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Method
There is a ‘Grand Challenge’ to combine 
process-based modeling with ML for 
simulating dynamical Earth systems. In a 
recent Nature paper, Reichstein et al. [2019] 
proposed that “the next step [in Earth Science] 
will be a hybrid modelling approach, 
coupling physical process models with the 
versatility of data-driven machine 
learning.” This is called physics-informed 
ML, an emerging paradigm in the Earth 
Sciences [Karpatne et al. 2017].
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The GPR correction is fed back into the 
model to improve predictions dynamically.
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We used Gaussian Process Regression 
(GPR) to dynamically correct the soil 
moisture state.

We calibrated the physics-based Noah-MP 
land surface model (Noah) to soil moisture.

We tested our method with high quality, in-
situ, Fluxnet data (soil moisture and forcing) 
from diverse hydrologic conditions.

RMS Error

Noah Noah + 
GPR change

Max 0.123 0.098 88%

Mean 0.054 0.033 39%

Min 0.020 0.006 -19%
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GPR learns and corrects 
model structural error 
simulating soil moisture 
response to snowmelt.
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Cross validation results for 10 
sites with data between 2-10 
years. Sites with at least three 
years available for training 
show consistent improvement.

Fluxnet observation

Noah prediction 

Noah + GPR

Data assimilation 

Precipitation

Correction example:
Blodgett Forest (CA)
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At this site Noah systematically underestimates the wet periods and overestimates the dry periods. The GPR 
corrects this systematic error in a similar way as data assimilation but has learned the correction and 
continues to improve model performance out-of-sample, shown below and to the right. 


