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11Forschungszentrum Jülich Gmbh
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Abstract

Here, we review in depth how soils can remember moisture anomalies across spatial and temporal scales, embedded in the concept

of soil moisture memory (SMM), and we explain the mechanisms and factors that initiate and control SMM. Specifically, we

explore external and internal drivers that affect SMM, including extremes, atmospheric variables, anthropogenic activities, soil

and vegetation properties, soil hydrologic processes, and groundwater dynamics. We analyze how SMM considerations should

affect sampling frequency and data source collection. We discuss the impact of SMM on weather variability, land surface energy

balance, extreme events (drought, wildfire, and flood), water use efficiency, and biogeochemical cycles. We also discuss the

effects of SMM on various land surface processes, focusing on the coupling between soil moisture, water and energy balance,

vegetation dynamics, and feedback on the atmosphere. We address the spatiotemporal variability of SMM and how it is affected

by seasonal variation, location, and soil depth. Regarding the representation and integration of SMM in land surface models,

we provide insights on how to improve predictions and parameterizations in LSMs and address model complexity issues. The

possible use of satellite observations for identifying and quantifying SMM is also explored, emphasizing the need for greater

temporal frequency, spatial resolution, and coverage of measurements. We provide guidance for further research and practical

applications by providing a comprehensive definition of SMM, considering its multifaceted perspective.
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Metrics to Quantify Anomaly Persistence of Soil Moisture (APSM) 

The following criteria are typically used to test the short- and long-term persistence of a time series. 

a) Length-of-runs (Gold test) 

The probable number of runs of length n of N events in a series in which there is no persistence is 

usually examined using Gold's test [Gold, 1929]: 

𝑄 =  ∑
(𝑚′′(𝑛) − 𝐸[𝑚′′(𝑛)])2

𝐸[𝑚′′(𝑛)]

𝑛′

𝑛=1

 (A-1) 

where Q is distributed as chi-square with (n'-1) degree of freedom, n' is the maximum run length 

in the series, and E[m"(n)] is the expected number of runs of n dry periods in a series of N years. 

Given that the dry (θ < θcl), normal (θcl < θ < θcu), and wet (θ > θcu) periods occur independently 

with unequal probabilities p, q, and r, respectively, the E[m"(n)] in a series of N years for a purely 

random process is determined as below: 

𝐸[𝑚′′(𝑛)] = 2𝑝2(𝑞 + 𝑟) + (𝑁 − 𝑛 − 1)𝑝𝑛(𝑞 + 𝑟)2 (A-2) 

After determining Q, its significance is tested by comparison with the chi-square values obtained 

from tables. If the calculated value of Q is smaller than the chi-squared value obtained from tables 

with 95% probability, then the hypothesis that the sequence results from a purely random process 

is accepted. 

b) Chi-square 

Oladipo and Hare [1986] examined the tendency for persistence from year to year by constructing 

contingency tables indicating the distribution of the three categories of moisture conditions (dry, 

normal, and wet) for the previous and the following years for independence with the Fisher exact 

permutation test. In this context, and to check whether the triple classification scheme for moisture 

is independent, one can use the algorithm of Pagano and Halvorsen [1981].  

c) Autocorrelation test 

Oladipo and Hare [1986] also used log-one autocorrelation to examine the short-term dependence 

in time series which is usually measured by the magnitude of the low-order correlation coefficient. 

For this aim, the estimator recommended by Jenkins [1968] is used which computes as: 



𝑟1 =  
∑ (𝑥𝑖 − x̅)(𝑥𝑖+1 − x̅)𝑛

𝑖=1

∑ (𝑥𝑖 − x̅)2𝑛
𝑖=1

 (A-3) 

where n is the length of time series, xi is the periodic (daily, monthly, seasonal, etc.) mean of the 

soil moisture of the ith period, and  

x̅ =  
1

𝑛
∑ 𝑥𝑖

𝑛

𝑖=1

 (A-4) 

After determining r1, its significance is tested according to the following criteria the confidence 

level: 

𝑟1 =  
−1 ± 𝑧𝑎(𝑛 − 2)

1
2

𝑛 − 1
 

(A-5) 

where za is the standard normal variate corresponding to a probability level a. 

Similarly, Liu and Avissar [1999] used one-month-lag autocorrelation as a basic index to estimate 

the magnitude of persistence, expressed as 

𝑟(𝜏) = ∑
(𝑥𝑘 − x̅)(𝑥𝑘+𝜏 − x̅)

𝜎2

𝑁−𝜏

𝑘=1

 (A-6) 

where 𝜏 is the lag length (in months) (assumed to be equal to 1), N is the length in months of the 

simulated time series of variable 𝑥𝑘 (k=1,…, N) that is the monthly anomaly of the considered 

variable (i.e. soil moisture) with respect to its multiple-year average and x̅ and 𝜎2 are its mean and 

variance. 

d) Significant test of runs 

Stahle and Cleaveland [1988] used a significant runs test to examine the presence of interannual 

persistence of growing season and June moisture anomalies in Texas. To this end, they first 

classified years into wet and dry years using the Palmer Drought Severity Index (PDSI), with years 

with a PDSI ≥ +2 classified as wet years and PDSI ≤ -2 classified as dry years. Then, the expected 

number of runs and the variance of a given category (e.g., PDSI ≥ +2 by PDSI ≥ +2 or PDSI ≤ -2 

by PDSI ≤ -2) are determined using the following equations. 

𝐸0(𝑇) =
𝑀(𝑀 − 1)

𝑁
 (A-7) 



𝑉0(𝑇) =
𝑀(𝑀 − 1)

𝑁
× [1 +

(𝑀 − 1)(𝑀 − 2)

𝑁 − 1
−

𝑀(𝑀 − 1)

𝑁
] (A-8) 

where E0 is the expected value in a random normal distribution, V0 is the variance of expected 

occurrence in the number of runs (T), T is the number of runs of a specific category (PDSI ≥ +2 

after PDSI ≥ +2 or PDSI ≤ -2 after PDSI ≤ -2), M is the total number of occurrences of a category 

in a series, and N is the number of years in the series. After determining E0 and V0, the significance 

test of the runs is performed as follows. 

𝑧0 =
𝑇 − 𝐸0(𝑇)

√𝑉0(𝑇)
 (A-9) 

where z0 is the z-score and its significance level can be tested using the z-table. The null hypothesis 

is that given the number of times a condition occurs in a period; the times of occurrence are 

completely random.  

e)  Stored precipitation fraction (Fp) 

McColl et al. [2017] defined fraction of stored precipitation (Fp) as the average fraction of 

precipitation that falls on a soil layer and is still available in the soil layer after 1/f days. One can 

calculate Fp as the integration of the positive soil water increments normalized by the total 

precipitation that falls during a given time period [McColl et al., 2017]: 

𝐹𝑝(𝑓) =
∆𝑧 ∑ 𝑚𝑎𝑥 (0, ∆𝜃𝑖+)

𝑓𝑇
𝑖=1

∫ 𝑃(𝑡)𝑑𝑡
𝑇

0

 (A-10) 

where θ and P represent soil moisture content and precipitation, respectively, and Δθi = θi - θi-1, Δz 

determines soil layer depth and ∫ 𝑃(𝑡)𝑑𝑡
𝑇

0
 determines accumulated precipitation (mm) throughout 

the study period. Precipitation, lateral flow, subsurface flow, capillary rise, etc., could lead to a 

positive increase in soil moisture [Martínez-Fernández et al., 2021]. However, processes other 

than precipitation are assumed to be negligible.   

f) Mean persistence time scale 

The mean time spent continuously above or below a soil moisture threshold is also a criterion used 

to quantify the time scale of persistence [Ghannam et al., 2016; McColl et al., 2017]. Based on 

this criterion, the timescale of persistence is a period following an anomaly in which all elements 

of the series have the same sign as the anomaly [Liu and Avissar, 1999]. This period can be 



determined in the following steps [Liu and Avissar, 1999]: 1) take the time series of soil moisture 

and determine the anomalies in the data, 2) count the number of time steps that follow (e.g., months 

for monthly data) for a first non-zero xk(k = k1) to xk(k = k2) whose next element changes sign and 

set it as l1, 3) count the following time steps for xk(k = k2 + 1) to xk(k = k3) whose next element 

changes sign again and set it as l2, 4) repeat the procedure over the whole time series except for 

the last year, 5) take the average of l1, l2, . ..., ln as a measure of the time scale of persistence. If xk1 

and xk2 have different signs, then li = 0. Therefore, it is likely to find an average of l1, l2, ... that is 

smaller than 1-time step. 

g) Interannual mean-persistence time scale 

This method is similar to the previous one except that persistence is determined for each day of 

year among all years. To this end, Orth and Seneviratne [2013] propose to proceed as follows: (1) 

calculate the mean and standard deviation (σ) of soil moisture data for each individual day of the 

year, considering data from all years for that day; (2) consider days falling within the range of 

mean ± σ as normal, within the range of mean ± 1.33σ as the first threshold for moderate anomalies, 

and in the range of mean ± 1.66σ as the second threshold for severe anomalies; (3) select all days 

in the time series between a given time period (e.g., summertime or full year) that exceed a 

threshold and calculate the delay before soil moisture returns to normal conditions; (iv) average 

all durations to derive a mean persistence of anomalous conditions once they have exceeded a 

certain threshold.  

h) Hurst exponent 

Unlike other previously defined metrics, Shen et al. [2018] used the Hurst exponent (H) [Hurst, 

1951] to determine the presence of long-term persistence (also known as long-range correlation 

and long-term memory) or anti-persistence in soil moisture time series. Depending on whether soil 

moisture data exhibit long-term persistence or anti-persistence, the corresponding time window 

sizes were defined as the corresponding time scale. The approach takes advantage of the fact that 

soil moisture time series can be viewed as a 1/f 2H+1 process (where f is the frequency and 0<H<1 

is the Hurst exponent), with an important subclass of those with long-term persistence (or long-

term memory) [Gao et al., 2006]. In other words, the 1/f 2H+1 processes exhibit long-term 

persistence when 0.5<H<1, anti-persistence when 0<H<0.5, and memoryless behavior (or only 



short-term correlation) when H = 0.5 [Gao et al., 2006]; Shen et al. [2018]. The latter (process 

with H = 0.5) is also referred to as the geometric random walk process.  

Although numerous methods have been developed to date to determine the H exponent, such as 

rescaled range analysis, divergent fluctuation analysis, and adaptive fractal analysis (AFA), [Shen 

et al., 2018] relied on the AFA method because it is superior to other methods in that it can handle 

arbitrary and strong nonlinear trends and more accurately estimates the Hurst exponent [Riley et 

al., 2012]. Starting with the classical framework for the estimation of H, the variance of a given 

time series [Xt, t = 1,2…, N] for an arbitrary lag (donated as τ) is expressed as below  

𝜎2(𝜏) =
∑ (𝑋𝑡+𝜏 − 𝑋𝑡)2𝑁

𝑡=1

𝑁
 

(A-11) 

For a random walk process, which is also known as geometric Brownian motion which has no 

autocorrelation, the variance varies linearly with lag, 𝜎2(𝜏)~𝜏. However, for processes where 

autocorrelation exists (processes that deviate from a random walk), the relationship between the 

variance for a given lag and the lag itself takes the following form: 

𝜎2(𝜏)~𝜏2𝐻 (A-12) 

where H stands for the Hurst exponent. Performing the above calculations for multiple lag values, 

one can plot a linear line between 𝑙𝑜𝑔 𝜎2(𝜏)  versus log τ and set the intercept to zero to determine 

H from the slope value. 

Through the AFA method, the first step is to identify a globally smooth trend signal [v(i), i = 1, 

2..., N] that must detrend the original data [u(i), i = 1,2..., N] where N is the length of the original 

data. The synthetic signal is created by merging the local polynomial fits with the original data. 

To do this, the original data u(i) must be divided into windows of length w = 2n+1, where the 

windows overlap by n+1 points, where n = (w-1)/2. Then, the best-fitting linear or quadratic 

polynomial is determined for each window. Standard least squares regression can be used for this 

purpose. When local fits are obtained for each window, they should be stitched to obtain a smooth 

global fit for the original time series. For stitching local fits, a weighted combination of the fits of 

overlapping points of two adjacent regions must be considered [Riley et al., 2012]:   

𝑦(𝑐)(𝑙) = 𝑤1𝑦(𝑗)(𝑙 + 𝑛) + 𝑤2𝑦(𝑗+1)(𝑙),    𝑙 = 1,2, … , 𝑛 + 1, 𝑗 = 1,2… ,
𝑁

𝑛
− 1 (A-13) 



where y(c), y(i) and y(i+1) donate for combined, first, and adjacent locals, respectively, and 𝑤1 =

(1 −
𝑙−1

𝑛
) and 𝑤2 =

𝑙−1

𝑛
. After generating the global smooth trend signal, the next step is to detrend 

the original time series using this synthetic signal:  

𝑦(𝑖) = 𝑢(𝑖) − 𝑣(𝑖) (A-14) 

The above steps should be repeated for a range of w values between 3 and N/2. Then, for each 

window size of w, the variance of the residuals should be determined as follows: 

𝐹(𝑤) = [
1

𝑁
∑(𝑢(𝑖) − 𝑣(𝑖))2

𝑁

𝑖=1

]

1/2

 
(A-15) 

For fractal processes, F(w) then scales with w as follows: 

𝐹(𝑤)~𝑤𝐻 (A-16) 

Finally, the above equation can be linearly derived to determine the exponent H. 

i) Persistence duration of soil moisture difference 

Song et al. [2019] argued that the lag correlation used for both SMM and APSM calculations 

neglects SMM variations caused by atmospheric forcing in each area, does not account for the 

nonlinear processes in APSM, and assumes that the data are stationary even though most 

meteorological and hydrological processes are not. Therefore, to overcome these limitations, they 

proposed to quantify the length of the memory using the persistence duration of the difference in 

soil moisture between the control experiment and the sensitivity experiment, requiring a series of 

experiments with a control experiment and one or more sensitivity experiments. The initial soil 

moisture in the control experiment is set to the observed soil moisture values and a fraction of the 

observed values is used for the sensitivity experiments. However, it can be argued that the 

proposed method can be accurate if it is ensured that there is no memory in the control experiment, 

while this cannot be guaranteed for the proposed method that uses measured soil moisture data and 

that therefore needs to be adjusted for further use.  
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