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Abstract

This study investigates lightning at tall objects and evaluates the risk of upward lightning (UL) over the eastern Alps and

its surrounding areas. While uncommon, UL poses a threat, especially to wind turbines, as the long-duration current of UL

can cause significant damage. Current risk assessment methods overlook the impact of meteorological conditions, potentially

underestimating UL risks. Therefore, this study employs random forests, a machine learning technique, to analyze the relation-

ship between UL measured at Gaisberg Tower (Austria) and 35 larger-scale meteorological variables. Of these, the larger-scale

upward velocity, wind speed and direction at 10 meters and cloud physics variables contribute most information. The random

forests predict the risk of UL across the study area at a 1 kmˆ2 resolution. Strong near-surface winds combined with upward

deflection by elevated terrain increase UL risk. The diurnal cycle of the UL risk as well as high-risk areas shift seasonally. They

are concentrated north/northeast of the Alps in winter due to prevailing northerly winds, and expanding southward, impacting

northern Italy in the transitional and summer months. The model performs best in winter, with the highest predicted UL risk

coinciding with observed peaks in measured lightning at tall objects. The highest concentration is north of the Alps, where

most wind turbines are located, leading to an increase in overall lightning activity. Comprehensive meteorological information

is essential for UL risk assessment, as lightning densities are a poor indicator of lightning at tall objects.
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Key Points:10

• Strong winds near the surface and upward deflection by obstructing terrain increase11

the risk of upward lightning at tall objects.12

• Lightning at tall wind turbines can account for up to 20 % of total lightning ac-13

tivity north of the Alps.14

• High-risk areas are north and east of the Alps in winter and shift southward in15

the transition seasons and summer.16
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Abstract18

This study investigates lightning at tall objects and evaluates the risk of upward light-19

ning (UL) over the eastern Alps and its surrounding areas. While uncommon, UL poses20

a threat, especially to wind turbines, as the long-duration current of UL can cause sig-21

nificant damage. Current risk assessment methods overlook the impact of meteorolog-22

ical conditions, potentially underestimating UL risks. Therefore, this study employs ran-23

dom forests, a machine learning technique, to analyze the relationship between UL mea-24

sured at Gaisberg Tower (Austria) and 35 larger-scale meteorological variables. Of these,25

the larger-scale upward velocity, wind speed and direction at 10 meters and cloud physics26

variables contribute most information. The random forests predict the risk of UL across27

the study area at a 1 km2 resolution. Strong near-surface winds combined with upward28

deflection by elevated terrain increase UL risk. The diurnal cycle of the UL risk as well29

as high-risk areas shift seasonally. They are concentrated north/northeast of the Alps30

in winter due to prevailing northerly winds, and expanding southward, impacting north-31

ern Italy in the transitional and summer months. The model performs best in winter,32

with the highest predicted UL risk coinciding with observed peaks in measured lightning33

at tall objects. The highest concentration is north of the Alps, where most wind turbines34

are located, leading to an increase in overall lightning activity. Comprehensive meteo-35

rological information is essential for UL risk assessment, as lightning densities are a poor36

indicator of lightning at tall objects.37

Plain Language Summary38

This study investigates the risk of upward lightning (UL) in the eastern Alps and39

surrounding regions, which is critical for tall objects such as wind turbines. Current risk40

assessments often overlook meteorological conditions, potentially underestimating the41

hazard. Using random forests, a machine learning method, the study analyzes UL at the42

Gaisberg Tower in Austria, taking into account 35 meteorological factors. Key contrib-43

utors include wind speed, wind direction, and cloud physics. The model predicts UL risk44

at a resolution of 1 km2, highlighting higher-risk areas influenced by near-surface winds45

and terrain. Risk varies daily and seasonally, peaking in winter north of the Alps and46

shifting southward in warmer months. Winter predictions are consistent with observed47

lightning at tall objects, particularly concentrated north of the Alps where wind turbines48

are prevalent. This study highlights the importance of detailed meteorological data for49

accurate UL risk assessment and demonstrates that general lightning densities are in-50

adequate indicators of the safety of tall objects.51

1 Introduction52

Wind power has become the cornerstone of the transition to a greener and more53

sustainable future. This transition is being driven by the continued expansion of wind54

turbines as well as by investments to extend the life time of existing facilities. The sen-55

sitive turbines are exposed not only to the wind that generates the electricity, but also56

to various other forces of nature. Among these natural forces, lightning has gained par-57

ticular attention in recent years (e.g., IEC 61400-24, 2019; Candela Garolera et al., 2016;58

Montanyà et al., 2016). Depending on both the physical height of the turbine and its59

elevation relative to the surrounding terrain, it can be exposed to a strong amplification60

of the electric field. This amplification is often expressed in terms of the effective height.61

The effective height is larger if a tall object is located on a mountain or hill (e.g., Zhou62

et al., 2010; Shindo, 2018). For objects with effective heights below about 100 m, the main63

proportion of lightning at tall objects is assumed to be downward lightning (DL). For64

objects with an effective height greater than 100 m, a critical proportion of lightning can65

be upward lightning (UL). UL only initiates from tall objects and propagates upward66
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towards the charged thundercloud. For objects with effective heights greater than 50067

m, all lightning is assumed to be UL (Rakov & Uman, 2003).68

Although rare, UL may cause considerable damage to wind turbines. A particu-69

larly prolonged current flow can transfer large amounts of charge, which can lead to the70

melting of individual rotor blades or even the complete failure of the turbine (e.g., Birkl71

et al., 2017). The lightning receptors installed at the tip of the Gaisberg Tower in Salzburg72

(Austria) reveal that, unlike DL, UL is relatively evenly distributed throughout the year,73

with a slight preference for the colder seasons (Diendorfer et al., 2009). Better under-74

standing and predicting these rare events, as well as a better risk assessment, is essen-75

tial for extending the life of individual existing or planned wind turbines, e.g., by equip-76

ping them with appropriate lightning protection devices (IEC 61400-24, 2019).77

The most serious problem in a spatio-temporal risk assessment is the lack of nec-78

essary data. The UL observations at the Gaisberg Tower show that more than 50 % of79

UL never appear in the data of conventional lightning location systems (LLS). This is80

because conventional LLS cannot detect a particular subtype of UL that does not emit81

an electromagnetic field strong enough to be detectable and consists only of a long du-82

ration initial continuous current (ICC) (Diendorfer et al., 2015). The result is a critical83

underestimation of the actual UL activity and therefore of total lightning at tall objects.84

As LLS do not distinguish between UL and DL, in the current study lightning at tall ob-85

jects may include both DL and UL from an effective height ≥ 100 m.86

Current standards to assess the risk of lightning at wind turbines incorporate tech-87

nical and topographical features, focusing on three key elements. These include the den-88

sity of lightning strikes per square kilometer annually, the height of the wind turbine rep-89

resented by its circular collection area (with a radius three times its height), and a spe-90

cific environmental factor (IEC 61400-24, 2019; Rachidi et al., 2008; Pineda et al., 2018;91

March, 2018). However, challenges arise in this assessment. The local annual lightning92

density predominantly considers lightning during the convective warm season when they93

peak annually, largely overlooking lightning during other seasons and particularly UL,94

which studies suggest pose a significant threat to wind turbines year-round (e.g., Becerra95

et al., 2018). Since UL results from complex atmospheric processes acting on different96

scales, it is crucial to recognize the significant impact of meteorological conditions. Ne-97

glecting these factors might lead to a substantial underestimation of the risk posed by98

lightning at tall objects, particularly by UL.99

Investigating the rare and underrated phenomenon using unique UL observations100

at the Gaisberg Tower in combination with a wide range of globally available atmospheric101

reanalysis variables using flexible machine learning techniques offers a great opportunity102

for better risk assessment compared to the current standards. Machine learning can not103

only compensate for the problem of missing data, but also provide meaningful insights,104

recognize patterns and achieve better predictability.105

The study consists of two main steps. In the first step, random forests based on106

data from the Gaisberg Tower are used to learn which larger-scale meteorological vari-107

ables are responsible for triggering UL. The tower-trained models are then applied to a108

larger study area, including Austria, southern and central Germany, Italy, and Switzer-109

land, to obtain high-resolution ( 1 km2 ) seasonal and annual UL risk maps for the en-110

tire area. In order to better understand the predicted risk, the seasonal variations of the111

most influential larger-scale meteorological variables found at the Gaisberg Tower are112

investigated. LLS-observed lightning at objects (not just at wind turbines) with an ef-113

fective height ≥ 100 m are used to verify the resulting risk maps.114

–3–
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2 Data115

The study requires meteorological data, lightning data and a database of all tall116

objects within a chosen study area comprised of flat, hilly and complex terrain in the117

eastern Alps (Fig. 1). Larger-scale reanalysis data (ERA5) with hourly resolution (Hersbach118

et al., 2020) form the basis of all meteorological investigations in this study. In addition,119

ground-truth lightning current measurements at the Gaisberg Tower in Salzburg (Austria,120

Diendorfer et al., 2009) and LLS data from the European Cooperation for Lightning De-121

tection (EUCLID, Schulz et al., 2016) are used. In order to verify the predicted risk at122

tall objects, different types of tall objects documented by the national aviation safety123

authorities of Austria, Switzerland, Germany and Italy are employed (ENAV Group, n.d.;124

Austro Control, n.d.; Swiss Federal Spatial Data Infrastructure, n.d.; Deutsche Flugsicherung,125

n.d.). The verification period covers three years (2021–2023).126

2.1 Atmospheric reanalysis127

ERA5 is the fifth generation of global climate reanalysis provided by the European128

Centre for Medium-Range Weather Forecasts (ECMWF). Data are available at hourly129

resolution and at a spatial resolution of 31 km horizontally ( 0.25 ◦ × 0.25 ◦ latitude-130

longitude grid) and at 137 levels vertically. Given that a precise risk assessment may ne-131

cessitate a higher resolution than that offered by ERA5, the ERA5 variables are bilin-132

early interpolated to a 0.01◦ × 0.01◦ latitude-longitude grid, roughly equivalent to 1 km133

× 1 km. In this study, 35 different variables from ERA5 are used to explain the occur-134

rence of UL. These are either directly available or derived from variables at the surface,135

on model levels, or integrated vertically. A complete list of the variable groups and in-136

dividual variables can be found in the supporting information.137

Atmospheric reanalysis data are first used in the modeling step, where each vari-138

able is spatially and temporally interpolated to each UL observation at Gaisberg Tower.139

They are secondly used in the transfer step to the larger study domain shown in Fig. 1,140

where each variable is bilinearly interpolated to each 1 km2 grid cell within the chosen141

study area in a verification period between 2021 and 2023.142

2.2 Lightning measurements143

LLS measurements for the study area (45◦N–50◦N and 8◦E–17◦E) are from the LLS144

EUCLID. The LLS measures at a frequency range from 400 Hz to 400 kHz and quan-145

tifies lightning flash activity with a median location accuracy of about 100 m (Schulz et146

al., 2016; Diendorfer, 2016; Vergeiner et al., 2013). While the LLS detects DL with a de-147

tection efficiency of more than 90 %, the detection efficiency drops to less than 50 % in148

the case of UL. Therefore, the proportion of UL can significantly affect the detection ef-149

ficiency of lightning at tall objects.150

The fundamental data source for constructing models to understand the occurrence151

of UL is only accessible through direct measurements on specifically instrumented tow-152

ers. With a physical height of 100 m above ground and 1,288 m above mean sea level153

(47◦48′ N, 13◦60′ E, Fig. 1), Gaisberg Tower predominantly experiences UL (Diendorfer154

et al., 2011). In total, 956 UL flashes were recorded at the Gaisberg Tower between 2000155

and 2015 and from mid-2020 to the end of 2023.156

Equipped with a sensitive shunt-type sensor, Gaisberg Tower measures all UL flashes,157

irrespective of the current waveform. Three distinct current waveforms are observed at158

Gaisberg Tower (Diendorfer et al., 2009). The first type emerges when the lightning pro-159

cess ends after the initial phase, involving only a prolonged ICC (ICConly). The second160

type involves this ICC being overlaid with pulse type currents with relative peaks ≥ 2 kA161

(ICCP). Lastly, the third type of UL evolves after a brief phase of no current followed162
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Figure 1: Topographic overview of study area and location of the instrumented Gaisberg
Tower (Salzburg, Austria). Colors indicates the elevation above mean sea level according
to data taken from the Shuttle Radar Topography Mission with a 90 m spatial resolution
(Farr & Kobrick, 2000).

by one or more downward leader-upward-return stroke processes similar to those observed163

in DL processes (ICCRS).164

The measurements at the Gaisberg Tower showed that the ICConly subtype can-165

not be detected by LLS at all. According to Diendorfer et al. (2015), the other two sub-166

types of UL presented, (ICCRS) and (ICCP), are detected by LLS in 96 % and 58 % of167

the cases, respectively. In order to better verify the resulting models, all analyses in this168

study are based exclusively on UL that can be detected by LLS, i.e., UL of the ICCRS169

and the ICCP type.170

2.3 Lightning at tall objects171

Fortuitously, international aviation regulations require each country to keep and172

update a database of tall objects that might endanger flight safety. The study area con-173

tains several objects with heights significant for aviation safety (see Table 1). This doc-174

umentation is freely available for Germany, Austria, Switzerland and Italy, but does not175

include data from the Czech Republic, Slovenia, Hungary and Croatia. The available database176

gives precise details of the geographic location and physical height of each object, pro-177

viding a basis for verifying the models from Sect. 3.1. Each country is based on a dif-178

ferent database with different levels of detail, e.g., tall trees are included in the Swiss database179

but not in the others.180

UL becomes important only from an effective height of 100 m of the object (e.g.,181

Rakov & Uman, 2003). Hence, the verification process shall extract all LLS-observed light-182

ning that hit an object with an effective height ≥ 100 m between 2021 and 2023. To match183
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Figure 2: Panel a: accumulated number of objects with effective heights ≥100 m in
ERA5 grid cells (0.25◦ × 0.25◦). Panel b: all objects with effective heights ≥100 m coded
by color.

the location accuracy of LLS, all lightning within a radius of 100 meters around each ob-184

ject are considered (Diendorfer, 2016; Soula et al., 2019).185

The effective height considers the difference between the height of the object above186

mean sea level and the height of the surrounding environment. This adjustment to the187

effective physical height accounts for the electric field enhancement when the mean ter-188

rain elevation is significantly lower than the elevation at which an object is located, such189

as when it is on a mountain or hill. The greater this difference, the greater the effective190

height and possibly the greater the proportion of total lightning at tall objects.191

Several methods have been proposed to compute the effective height. This study192

uses the method described in Zhou et al. (2010), which assumes that the mountain is hemi-193

spherical with a height equal to the difference between the elevation of where the tall ob-194

ject stands and the average elevation in 1 km2 around it. The method uses electrical field195

parameters derived mainly from laboratory experiments. More details are found in Zhou196

et al. (2010) and in the supplemental information. While this method is readily computable197

with the information available, it might underestimate the true effective height (Smorgonskiy198

et al., 2012).199

Figure 2a gives an overview how tall objects are distributed over the study area200

and panel b illustrates the distribution of the effective height (≥ 100 m) of objects, rep-201

resented by varying colors.202

The highest concentration of tall objects is observed in the easternmost part of Aus-203

tria and the central-eastern subarea of Switzerland. There are also some areas in cen-204

tral Germany with an increased number of tall objects. Interestingly, despite the rela-205

tively flat terrain in the German subarea, objects exhibit a comparatively large effective206

height in contrast to more mountainous terrain (panel b). This phenomenon may be at-207

tributed to the hilly terrain in the German subarea. In complex terrain, where moun-208

tains dominate the landscape, the mean elevation at the area of 1 km2 is relatively high.209

Conversely, in hilly terrain, the mean elevation is relatively low, causing hills to stand210

significantly above the environmental average.211
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Table 1: List of objects in the national regions of the study area documented by the re-
spective aviation authorities. Listed are the numbers of objects with an effective height
≥ 100 m and physical height ≥ 100 m (in parenthesis).

Type of
object

Austria German
sub-
area

Italian
sub-
area

Swiss
sub-
area

Wind turbine 1318
(1283)

1638
(1632)

8 (8) 17 (11)

Mast (e.g.,
antenna, tower)

270 (26) 166
(129)

35 (35) 90 (12)

Building 35 (35) 13 (11) 14 (5) 25 (5)

Stack 26 (26) 75 (75) 30 (30) 2 (2)

Transmission
line

97 (85) 7 (7) 75 (75) 1862
(1216)

Cable car 169
(119)

1 (1) 265 (90) 520
(287)

Catenary 61 (16) 45 (45) - 1169
(566)

Others (e.g,
vegetation,

bridge)

15 (15) 12 (3) 23 (15) 30 (12)

Total 1991 1957 450 3715
Total per km2 0.024 0.024 0.009 0.17
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3 Methods212

First, the relationship between UL events and the larger-scale meteorology is an-213

alyzed using random forests, linking direct UL measurements from the Gaisberg Tower214

to meteorological reanalysis data. Gaisberg Tower is the only location in the study area215

where all types of UL are measured. The random forests are subsequently applied to the216

study area and evaluated with LLS-observed lightning at tall objects.217

3.1 Model construction based on Gaisberg Tower data218

To link meteorological reanalysis data with the occurrence of UL at the Gaisberg219

Tower, this study uses random forests, which is a flexible machine learning technique able220

to tackle nonlinear effects (Breiman, 2001).221

Whether or not UL occurs at Gaisberg Tower is a binary classification problem.222

In this classification problem, 35 larger-scale meteorological variables are the predictors223

chosen to explain the response. The response is LLS-detectable UL at Gaisberg Tower224

(1) or no (LLS-detectable) UL (0) at Gaisberg Tower. Each of the meteorological vari-225

ables is spatio-temporally interpolated to an UL observation at Gaisberg Tower. Exclud-226

ing LLS undetectable UL (ICConly), 549 UL observations are recorded at Gaisberg Tower.227

The algorithm constructs decision trees by assessing the connection between the228

binary response and each predictor variable through permutation tests, also known as229

conditional inference (Strasser & Weber, 1999). At each recursive step of tree construc-230

tion, the predictor variable exhibiting the highest (most significant) association with the231

response variable is chosen. Subsequently, the dataset is partitioned based on this se-232

lected predictor variable to optimize the separation of different response classes. This233

splitting procedure is recursively applied within each subset of the data until a prede-234

fined stopping criterion, such as significance or subsample size, is satisfied. A qualita-235

tive example of a single decision tree is given in the supporting information.236

In the final stage, the random forest aggregates predictions from this ensemble of237

trees, thereby enhancing prediction stability and performance. For additional insights238

into the algorithm and its implementation, refer to Hothorn et al. (2006) and Hothorn239

and Zeileis (2015).240

The models’ response, which indicates the rare presence (1) or very frequent ab-241

sence (0) of UL, is sampled equally to ensure a balanced representation of the two classes.242

Hence, the predicted probabilities of the random forest models shown in this study are243

termed “conditional probability” due to the balanced setup of the model response. To244

increase the robustness of the results, 10 different random forest models are used to com-245

pute the conditional probability. Each of these random forest models consists of the 549246

UL observations associated with the larger-scale meteorological setting and 549 randomly247

selected non-UL situations. The results shown in this study are the median of these 10248

random forests.249

3.2 Transfer of the Gaisberg model result to the study area250

Previous studies by the authors have shown that the random forest models trained251

on the Gaisberg Tower perform well when tested on withheld data from the Gaisberg252

Tower or when tested on another tower, the Säntis Tower in Switzerland (e.g., Stucke253

et al., 2023). In this study, the results from the Gaisberg Tower are transferred to a va-254

riety of topographic environments from flat to hilly to complex terrain. The tower-trained255

random forest model computes the conditional probability of UL in grid cells of 1 km2
256

and 1 hour from the larger-scale meteorological reanalysis data. Whether the resulting257

models are reasonable is justified by comparing the predicted conditional probabilities258

with LLS-observed lightning at tall objects as described in Sect. 2.259

–8–
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4 Results260

The results of the study are presented in three distinct parts. In order to take into261

account the factors that critically influence lightning at wind turbines according to the262

current lightning protection standards, the LLS-observed lightning at tall objects is com-263

pared with the total lightning activity including DL to ground within the selected study264

area (Sect. 4.1). Then the influence of the effective height of the objects on the LLS-observed265

lightning is investigated. The section then proceeds to showcase the application of Gais-266

berg Tower-trained models to the different subareas, illustrating the modeled risk of UL267

at objects annually and for each season (see Sect. 4.2). Along with this, the seasonal vari-268

ations of the modeled risk (Sect. 4.2.1) as well as the seasonal variation in the diurnal269

cycle of the modeled risk is presented (Sect. 4.2.2). Sect. 4.2.3 examines the performance270

of the results by quantitatively comparing the modeled outcomes with LLS-observed light-271

ning at tall objects. Following this, Sect. 4.3.1 investigates the meteorological conditions272

that predominantly contribute to UL at the Gaisberg Tower. Section 4.3.2 explains the273

resulting modeled risk from the most important meteorological variables that affect UL274

risk, including how these influential variables vary throughout the seasons. A case study275

is included to demonstrate the models’ predictive behavior and the conditions leading276

to an increased risk of UL (Sect. 4.3.3).277

4.1 LLS-observed lightning at tall objects278

As mentioned, current lightning protection standards (IEC 61400-24, 2019) take279

(i) the physical properties of the structure and (ii) the local annual lightning flash den-280

sity into account. Considering that the effective height may influence lightning at a tall281

object according to the standards, panels a and b in Fig. 3 examine the role of effective282

height on the number of flash-hours for objects with corresponding effective height val-283

ues.284

Panel a shows that the majority of objects have an effective height around 100 m.285

Panel b shows that objects with higher effective heights are more frequently struck by286

lightning corroborating previous findings (e.g., Rakov & Uman, 2003; Shindo, 2018). The287

gap between 425 m and 500 m is likely due to the very few objects in that height range288

being located in areas with low overall LLS-observed lightning at tall objects (see Fig. 4b).289

The Gaisberg Tower as computed using the method in Zhou et al. (2010) is in a range290

between 250 m and 275 m.291

The second important factor in assessing the risk of lightning at wind turbines ac-292

cording to the standards is the local annual flash density (Fig. 4a).293

Fig. 4a shows that the highest concentration of the total lightning activity is in the294

southern part of the study area in northern Italy. These hotspots are thought to result295

from enhanced moisture transport from the Adriatic Sea by the mountain plain circu-296

lation, which hits the rising topography and initiates convection. This is consistent with297

previous studies investigating lightning climatologies in these regions (e.g., Simon & Mayr,298

2022; Feudale et al., 2013; Taszarek et al., 2019).299

However, panel b in Fig. 4 is in stark contrast to panel a, as the maximum cumu-300

lative flash-hours of lightning at tall objects are concentrated in the southwesternmost301

part of the German subarea and the central region of the same subarea. In addition, the302

central-eastern and southernmost parts of Switzerland show a significant accumulation303

of flash-hours. Similarly, panel b in Fig. 4 shows no association with the distribution of304

objects over the study area in panel a of Fig. 2.305

Flash-hours in panel b may have DL to ground in addition to lightning at tall ob-306

jects within the same hour. To examine the proportion of flash-hours exclusively char-307

acterized by lightning at tall objects, panel c examines lightning within a 10 km radius308
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Figure 3: Panel a: number of objects per effective height range. Panel b: number of
flash-hours scaled by the number of objects per effective height range.
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Figure 4: Panel a: total number of flash-hours in ERA5 grid cell (including DL to the
ground and lightning at tall objects) between 2021 and 2023. Panel b: accumulated num-
ber of flash-hours at objects with effective heights ≥100 m. Panel c: proportion of hours
exclusively having lightning at tall objects to the total flash-hours 10 km around each
object. Excluded are those flash-hours, where also DL to the ground occurred around the
object. Panel d: proportion of wind turbines to the total number of objects in cell. One
flash-hour is defined by at least one lightning flash within a grid cell and within one hour.

–10–



manuscript submitted to JGR: Atmospheres

of each object. The panel shows that the high concentration of lightning at tall objects309

in the Swiss subarea is largely associated with DL to the ground also occurring within310

10 km of the tall object within the same hour. In the German subarea, however, the pro-311

portion of flash-hours at tall objects with no other lightning activity in the vicinity is312

significantly higher than in the other subareas. While in most cases hours with exclu-313

sively lightning at tall objects accounts for less than 5 % of the total lightning activity314

around a tall object, in the German subarea hours with exclusively lightning at tall ob-315

jects accounts for up to 20 % or more of the total. It can be assumed that the mere pres-316

ence of the tall object significantly increases the total lightning activity. From Fig. 4d317

it can be concluded that lightning at wind turbines accounts for the largest proportion318

of lightning activity 10 km around an object in this area, while lightning at wind tur-319

bines in the eastern part of Austria, where also many wind turbines are located, accounts320

for less than 5% of the surrounding lightning activity.321

From this analysis it can be suggested that the local flash density does not suffi-322

ciently account for the occurrence of lightning at tall objects and in particular for the323

occurrence of UL, so that for a more reliable risk assessment detailed meteorological in-324

formation must be included.325

4.2 Modeled risk of UL at tall objects326

The following analyses highlight the importance of considering the larger-scale me-327

teorological environment for accurate UL risk prediction. The figures show the seasonal328

variation of the UL risk over the study area as well as the seasonal variation of the di-329

urnal cycle of the UL risk. In addition, the predictive performance of the models is pre-330

sented and examined seasonally.331

4.2.1 Seasonal variations of the modeled risk332

Panels a–d in Fig. 5 depict the risk for fall, spring, summer and winter, while panel333

(e) presents the annual risk. Across all five panels, notable regions exhibit increased or334

decreased risk of UL according to the larger-scale meteorological setting, and these pat-335

terns shift with the seasons. Shown is the modeled seasonal (panels a-d) and annual (panel336

e) risk of UL as predicted by the Gaisberg Tower trained random forests, which are solely337

based on UL and not DL. Risk is quantified by counting the number of hours in which338

the models predict a conditional probability greater than 0.5 for each 1 km2 grid cell.339

Absolute values of increased risk are difficult to interpret because the tower-trained ran-340

dom forests, based on a balanced response with UL and no-UL situations, model the con-341

ditional probability.342

The areas with the highest risk of UL shift throughout the year. From winter through343

spring and into summer, the areas of increased risk tend to move both southward and344

eastward. In the fall, the region with the highest risk is mainly located in the western345

German subarea and the southern German subarea, extending into the Swiss and Aus-346

trian northern subareas. While similar in spring, there is a slight southward and east-347

ward shift, with the highest risk observed in the westernmost part of Austria extending348

eastward through Austria along the Alps, the easternmost part of Switzerland, and the349

southwestern part of Germany. In summer, the hotspot regions shift to the eastern and350

western parts of northern Italy and the eastern part of Austria. Conversely, in winter,351

the highest risk extends over most of the German subarea and the northern parts of Switzer-352

land and Austria. In contrast, a rather low risk is observed south of the Alps during the353

cold season.354

Combining the seasonal data reveals a distinct annual pattern (panel e). Areas with355

a consistently higher risk include the German subarea, the northern parts of Switzerland356
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Figure 5: Seasonal (panels a–d) and annual (panel e) UL risk at tall objects modeled
by the Gaisberg Tower-trained random forest models. Risk is quantified by counting the
number of hours exceeding a conditional probability of 0.5. Red dots are LLS-detected
flash-hours at tall objects accumulated to the 1 km2 grid cell size. The size category num-
bers are the upper limit, e.g., size category 5 includes flash-hours from 1 to 5. Light beige
shaded cells are cells without tall objects.
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and north western and central Austria, along with the western and eastern parts of north-357

ern Italy.358

Looking at LLS-observed lightning at tall objects possibly including DL at tall ob-359

jects and UL (red dots), it is important to note that more than half of the actual UL flashes360

may not have been recorded by LLS, as discussed in the introduction. Notably, in win-361

ter and the transitional seasons, observed lightning at tall objects is confined to the north-362

ern part of the study area, where the highest risk is identified. In contrast, during sum-363

mer, observed lightning at tall objects extends to the southern regions, where the risk364

is also increased.365

4.2.2 Seasonal variations in the diurnal cycle of the modeled risk366

Figure 6 panels a–d illustrates that not only does lightning at tall objects vary sea-367

sonally, but it also exhibits distinct daily patterns for each season.368

Notably, despite the common substantial increase in DL activity during the sum-369

mer season, the absolute number of flash-hours at tall objects does not vary as much be-370

tween seasons as one might expect. The transitional seasons each have a single peak. Ac-371

tivity peaks both in the fall and spring around 14 UTC. The most notable difference be-372

tween fall and spring is the relatively high activity around midnight in spring, a pattern373

also observed in summer. Both the summer and winter seasons have two prominent peaks.374

In summer, the first and second peaks occur around 16 UTC and 19 UTC, respectively,375

while in winter these peaks occur around 4 UTC and 22 UTC, respectively. This sug-376

gests that different meteorological settings may contribute to lightning at tall objects in377

different seasons, with strong diurnal heating possibly dominating in summer, trigger-378

ing deep convection and other processes, such as those associated with cold fronts, in-379

fluencing lightning at tall objects in winter and transitional seasons.380

The shaded regions in each panel represent the disparity between aggregating hours381

with conditional probabilities above 0.25 and those exceeding 0.75. A smaller shaded area382

indicates sharper gneiting2007 predictions during observed lightning at tall objects. Con-383

trarily, larger shaded areas indicate that the models barely predicted a conditional prob-384

ability above 0.75 when lightning was observed at tall objects, indicating less sharpness385

in the predictions. Among the four seasons, the predictions in winter are sharpest with386

the most narrow shaded areas particularly during nighttime starting from 20 UTC un-387

til around 3 UTC. As the random forests model only UL, the best performance in win-388

ter might suggest a greater contribution of UL to all lightning at tall objects in the colder389

season. Contrarily, the underestimation of random forest models in summer suggests the390

dominance of DL in lightning at tall objects which the random forest does not account391

for.392

4.2.3 Model evaluation393

UL is rare resulting in a highly imbalanced dataset with a substantially higher frac-394

tion of instances where no UL occurs. To evaluate the performance of the Gaisberg Tower-395

trained random forest models in the study area, two statistical approaches are employed.396

The basis to understand Fig. 7 is to understand the principle of a confusion matrix ex-397

plaining the differences between true/false positives/negatives (see supporting informa-398

tion). The performance results are adjusted to fit the ERA5 grid cell size instead of the399

original 1 km2, which makes it easier to accurately predict lightning at tall objects over400

time and space. In these adjusted predictions, only the highest predicted conditional prob-401

ability within each ERA5 grid cell is considered.402

Figure 7a shows the precision-recall curve, selected for its ability to handle imbal-403

anced data. In contrast, Figure 7b illustrates the Receiver Operating Characteristic (ROC)404

curve, a commonly used method for analyzing model classification performance or to com-405
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Figure 6: Diurnal cycle of accumulated observed flash-hours at tall objects over the entire
study area and verification period (orange dots) versus modeled risk of UL during these
events (above conditional probability threshold of 0.5, gray line) of UL. The database
consists of LLS-observed lightning at tall objects only and neglects situations without
lightning at tall objects. As only hourly predictions are provided, situations in which the
same object is hit multiple times within the same hour are only counted once. Shaded
area shows the difference of the sum of predicted hours between conditional probabilities
of 0.25 and 0.75. Smaller shaded areas indicate sharper predictions for identifying light-
ning at tall objects. The median values in the predictions for UL at tall objects in winter,
summer, fall and spring are 0.834, 0.68, 0.68 and 0.67, respectively.
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Figure 7: Performance of the random forest models compared to no-skill models. Panel
a: precision-recall curve illustrating the trade-off between what proportion of actual UL
flashes the model correctly identified (recall), and what proportion of UL flashes predicted
by the model actually occurred (precision) for varying cutoff values determining whether
UL occurred or not. Panel b: ROC curves for each season showing the trade-off between
the proportion with no UL incorrectly predicted as having UL and how well the models
predict UL situations that have actually occurred. The larger the area under the curve in
both panels, the better the performance.

pare different models. For both approaches the area under the curve represents the per-406

formance, which increases for larger areas.407

The precision-recall curve focuses on the positive class, i.e., the UL occurrence and408

minority in the data set. It evaluates the relationship between the recall or true posi-409

tive rate, i.e., what proportion of actual UL flashes the model correctly identified, and410

the precision, i.e., what proportion of UL flashes predicted by the model actually occurred.411

The curve shows how precision and recall change at different cutoff values for distinguish-412

ing between UL and no UL. In this case, a precision-recall curve that rises rapidly with413

increasing recall and levels off slightly in the upper right corner indicates satisfactory model414

precision, especially in the early stages of recall. The rapid increase in precision at lower415

recall values demonstrates that the models are accurately identifying UL when it actu-416

ally occurs, while minimizing the number of actual UL events missed. Seasonally, the417

precision-recall curves are almost indistinguishable.418

Complementing the precision-recall curve, the ROC curve in Figure 7b shows that419

the models perform best in winter, as indicated by the blue curve. The ROC curve il-420

lustrates the trade-off between how many situations with no UL are incorrectly predicted421

as having UL and how well the models predict UL situations that have actually occurred.422

4.3 The larger-scale meteorological influence on the risk of UL423

The random forest model takes advantage of information contained in the 35 me-424

teorological input variables. It also allows to identify the variables containing most in-425

formation about the occurrence of UL.426
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Figure 8: Permutation variable importance according to random forests based on bal-
anced proportions of situations with and without UL at the Gaisberg Tower. Importance
increases from left to right.

4.3.1 The most influential meteorological variables at the Gaisberg Tower427

To calculate the individual impact of each meteorological predictor variable in clas-428

sifying UL, the values of each predictor variable are randomly shuffled, and the result-429

ing decline in performance is assessed. The larger the decline the more important that430

variable is.431

As evident in the summarized variable importance presented in Fig. 8, one can de-432

duce that both the wind field and cloud physics-related variables exert most influence433

on the UL occurrence at the Gaisberg Tower, which is in line with earlier research find-434

ings (Stucke et al., 2022, 2024). The top five variables include maximum larger-scale up-435

ward velocity, 10 m wind speed, 10 m wind direction, convective available potential en-436

ergy (CAPE), and convective precipitation. Subsequent analyses will specifically focus437

on the top three most important variables to enhance our understanding of the modeled438

risk of UL at tall objects. The maximum larger-scale upward velocity should not be con-439

fused with the updrafts associated with the convective processes involved in thunderstorm440

development. Rather, it is the result of larger-scale processes such as lifting along fronts,441

synoptic troughs or topography.442

4.3.2 Seasonal analysis of the larger-scale meteorology during lightning443

at tall objects444

Each row in Fig. 9 represents a season and shows a distinct meteorological setting445

prevalent during LLS-observed lightning at tall objects. The panels summarize the me-446

dian wind speed and wind direction at 10 m (left column) and the median maximum larger-447

scale upward velocity (right column).448

The increased predicted risk in the German subarea as depicted in Fig. 5 is asso-449

ciated with northerly and northwesterly near-surface winds in all four seasons. Coupled450

with hilly terrain, where the winds are deflected upward, this causes enhanced larger-451

scale upward velocities. Consequently, a relatively high risk of UL is evident through-452

out the year, with the most significant impact observed in the transitional seasons and453

winter.454

Similarly, the increased risk associated with complex terrain appears to result from455

increased maximum upward velocities, likely induced by strong winds impinging the to-456

pography and being deflected upward, triggering convection and UL at tall objects. De-457

pending on the prevailing wind direction, increased larger-scale upward velocities are ob-458

served either north or south of the eastern Alps (right column).459
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Figure 9: Seasonal median of the three most influential meteorological variables during
LLS-observed lightning at tall objects. Left column: wind speed coded by color and wind
direction indicated by arrows (average over 0.5 ◦ × 0.5 ◦). Right column: Median of the
maximum larger-scale upward velocity for each season. Negative values indicate upward
motion.
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Overall, it appears that regions located on the windward side have an increased risk460

of UL due to comparatively strong near-surface winds and the presence of hills and moun-461

tains that deflect the wind upward, creating conditions favorable for UL on tall objects.462

This is true for the windward side of the northern Alps, which are influenced by strong463

northerly winds in northern Switzerland, Austria, and the entire German subarea dur-464

ing the transitional seasons and winter. This might also be true for the weak southerly465

flow, which might influence the risk in western and eastern northern Italy, especially in466

summer. Conversely, the risk is lower in the central southern Alpine regions of Austria,467

central southern Switzerland, and central northern Italy.468

We propose that especially in winter, and also in spring and fall, processes asso-469

ciated with cyclogenesis, cold front passages, and troughs induce large wind speeds, con-470

vective precipitation, and an unstable atmosphere conducive to initiating convection and471

UL. In contrast, the summer situation might be often characterized by smaller-scale pro-472

cesses and/or strong diurnal heating and solar irradiation, providing conditions for both473

deep convection initiation and UL at tall objects triggered by nearby DL activity (Stucke474

et al., 2023).475

4.3.3 Case study476

A case study of the early morning hours (3–6 UTC) of February 21, 2022 demon-477

strates the performance of the random forests. For simplicity, again only the three most478

important meteorological variables out of 35 are examined in detail.479

The synoptic situation in this case study is dominated by the passage of a cold front,480

evident from the densely packed isothermes in panel b. The blue line with triangles il-481

lustrates the approximate location of the cold front at 6 UTC after having passed through482

the north-western corner of the study area. The region with high predicted conditional483

probabilities is characterized by strong near-surface winds originating from the north,484

peaking in the area where most actual lightning flashes were observed (panel c). Eleva-485

tion contour lines in panel a indicate elevated terrain, resulting in increased maximum486

upward velocity when the wind gets deflected. This, in turn, enhances the probability487

of UL, particularly in the southwesternmost part of Germany, where actual UL flashes488

have been observed, as indicated by the yellow dots.489

In panel d, a substantial area exceeds a conditional probability value of 0.5, which490

is the threshold chosen in Fig. 5. The highest predicted probabilities, surpassing 0.8, are491

concentrated in the German subarea, particularly from western to central southern Ger-492

many. Observed lightning at tall objects aligns with the areas of increased risk of UL.493

However, not all grid cells with elevated probability do experience UL.494

5 Discussion495

The findings provide clear indications that the seasonal variability in preferred larger-496

scale meteorological patterns influences the risk of UL at tall objects. Certain regions497

exhibit higher susceptibility during specific seasons, as also evidenced by observed light-498

ning at tall objects. For instance, in the colder season, the risk is considerably higher499

north of the Alps. This might be attributed to processes connected to cyclogenesis prefer-500

ably evolving from north-/north-west to east in the colder season. Conversely, certain501

areas of northern Italy, particularly the western and eastern parts, where the overall light-502

ning activity is quite high, show a relatively high risk for UL during the summer, in con-503

trast to the lower risk during the colder season. The prevailing favorable meteorologi-504

cal conditions combined with obstructive terrain and elevated effective heights, especially505

in the hilly regions of southern Germany, may cause the risk to exceed the risk predicted506

by the random forest models trained on the Gaisberg Tower.507
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Figure 11: Case study from February 21, 2022 between 3 UTC and 6 UTC. Panel a:
maximum of the larger-scale upward velocity over verification period. Panel b: Location
of 850 hPa isothermes at 6 UTC with the approximate location of the cold front. Panel c:
Color areas are maximum of wind speed over verification period, arrows illustrate wind di-
rection at 6 UTC. Panel a: Maximum of predicted conditional probability over considered
verification period. Yellow dots are accumulated LLS-detected flashes at tall structures.
Dark gray shaded cells are cells without tall objects.
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Although observed lightning at tall objects indicate a reasonable risk assessment,508

there are naturally discrepancies between the modeled risk and the observation. The most509

obvious reason for discrepancies is the fact that the models trained at Gaisberg Tower510

consider only UL and ignore DL, since the former is almost exclusively observed at Gais-511

berg Tower. While the models only consider UL, lightning at tall objects used for ver-512

ification may include both UL and DL, since LLS do not distinguish UL from DL. Con-513

sequently, the models may not adequately capture the prevalence of DL at tall objects.514

This might be less critical in the winter season, which is suggested to be dominated by515

UL (Diendorfer, 2020; Rachidi et al., 2008). Especially in the late afternoon and evening516

in summer, the models underestimate the risk of observed lightning at tall objects, while517

the increased number of observed lightning at tall objects could actually be majorly DL518

at tall objects and not UL striking the object (see Fig. 6).519

Another aspect is that successful verification depends on the availability of high520

quality lightning data. Although the LLS has a high detection efficiency for DL, its ef-521

ficiency for UL is less than 50%, which poses a challenge for a reasonable verification of522

the modeled risk. Although the models exclude ICConly UL, both ICCRS and especially523

ICCPulse UL also face limitations in detection efficiency (see also Sect. 2).524

Other non-meteorological factors may significantly influence the occurrence of UL525

at wind turbines. Neither topographic characteristics nor varying effective heights can526

be accounted for in the tower-trained models. As mentioned, the occurrence of UL at527

tall objects is closely related to the effective height, with both UL and DL possible in528

the range of approximately 100 m to 500 m. The Gaisberg Tower has a specific effec-529

tive height of about 270 m according to Zhou et al. (2010) and considerably higher ac-530

cording to Smorgonskiy et al. (2012). Consequently, the maps in Fig. 5 show the risk for531

objects in this height range. Figure 3b may be used to adjust it for objects of different532

heights.533

Applying the same algorithm (Zhou et al., 2010) to compute the effective height534

as for all other objects, the effective height of Gaisberg Tower is 270 m. Since it sits on535

a hill that is approximately 800 m higher than the terrain to the north, its actual effec-536

tive height likely exceeds 500 m and was determined (Smorgonskiy et al., 2012) to range537

between approximately 300 m to 670 m. From the results we suggest that the combi-538

nation of favorable meteorological conditions and increased effective heights, as is espe-539

cially the case in southern and southwestern Germany and easternmost Austria, could540

increase the fraction of UL over DL in total lightning at tall objects.541

Physical properties of the object may also play a role, for example, the shape of542

the structure, as well as the rotation of the wind turbine blades may affect the UL risk543

(Montanyà et al., 2014). In addition, wind farms with many turbines can create ”hotspots”544

for lightning due to a significant increase in the electric field (Soula et al., 2019). This545

would also support the hypothesis that the German subarea, where many wind turbines546

are located, has the highest proportion of hours in which only lightning at tall objects547

occurs without any other lightning activity to the ground around the turbine.548

Finally, it is often much more important to correctly predict a high risk at the ap-549

propriate time, when the event actually occurs, than to overestimate it. The performance550

analysis and verification have shown that the random forest models trained at Gaisberg551

Tower are able to reliably and correctly assess this risk, which has the most valuable ap-552

plication also for the wind energy sector.553

6 Conclusions554

This study examines the risk of lightning at tall objects large enough to experience555

a significant proportion of rare but destructive upward lightning (UL). In recent years,556

UL has become a major concern for wind turbines as they increasingly suffer from UL.557
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Direct lightning current measurements at the specially instrumented Gaisberg Tower in558

Austria show that more than half of the UL is not detected by the local Lightning Lo-559

cation System (LLS) due to very specific current waveforms observed in UL making a560

proper spatio-temporal risk assessment of UL nearly impossible. Current approaches to561

assessing lightning risk often overlook crucial meteorological factors, potentially leading562

to a considerable underestimation of UL risk for wind turbines. This study highlights563

the necessity of integrating detailed meteorological data into risk assessment to achieve564

a more reliable understanding of lightning risk at tall wind turbines.565

Therefore, this study investigates the larger-scale meteorological role of UL at tall566

objects and uses direct UL observations at the Gaisberg Tower together with globally567

available larger-scale meteorological reanalysis data. Random forests, a popular and flex-568

ible machine learning technique, distinguish UL from non-UL situations. The results show569

the importance of wind field and cloud physics relevant variables, which is in agreement570

with previous studies. The three most important variables from a set of 35 distinguish-571

ing UL from no-UL situations at Gaisberg are the maximum large-scale upward veloc-572

ity, wind speed at 10 m, and wind direction at 10 m. Further convective available po-573

tential energy and cloud physics related variables are important.574

In a second step, these findings are applied to a study area covering Austria, parts575

of Italy, Germany and Switzerland. The models trained at the Gaisberg Tower predict576

the conditional probability of UL within this area at a resolution of 1 km2. For verifi-577

cation, all objects large enough to experience UL, i.e., having an effective height of ≥ 100578

m, are considered, and LLS-detected lightning at tall objects in the verification period579

between 2021 and 2023 within a 100 m radius of each tall object are extracted. Tall ob-580

jects are distributed throughout the study area, with maxima in the central-eastern Swiss581

subarea and eastern Austria. Objects with large effective heights are found in southern,582

south-western and central Germany, as well as eastern Austria.583

The highest LLS-observed activity of lightning at tall objects is mainly in the cen-584

tral southern and western German subarea, as well as in the Swiss subarea. Wind tur-585

bines are most pronounced in the German subarea and in easternmost Austria. In the586

German subarea, lightning at tall wind turbines can account for up to 20 % and more587

of the total lightning activity within a 10 km radius particularly around wind turbines.588

In all other subareas the proportion of lightning at tall objects to the total lightning ac-589

tivity 10 km around an object is less than 5 %.590

Evaluating the risk of UL at tall objects from Gaisberg Tower-trained random for-591

est models based only on larger-scale meteorological variables shows that the annual risk592

is highest in southern Germany as well as northern and eastern Austria and northern593

Switzerland. Western and eastern northern Italy also have an increased risk of UL. A594

seasonal analysis shows that in winter the highest risk is limited to the regions north and595

east of the eastern Alps, while south of the eastern Alps (eastern and western northern596

Italy) the risk is also increased in the transition seasons and especially in summer. The597

analysis of the three main variables shows that the highest predicted probabilities are598

due to the deflection of strong larger-scale near-surface winds at the topography, lead-599

ing to an increase in larger-scale upward velocities. In the winter and transition seasons,600

the wind is predominantly from the north, increasing the risk of UL north of the Alps.601

In the warmer seasons and in summer, the increased risk south of the Alps may be due602

to other influences, such as thermally driven slope winds, valley winds and mountain-603

plain circulations. Between the high-risk areas of southern Switzerland, central north-604

ern Italy and southern parts of Austria, the risk is lower in all seasons. The diurnal cy-605

cle of the modeled risk varies seasonally. While the transitional seasons show a promi-606

nent peak in the afternoon, summer and winter show two prominent peaks. The high-607

est risk in summer is in the late afternoon and evening, while the highest risk in win-608

ter is in the late evening and night.609
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A comparison with LLS-observed lightning at tall objects shows a qualitatively good610

agreement with increased or decreased risk. While the areas of increased risk are much611

larger than areas with observed lightning at tall objects (UL is a very rare phenomenon),612

the performance of the models to correctly predict high risk of UL when lightning has613

actually occurred at a tall object is good throughout the year. The precision of the pre-614

dictions is highest in winter.615
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Key Points:10

• Strong winds near the surface and upward deflection by obstructing terrain increase11

the risk of upward lightning at tall objects.12

• Lightning at tall wind turbines can account for up to 20 % of total lightning ac-13

tivity north of the Alps.14

• High-risk areas are north and east of the Alps in winter and shift southward in15

the transition seasons and summer.16
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Abstract18

This study investigates lightning at tall objects and evaluates the risk of upward light-19

ning (UL) over the eastern Alps and its surrounding areas. While uncommon, UL poses20

a threat, especially to wind turbines, as the long-duration current of UL can cause sig-21

nificant damage. Current risk assessment methods overlook the impact of meteorolog-22

ical conditions, potentially underestimating UL risks. Therefore, this study employs ran-23

dom forests, a machine learning technique, to analyze the relationship between UL mea-24

sured at Gaisberg Tower (Austria) and 35 larger-scale meteorological variables. Of these,25

the larger-scale upward velocity, wind speed and direction at 10 meters and cloud physics26

variables contribute most information. The random forests predict the risk of UL across27

the study area at a 1 km2 resolution. Strong near-surface winds combined with upward28

deflection by elevated terrain increase UL risk. The diurnal cycle of the UL risk as well29

as high-risk areas shift seasonally. They are concentrated north/northeast of the Alps30

in winter due to prevailing northerly winds, and expanding southward, impacting north-31

ern Italy in the transitional and summer months. The model performs best in winter,32

with the highest predicted UL risk coinciding with observed peaks in measured lightning33

at tall objects. The highest concentration is north of the Alps, where most wind turbines34

are located, leading to an increase in overall lightning activity. Comprehensive meteo-35

rological information is essential for UL risk assessment, as lightning densities are a poor36

indicator of lightning at tall objects.37

Plain Language Summary38

This study investigates the risk of upward lightning (UL) in the eastern Alps and39

surrounding regions, which is critical for tall objects such as wind turbines. Current risk40

assessments often overlook meteorological conditions, potentially underestimating the41

hazard. Using random forests, a machine learning method, the study analyzes UL at the42

Gaisberg Tower in Austria, taking into account 35 meteorological factors. Key contrib-43

utors include wind speed, wind direction, and cloud physics. The model predicts UL risk44

at a resolution of 1 km2, highlighting higher-risk areas influenced by near-surface winds45

and terrain. Risk varies daily and seasonally, peaking in winter north of the Alps and46

shifting southward in warmer months. Winter predictions are consistent with observed47

lightning at tall objects, particularly concentrated north of the Alps where wind turbines48

are prevalent. This study highlights the importance of detailed meteorological data for49

accurate UL risk assessment and demonstrates that general lightning densities are in-50

adequate indicators of the safety of tall objects.51

1 Introduction52

Wind power has become the cornerstone of the transition to a greener and more53

sustainable future. This transition is being driven by the continued expansion of wind54

turbines as well as by investments to extend the life time of existing facilities. The sen-55

sitive turbines are exposed not only to the wind that generates the electricity, but also56

to various other forces of nature. Among these natural forces, lightning has gained par-57

ticular attention in recent years (e.g., IEC 61400-24, 2019; Candela Garolera et al., 2016;58

Montanyà et al., 2016). Depending on both the physical height of the turbine and its59

elevation relative to the surrounding terrain, it can be exposed to a strong amplification60

of the electric field. This amplification is often expressed in terms of the effective height.61

The effective height is larger if a tall object is located on a mountain or hill (e.g., Zhou62

et al., 2010; Shindo, 2018). For objects with effective heights below about 100 m, the main63

proportion of lightning at tall objects is assumed to be downward lightning (DL). For64

objects with an effective height greater than 100 m, a critical proportion of lightning can65

be upward lightning (UL). UL only initiates from tall objects and propagates upward66
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towards the charged thundercloud. For objects with effective heights greater than 50067

m, all lightning is assumed to be UL (Rakov & Uman, 2003).68

Although rare, UL may cause considerable damage to wind turbines. A particu-69

larly prolonged current flow can transfer large amounts of charge, which can lead to the70

melting of individual rotor blades or even the complete failure of the turbine (e.g., Birkl71

et al., 2017). The lightning receptors installed at the tip of the Gaisberg Tower in Salzburg72

(Austria) reveal that, unlike DL, UL is relatively evenly distributed throughout the year,73

with a slight preference for the colder seasons (Diendorfer et al., 2009). Better under-74

standing and predicting these rare events, as well as a better risk assessment, is essen-75

tial for extending the life of individual existing or planned wind turbines, e.g., by equip-76

ping them with appropriate lightning protection devices (IEC 61400-24, 2019).77

The most serious problem in a spatio-temporal risk assessment is the lack of nec-78

essary data. The UL observations at the Gaisberg Tower show that more than 50 % of79

UL never appear in the data of conventional lightning location systems (LLS). This is80

because conventional LLS cannot detect a particular subtype of UL that does not emit81

an electromagnetic field strong enough to be detectable and consists only of a long du-82

ration initial continuous current (ICC) (Diendorfer et al., 2015). The result is a critical83

underestimation of the actual UL activity and therefore of total lightning at tall objects.84

As LLS do not distinguish between UL and DL, in the current study lightning at tall ob-85

jects may include both DL and UL from an effective height ≥ 100 m.86

Current standards to assess the risk of lightning at wind turbines incorporate tech-87

nical and topographical features, focusing on three key elements. These include the den-88

sity of lightning strikes per square kilometer annually, the height of the wind turbine rep-89

resented by its circular collection area (with a radius three times its height), and a spe-90

cific environmental factor (IEC 61400-24, 2019; Rachidi et al., 2008; Pineda et al., 2018;91

March, 2018). However, challenges arise in this assessment. The local annual lightning92

density predominantly considers lightning during the convective warm season when they93

peak annually, largely overlooking lightning during other seasons and particularly UL,94

which studies suggest pose a significant threat to wind turbines year-round (e.g., Becerra95

et al., 2018). Since UL results from complex atmospheric processes acting on different96

scales, it is crucial to recognize the significant impact of meteorological conditions. Ne-97

glecting these factors might lead to a substantial underestimation of the risk posed by98

lightning at tall objects, particularly by UL.99

Investigating the rare and underrated phenomenon using unique UL observations100

at the Gaisberg Tower in combination with a wide range of globally available atmospheric101

reanalysis variables using flexible machine learning techniques offers a great opportunity102

for better risk assessment compared to the current standards. Machine learning can not103

only compensate for the problem of missing data, but also provide meaningful insights,104

recognize patterns and achieve better predictability.105

The study consists of two main steps. In the first step, random forests based on106

data from the Gaisberg Tower are used to learn which larger-scale meteorological vari-107

ables are responsible for triggering UL. The tower-trained models are then applied to a108

larger study area, including Austria, southern and central Germany, Italy, and Switzer-109

land, to obtain high-resolution ( 1 km2 ) seasonal and annual UL risk maps for the en-110

tire area. In order to better understand the predicted risk, the seasonal variations of the111

most influential larger-scale meteorological variables found at the Gaisberg Tower are112

investigated. LLS-observed lightning at objects (not just at wind turbines) with an ef-113

fective height ≥ 100 m are used to verify the resulting risk maps.114
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2 Data115

The study requires meteorological data, lightning data and a database of all tall116

objects within a chosen study area comprised of flat, hilly and complex terrain in the117

eastern Alps (Fig. 1). Larger-scale reanalysis data (ERA5) with hourly resolution (Hersbach118

et al., 2020) form the basis of all meteorological investigations in this study. In addition,119

ground-truth lightning current measurements at the Gaisberg Tower in Salzburg (Austria,120

Diendorfer et al., 2009) and LLS data from the European Cooperation for Lightning De-121

tection (EUCLID, Schulz et al., 2016) are used. In order to verify the predicted risk at122

tall objects, different types of tall objects documented by the national aviation safety123

authorities of Austria, Switzerland, Germany and Italy are employed (ENAV Group, n.d.;124

Austro Control, n.d.; Swiss Federal Spatial Data Infrastructure, n.d.; Deutsche Flugsicherung,125

n.d.). The verification period covers three years (2021–2023).126

2.1 Atmospheric reanalysis127

ERA5 is the fifth generation of global climate reanalysis provided by the European128

Centre for Medium-Range Weather Forecasts (ECMWF). Data are available at hourly129

resolution and at a spatial resolution of 31 km horizontally ( 0.25 ◦ × 0.25 ◦ latitude-130

longitude grid) and at 137 levels vertically. Given that a precise risk assessment may ne-131

cessitate a higher resolution than that offered by ERA5, the ERA5 variables are bilin-132

early interpolated to a 0.01◦ × 0.01◦ latitude-longitude grid, roughly equivalent to 1 km133

× 1 km. In this study, 35 different variables from ERA5 are used to explain the occur-134

rence of UL. These are either directly available or derived from variables at the surface,135

on model levels, or integrated vertically. A complete list of the variable groups and in-136

dividual variables can be found in the supporting information.137

Atmospheric reanalysis data are first used in the modeling step, where each vari-138

able is spatially and temporally interpolated to each UL observation at Gaisberg Tower.139

They are secondly used in the transfer step to the larger study domain shown in Fig. 1,140

where each variable is bilinearly interpolated to each 1 km2 grid cell within the chosen141

study area in a verification period between 2021 and 2023.142

2.2 Lightning measurements143

LLS measurements for the study area (45◦N–50◦N and 8◦E–17◦E) are from the LLS144

EUCLID. The LLS measures at a frequency range from 400 Hz to 400 kHz and quan-145

tifies lightning flash activity with a median location accuracy of about 100 m (Schulz et146

al., 2016; Diendorfer, 2016; Vergeiner et al., 2013). While the LLS detects DL with a de-147

tection efficiency of more than 90 %, the detection efficiency drops to less than 50 % in148

the case of UL. Therefore, the proportion of UL can significantly affect the detection ef-149

ficiency of lightning at tall objects.150

The fundamental data source for constructing models to understand the occurrence151

of UL is only accessible through direct measurements on specifically instrumented tow-152

ers. With a physical height of 100 m above ground and 1,288 m above mean sea level153

(47◦48′ N, 13◦60′ E, Fig. 1), Gaisberg Tower predominantly experiences UL (Diendorfer154

et al., 2011). In total, 956 UL flashes were recorded at the Gaisberg Tower between 2000155

and 2015 and from mid-2020 to the end of 2023.156

Equipped with a sensitive shunt-type sensor, Gaisberg Tower measures all UL flashes,157

irrespective of the current waveform. Three distinct current waveforms are observed at158

Gaisberg Tower (Diendorfer et al., 2009). The first type emerges when the lightning pro-159

cess ends after the initial phase, involving only a prolonged ICC (ICConly). The second160

type involves this ICC being overlaid with pulse type currents with relative peaks ≥ 2 kA161

(ICCP). Lastly, the third type of UL evolves after a brief phase of no current followed162
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Figure 1: Topographic overview of study area and location of the instrumented Gaisberg
Tower (Salzburg, Austria). Colors indicates the elevation above mean sea level according
to data taken from the Shuttle Radar Topography Mission with a 90 m spatial resolution
(Farr & Kobrick, 2000).

by one or more downward leader-upward-return stroke processes similar to those observed163

in DL processes (ICCRS).164

The measurements at the Gaisberg Tower showed that the ICConly subtype can-165

not be detected by LLS at all. According to Diendorfer et al. (2015), the other two sub-166

types of UL presented, (ICCRS) and (ICCP), are detected by LLS in 96 % and 58 % of167

the cases, respectively. In order to better verify the resulting models, all analyses in this168

study are based exclusively on UL that can be detected by LLS, i.e., UL of the ICCRS169

and the ICCP type.170

2.3 Lightning at tall objects171

Fortuitously, international aviation regulations require each country to keep and172

update a database of tall objects that might endanger flight safety. The study area con-173

tains several objects with heights significant for aviation safety (see Table 1). This doc-174

umentation is freely available for Germany, Austria, Switzerland and Italy, but does not175

include data from the Czech Republic, Slovenia, Hungary and Croatia. The available database176

gives precise details of the geographic location and physical height of each object, pro-177

viding a basis for verifying the models from Sect. 3.1. Each country is based on a dif-178

ferent database with different levels of detail, e.g., tall trees are included in the Swiss database179

but not in the others.180

UL becomes important only from an effective height of 100 m of the object (e.g.,181

Rakov & Uman, 2003). Hence, the verification process shall extract all LLS-observed light-182

ning that hit an object with an effective height ≥ 100 m between 2021 and 2023. To match183
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Figure 2: Panel a: accumulated number of objects with effective heights ≥100 m in
ERA5 grid cells (0.25◦ × 0.25◦). Panel b: all objects with effective heights ≥100 m coded
by color.

the location accuracy of LLS, all lightning within a radius of 100 meters around each ob-184

ject are considered (Diendorfer, 2016; Soula et al., 2019).185

The effective height considers the difference between the height of the object above186

mean sea level and the height of the surrounding environment. This adjustment to the187

effective physical height accounts for the electric field enhancement when the mean ter-188

rain elevation is significantly lower than the elevation at which an object is located, such189

as when it is on a mountain or hill. The greater this difference, the greater the effective190

height and possibly the greater the proportion of total lightning at tall objects.191

Several methods have been proposed to compute the effective height. This study192

uses the method described in Zhou et al. (2010), which assumes that the mountain is hemi-193

spherical with a height equal to the difference between the elevation of where the tall ob-194

ject stands and the average elevation in 1 km2 around it. The method uses electrical field195

parameters derived mainly from laboratory experiments. More details are found in Zhou196

et al. (2010) and in the supplemental information. While this method is readily computable197

with the information available, it might underestimate the true effective height (Smorgonskiy198

et al., 2012).199

Figure 2a gives an overview how tall objects are distributed over the study area200

and panel b illustrates the distribution of the effective height (≥ 100 m) of objects, rep-201

resented by varying colors.202

The highest concentration of tall objects is observed in the easternmost part of Aus-203

tria and the central-eastern subarea of Switzerland. There are also some areas in cen-204

tral Germany with an increased number of tall objects. Interestingly, despite the rela-205

tively flat terrain in the German subarea, objects exhibit a comparatively large effective206

height in contrast to more mountainous terrain (panel b). This phenomenon may be at-207

tributed to the hilly terrain in the German subarea. In complex terrain, where moun-208

tains dominate the landscape, the mean elevation at the area of 1 km2 is relatively high.209

Conversely, in hilly terrain, the mean elevation is relatively low, causing hills to stand210

significantly above the environmental average.211
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Table 1: List of objects in the national regions of the study area documented by the re-
spective aviation authorities. Listed are the numbers of objects with an effective height
≥ 100 m and physical height ≥ 100 m (in parenthesis).

Type of
object

Austria German
sub-
area

Italian
sub-
area

Swiss
sub-
area

Wind turbine 1318
(1283)

1638
(1632)

8 (8) 17 (11)

Mast (e.g.,
antenna, tower)

270 (26) 166
(129)

35 (35) 90 (12)

Building 35 (35) 13 (11) 14 (5) 25 (5)

Stack 26 (26) 75 (75) 30 (30) 2 (2)

Transmission
line

97 (85) 7 (7) 75 (75) 1862
(1216)

Cable car 169
(119)

1 (1) 265 (90) 520
(287)

Catenary 61 (16) 45 (45) - 1169
(566)

Others (e.g,
vegetation,

bridge)

15 (15) 12 (3) 23 (15) 30 (12)

Total 1991 1957 450 3715
Total per km2 0.024 0.024 0.009 0.17
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3 Methods212

First, the relationship between UL events and the larger-scale meteorology is an-213

alyzed using random forests, linking direct UL measurements from the Gaisberg Tower214

to meteorological reanalysis data. Gaisberg Tower is the only location in the study area215

where all types of UL are measured. The random forests are subsequently applied to the216

study area and evaluated with LLS-observed lightning at tall objects.217

3.1 Model construction based on Gaisberg Tower data218

To link meteorological reanalysis data with the occurrence of UL at the Gaisberg219

Tower, this study uses random forests, which is a flexible machine learning technique able220

to tackle nonlinear effects (Breiman, 2001).221

Whether or not UL occurs at Gaisberg Tower is a binary classification problem.222

In this classification problem, 35 larger-scale meteorological variables are the predictors223

chosen to explain the response. The response is LLS-detectable UL at Gaisberg Tower224

(1) or no (LLS-detectable) UL (0) at Gaisberg Tower. Each of the meteorological vari-225

ables is spatio-temporally interpolated to an UL observation at Gaisberg Tower. Exclud-226

ing LLS undetectable UL (ICConly), 549 UL observations are recorded at Gaisberg Tower.227

The algorithm constructs decision trees by assessing the connection between the228

binary response and each predictor variable through permutation tests, also known as229

conditional inference (Strasser & Weber, 1999). At each recursive step of tree construc-230

tion, the predictor variable exhibiting the highest (most significant) association with the231

response variable is chosen. Subsequently, the dataset is partitioned based on this se-232

lected predictor variable to optimize the separation of different response classes. This233

splitting procedure is recursively applied within each subset of the data until a prede-234

fined stopping criterion, such as significance or subsample size, is satisfied. A qualita-235

tive example of a single decision tree is given in the supporting information.236

In the final stage, the random forest aggregates predictions from this ensemble of237

trees, thereby enhancing prediction stability and performance. For additional insights238

into the algorithm and its implementation, refer to Hothorn et al. (2006) and Hothorn239

and Zeileis (2015).240

The models’ response, which indicates the rare presence (1) or very frequent ab-241

sence (0) of UL, is sampled equally to ensure a balanced representation of the two classes.242

Hence, the predicted probabilities of the random forest models shown in this study are243

termed “conditional probability” due to the balanced setup of the model response. To244

increase the robustness of the results, 10 different random forest models are used to com-245

pute the conditional probability. Each of these random forest models consists of the 549246

UL observations associated with the larger-scale meteorological setting and 549 randomly247

selected non-UL situations. The results shown in this study are the median of these 10248

random forests.249

3.2 Transfer of the Gaisberg model result to the study area250

Previous studies by the authors have shown that the random forest models trained251

on the Gaisberg Tower perform well when tested on withheld data from the Gaisberg252

Tower or when tested on another tower, the Säntis Tower in Switzerland (e.g., Stucke253

et al., 2023). In this study, the results from the Gaisberg Tower are transferred to a va-254

riety of topographic environments from flat to hilly to complex terrain. The tower-trained255

random forest model computes the conditional probability of UL in grid cells of 1 km2
256

and 1 hour from the larger-scale meteorological reanalysis data. Whether the resulting257

models are reasonable is justified by comparing the predicted conditional probabilities258

with LLS-observed lightning at tall objects as described in Sect. 2.259
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4 Results260

The results of the study are presented in three distinct parts. In order to take into261

account the factors that critically influence lightning at wind turbines according to the262

current lightning protection standards, the LLS-observed lightning at tall objects is com-263

pared with the total lightning activity including DL to ground within the selected study264

area (Sect. 4.1). Then the influence of the effective height of the objects on the LLS-observed265

lightning is investigated. The section then proceeds to showcase the application of Gais-266

berg Tower-trained models to the different subareas, illustrating the modeled risk of UL267

at objects annually and for each season (see Sect. 4.2). Along with this, the seasonal vari-268

ations of the modeled risk (Sect. 4.2.1) as well as the seasonal variation in the diurnal269

cycle of the modeled risk is presented (Sect. 4.2.2). Sect. 4.2.3 examines the performance270

of the results by quantitatively comparing the modeled outcomes with LLS-observed light-271

ning at tall objects. Following this, Sect. 4.3.1 investigates the meteorological conditions272

that predominantly contribute to UL at the Gaisberg Tower. Section 4.3.2 explains the273

resulting modeled risk from the most important meteorological variables that affect UL274

risk, including how these influential variables vary throughout the seasons. A case study275

is included to demonstrate the models’ predictive behavior and the conditions leading276

to an increased risk of UL (Sect. 4.3.3).277

4.1 LLS-observed lightning at tall objects278

As mentioned, current lightning protection standards (IEC 61400-24, 2019) take279

(i) the physical properties of the structure and (ii) the local annual lightning flash den-280

sity into account. Considering that the effective height may influence lightning at a tall281

object according to the standards, panels a and b in Fig. 3 examine the role of effective282

height on the number of flash-hours for objects with corresponding effective height val-283

ues.284

Panel a shows that the majority of objects have an effective height around 100 m.285

Panel b shows that objects with higher effective heights are more frequently struck by286

lightning corroborating previous findings (e.g., Rakov & Uman, 2003; Shindo, 2018). The287

gap between 425 m and 500 m is likely due to the very few objects in that height range288

being located in areas with low overall LLS-observed lightning at tall objects (see Fig. 4b).289

The Gaisberg Tower as computed using the method in Zhou et al. (2010) is in a range290

between 250 m and 275 m.291

The second important factor in assessing the risk of lightning at wind turbines ac-292

cording to the standards is the local annual flash density (Fig. 4a).293

Fig. 4a shows that the highest concentration of the total lightning activity is in the294

southern part of the study area in northern Italy. These hotspots are thought to result295

from enhanced moisture transport from the Adriatic Sea by the mountain plain circu-296

lation, which hits the rising topography and initiates convection. This is consistent with297

previous studies investigating lightning climatologies in these regions (e.g., Simon & Mayr,298

2022; Feudale et al., 2013; Taszarek et al., 2019).299

However, panel b in Fig. 4 is in stark contrast to panel a, as the maximum cumu-300

lative flash-hours of lightning at tall objects are concentrated in the southwesternmost301

part of the German subarea and the central region of the same subarea. In addition, the302

central-eastern and southernmost parts of Switzerland show a significant accumulation303

of flash-hours. Similarly, panel b in Fig. 4 shows no association with the distribution of304

objects over the study area in panel a of Fig. 2.305

Flash-hours in panel b may have DL to ground in addition to lightning at tall ob-306

jects within the same hour. To examine the proportion of flash-hours exclusively char-307

acterized by lightning at tall objects, panel c examines lightning within a 10 km radius308
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Figure 3: Panel a: number of objects per effective height range. Panel b: number of
flash-hours scaled by the number of objects per effective height range.
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Figure 4: Panel a: total number of flash-hours in ERA5 grid cell (including DL to the
ground and lightning at tall objects) between 2021 and 2023. Panel b: accumulated num-
ber of flash-hours at objects with effective heights ≥100 m. Panel c: proportion of hours
exclusively having lightning at tall objects to the total flash-hours 10 km around each
object. Excluded are those flash-hours, where also DL to the ground occurred around the
object. Panel d: proportion of wind turbines to the total number of objects in cell. One
flash-hour is defined by at least one lightning flash within a grid cell and within one hour.
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of each object. The panel shows that the high concentration of lightning at tall objects309

in the Swiss subarea is largely associated with DL to the ground also occurring within310

10 km of the tall object within the same hour. In the German subarea, however, the pro-311

portion of flash-hours at tall objects with no other lightning activity in the vicinity is312

significantly higher than in the other subareas. While in most cases hours with exclu-313

sively lightning at tall objects accounts for less than 5 % of the total lightning activity314

around a tall object, in the German subarea hours with exclusively lightning at tall ob-315

jects accounts for up to 20 % or more of the total. It can be assumed that the mere pres-316

ence of the tall object significantly increases the total lightning activity. From Fig. 4d317

it can be concluded that lightning at wind turbines accounts for the largest proportion318

of lightning activity 10 km around an object in this area, while lightning at wind tur-319

bines in the eastern part of Austria, where also many wind turbines are located, accounts320

for less than 5% of the surrounding lightning activity.321

From this analysis it can be suggested that the local flash density does not suffi-322

ciently account for the occurrence of lightning at tall objects and in particular for the323

occurrence of UL, so that for a more reliable risk assessment detailed meteorological in-324

formation must be included.325

4.2 Modeled risk of UL at tall objects326

The following analyses highlight the importance of considering the larger-scale me-327

teorological environment for accurate UL risk prediction. The figures show the seasonal328

variation of the UL risk over the study area as well as the seasonal variation of the di-329

urnal cycle of the UL risk. In addition, the predictive performance of the models is pre-330

sented and examined seasonally.331

4.2.1 Seasonal variations of the modeled risk332

Panels a–d in Fig. 5 depict the risk for fall, spring, summer and winter, while panel333

(e) presents the annual risk. Across all five panels, notable regions exhibit increased or334

decreased risk of UL according to the larger-scale meteorological setting, and these pat-335

terns shift with the seasons. Shown is the modeled seasonal (panels a-d) and annual (panel336

e) risk of UL as predicted by the Gaisberg Tower trained random forests, which are solely337

based on UL and not DL. Risk is quantified by counting the number of hours in which338

the models predict a conditional probability greater than 0.5 for each 1 km2 grid cell.339

Absolute values of increased risk are difficult to interpret because the tower-trained ran-340

dom forests, based on a balanced response with UL and no-UL situations, model the con-341

ditional probability.342

The areas with the highest risk of UL shift throughout the year. From winter through343

spring and into summer, the areas of increased risk tend to move both southward and344

eastward. In the fall, the region with the highest risk is mainly located in the western345

German subarea and the southern German subarea, extending into the Swiss and Aus-346

trian northern subareas. While similar in spring, there is a slight southward and east-347

ward shift, with the highest risk observed in the westernmost part of Austria extending348

eastward through Austria along the Alps, the easternmost part of Switzerland, and the349

southwestern part of Germany. In summer, the hotspot regions shift to the eastern and350

western parts of northern Italy and the eastern part of Austria. Conversely, in winter,351

the highest risk extends over most of the German subarea and the northern parts of Switzer-352

land and Austria. In contrast, a rather low risk is observed south of the Alps during the353

cold season.354

Combining the seasonal data reveals a distinct annual pattern (panel e). Areas with355

a consistently higher risk include the German subarea, the northern parts of Switzerland356
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Figure 5: Seasonal (panels a–d) and annual (panel e) UL risk at tall objects modeled
by the Gaisberg Tower-trained random forest models. Risk is quantified by counting the
number of hours exceeding a conditional probability of 0.5. Red dots are LLS-detected
flash-hours at tall objects accumulated to the 1 km2 grid cell size. The size category num-
bers are the upper limit, e.g., size category 5 includes flash-hours from 1 to 5. Light beige
shaded cells are cells without tall objects.
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and north western and central Austria, along with the western and eastern parts of north-357

ern Italy.358

Looking at LLS-observed lightning at tall objects possibly including DL at tall ob-359

jects and UL (red dots), it is important to note that more than half of the actual UL flashes360

may not have been recorded by LLS, as discussed in the introduction. Notably, in win-361

ter and the transitional seasons, observed lightning at tall objects is confined to the north-362

ern part of the study area, where the highest risk is identified. In contrast, during sum-363

mer, observed lightning at tall objects extends to the southern regions, where the risk364

is also increased.365

4.2.2 Seasonal variations in the diurnal cycle of the modeled risk366

Figure 6 panels a–d illustrates that not only does lightning at tall objects vary sea-367

sonally, but it also exhibits distinct daily patterns for each season.368

Notably, despite the common substantial increase in DL activity during the sum-369

mer season, the absolute number of flash-hours at tall objects does not vary as much be-370

tween seasons as one might expect. The transitional seasons each have a single peak. Ac-371

tivity peaks both in the fall and spring around 14 UTC. The most notable difference be-372

tween fall and spring is the relatively high activity around midnight in spring, a pattern373

also observed in summer. Both the summer and winter seasons have two prominent peaks.374

In summer, the first and second peaks occur around 16 UTC and 19 UTC, respectively,375

while in winter these peaks occur around 4 UTC and 22 UTC, respectively. This sug-376

gests that different meteorological settings may contribute to lightning at tall objects in377

different seasons, with strong diurnal heating possibly dominating in summer, trigger-378

ing deep convection and other processes, such as those associated with cold fronts, in-379

fluencing lightning at tall objects in winter and transitional seasons.380

The shaded regions in each panel represent the disparity between aggregating hours381

with conditional probabilities above 0.25 and those exceeding 0.75. A smaller shaded area382

indicates sharper gneiting2007 predictions during observed lightning at tall objects. Con-383

trarily, larger shaded areas indicate that the models barely predicted a conditional prob-384

ability above 0.75 when lightning was observed at tall objects, indicating less sharpness385

in the predictions. Among the four seasons, the predictions in winter are sharpest with386

the most narrow shaded areas particularly during nighttime starting from 20 UTC un-387

til around 3 UTC. As the random forests model only UL, the best performance in win-388

ter might suggest a greater contribution of UL to all lightning at tall objects in the colder389

season. Contrarily, the underestimation of random forest models in summer suggests the390

dominance of DL in lightning at tall objects which the random forest does not account391

for.392

4.2.3 Model evaluation393

UL is rare resulting in a highly imbalanced dataset with a substantially higher frac-394

tion of instances where no UL occurs. To evaluate the performance of the Gaisberg Tower-395

trained random forest models in the study area, two statistical approaches are employed.396

The basis to understand Fig. 7 is to understand the principle of a confusion matrix ex-397

plaining the differences between true/false positives/negatives (see supporting informa-398

tion). The performance results are adjusted to fit the ERA5 grid cell size instead of the399

original 1 km2, which makes it easier to accurately predict lightning at tall objects over400

time and space. In these adjusted predictions, only the highest predicted conditional prob-401

ability within each ERA5 grid cell is considered.402

Figure 7a shows the precision-recall curve, selected for its ability to handle imbal-403

anced data. In contrast, Figure 7b illustrates the Receiver Operating Characteristic (ROC)404

curve, a commonly used method for analyzing model classification performance or to com-405
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Figure 6: Diurnal cycle of accumulated observed flash-hours at tall objects over the entire
study area and verification period (orange dots) versus modeled risk of UL during these
events (above conditional probability threshold of 0.5, gray line) of UL. The database
consists of LLS-observed lightning at tall objects only and neglects situations without
lightning at tall objects. As only hourly predictions are provided, situations in which the
same object is hit multiple times within the same hour are only counted once. Shaded
area shows the difference of the sum of predicted hours between conditional probabilities
of 0.25 and 0.75. Smaller shaded areas indicate sharper predictions for identifying light-
ning at tall objects. The median values in the predictions for UL at tall objects in winter,
summer, fall and spring are 0.834, 0.68, 0.68 and 0.67, respectively.
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Figure 7: Performance of the random forest models compared to no-skill models. Panel
a: precision-recall curve illustrating the trade-off between what proportion of actual UL
flashes the model correctly identified (recall), and what proportion of UL flashes predicted
by the model actually occurred (precision) for varying cutoff values determining whether
UL occurred or not. Panel b: ROC curves for each season showing the trade-off between
the proportion with no UL incorrectly predicted as having UL and how well the models
predict UL situations that have actually occurred. The larger the area under the curve in
both panels, the better the performance.

pare different models. For both approaches the area under the curve represents the per-406

formance, which increases for larger areas.407

The precision-recall curve focuses on the positive class, i.e., the UL occurrence and408

minority in the data set. It evaluates the relationship between the recall or true posi-409

tive rate, i.e., what proportion of actual UL flashes the model correctly identified, and410

the precision, i.e., what proportion of UL flashes predicted by the model actually occurred.411

The curve shows how precision and recall change at different cutoff values for distinguish-412

ing between UL and no UL. In this case, a precision-recall curve that rises rapidly with413

increasing recall and levels off slightly in the upper right corner indicates satisfactory model414

precision, especially in the early stages of recall. The rapid increase in precision at lower415

recall values demonstrates that the models are accurately identifying UL when it actu-416

ally occurs, while minimizing the number of actual UL events missed. Seasonally, the417

precision-recall curves are almost indistinguishable.418

Complementing the precision-recall curve, the ROC curve in Figure 7b shows that419

the models perform best in winter, as indicated by the blue curve. The ROC curve il-420

lustrates the trade-off between how many situations with no UL are incorrectly predicted421

as having UL and how well the models predict UL situations that have actually occurred.422

4.3 The larger-scale meteorological influence on the risk of UL423

The random forest model takes advantage of information contained in the 35 me-424

teorological input variables. It also allows to identify the variables containing most in-425

formation about the occurrence of UL.426
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Figure 8: Permutation variable importance according to random forests based on bal-
anced proportions of situations with and without UL at the Gaisberg Tower. Importance
increases from left to right.

4.3.1 The most influential meteorological variables at the Gaisberg Tower427

To calculate the individual impact of each meteorological predictor variable in clas-428

sifying UL, the values of each predictor variable are randomly shuffled, and the result-429

ing decline in performance is assessed. The larger the decline the more important that430

variable is.431

As evident in the summarized variable importance presented in Fig. 8, one can de-432

duce that both the wind field and cloud physics-related variables exert most influence433

on the UL occurrence at the Gaisberg Tower, which is in line with earlier research find-434

ings (Stucke et al., 2022, 2024). The top five variables include maximum larger-scale up-435

ward velocity, 10 m wind speed, 10 m wind direction, convective available potential en-436

ergy (CAPE), and convective precipitation. Subsequent analyses will specifically focus437

on the top three most important variables to enhance our understanding of the modeled438

risk of UL at tall objects. The maximum larger-scale upward velocity should not be con-439

fused with the updrafts associated with the convective processes involved in thunderstorm440

development. Rather, it is the result of larger-scale processes such as lifting along fronts,441

synoptic troughs or topography.442

4.3.2 Seasonal analysis of the larger-scale meteorology during lightning443

at tall objects444

Each row in Fig. 9 represents a season and shows a distinct meteorological setting445

prevalent during LLS-observed lightning at tall objects. The panels summarize the me-446

dian wind speed and wind direction at 10 m (left column) and the median maximum larger-447

scale upward velocity (right column).448

The increased predicted risk in the German subarea as depicted in Fig. 5 is asso-449

ciated with northerly and northwesterly near-surface winds in all four seasons. Coupled450

with hilly terrain, where the winds are deflected upward, this causes enhanced larger-451

scale upward velocities. Consequently, a relatively high risk of UL is evident through-452

out the year, with the most significant impact observed in the transitional seasons and453

winter.454

Similarly, the increased risk associated with complex terrain appears to result from455

increased maximum upward velocities, likely induced by strong winds impinging the to-456

pography and being deflected upward, triggering convection and UL at tall objects. De-457

pending on the prevailing wind direction, increased larger-scale upward velocities are ob-458

served either north or south of the eastern Alps (right column).459
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Figure 9: Seasonal median of the three most influential meteorological variables during
LLS-observed lightning at tall objects. Left column: wind speed coded by color and wind
direction indicated by arrows (average over 0.5 ◦ × 0.5 ◦). Right column: Median of the
maximum larger-scale upward velocity for each season. Negative values indicate upward
motion.
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Overall, it appears that regions located on the windward side have an increased risk460

of UL due to comparatively strong near-surface winds and the presence of hills and moun-461

tains that deflect the wind upward, creating conditions favorable for UL on tall objects.462

This is true for the windward side of the northern Alps, which are influenced by strong463

northerly winds in northern Switzerland, Austria, and the entire German subarea dur-464

ing the transitional seasons and winter. This might also be true for the weak southerly465

flow, which might influence the risk in western and eastern northern Italy, especially in466

summer. Conversely, the risk is lower in the central southern Alpine regions of Austria,467

central southern Switzerland, and central northern Italy.468

We propose that especially in winter, and also in spring and fall, processes asso-469

ciated with cyclogenesis, cold front passages, and troughs induce large wind speeds, con-470

vective precipitation, and an unstable atmosphere conducive to initiating convection and471

UL. In contrast, the summer situation might be often characterized by smaller-scale pro-472

cesses and/or strong diurnal heating and solar irradiation, providing conditions for both473

deep convection initiation and UL at tall objects triggered by nearby DL activity (Stucke474

et al., 2023).475

4.3.3 Case study476

A case study of the early morning hours (3–6 UTC) of February 21, 2022 demon-477

strates the performance of the random forests. For simplicity, again only the three most478

important meteorological variables out of 35 are examined in detail.479

The synoptic situation in this case study is dominated by the passage of a cold front,480

evident from the densely packed isothermes in panel b. The blue line with triangles il-481

lustrates the approximate location of the cold front at 6 UTC after having passed through482

the north-western corner of the study area. The region with high predicted conditional483

probabilities is characterized by strong near-surface winds originating from the north,484

peaking in the area where most actual lightning flashes were observed (panel c). Eleva-485

tion contour lines in panel a indicate elevated terrain, resulting in increased maximum486

upward velocity when the wind gets deflected. This, in turn, enhances the probability487

of UL, particularly in the southwesternmost part of Germany, where actual UL flashes488

have been observed, as indicated by the yellow dots.489

In panel d, a substantial area exceeds a conditional probability value of 0.5, which490

is the threshold chosen in Fig. 5. The highest predicted probabilities, surpassing 0.8, are491

concentrated in the German subarea, particularly from western to central southern Ger-492

many. Observed lightning at tall objects aligns with the areas of increased risk of UL.493

However, not all grid cells with elevated probability do experience UL.494

5 Discussion495

The findings provide clear indications that the seasonal variability in preferred larger-496

scale meteorological patterns influences the risk of UL at tall objects. Certain regions497

exhibit higher susceptibility during specific seasons, as also evidenced by observed light-498

ning at tall objects. For instance, in the colder season, the risk is considerably higher499

north of the Alps. This might be attributed to processes connected to cyclogenesis prefer-500

ably evolving from north-/north-west to east in the colder season. Conversely, certain501

areas of northern Italy, particularly the western and eastern parts, where the overall light-502

ning activity is quite high, show a relatively high risk for UL during the summer, in con-503

trast to the lower risk during the colder season. The prevailing favorable meteorologi-504

cal conditions combined with obstructive terrain and elevated effective heights, especially505

in the hilly regions of southern Germany, may cause the risk to exceed the risk predicted506

by the random forest models trained on the Gaisberg Tower.507

–18–



manuscript submitted to JGR: Atmospheres

(d)(a)46°N

47°N

48°N

49°N

50°N

 8°E 10°E 12°E 14°E 16°E

1 2 3 4 5

Max. large−scale upward velocity 

(− 1 x Pa s−1)

(b)

45°N

46°N

47°N

48°N

49°N

50°N

8°E 10°E 12°E 14°E 16°E

(d)(c)46°N

47°N

48°N

49°N

50°N

 8°E 10°E 12°E 14°E 16°E

2.5 5.0 7.5 10.0

Wind speed (ms−1)

(d)(d)46°N

47°N

48°N

49°N

50°N

 8°E 10°E 12°E 14°E 16°E

0.25 0.50 0.75

Conditional probability of UL

Figure 11: Case study from February 21, 2022 between 3 UTC and 6 UTC. Panel a:
maximum of the larger-scale upward velocity over verification period. Panel b: Location
of 850 hPa isothermes at 6 UTC with the approximate location of the cold front. Panel c:
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Although observed lightning at tall objects indicate a reasonable risk assessment,508

there are naturally discrepancies between the modeled risk and the observation. The most509

obvious reason for discrepancies is the fact that the models trained at Gaisberg Tower510

consider only UL and ignore DL, since the former is almost exclusively observed at Gais-511

berg Tower. While the models only consider UL, lightning at tall objects used for ver-512

ification may include both UL and DL, since LLS do not distinguish UL from DL. Con-513

sequently, the models may not adequately capture the prevalence of DL at tall objects.514

This might be less critical in the winter season, which is suggested to be dominated by515

UL (Diendorfer, 2020; Rachidi et al., 2008). Especially in the late afternoon and evening516

in summer, the models underestimate the risk of observed lightning at tall objects, while517

the increased number of observed lightning at tall objects could actually be majorly DL518

at tall objects and not UL striking the object (see Fig. 6).519

Another aspect is that successful verification depends on the availability of high520

quality lightning data. Although the LLS has a high detection efficiency for DL, its ef-521

ficiency for UL is less than 50%, which poses a challenge for a reasonable verification of522

the modeled risk. Although the models exclude ICConly UL, both ICCRS and especially523

ICCPulse UL also face limitations in detection efficiency (see also Sect. 2).524

Other non-meteorological factors may significantly influence the occurrence of UL525

at wind turbines. Neither topographic characteristics nor varying effective heights can526

be accounted for in the tower-trained models. As mentioned, the occurrence of UL at527

tall objects is closely related to the effective height, with both UL and DL possible in528

the range of approximately 100 m to 500 m. The Gaisberg Tower has a specific effec-529

tive height of about 270 m according to Zhou et al. (2010) and considerably higher ac-530

cording to Smorgonskiy et al. (2012). Consequently, the maps in Fig. 5 show the risk for531

objects in this height range. Figure 3b may be used to adjust it for objects of different532

heights.533

Applying the same algorithm (Zhou et al., 2010) to compute the effective height534

as for all other objects, the effective height of Gaisberg Tower is 270 m. Since it sits on535

a hill that is approximately 800 m higher than the terrain to the north, its actual effec-536

tive height likely exceeds 500 m and was determined (Smorgonskiy et al., 2012) to range537

between approximately 300 m to 670 m. From the results we suggest that the combi-538

nation of favorable meteorological conditions and increased effective heights, as is espe-539

cially the case in southern and southwestern Germany and easternmost Austria, could540

increase the fraction of UL over DL in total lightning at tall objects.541

Physical properties of the object may also play a role, for example, the shape of542

the structure, as well as the rotation of the wind turbine blades may affect the UL risk543

(Montanyà et al., 2014). In addition, wind farms with many turbines can create ”hotspots”544

for lightning due to a significant increase in the electric field (Soula et al., 2019). This545

would also support the hypothesis that the German subarea, where many wind turbines546

are located, has the highest proportion of hours in which only lightning at tall objects547

occurs without any other lightning activity to the ground around the turbine.548

Finally, it is often much more important to correctly predict a high risk at the ap-549

propriate time, when the event actually occurs, than to overestimate it. The performance550

analysis and verification have shown that the random forest models trained at Gaisberg551

Tower are able to reliably and correctly assess this risk, which has the most valuable ap-552

plication also for the wind energy sector.553

6 Conclusions554

This study examines the risk of lightning at tall objects large enough to experience555

a significant proportion of rare but destructive upward lightning (UL). In recent years,556

UL has become a major concern for wind turbines as they increasingly suffer from UL.557
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Direct lightning current measurements at the specially instrumented Gaisberg Tower in558

Austria show that more than half of the UL is not detected by the local Lightning Lo-559

cation System (LLS) due to very specific current waveforms observed in UL making a560

proper spatio-temporal risk assessment of UL nearly impossible. Current approaches to561

assessing lightning risk often overlook crucial meteorological factors, potentially leading562

to a considerable underestimation of UL risk for wind turbines. This study highlights563

the necessity of integrating detailed meteorological data into risk assessment to achieve564

a more reliable understanding of lightning risk at tall wind turbines.565

Therefore, this study investigates the larger-scale meteorological role of UL at tall566

objects and uses direct UL observations at the Gaisberg Tower together with globally567

available larger-scale meteorological reanalysis data. Random forests, a popular and flex-568

ible machine learning technique, distinguish UL from non-UL situations. The results show569

the importance of wind field and cloud physics relevant variables, which is in agreement570

with previous studies. The three most important variables from a set of 35 distinguish-571

ing UL from no-UL situations at Gaisberg are the maximum large-scale upward veloc-572

ity, wind speed at 10 m, and wind direction at 10 m. Further convective available po-573

tential energy and cloud physics related variables are important.574

In a second step, these findings are applied to a study area covering Austria, parts575

of Italy, Germany and Switzerland. The models trained at the Gaisberg Tower predict576

the conditional probability of UL within this area at a resolution of 1 km2. For verifi-577

cation, all objects large enough to experience UL, i.e., having an effective height of ≥ 100578

m, are considered, and LLS-detected lightning at tall objects in the verification period579

between 2021 and 2023 within a 100 m radius of each tall object are extracted. Tall ob-580

jects are distributed throughout the study area, with maxima in the central-eastern Swiss581

subarea and eastern Austria. Objects with large effective heights are found in southern,582

south-western and central Germany, as well as eastern Austria.583

The highest LLS-observed activity of lightning at tall objects is mainly in the cen-584

tral southern and western German subarea, as well as in the Swiss subarea. Wind tur-585

bines are most pronounced in the German subarea and in easternmost Austria. In the586

German subarea, lightning at tall wind turbines can account for up to 20 % and more587

of the total lightning activity within a 10 km radius particularly around wind turbines.588

In all other subareas the proportion of lightning at tall objects to the total lightning ac-589

tivity 10 km around an object is less than 5 %.590

Evaluating the risk of UL at tall objects from Gaisberg Tower-trained random for-591

est models based only on larger-scale meteorological variables shows that the annual risk592

is highest in southern Germany as well as northern and eastern Austria and northern593

Switzerland. Western and eastern northern Italy also have an increased risk of UL. A594

seasonal analysis shows that in winter the highest risk is limited to the regions north and595

east of the eastern Alps, while south of the eastern Alps (eastern and western northern596

Italy) the risk is also increased in the transition seasons and especially in summer. The597

analysis of the three main variables shows that the highest predicted probabilities are598

due to the deflection of strong larger-scale near-surface winds at the topography, lead-599

ing to an increase in larger-scale upward velocities. In the winter and transition seasons,600

the wind is predominantly from the north, increasing the risk of UL north of the Alps.601

In the warmer seasons and in summer, the increased risk south of the Alps may be due602

to other influences, such as thermally driven slope winds, valley winds and mountain-603

plain circulations. Between the high-risk areas of southern Switzerland, central north-604

ern Italy and southern parts of Austria, the risk is lower in all seasons. The diurnal cy-605

cle of the modeled risk varies seasonally. While the transitional seasons show a promi-606

nent peak in the afternoon, summer and winter show two prominent peaks. The high-607

est risk in summer is in the late afternoon and evening, while the highest risk in win-608

ter is in the late evening and night.609
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A comparison with LLS-observed lightning at tall objects shows a qualitatively good610

agreement with increased or decreased risk. While the areas of increased risk are much611

larger than areas with observed lightning at tall objects (UL is a very rare phenomenon),612

the performance of the models to correctly predict high risk of UL when lightning has613

actually occurred at a tall object is good throughout the year. The precision of the pre-614

dictions is highest in winter.615
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available or derived from ERA5. The final table lists the meteorological variables used in16

the study.17

0.1. Estimation of the effective height

The effective height is computed following (Zhou et al., 2010) by assuming a hemispher-

ical mountain:

using:

where Heff (m) is the effective height and h (m) is the actual height of the object. Ulc18

(kV) is the continuous leader inception potential due to the cloud charges, R (m) is a19

geometrical parameter, a (m) is the mountain height, which in the current study is taken20

to be the difference between the 1 km2 mean elevation and the elevation at which the21

object is located to also account for the surrounding terrain. Eg (kV/m) is the ambient22

uniform electric field. For more details see (Zhou et al., 2010).23

0.2. Understanding a confusion matrix

Actual
Positive Negative

Predicted Positive True positive False positive
Negative False negative True negative

24

A true positive rate is the proportion of true positive divided by the sum of true positives25

and false negatives. The false positive rate on the other hand is the proportion of false26

positives divided by the sum of true positives and false positives.27

0.3. Example of a decision tree
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≤ 0.592

≤ 115.1

≤ 0.008

≤ 34856> 34856

> 0.008

> 115.1

> 0.592

≤ 3.596

≤ 0 > 0

> 3.596

≤ 246 > 246

N = 156 N = 7 N = 41 N = 46 N = 82 N = 34 N = 8 N = 180

Max. vertical velocity

CAPE

Solid hydrometeors 
−20°C − −40°C

Boundary layer 
dissipation

Wind speed 
at 10 m

Convective 
precipitation

Wind direction 
at 10 m

0

50

100

150

0

50

100

150

0

50

100

150

0

50

100

150

0

50

100

150

0

50

100

150

0

50

100

150

0

50

100

150

UL no yes

Figure S1. Example of a decision tree. Meteorological variables in the nodes are splitted

according to the split points (numbers at the solid lines). Terminal nodes (bars) give the decision.

The number of observations included in the decision pars is given above the terminal nodes as

N .

Figure S1 shows the structure of a single decision tree. It shows several nodes, each28

associated with specific split variables. Initially, the maximum large-scale upward velocity29

serves as the primary split variable. Thresholds between nodes indicate where the split30

variable is splitted for optimal performance. Following a single UL observation along31

the path determined by these thresholds leads to a terminal node, represented by the32

bottom bars. The colors of these bars indicate the number of observations assigned to33

each terminal node, indicating UL or no UL prediction.34

0.4. List of variables included in the random forest models
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Table S1. Table of larger-scale variables taken from ERA5 and variables derived from ERA5.

The derived variables are suggested to be potentially important in the charging process of a

thundercloud or for the development of convection.

Variable Unit Variable Unit

Cloud base height above ground m agl Convective precipitation (rain + snow) m

Large scale precipitation m Cloud size m

Maximum precipitation rate (rain + snow) kg m−2 s−1 Ice crystals (total column, tciw) kg m−2

Solid hydrometeors (total column, tcsw) kg m−2 Supercooled liquid water (total column, tcslw) kg m−2

Water vapor (total column) kg m−2 Integral of cloud frozen water flux divergence kg m−2 s−1

Vertical transport of liquids around −10 ◦C kg Pa s−1 Ice crystals (−10 ◦C - −20 ◦C) kg m−2

Ice crystals (−20 ◦C - −40 ◦C) kg m−2 Cloud water droplets (−10 ◦C - −20 ◦C) kg m−2

Solid hydrometeors (−10 ◦C - −20 ◦C) kg m−2 Solid hydrometeors (−20 ◦C - −40 ◦C) kg m−2

Solids (cswc + ciwc) around −10 ◦C kg m−2 Liquids (clwc + crwc) around −10 ◦C kg m−2

2 m dew point temperature K Mean vertically integrated moisture convergence kg m−2 s−1

Water vapor (−10 ◦C - −20 ◦C) kg m−2 Boundary layer height m

Surface latent heat flux J m−2 Surface sensible heat flux J m−2

Downward surface solar radiation J m−2 Convective available potential energy J kg−1

Convective inhibition present binary Mean sea level pressure Pa

Height of −10 ◦C isotherm m agl Boundary layer dissipation J m−2

Maximum larger-scale upward velocity Pa s−1 Total cloud shear m s−1

Wind speed at 10 m m s−1 Wind direction at 10 m ◦

Shear between 10 m and cloud base m s−1
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