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Abstract

Brittle deformation in the upper crust is thought to occur primarily via faulting. The fault length-frequency distribution

determines how much deformation is accommodated by numerous small faults vs a few large ones. To evaluate the amount of

deformation due to small faults, we analyze the fault length distribution using high-quality fault maps spanning a wide range of

spatial scales from a laboratory sample to an outcrop to a tectonic domain. We find that the cumulative fault length distribution

is well approximated by a power law with a negative exponent close to 2. It follows that faulting is a self-similar process, and a

substantial fraction of tectonic strain can be accommodated by faults that don’t cut through the entire brittle layer, consistent

with inferences of “hidden strain’ from natural and laboratory observations. A continued accumulation of tectonic strain may

eventually result in a transition from self-similar fault networks to localized mature faults.
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Key Points:6

• We analyze the fault length-frequency distribution in developing (structurally im-7

mature) fault systems.8

• The cumulative frequency distribution follows a power law over a range of fault9

lengths spanning 8 orders of magnitude, with a negative power-law exponent of10

∼2, implying scale independence.11

• Small faults within the brittle upper crust can accommodate a substantial (> 30%)12

fraction of tectonic strain.13
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Abstract14

Brittle deformation in the upper crust is thought to occur primarily via faulting. The15

fault length-frequency distribution determines how much deformation is accommodated16

by numerous small faults vs a few large ones. To evaluate the amount of deformation17

due to small faults, we analyze the fault length distribution using high-quality fault maps18

spanning a wide range of spatial scales from a laboratory sample to an outcrop to a tec-19

tonic domain. We find that the cumulative fault length distribution is well approximated20

by a power law with a negative exponent close to 2. It follows that faulting is a self-similar21

process, and a substantial fraction of tectonic strain can be accommodated by faults that22

don’t cut through the entire brittle layer, consistent with inferences of “hidden strain”23

from natural and laboratory observations. A continued accumulation of tectonic strain24

may eventually result in a transition from self-similar fault networks to localized mature25

faults.26

Plain language summary27

The Earth’s crust is pervasively damaged, and contains faults of various sizes and28

orientations. We use mapped fault traces from multiple data sets spanning a wide range29

of scales to investigate how much deformation is accommodated by small vs large faults.30

The fault length distribution is often assumed to be fractal, i.e., following a power law.31

The power-law exponent α quantifies the relative contributions of many small faults rel-32

ative to a few large ones. For α ≤ 1, the contribution of small faults is negligible, while33

for α ≥ 2, strains accommodated by small faults become significant. We find that the34

cumulative fault length distribution approximately follows a power law with an expo-35

nent close to 2. This implies that small faults in developing shear zones can accommo-36

date substantial tectonic strain.37

Introduction38

Tectonic deformation in the brittle upper crust is mainly accommodated by fault-39

ing (e.g., S. Cox & Scholz, 1988). Faults are ubiquitous in both intraplate settings and40

at plate boundaries (e.g, Ojo et al., 2022; R. T. Cox et al., 2001; Rui & Stamps, 2019;41

Bürgmann & Pollard, 1994). As faults continue to slip, they increase their length via crack42

tip propagation, linkage, and coalescence (e.g., Mansfield & Cartwright, 2001; S. Cox &43

Scholz, 1988; Dawers & Anders, 1995; Fossen, 2020; Rotevatn et al., 2019). As a result,44
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the upper crust contains faults of various sizes, from millimeter-long microfractures to45

mature faults extending hundreds of kilometers. The fault length distribution controls46

the relative contributions of small vs large faults to a total strain budget and is of in-47

terest to many disciplines including tectonics, engineering geology, hydrogeology, petroleum48

industry, and seismic hazards assessment (e.g., C. H. Scholz & Cowie, 1990; Louderback,49

1950; Bense et al., 2013; Bonnet et al., 2001).50

Previous studies suggested a variety of functional forms describing the fault size51

distribution. It is generally believed that in a low-strain environment (e.g., developing52

shear zones), fault populations are fractal and thus follow a power-law distribution (e.g.,53

Childs et al., 1990; Turcotte, 1986; Bour & Davy, 1999; Bonnet et al., 2001; Ben-Zion54

& Sammis, 2003). Nicol et al. (1996) noted that the fault length distribution may de-55

viate from a power-law if a wide range of fault lengths is considered, and that the power-56

law exponent may vary at the low end of the fault length distribution owing to spatial57

clustering. In contrast, Odling et al. (1999) argued that the fault length distribution may58

appear as log-normal in individual data sets with a given detection threshold, but is a59

power-law for “composite” data sets that combine a number of individual data sets span-60

ning a wide range of spatial scales. Gupta and Scholz (2000) suggested a transition from61

a power-law to an exponential distribution when tectonic strain exceeds a critical thresh-62

old of the order of 0.1.63

In case of a power-law distribution, the number of faults N that have lengths greater64

than or equal to L is given by65

N(L) = CL−α (1)

where C is an empirical constant, and α > 0 is an absolute value of the power-law ex-66

ponent, also known as the Pareto index (e.g., Clark et al., 1999). The derivative of the67

cumulative fault length distribution (1) with respect to L is the probability density,68

dN

dL
= C(1− β)L−β , (2)

which is also a power law, with β = α + 1. The probability density (2) is sometimes69

referred to as the non-cumulative frequency distribution. A number of studies used field70

observations to test the assumption of a fractal distribution, and estimate parameters71

C and α (or β). Reported values of the best-fit power-law exponent α vary from 0.7 for72

faults in Chimney Rock, Utah (Krantz, 1988; Cladouhos & Marrett, 1996) to 1.1 for Neo-73

gene faults in the Boso and Iura Peninsula, Japan (C. H. Scholz & Cowie, 1990) to 2.374
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for faults and fractures in sandstone in Tayma, Saudi Arabia (Odling et al., 1999). Most75

of the previous studies used data sets consisting of 102−103 fault traces with fault lengths76

spanning 1-2 decades.77

The magnitude of the power-law exponent determines how deformation is parti-78

tioned between small and large faults. Kautz and Sclater (1988) argued, based on lab-79

oratory experiments and observations of natural faults, that small-scale faulting is re-80

sponsible for a substantial internal deformation within crustal blocks bounded by ma-81

jor faults. In contrast, C. H. Scholz and Cowie (1990) estimated the power-law exponent82

α ≈ 1 using fault trace data from Japan and argued that small faults are negligible in83

the total strain budget. Recently, Fialko and Jin (2021) suggested that high-angle con-84

jugate faults (“cross-faults”) in the Eastern California Shear Zone can result from a long-85

term relative rotation assisted by a distributed faulting. No such rotation would be pos-86

sible if small faults are too scarce to accommodate a substantial fraction of tectonic strain.87

To quantify the amount of deformation that can be attributed to small-scale fault-88

ing, we analyze the fault length distribution across a wide range of spatial scales using89

several high-quality data sets. In particular, we use detailed fault maps from different90

geological settings, including the Basin and Range Province (Nevada), Central Pennsyl-91

vania/Northern New Jersey, Ventura County (California), and Northern New Zealand.92

We complement these crustal-scale data sets with outcrop-scale observations from East-93

ern Israel (Bahat, 1987), Sierra Nevada (Segall & Pollard, 1983), Southern New Zealand94

(Davis et al., 2005), and Eastern France (Villemin et al., 1995). We also use laboratory95

observations of microfractures in rock samples loaded to failure at confining pressures96

of several tens of megapascals (Katz & Reches, 2004). We examine the compiled multi-97

scale data to test the assumption of a power-law distribution, obtain the best-fit power-98

law exponent, and use the latter to estimate the amount of strain accommodated by faults99

in the upper crust, as a function of fault size.100

1 Data and Methods101

We are interested in the fault length-frequency distribution in regions of distributed102

deformation such as the Eastern California Shear Zone (Dokka & Travis, 1990; Tymo-103

fyeyeva & Fialko, 2015; Fialko & Jin, 2021). Unfortunately, developing (i.e., structurally104

immature) strike-slip faults are often difficult to recognize due to their limited geomor-105
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phologic expression, especially at the low end of fault sizes. Dip-slip fault systems are106

better suited for this purpose. One of the most extensive and detailed fault trace data107

sets from an actively deforming extensional region is that from the Basin and Range (B&R)108

province in the Western US (Figure 1a). This region hosts a number of active Quater-109

nary faults (e.g., Eaton, 1982; U.S. Geological Survey and Nevada Bureau of Mines and110

Geology, 2023). We examine fault traces from an area extending 6 degrees in longitude111

and 4 degrees in latitude (Figure 1a). The respective data set consists of 26512 fault traces,112

with the fault segment lengths varying from 2.1 m to 42.6 km.113

A close inspection of the B&R fault trace data reveals that many fault traces that114

appear continuous on a regional scale (Figure 1a) are in fact highly segmented (Supple-115

mentary Figure S1a). While some of the apparently continuous fault traces may be seg-116

mented because they have different attributes such as dip and strike, others “may have117

the same attributes but are still separated at the segment level” (R. Schmitt, USGS, per-118

sonal communication). To mitigate potential biases due to artificial segmentation, we119

developed an algorithm for concatenating individual segments that likely belong to the120

same fault. The algorithm attributes different segments to the same fault if the follow-121

ing criteria are satisfied: (1) tips of the adjacent fault segments are within a prescribed122

distance D from each other; (2) the adjacent fault segments are sufficiently well aligned,123

such that the difference in strike angles θ1 and θ2 between the segment tips (see Figure124

S2a) is less than a prescribed threshold δ; also, we require that the difference between125

the average of strike angles at the segment tips, (θ1+θ2)/2 and the strike angle of a line126

connecting the segment tips is less than a prescribed threshold δ (Figure S2c); (3) over-127

lapping segments that satisfy conditions (1) and (2) are considered part of the same fault128

if D < L/3, where L is the length of a smaller segment. The latter condition is meant129

to avoid absorption of small faults that are sub-parallel to (rather than aligned with) the130

large ones. The respective criteria are illustrated in Figure S2.131

A reasonable upper limit on D is some fraction of the thickness of the brittle layer132

T , such that the apparently discontinuous (e.g., poorly exposed) surface traces might pos-133

sibly belong to the same fault at depth. For the Basin and Range province, T ≈ 15 km134

(e.g., Pancha et al., 2006). We assume D < (T/3 = 5 km). We find that the best-fit135

power-law exponent is relatively insensitive to the assumed value of D, for δ between 0136

and 30 degrees (Figures S3 and S4). Larger values of D and δ encourage segment link-137

ing, resulting in a smaller number of small faults, and consequently smaller absolute val-138
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ues of the best-fit power-law exponents. In the analysis presented below, we use D =139

5 km, and δ = 30◦ to provide a lower bound on α. A comparison of fault trace data140

before and after ”de-segmentation” is shown in Figure S1.141

Because the cumulative fault length distribution is known to be sensitive to finite142

size effects, which can potentially bias determination of the exponent (e.g., Bonnet et143

al., 2001), we use the density distribution (equation 2) to estimate the power-law expo-144

nent β, unless indicated otherwise. The respective values of α are trivially given by α =145

β − 1.146

Figure 1b shows the probability density of fault length distribution for the “con-147

catenated” Basin and Range data set (a subset is shown in Figure S1b). To minimize148

the censoring bias (e.g., Torabi & Berg, 2011), we refine the data set by excluding faults149

that intersect the region boundaries. On a log-log plot, the density distribution exhibits150

a quasi-linear trend for L > 5 km, and flattens out for smaller L. The roll-off at L <151

5 km likely results from incomplete sampling (truncation bias, Torabi & Berg, 2011; Bon-152

net et al., 2001), analogous to saturation of the Gutenberg-Richter distribution below153

the magnitude of completeness (e.g., Woessner & Wiemer, 2005). The truncation bias154

may be due to a finite detection threshold and/or 2-D sampling of a 3-D fault popula-155

tion (e.g., Heifer & Bevan, 1990). We use the Kolmogorov-Smirnov (KS) test (Clauset156

et al., 2009) to identify the range of fault lengths [Lmin, Lmax] that can be used for power-157

law fitting (see Supplementary Text S1 for details). We estimate the density power-law158

exponent β by the least-squares linear regression over the interval [Lmin, Lmax]. The un-159

certainty on the best-fit slope is obtained by performing a regression for different bin sizes,160

and computing a standard deviation of the resulting slope estimates. For the data shown161

in Figure 1, we obtain β = 3.51±0.12, or α ≈ 2.5. This can be compared to the value162

of α = 1.84 estimated by Cladouhos and Marrett (1996), who used an older (presum-163

ably, less complete) fault map of the Basin and Range province, and fitted a linear trend164

to the cumulative fault length distribution over the fault length interval between ∼15-165

70 km.166

We extended the same analysis to several other locations for which high-resolution167

maps of dip-slip faults are openly available, in particular, Central Pennsylvania and North-168

ern New Jersey, Ventura County (California), and Northern New Zealand. Figure 2a shows169

fault traces from an area in Central Pennsylvania and Northern New Jersey (PA Depart-170
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ment of Conservation & Natural Resources, 2023; NJ Dept. of Environmental Protec-171

tion Bureau of GIS, 2023). The mapped traces represent inactive thrust and strike-slip172

faults formed 400 to 250 million years ago (Hatcher, 1987). For consistency, we apply173

the same algorithm for concatenating the aligned segments as described above. The re-174

sulting data set consists of 2273 faults having length between 15 m and 108 km. The prob-175

ability density fault length distribution (Figure 2b) is characterized by an apparent trun-176

cation for faults smaller than 20 km, and a slope of the quasi-linear trend of −3.51, re-177

markably similar to results obtained for the Basin and Range province (Figure 1b).178

The Ventura County, CA (Figure 3) and Northern New Zealand (Figure 4) fault179

maps cover much smaller areas. After the segment concatenation procedure, each data180

set contains several hundreds of fault traces. This is 1-2 orders of magnitude smaller than181

the number of fault traces in the B&R and Pennsylvania/New Jersey data sets (Figures 1182

and 2), but comparable to a typical size of data sets examined in a number of previous183

studies. While these smaller data sets are too characterized by decaying trends toward184

the high end of the sampled range of fault lengths, the data exhibit a significant scat-185

ter (e.g., Figure 4b), making power-law fits more problematic. Our analysis of the re-186

spective data sets yields smaller values of β that are subject to higher uncertainties (2.68±187

0.14 for Ventura County and 2.42±0.40 for Northern New Zealand , see Figures 3b and 4b).188

To evaluate the fault length distribution at smaller scales, we use published data189

on fracture density measured in outcrops (L ∼1-100 m) and laboratory samples (L ∼1-190

100 mm). The outcrop-scale observations include joints in Eocene chalks in the Syrian191

Arc folding belt, Israel (Bahat, 1987); joints in igneous rocks near Florance Lake, Sierra192

Nevada, California (Segall & Pollard, 1983); thrust faults in the Ostler Fault Zone, Ben-193

more outcrop, Southern New Zealand (Davis et al., 2005); and predominantly dip-slip194

faults in La Houve Coal Field, an old sedimentary basin in Eastern France that expe-195

rienced both compressional and extensional tectonics (Villemin et al., 1995). The lab-196

oratory data are from specimens of Mount Scott granite of Oklahoma loaded to peak yield197

stress in a triaxial apparatus under confining pressure of 41 MPa (Katz & Reches, 2004).198

The micro-structural mapping of the sample damage was performed on scanned images199

of thin sections. Each sample had on the order of 103 resolved micro-fractures with lengths200

between 0.01-10 mm (Katz & Reches, 2004).201
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A compilation of the respective data sets is presented in Figure 5, along with the202

fault trace data from Figures 1-4. To enable a direct comparison of different data sets,203

we normalize the cumulative fault length counts by the areas from which the fault trace204

data were collected. The combined cumulative frequency distribution spans 8 decades205

of fault length, and 18 decades of fault density (cumulative fault counts per unit area).206

All of the individual data sets shown in Figure 5 appear to have a log-normal distribu-207

tion, with a quasi-linear trend at the high end, and a roll-off at the low end of the re-208

spective fault lengths. However, the combined data set admits a common envelope, with209

a slope that closely matches those of most of individual data sets. The least squares fit210

of the common envelope (see solid black line in Figure 5) yields a power-law exponent211

of α ≈ 2.16.212

2 Strain due to faults obeying a power law distribution213

An overall agreement of the estimated power-law exponents of individual data sets214

between each other, on the one hand, and the common envelope, on the other hand (Fig-215

ure 5), lends support to a suggestion that the roll off in individual data sets is a result216

of truncation (e.g., due to a detection threshold, Bonnet et al., 2001; Torabi & Berg, 2011),217

and that the fault length statistics is adequately described by a power law across a wide218

range of spatial scales. If so, one can evaluate the amount of tectonic strain absorbed219

by faults of different sizes (e.g., C. H. Scholz & Cowie, 1990; J. Walsh et al., 1991).220

For a population of n faults within the brittle crust having a volume TA, where221

T is the thickness of the brittle layer, and A is the map area, the average strain accom-222

modated by faulting is given by (Kostrov, 1974):223

εij =
1

2TA

n∑
k=1

kPij . (3)

In equation (3), kPij is the seismic potency tensor (e.g., Ben-Zion, 2001) of the k-th fault224

in a population. The average fault slip S is expected to scale with fault length L,225

S ∝ Lm. (4)

Theoretical arguments and field observations suggest that m should be close to 1 (e.g.,226

Cowie & Scholz, 1992; Fialko, 2015), although higher values of m were suggested as well227

(e.g., J. J. Walsh & Watterson, 1988; Marrett & Allmendinger, 1991). Assuming m =228
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1,229

S = ϵL, (5)

where ϵ is the critical shear strain drop corresponding to fault propagation. The scalar230

potency is P = γSL2 for faults smaller than T , and P = γSLT otherwise, where γ is231

a geometric factor of the order of unity that accounts for the fault shape and fault dip232

(for faults that cut through the entire brittle layer, e.g., Vavra et al., 2023). For simplic-233

ity, hereafter we assume γ = 1. The number of faults within an interval of fault lengths234

∆L is (dN(L)/dL)∆L. The cumulative potency can be calculated by integrating poten-235

cies of all faults for a given range of fault lengths. For faults smaller than T , the cumu-236

lative potency is (C. H. Scholz & Cowie, 1990):237

p1(Lmin, Lmax) =
∑
k

kP = −ϵ

∫ Lmax

Lmin

dN(L)

dL
L3dL = Cϵ

α

3− α
L3−α

∣∣∣∣Lmax

Lmin

, (6)

where Lmin and Lmax are the minimum and maximum fault sizes, respectively. For faults238

that cut through the entire brittle layer (L > T ),239

p2(Lmin, Lmax) =
∑
k

kP = −ϵT

∫ Lmax

Lmin

dN(L)

dL
L2dL = CϵT

α

2− α
L2−α

∣∣∣∣Lmax

Lmin

. (7)

We evaluate the relative contribution of faults smaller than a given size L to the total240

strain by allowing Lmin → 0, and computing a ratio241

R = 100%×


p1(0,L)

p1(0,T )+p2(T,Lmax)
, for L < T

p1(0,T )+p2(T,L)
p1(0,T )+p2(T,Lmax)

, for L > T.

(8)

Note that R does not depend on factors C and ϵ. Figure 6 shows the percentage of strain242

accommodated by faults having length less than L, for a range of L, assuming α = 2.16,243

Lmax = 100 km (Figure 5), and T = 15 km, typical of the seismogenic depth in many244

tectonically active areas (e.g., Pancha et al., 2006; E. O. Lindsey & Fialko, 2016; Jin et245

al., 2023; Jia et al., 2023). For a comparison, we also show analogous calculations for pre-246

viously reported values of α = 1.1 (dashed line, C. H. Scholz & Cowie, 1990) and α =247

2.34 (dotted line, Odling et al., 1999).248

3 Discussion249

For fault systems characterized by a power-law size distribution (1), the power-law250

exponent α controls how much of tectonic deformation is accommodated by numerous251

small faults versus a few large ones. C. H. Scholz and Cowie (1990) estimated the value252
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of α = 1.1 for a set of intraplate faults in Japan, and concluded that small faults are253

negligible in the overall strain budget. This is because integrals (6) and (7) are strongly254

convergent for α ≈ 1, so that the cumulative potency is dominated by the largest faults.255

Our results, based on a much larger data set, indicate α ≥ 2 (Figure 5). Most of the256

previously published estimates of α fall in the range between 1 and 2 (e.g., Bonnet et257

al., 2001). Possible reasons for different values of α reported in the literature include:258

(i) use of fault trace data of limited coverage and/or resolution; (ii) uncertainties involved259

in defining fault connectivity; (iii) a narrow range of fault lengths used in the analysis;260

(iv) departures from self-similarity due to the presence of intrinsic length scales; (v) dif-261

ferent stages of maturity of different fault systems. For example, the data set used by262

C. H. Scholz and Cowie (1990) spans only one order of magnitude of fault lengths, from263

∼10 to ∼100 km, likely insufficient for a robust validation of a power-law distribution264

(Stumpf & Porter, 2012). C. Scholz et al. (1993) analyzed a data set from the Volcanic265

Tableland (California) with fault lengths spanning 2 orders of magnitude, from a few tens266

of meters to a few kilometers, and obtained a higher value of α ≈ 1.3. The latter under-267

predicts the slope at the upper tail of the fault length distribution of C. Scholz et al. (1993,268

their figure 4), which the authors attributed to data censoring.269

Our analysis of several high-resolution data sets (Figures 1-5) suggests values of270

α close to 2, higher than those reported by C. H. Scholz and Cowie (1990) and C. Scholz271

et al. (1993), but consistent with results from other multi-resolution studies. In partic-272

ular, Heifer and Bevan (1990) combined fault trace data with measurements of crack den-273

sity in boreholes to infer α ≈ 2. Odling et al. (1999) performed a multi-scale analysis274

of the length distribution of faults in sandstones in Saudi Arabia, and found the best-275

fit power-law exponent of 2.34 for a range of fault lengths spanning 4 orders of magni-276

tude. C. Scholz et al. (1993) cautioned against combining observations that include dif-277

ferent fracture modes (e.g., faults and joints, Heifer & Bevan, 1990). However, it can278

be argued that the crack length distributions should not strongly depend on the frac-279

ture mode as mathematical expressions for stress fields due to shear and tensile cracks280

are essentially identical (e.g., Fialko, 2015), so that stress interactions within the crack281

network are expected to be similar (e.g., for shear and tensile cracks). An overall agree-282

ment between the estimated power-law exponents for different types of fractures, as well283

as for data sets from different locations (Figure 5) lends support to a hypothesis that284
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faulting is governed by a ”universal” power law with α ≈ 2 (King, 1983; Proekt et al.,285

2012; Roman & Bertolotti, 2022), at least at the initial stages of failure.286

We point out that the data set used by C. H. Scholz and Cowie (1990) is dominated287

by “long” (L > T ) faults that accumulated a substantial amount of slip, and thus might288

be more representative of a structurally mature fault system. Experimental studies in-289

deed reveal higher values of α at the initial stages of faulting when deformation is broadly290

distributed, and a decrease to α ≈ 1 with an increasing system maturity (e.g., Sornette291

et al., 1993; Hatton et al., 1993; Cladouhos & Marrett, 1996). It follows that small faults292

can potentially accommodate a substantial fraction of tectonic strain at the initial stages293

of faulting (e.g., in developing shear zones). Over time, as faults grow and connect, de-294

formation may localize to major faults that eventually take up most of the deformation.295

These arguments suggest an important distinction between deformation styles due296

to immature shear zones such as the Eastern California Shear Zone (Dokka & Travis,297

1990; Floyd et al., 2020), and mature well-slipped plate boundary faults such as the San298

Andreas Fault (Lisowski et al., 1991; Fialko, 2006). In the latter case, interseismic strain299

accumulation is equal in magnitude, but opposite in sign to strain released in large earth-300

quakes, so the patterns of interseismic and long-term (geologic) displacements across a301

mature fault are very different (Figure 7). A complete or nearly complete recovery of in-302

terseismic strain (i.e., elastic rebound) is evidenced by good agreement between “geo-303

logic” and “geodetic” slip rates on major plate boundary faults (e.g., Schmalzle et al.,304

2006; Tatar et al., 2012; E. Lindsey & Fialko, 2013). In contrast, immature fault systems305

with α ≥ 2 give rise to a distributed inelastic deformation with the long-term displace-306

ment profile that may closely mimic the observed interseismic velocities (Fialko & Jin,307

2021). The diffuse deformation pattern illustrated in Figure 7a can be thought of as re-308

sulting from the “seismic flow of rocks”, as originally envisioned by Riznichenko (1965)309

and Kostrov (1974), although a more appropriate term would be the “brittle flow of rocks”,310

since some of the deformation may occur aseismically, e.g. via creep (Tymofyeyeva et311

al., 2019; Kaneko et al., 2013) or the bulk yielding (Donath & Parker, 1964; Hamiel et312

al., 2006).313

The relative contribution of small faults to the strain budget is expected to be larger314

for smaller values of Lmax, and/or larger values of α. We note that the estimated val-315

ues of α may in fact be lower bounds due to two-dimensional (2-D) sampling of three-316
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dimensional (3-D) fault populations. For example, for uniformly distributed and randomly317

oriented faults, the true (i.e., 3-D) exponent is predicted to be larger than the exponent318

inferred from the 2-D sampling by as much as 1 unit (e.g., Bonnet et al., 2001; Marrett319

& Allmendinger, 1991). This only applies to small (L < D) faults, as for large faults320

the distribution is essentially 2-D. For α approaching 3, small faults would actually dom-321

inate the strain budget, and the contribution of large faults would be negligible. Note322

that for the cumulative potency and strain to remain finite, α cannot exceed 3 (eq. 6).323

Taking at face value the estimated power law-exponent α ≈ 2 (Figure 5), we find324

that small (L < T ) faults may take up more than one third of the total strain, which325

is almost an order of magnitude greater than predicted for α ≈ 1 (Figure 6). A power326

law-exponent α ≥ 2 may provide an explanation for the “missing strain” in palinspas-327

tic restorations of faults in sedimentary basins, as well as in laboratory models of tec-328

tonic extension using analog materials (e.g., Kautz & Sclater, 1988; Marrett & Allmendinger,329

1992; J. Walsh et al., 1991). The bulk inelastic deformation accommodated by small faults330

can result in rotation of faults away from the optimal orientation, and increases in di-331

hedral angles between conjugate faults, as often observed in active shear zones (e.g., Ron332

et al., 2001; Fialko, 2021; Zou et al., 2023). It might also account for the reported dif-333

ferences between geologic and geodetic slip rates in regions of diffuse deformation. In par-334

ticular, models of deformation across the plate boundary in California suggest that up335

to 30% of deformation is accommodated off of the known faults (Field et al., 2014). Sim-336

ilar conclusions are drawn from numerical models of continental extension (Pan et al.,337

2023). Given no resolvable difference between the geologic and geodetic slip rates of ma-338

ture high-slip-rate faults such as the San Andreas and San Jacinto faults (Segall, 2002;339

E. O. Lindsey et al., 2014; Tymofyeyeva & Fialko, 2018; Schmalzle et al., 2006), most340

of the “missing slip” is apparently associated with regions of diffuse deformation char-341

acterized by low strain rates such as the Eastern California Shear Zone (Herbert et al.,342

2014). The same may apply to other areas of broadly distributed continental deforma-343

tion such as the India-Eurasia collision zone (e.g., Garthwaite et al., 2013; Wang & Shen,344

2020). Finally, we note that the non-negligible contributions of small faults to finite strain345

suggested by our analysis contrasts with the seismic moment release which is strongly346

dominated by largest events (e.g., Bell et al., 2013). This is likely due to the fact that347

only a fraction of faults that exist within the seismogenic zone are seismically active at348

any given time. One mechanism for eventual de-activation of pre-existing or newly formed349
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faults is rotation of fault planes away from the principal compression axis with increas-350

ing finite strain (e.g., Ron et al., 2001; Fialko & Jin, 2021; Zou et al., 2023).351

4 Conclusions352

We analyzed the fault length frequency distribution using high-resolution fault trace353

data from diverse settings including Basin and Range Province, Central Pennsylvania/Northern354

New Jersey, Ventura County, California, and Northern New Zealand. To extend our anal-355

ysis to smaller scales, we included published outcrop data from Sierra Nevada, Eastern356

Israel, Southern New Zealand, and Eastern France, and laboratory data from experiments357

on the initially intact granite samples. Our results indicate that while each individual358

data set yields an apparent log-normal distribution of fault lengths, a composite multi-359

scale data set reveals a fault length-distribution that follows a power law over 8 decades360

of fault lengths, with a cumulative power-law exponent α ≈ 2. The obtained best-fit361

value may be an under-estimate of the true value of the power-law exponent given an362

observation bias (2-D sampling of 3-D faults). We used the best-fit value of the power-363

law exponent to estimate a fraction of strain accommodated by faults as a function of364

fault size. We find that small faults (L < 15 km) can accommodate a substantial (up365

to 40%) fraction of tectonic strain, at least at the initial stages of faulting. A continued366

deformation may give rise to a transition from self-similar fault networks to highly lo-367

calized mature faults.368
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Figure 1. (a) Map of the Basin and Range Province. Shading denotes topography. Black lines

denote fault traces. Inset shows location of the area of interest (white rectangle) in a regional

context; thin black lines indicate state boundaries. The concatenated fault data set includes

10825 fault segments. The minimum segment length is 2.1 m and the maximum length is 49 km.

(b): Probability density of the fault length distribution, on a log-log scale. Solid line represents

the best linear fit at the high end of the fault length distribution (L > 5 km). The estimated

power-law exponent (slope of the best-fit line) is β = 3.51± 0.12.

Figure 2. (a) Map of Central Pennsylvania and Northern New Jersey. Notation is the same

as in Figure 1. The concatenated fault data set includes 2273 fault segments. The minimum

segment length is 15 m and the maximum length is 108 km. (b) Probability density of the fault

length distribution, on a log-log scale. Solid line represents the best linear fit at the high end

of the fault length distribution (L > 10 km). The estimated power-law exponent (slope of the

best-fit line) is β = 3.51± 0.20.



Figure 3. (a) Map of Ventura County, CA. Notation is the same as in Figure 1. The con-

catenated fault data set includes 349 fault segments. The minimum segment length is 0.6 m and

the maximum length is 30 km. (b) Probability density of the fault length distribution, on a log-

log scale. Solid line represents the best linear fit at the high end of the fault length distribution

(L > 3 km). The estimated power-law exponent (slope of the best-fit line) is β = 2.68± 0.14.

Figure 4. (a) Map of Northern New Zealand. Notation is the same as in Figure 1. The con-

catenated fault data set includes 159 fault segments. The minimum segment length is 363 m and

the maximum length is 24.7 km. (b) Probability density of the fault length distribution, on a log-

log scale. The solid line represents the best linear fit at the high end of the fault length distribu-

tion (L > 4 km). The estimated power-law exponent (slope of the best-fit line) is β = 2.42± 0.35.



Figure 5. Cumulative fault length frequency distribution for a combined data set including

fault traces (Figures 1-4), as well as outcrop-scale and lab data, normalized by the respective

observation areas, on a log-log scale. The solid line is the least-squares fit for the ”high-end”

asymptotes of all constituent data sets. The estimated power-law exponent is α = 2.16.



Figure 6. Percentage of the total potency R (equation 8) accommodated by faults having

length less than L, for several estimated values of the power-law exponent α: solid line, α = 2.16

(this study); dotted line, α = 2.34 (Odling et al., 1999); dashed line, α = 1.1 (C. H. Scholz &

Cowie, 1990). We assume Lmax = 100 km (Figure 5).

Figure 7. Schematic representation of kinematics of (a) developing shear zone and (b) mature

plate boundary fault. Top and bottom panels denote interseismic and long-term (averaged over

multiple earthquake cycles) motion, respectively. Gray lines denote active faults.
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