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Background

There 1s a ‘Grand Challenge’ to combine £ = (u,%,_,,0) — — . .

process-based modeling with ML for ' ' I The GPR correction 1s fed back Into thel

simulating dynamical Earth systems. In a \"'4 model to improve predictions dynamically. I

recent Nature paper, Reichstein et al. [2019° Physical model Prediction of I 80 o

proposed that “the next step [in Earth Science dx — £(&) —> model state : - ° .

will be a hybrid modelling approach, dt Xt I = 60 e ., oo

coupling physical process models with the Corrected % w ®° e o °*

versatility of  data-driven  machine Input data prediction S o ® o°

learning.” This 1s called physics-informed Ut % % 20 ® ¢

ML, an emerging paradigm 1n the Earth 3 ® Cross validation results for 10

Sciences [Karpatne et al. 2017]. Data driven model —L sites with data between 2-10
g(é) = 6P (m(g) k(¢ gf)) E— I;;f)cggltlgioif years. Site§ with at least .th.ree

years available for training

We calibrated the physics-based Noah-MP
land surface model (Noah) to soil moisture.

Fluxnet site show consistent improvement.
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We wused Gaussian Process Regression |
(GPR) to dynamically correct the soil ~ Precipitation Mar
moisture state.

At this site Noah systematically underestimates the wet periods and overestimates the dry periods. The GPR
corrects this systematic error in a similar way as data assimilation but has learned the correction and
continues to improve model performance out-of-sample, shown below and to the right.
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