in444

atmospheric sciences. By learning the intrinsic statistical structure of the climate sys-445

tem, these models can effectively bridge the gap between sparse observations and com-446

plete weather state estimates, paving the way for more accurate and efficient climate mon-447

itoring and prediction.448

5 Data Availability449

The ERA5 reanalysis data are obtained from the Copernicus Climate Change Ser-450

vice (C3S) Climate Data Store (CDS), accessible at https://cds.climate.copernicus.eu/.451

The FGOALS model data are obtained from the Coupled Model Intercomparison452

Project Phase 6 (CMIP6), hosted by the Program for Climate Model Diagnosis and In-453

tercomparison (PCMDI) at Lawrence Livermore National Laboratory (LLNL), acces-454

sible at https://pcmdi.llnl.gov/CMIP6/.455

The observational data are freely available for download from the following web-456

site: http://www.ncdc.noaa.gov/oa/ncdc.html. The site information used in this study457

was obtained from the China Meteorological Data Network, hosted by the China National458

Meteorological Science Data Center (NMDC), accessible at http://data.cma.cn/.459

6 Open Research460

Model configuration, analysis scripts, data files used for this study will be publicly461

available upon accept of the work.462
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S1. Details of probabilistic diffusion model

Here, we provide detailed mathematical formulations and implementation specifics of

the deployed probabilistic diffusion model. For more information and useful learning

materials, refer to the works of Sohl-Dickstein et al.(2015), Ho et al. (2020), Song et al.

(2020) , Kingma et al. (2021), Ho & Salimans (2022) and Luo (2022).

Diffusion models are probabilistic models that describe the evolution of a stochastic

process over time. In the context of deep learning diffusion models, the diffusion process

and its reverse process are fundamental concepts.

The diffusion process is the forward process through which a model generates data,

typically images, from a simple noise distribution (often Gaussian noise) to the target

distribution. A step-by-step derivation is provided below.

First, we define the following Gaussian process to transform the target distribution

p(x0) to a prior distribution p(xT ):

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI) (1)

Here xt∈[1,T ] are latent variables with increasing noise level; N is Gaussian distribution;

I is identity matrix; βt is diffusion coefficient, which is pre-defined so that, give large

enough T , p(xT |x0) is drawn close to p(xT ), which is x0 agnostic.

q(x1:T |x0) =
T∏
t=1

q(xt|xt−1) (2)
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We parameterize the Gaussian encoder with mean µt(xt) =
√
αtxt−1, and variance

Σt(xt) = (1−αt)I, Here αt = 1−βt. Mathematically, encoder transitions are denoted as:

xt =
√
αtxt−1 +

√
1− αtϵt−1 (3)

=
√
αtαt−1xt−2 +

√
1− αtαt−1ϵ̄t−2 (4)

= . . . (5)

=
√
ᾱtx0 +

√
1− ᾱtϵ (6)

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I) (7)

These assumptions depict a systematic process of adding Gaussian noise to the data input

over time. As we continue to corrupt the data, it gradually transitions until it is entirely

characterized by pure Gaussian noise.

In essence, the reverse process aims to infer the noise distribution that could have

generated the observed data. Similar to the diffusion process, the reverse process is

represented as:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) pθ(x0:T ) = p(xT )
T∏
t=1

pθ(xt−1|xt) (8)

Here, Σθ is parameterized as an interpolation between its analytical lower and upper

bounds (Dhariwal & Nichol, 2021). The optimization of µθ involves maximizing the vari-

ational lower bound (ELBO) on the log-likelihood of the training samples (Sohl-Dickstein

et al., 2015; Kingma et al., 2021).

Then, diffusion model can be optimized by maximizing the ELBO, which can be derived

as follows:
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log p(x) = log

∫
p(x0:T )dx1:T (9)

= log

∫
p(x0:T )q(x1:T |x0)

q(x1:T |x0)
dx1:T (10)

= logEq(x1:T |x0)

[
p(x0:T )

q(x1:T |x0)

]
(11)

≥ Eq(x1:T |x0)

[
log

p(x0:T )

q(x1:T |x0)

]
(12)

= Eq(x1:T |x0)

[
log

p(xT )pθ(x0|x1)
∏T

t=2 pθ(xt−1|xt)

q(x1|x0)
∏T

t=2 q(xt|xt−1,x0)

]
(13)

= Eq(x1:T |x0)

[
log

p(xT )pθ(x0|x1)

q(x1|x0)
+ log

T∏
t=2

pθ(xt−1|xt)
q(xt−1|xt,x0)q(xt|x0)

q(xt−1|x0)
]

]
(14)

= Eq(x1|x0) [log p0(x0|x1)] + Eq(xT |x0)

[
log

p(xT )

q(xT |x0)

]
+

T∑
t=2

Eq(xt,xt−1|x0)

[
log

pθ(xt−1|xt)

q(xt−1|xt,x0)

]
(15)

= Eq(x1|x0) [log pθ(x0|x1)]−DKL(q(xT |x0) ∥ p(xT ))

−
T∑
t=2

Eq(xt|x0) [DKL(q(xt−1|xt, x0) ∥ pθ(xt−1|xt))] (16)

We now explain the three terms on the right-hand side of the Eq. 16:

• Eq(x1|x0) [log pθ(x0|x1)] represents the expected log-likelihood of the initial data

x0 given the sampled intermediate data x1. For the first step, we have

Eq(x1|x0) [log pθ(x0|x1)] = 0.

• DKL(q(xT |x0) ∥ p(xT )) denotes the KL divergence between the approximate poste-

rior distribution q(xT |x0) and the prior distribution p(xT ) at the final time step T.

Where p(xT ) ∼ N (0, I), it implies that Eq(xT−1|x0) [DKL(q(xT |xT−1) ∥ p(xT ))] = 0

•
∑T

t=2 Eq(xt|x0) [DKL(q(xt−1|xt,x0) ∥ pθ(xt−1|xt))] represents the sum of the expected

KL divergences between the approximate posterior distributions q(xt−1|xt,x0) and the
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conditional distributions pθ(xt|xt+1) for each intermediate time step t in the reverse dif-

fusion process.

Given the analysis above, maximizing log p(x) can be approximately achieved by min-

imizing the third term. While minimizing each KL Divergence term individually can be

challenging for arbitrary posteriors, we can leverage Bayes’ rule to simplify the process:

q(xt−1|xt, x0) =
q(xt|xt−1, x0)q(xt−1|x0)

q(xt|x0)
(17)

=
N (xt;

√
αtxt−1, (1− αt)I)N (xt−1;

√
αt−1x0, (1− ᾱt−1)I)

N (xt;
√
ᾱtx0, (1− ᾱt)I)

(18)

∝ exp

{
−
[
(xt −

√
αtxt−1)

2

2(1− αt)
+

(xt−1 −
√
αt−1x0)

2

2(1− ᾱt−1)
−

(xt −
√
αtx0)

2

2(1− ᾱt)

]}
(19)

= exp

{
−1

2

[
(xt −

√
αtxt−1)

2

1− αt

+
(xt−1 −

√
αt−1x0)

2

1− ᾱt−1

−
(xt −

√
αtx0)

2

1− ᾱt

]}
(20)

= exp

{
−1

2

(
1

(1−αt)(1−ᾱt−1)
1−ᾱt

)[
x2
t−1 − 2

√
αt(1− ᾱt−1)xt +

√
ᾱt−1(1− αt)x0

1− ᾱt

xt−1

]}
(21)

∝ N (xt−1;

√
αt(1− ᾱt−1)xt +

√
αt−1(1− αt)x0

1− ᾱt︸ ︷︷ ︸
µq(xt,x0)

,
(1− αt)(1− ᾱt−1)

1− ᾱt

I)︸ ︷︷ ︸
Σq(t)

(22)

Hence, it is demonstrated that at each step xt−1 ∼ q(xt−1|xt,x0) follows a normal dis-

tribution. We use the KL Divergence between two Gaussian distributions for calculation.

April 11, 2024, 9:17pm



X - 6 :

argmin
θ

DKL (q (xt−1 | xt,x0) ∥pθ (xt−1 | xt)) (23)

=argmin
θ

DKL

(
N
(
xt−1;µq,Σq(t)

)
∥N (xt−1;µθ,Σq(t))

)
(24)

=argmin
θ

1

2

[
log

|Σq(t)|
|Σq(t)|

− d+ tr
(
Σq(t)

−1Σq(t)
)
+
(
µθ − µq

)T
Σq(t)

−1
(
µθ − µq

)]
(25)

=argmin
θ

1

2

[(
µθ − µq

)T (
σ2
q (t)I

)−1 (
µθ − µq

)]
(26)

=argmin
θ

1

2σ2
q (t)

[∥∥µθ − µq

∥∥2
2

]
(27)

After optimizing the Diffusion Model, the sampling procedure simplifies to sampling

Gaussian noise from p(xT ) and iteratively running the denoising transitions pθ(xt−1|xt)

for T steps to generate a novel x0. In practice, we denote µθ as function of neural network

parameterization for ∇p(xt|x0), which is commonly known as the score function (Y. Song

et al., 2020).

S2. CLIN

In our approach, we merge the acquired climatology prior with station observations

to deduce the posterior probability distribution of the target variable. This allows us

to jointly modify both observed and unobserved regions throughout the denoising steps,

yielding generated samples that are spatially coherent, faithful and adaptive to observation

constraints, and uncertainty-aware. The specific parameters of CLIN are presented in the

following table. S1.

S3. Model parameters schedule

We trained the neural network on the NVIDIA Tesla V100 32GB GPU using CUDA

version 12.3. The neural network architecture details of the diffusion model are illustrated
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in Fig. S1. Typical hyperparameter configurations for diffusion models are often derived

from the(Ho & Salimans, 2022).

The specific hyperparameters of the model are presented in the following table. S1.

we embed the time information, and stack the time embedding as an additional channel

to all UNet blocks. Each contracting block consists of a long sequence of {C3∗3 + N +

ReLU}3 operations and a short sequence of {C1∗1}1 operations, concatenated as a residual

block. Here, Cn∗n is convolution layer with kernel receptive field of size n ∗ n. N is group

normalization, ReLU is rectified linear unit function. Each expand block consists of a

long sequence of {R2+C3∗3+N+ReLU}3 operations and a short sequence of {R2, C1∗1}1

operations, concatenated as a residual block. Here, Rn resizes the data by n times using

linear interpolation. We begin with a channel size of 64 and double/shrink the channel

size by 2 along each contracting/expanding block.

S4. Evaluation metrics

S4.1 Pearson correlation coefficient (corr)

The Pearson correlation coefficient (corr) between prediction x̂ and observation x is

calculated as follows:

corr =

∑n
i=1(x̂i − ¯̂x)(xi − x̄)√∑n

i=1(x̂i − ¯̂x)2 ·
∑n

i=1(xi − x̄)2
(28)

S4.2 Root mean square error(RMSE)

The root mean square error (RMSE) between prediction x̂ and observation x is calcu-

lated as follows:

RMSE =

√∑n
i=1(yi − ŷi)2

n
(29)
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S4.3 Empirical Orthogonal Function

Empirical Orthogonal Function (EOF) analysis, also known as Principal Component

Analysis (PCA) in some contexts, is a widely used statistical method in various fields,

including meteorology, oceanography, climatology, and geophysics.

It is employed to analyze and extract the dominant patterns of variability present in a

multivariate dataset, such as spatial patterns in climate data or in oceanographic data.

The detailed calculation method for EOF is based on the PrincipalComponents function

in Mathematica.

S4.4 Kolmogorov-Smirnov test

The Kolmogorov-Smirnov test (KS test) is a statistical method used to compare the

empirical cumulative distribution function (CDF) of a sample dataset with a reference

probability distribution or another sample dataset. It is particularly useful for assessing

whether the two datasets are drawn from the same underlying distribution or if they differ

significantly.

The KS test operates by computing the maximum difference (or maximum deviation)

between the two cumulative distribution functions. This maximum difference, often de-

noted as the KS statistic (D), represents the largest vertical distance between the empirical

CDF and the theoretical (or reference) CDF. The KS statistic is then compared against

critical values from the Kolmogorov-Smirnov distribution, which depends on the sample

size and the significance level chosen for the test.

The specific computation method for the Kolmogorov-Smirnov test is derived from

Mathematica’s KolmogorovSmirnovTest function.

S4.5 Power spectrum density
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The radial averaged power spectrum density (PSD) is a quantitative measure used in

various fields of science and engineering, including signal processing, optics, and geo-

physics. It provides valuable insights into the distribution of power across different spa-

tial frequencies in a given signal or image. In this paper, the PSD is calculated by first

computing the Fourier transform of the signal or image to obtain its frequency domain

representation. The power spectrum density is then computed as the squared magnitude

of the Fourier transform. The PSD further averages the power spectrum density over con-

centric circles or spherical shells centered at the origin, hence the term ”radial averaged.”

This averaging process is performed to capture the isotropic characteristics of the signal

or image, ensuring that contributions from all directions are considered equally.

The PSD is particularly useful for analyzing signals or images with rotational symmetry

or spatial periodicity. By averaging the power spectrum density radially, it becomes

possible to discern patterns or structures that are not readily apparent in the original

signal or image. Additionally, the PSD can be used to quantify the dominant spatial

frequencies present in the signal or image, providing valuable information for further

analysis or interpretation.

In short, the radial averaged power spectrum density offers a comprehensive view of

the spatial frequency content of a signal or image, facilitating insights into its underlying

structure and characteristics.

The specific calculation method for the PSD is derived from the pySTEPS library in

Python.
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Table S1. Hyperparameters of Diffusion model

Hyperparameter Setting Parameter

Learning Rate 10−4 α2
t = 1− σ2

t = 1
1+e−λt

Batch Size 64 λt = −2 log tan(at+ b)

Channel 64 b = arctan(e−
λmax

2 )

Optimizer Adam a = arctan(e−
λmin

2 )− b

Number of Iterations 1000 t = i
1000

,Where i = 0, 1, 2, . . . , 1000

λmin -20 embedding(t) = [sin(2πωt); cos(2πωt)]

λmax 20 ω ∼ N (0, I)
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Figure S1. Network Architecture of diffusion model. Each contracting block consists

of a long sequence of {C3∗3 + N + ReLU}3 operations and a short sequence of {C1∗1}1

operations, concatenated as a residual block. Here, Cn∗n is convolution layer with kernel

receptive field of size n∗n. N is group normalization, ReLU is rectified linear unit function.

Each expand block consists of a long sequence of {R2 + C3∗3 + N + ReLU}3 operations

and a short sequence of {R2, C1∗1}1 operations, concatenated as a residual block.
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ERA5 EOF1 (90%)a ERA5 EOF2 (2.7%)b ERA5 EOF3 (2%)c

CLINERA5 EOF1 (91%)d CLINERA5 EOF2 (2.6%)e CLINERA5 EOF3 (1.5%)f

FGOALS EOF1 (83.6%)g FGOALS EOF2 (5.1%)h FGOALS EOF3 (2.2%)i

CLINFGOALS EOF1 (83.9%)j CLINFGOALS EOF2 (4.9%)k CLINFGOALS EOF3 (2.1%)l

Figure S2. The first three EOF modes. ERA5 (a-c), Clin ERA5 (d-f), FGOALS (g-i)

and CLIN FGOALS (j-l).
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