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Abstract

Streamflow depletion is traditionally defined as the instantaneous change in the volumetric rate of aquifer–stream exchange

after a finite period of continuous groundwater extraction. In the present study an alternative metric of streamflow depletion

was considered: cumulative stream depletion (CSD), which described the total volumetric reduction in flow from an aquifer to

a stream resulting from continuous groundwater extraction over a finite period. A novel analytical solution for the prediction of

CSD was derived, based upon an existing solution that accounted for streambed conductance and partial stream penetration.

Separately, a novel numerical solution for the prediction of CSD was derived, based on the derivation of an adjoint state

solution. The accuracy of the two new solutions was demonstrated through benchmarking against existing analytical solutions

and perturbation-based results, respectively. The derivation of the loading term used in the adjoint state solution identified

three parameters of relevance to CSD prediction. First is streambed hydraulic conductivity and thickness, both of which

contribute to a lumped parameterization of streambed conductance. Second is aquifer specific yield, which controls the rate

at which hydraulic perturbations propagate through an aquifer. The computational advantage of the adjoint state approach

was highlighted, in which a single numerical model run can be used to predict CSD resulting from any potential groundwater

extraction location. The reduction in computation time achieved was proportional to the number of potential extraction well

locations. Where the number of locations is large, reductions in computation times of nearly 100 % can be achieved.
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Key Points: 14 

 New analytical solutions for cumulative streamflow depletion were derived 15 

 A new numerical adjoint solution for cumulative streamflow depletion was derived 16 

 The derived adjoint solution can be orders of magnitude more efficient than traditional 17 

perturbation-based approaches to estimating cumulative streamflow depletion 18 

Abstract  19 

Streamflow depletion is traditionally defined as the instantaneous change in the 20 

volumetric rate of aquifer–stream exchange after a finite period of continuous groundwater 21 

extraction. In the present study an alternative metric of streamflow depletion was considered: 22 

cumulative stream depletion (CSD), which described the total volumetric reduction in flow from 23 

an aquifer to a stream resulting from continuous groundwater extraction over a finite period. A 24 

novel analytical solution for the prediction of CSD was derived, based upon an existing solution 25 

that accounted for streambed conductance and partial stream penetration. Separately, a novel 26 

numerical solution for the prediction of CSD was derived, based on the derivation of an adjoint 27 

state solution. The accuracy of the two new solutions was demonstrated through benchmarking 28 

against existing analytical solutions and perturbation-based results, respectively. The derivation 29 

of the loading term used in the adjoint state solution identified three parameters of relevance to 30 

CSD prediction. First is streambed hydraulic conductivity and thickness, both of which 31 

contribute to a lumped parameterization of streambed conductance. Second is aquifer specific 32 

yield, which controls the rate at which hydraulic perturbations propagate through an aquifer. The 33 

computational advantage of the adjoint state approach was highlighted, in which a single 34 

numerical model run can be used to predict CSD resulting from any potential groundwater 35 

extraction location. The reduction in computation time achieved was proportional to the number 36 
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of potential extraction well locations. Where the number of locations is large, reductions in 37 

computation times of nearly 100 % can be achieved. 38 

1. Introduction 39 

Streamflow depletion traditionally describes a reduction in flow between an aquifer and a 40 

connected, gaining stream resulting from groundwater extraction (Barlow and Leake, 2012). This 41 

concept can be generalised to losing streams, where increases in stream discharge may occur, as 42 

well as to other surface water features such as rivers and lakes. Streamflow depletion can result 43 

in the reduction or cessation of aquifer–stream exchange fluxes. Where streams provide potable 44 

water supplies for municipal, domestic, or agricultural uses, reductions in baseflow can put the 45 

security of such supplies at risk. Reductions to in-stream flow regimes and the resulting changes 46 

to water chemistry can also cause considerable negative ecological impacts. 47 

1.1. Instantaneous streamflow depletion 48 

Traditionally, streamflow depletion was conceptualized as the reduction in groundwater 49 

discharge to a stream (𝑄𝑆) resulting from continuous groundwater extraction at a rate (𝑄𝐵) over a 50 

finite period (e.g., from 𝑡0 to 𝑡𝑓), at the end of the extraction period (𝑡𝑓); i.e.: 51 

𝑄𝐼𝑆𝐷(𝑡𝑓) = ∆𝑄𝑆 =
𝑑𝑄𝑆(𝑡𝑓)

𝑑𝑄𝐵
𝑄𝐵 (1) 

where 𝑄𝐼𝑆𝐷(𝑡𝑓) is instantaneous streamflow depletion (ISD, L
3
.T

–1
) and 𝑄𝑆 is the exchange flow 52 

across the streambed sediment (L
3
.T

–1
), given by: 53 

𝑄𝑆(𝑡) = ∫ 𝐶𝑆(𝐱)

𝑠

[ℎ(𝐱, 𝑡) − ℎ𝑆(𝐱, 𝑡)]  𝑑𝑠  

= ∫
𝐾𝑆(𝐱)

𝑏𝑆(𝐱)
Ω

[ℎ(𝐱, 𝑡) − ℎ𝑆(𝐱, 𝑡)] 𝐴𝑆(𝐱) 𝑑𝐱 (2) 
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where ℎ is aquifer hydraulic head, ℎ𝑆 is stream stage, 𝑠 represents the centreline of the stream, Ω 54 

represents the spatial domain, 𝐴𝑆 is a dimensionless indicator function that has a value of unity 55 

along streams and zero elsewhere. 𝐶𝑆 is a lumped parameter known as streambed conductance 56 

(L.T
–1

), defined as: 57 

𝐶𝑆(𝐱) =
𝐾𝑆(𝐱) 𝑊𝑆(𝐱)

𝑏𝑆(𝐱)
 (3) 

where 𝐾𝑆 is streambed hydraulic conductivity (L.T
–1

), 𝑊𝑆 is streambed wetted perimeter (L), and 58 

𝑏𝑆 is streambed thickness  (L). Following this definition, streambed conductance features units of 59 

(L.T
–1

) (e.g. Neupauer et al., 2021), rather than (L
2
.T

–1
) (e.g. Brunner et al., 2010). The inclusion 60 

of the function 𝐴𝑠 in equation (2) ensures that, while integration is performed over the entire 61 

model domain (i.e., Ω), stream–aquifer exchange occurs only at stream locations. When 62 

numerical solution methods are used, appropriate specification of the terms 𝑊𝑆 and 𝑏𝑆 is 63 

necessary to ensure accurate prediction of streamflow depletion (Mehl and Hill, 2010). 64 

Streambed conductance values can be estimated through inversion of simultaneous observations 65 

of stream flow, stream stage, and aquifer hydraulic head. Alternatively, the component 66 

parameters of the streambed conductance term can be estimated independently using laboratory 67 

testing methods, such as streambed sediment particle size distribution analyses (Fox et al., 2011), 68 

or from field observations, such as falling head permeameter testing (Landon et al., 2001; Fox, 69 

2004). Existing analytical and numerical methods of estimating ISD are summarized as follows. 70 

1.2. Analytical solutions for instantaneous streamflow depletion 71 

A vast number of analytical and semi-analytical solutions for the first-order prediction of 72 

ISD have been developed since the 1940s (Hunt, 2014; Huang et al., 2018), of which a handful 73 

have been widely implemented. The seminal ISD solution was derived by Theis (1941), the 74 
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calculation of which was subsequently simplified by Glover and Balmer (1954). This solution 75 

featured a relatively large number of assumptions, including: the absence of a streambed 76 

conductance layer; that the stream and well both fully penetrate the aquifer; that hydraulic 77 

properties are homogeneous; and that extraction is continuous. Theis (1941) and Glover and 78 

Balmer (1954) presented a closed-form analytical solution for the estimation of depletion of 79 

unconfined groundwater flow to a fully connected, fully penetrating stream featuring no 80 

resistance to flow (i.e., zero streambed thickness). Theis (1941) and Glover and Balmer (1954) 81 

extended the Theis (1935) drawdown solution via the inclusion of an infinitely long Dirichlet 82 

boundary condition of infinitesimal width to represent a stream boundary. This conceptualization 83 

of ISD and its corresponding solution will hereafter be referred to as the “TGB solution”. The 84 

TGB solution describes instantaneous streamflow depletion (𝑄𝐼𝑆𝐷) at time 𝑡𝑓 resulting from 85 

continuous groundwater extraction from 𝑡0 to 𝑡𝑓 as: 86 

𝑄𝐼𝑆𝐷(𝑡𝑓) = 𝑄𝐵 erfc [√
(∆𝑥)2 𝑆𝑦
4 𝑇 𝑡𝑓

 ] (4) 

where ∆𝑥 is well-stream separation distance (L), 𝑡𝑓 is the time since the onset of extraction at 87 

which ISD is calculated (which is equal to the duration of time elapsed) (T), 𝑇 is aquifer 88 

transmissivity (L
2
.T

–1
), 𝑆𝑦 is aquifer specific yield (unitless) and erfc is the complementary error 89 

function. In practice, a constant aquifer thickness is used to calculate a representative 𝑇 value. 90 

Importantly, this requires the assumption that the reduction in aquifer saturated thickness due to 91 

extraction (i.e., drawdown) is negligible with respect to total aquifer thickness. 92 

Hantush (1965) extended the TGB solution to include the presence of a relatively lower 93 

hydraulic conductivity conductance layer between the pumped aquifer and the stream (i.e., non-94 
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zero streambed thickness). The remainder of the assumptions of the TGB solution were retained, 95 

including full aquifer penetration of both the production well and stream. This conceptualization 96 

will hereafter be referred to as the “Hantush solution”. The Hantush solution described 97 

instantaneous streamflow depletion at time 𝑡𝑓 resulting from continuous groundwater extraction 98 

as: 99 

𝑄𝐼𝑆𝐷(𝑡𝑓) = 𝑄𝐵  {erfc [√
(∆𝑥)2 𝑆𝑦
4 𝑇 𝑡𝑓

 ] − exp [
𝑇 𝑡𝑓
𝑆𝑦 𝑅

2
+
∆𝑥

𝑅
] erfc [√

𝑇 𝑡𝑓
𝑆𝑦 𝑅

2
+√

(∆𝑥)2 𝑆𝑦
4 𝑇 𝑡𝑓

 ] } (5) 

where exp is the exponential function and 𝑅 = 𝐾 𝑏𝑆  𝐾𝑆⁄ , where 𝐾 is aquifer hydraulic 100 

conductivity (L.T
–1

). 101 

Hunt (1999) derived a solution that accounted for the effects of a streambed conductance 102 

layer, a partially penetrating stream, and a partially penetrating well. This conceptualization will 103 

hereafter be referred to as the “Hunt solution”. The Hunt solution described instantaneous 104 

streamflow depletion at time 𝑡𝑓 resulting from continuous groundwater extraction as: 105 

𝑄𝐼𝑆𝐷(𝑡𝑓) = 𝑄𝐵  {erfc [√
(∆𝑥)2 𝑆𝑦
4 𝑇 𝑡𝑓

 ]

− exp [
𝜆2 𝑡𝑓
4 𝑆𝑦 𝑇

+
𝜆 ∆𝑥

2 𝑇
] erfc [√

𝜆2 𝑡

4 𝑆𝑦 𝑇
+ √

(∆𝑥)2 𝑆𝑦
4 𝑇 𝑡

 ] } 

(6) 

where  𝜆 is related to streambed conductance. For example, when defined as 𝜆 = 𝐶𝑆(𝐱) =106 

𝐾𝑆(𝐱) 𝑊𝑆(𝐱) 𝑏𝑆(𝐱)⁄  (per equation 3), the Hunt solution is equivalent to the Hantush solution. It 107 

is assumed that the stream is fully hydraulically connected to the watertable aquifer at all times 108 

(Brunner et al., 2011). 109 



 

Turnadge et al.  |  Cumulative Streamflow Depletion Solutions  |  Page 7 of 52 

 

Other ISD solutions addressed a range of unique hydrogeological conceptualisations. 110 

Unconfined conditions were most commonly simulated, although confined conditions were often 111 

assumed in order to simplify (i.e., linearize) governing equations. Solutions for leaky aquifers 112 

(Hunt, 2003; Butler et al., 2007; Zlotnik and Tartakovsky, 2008; Zlotnik, 2004) and multi-layer 113 

flow systems (Hunt, 2009; Ward and Lough, 2011; Ward and Falle, 2012) were also derived. 114 

Aquifer geometries considered included infinite (Fox et al., 2002) or semi-infinite (Hunt, 2003) 115 

domains, as well as rectangular (Chan, 1976; Huang et al., 2014, 2015), wedge-shaped (Chan et 116 

al., 1978; Yeh and Chang, 2006; Sedghi et al., 2009) or strip aquifers (Jenkins, 1968; Butler et 117 

al., 2001; Miller et al., 2007; Sun and Zhan, 2007; Zlotnik, 2014). In addition to fully penetrating 118 

vertical wells, ISD solutions for other well construction geometries included partially penetrating 119 

vertical wells (Hunt, 1999) and non-vertical wells (Tsou et al., 2010). Constant extraction rates 120 

were typically assumed, although transient extraction was also considered, including cyclic 121 

extraction schemes (Wallace et al., 1990; Darama, 2001; Neupauer et al., 2023a). Streams were 122 

typically simulated as featuring a single linear geometry, but also included multiple parallel 123 

streams (Sun and Zhan, 2007), as well as curvilinear streams (Huang and Yeh, 2015) or right-124 

angled streams (Hantush, 1967). Partial aquifer penetration of streams was addressed by Butler 125 

et al., (2001) and Chen and Yin (2004).  126 

While many solutions assumed constant stream stage values, spatio-temporal variations 127 

in stream stage (Intaraprasong and Zhan, 2009) and streambed conductance (Neupauer et al., 128 

2021) have also been considered. Solutions that considered streams featuring finite widths were 129 

derived by Butler et al. (2001) and Hunt (2008). In addition to their use as forward models for 130 

the prediction of instantaneous streamflow depletion, analytical ISD solutions have also been 131 

used to inversely estimate hydrogeological and streambed parameters. For example, Christensen 132 
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(2000) and Lough and Hunt (2006) used the Hunt (1999) and Hunt (2003) ISD solutions, 133 

respectively, to inversely estimate aquifer transmissivity and specific yield values, as well as 134 

streambed conductance values. Analytical ISD solutions were implemented in software such as 135 

STRMDEPL08 (Reeves, 2008) and the streamDepletr package for R (Zipper et al., 2019). 136 

1.3. Numerical solutions for instantaneous streamflow depletion 137 

Numerical groundwater flow solutions are commonly used to assess ISD in contexts 138 

where sufficient data and/or subsurface complexity warrant the development of a numerical 139 

forward model. Numerical solutions feature far fewer assumptions than their analytical 140 

counterparts. For this reason, numerical solutions can be used to represent more complex 141 

conceptualisations and parameterizations, including irregular geometry and heterogeneous 142 

parameters that vary in space and/or time. 143 

1.3.1. Perturbation solutions 144 

Paired numerical forward models can be used to calculate ISD as the difference between 145 

aquifer–stream exchange fluxes using a perturbation approach. The perturbation approach 146 

involves solving an appropriate form of the groundwater flow equation using a defined set of 147 

parameter values; e.g., from the minimization of discrepancies between modelled and measured 148 

flow system states. Additional solutions are then obtained for each perturbation of interest. For 149 

the specific case of streamflow depletion, additional solutions are obtained for each potential 150 

extraction well location. Instantaneous streamflow depletion is then calculated as the difference 151 

in aquifer–stream exchange flux between (1) the original model and (2) each perturbed model. 152 

When using the perturbation approach to assess ISD, the number of additional model runs 153 

required is equal to the number of potential extraction locations.  154 
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1.3.2. Adjoint solutions 155 

The development of the adjoint state approach across various scientific and engineering 156 

disciplines is first briefly summarized as follows. Use of the adjoint state approach to calculate 157 

model sensitivities equations was first formalized for application to both linear and nonlinear 158 

systems by Cacuci (1981a, 1981b). This followed a number of diverse implementations in fields 159 

such as nuclear engineering (Wigner, 1945; Weinberg and Wigner, 1958; Gandini, 1967), 160 

reservoir engineering (Jacquard and Jain, 1965; Carter et al., 1974; Chavent et al., 1975) and 161 

meteorology (Marchuk, 1975). The adjoint state approach to sensitivity analysis and optimal 162 

control has been described in monographs such as Marchuk (1994), Cacuci (2003), and Cacuci et 163 

al. (2005). Adjoint state approaches were first applied to problems in groundwater hydrology by 164 

Vemuri and Karplus (1969), Neuman and Yakowitz (1979) and Neuman et al. (1980). The 165 

framework for the application of adjoint solutions to saturated groundwater flow problems was 166 

later derived for steady (Sykes et al. 1985) and for transient (Wilson and Metcalfe, 1985) flow 167 

conditions. The method was used to calculate the sensitivities of saturated (Townley and Wilson, 168 

1985; Wilson and Metcalfe, 1985) and unsaturated (Kabala and Milly, 1990; Lehmann and 169 

Ackerer, 1997) groundwater flow solutions, and of solute transport solutions (Ahlfeld et al., 170 

1988a, 1988b; Neupauer and Wilson 1999, 2001).  171 

Adjoint state methods of calculating model sensitivities are often more efficient than their 172 

perturbation-based counterparts. In many cases, the output of a single, additional adjoint model 173 

run can be combined with existing forward model outputs to calculate the sensitivity of a given 174 

model output to a range of parameters. For the specific case of instantaneous streamflow 175 

depletion, the adjoint approach allows estimates to be calculated at all potential groundwater 176 

extraction locations using only a single adjoint state model run. Adjoint state methods were first 177 
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used to calculate instantaneous streamflow depletion solutions by Neupauer and Griebling 178 

(2012) and Griebling and Neupauer (2013). These studies featured relatively complex, multi-179 

layered hydrogeological flow systems featuring irregular geometries and nonlinear groundwater-180 

surface water exchange mechanisms, as well as the evapotranspiration of shallow groundwater. 181 

The efficiency of the adjoint approach was shown in these studies to exceed that of the 182 

perturbation method by a factor of 250; i.e., by more than two orders of magnitude.  183 

1.4. Cumulative streamflow depletion 184 

The metric of instantaneous streamflow depletion represents the change in the volumetric 185 

rate of aquifer–stream exchange and therefore has units of L
3
.T

–1
. At a local scale this metric is 186 

appropriate, since it can be related to measurable rates of volumetric flow for processes located 187 

within both the stream and aquifer domains at a particular study location. However, conjunctive 188 

management of surface and groundwater resources at regional scales typically involves 189 

estimation of volumetric water balances, which are often averaged over finite (e.g., annual) time 190 

periods. This requires the integration of ISD through time, in order to estimate a total net annual 191 

volume that can be related to other water balance components. For this reason, an alternative 192 

metric of streamflow depletion was considered in the present study: cumulative stream depletion 193 

(CSD). This refers to the total volumetric reduction in flow from an aquifer to a stream (𝑉𝐶𝑆𝐷) 194 

resulting from continuous groundwater extraction over a finite period (i.e., from 𝑡0 to 𝑡𝑓), at the 195 

end of the extraction period (𝑡𝑓); i.e.: 196 

𝑉𝐶𝑆𝐷(𝑡𝑓; 𝐱𝐵) = ∫ 𝑄𝐼𝑆𝐷(𝑡; 𝐱𝐵) 𝑑𝑡

𝑡𝑓

𝑡0

= 𝑄𝐵 ∫
𝑑𝑄𝑆(𝑡; 𝐱𝐵)

𝑑𝑄𝐵(𝑡; 𝐱𝐵)
 𝑑𝑡

𝑡𝑓

𝑡0

 (7) 

Cumulative stream depletion represents the cumulative volume of water that would otherwise 197 

have discharged to a stream in the absence of groundwater extraction. In comparison to the vast 198 
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number of existing ISD solutions, closed-form analytical solutions for the estimation of CSD do 199 

not currently exist. Instead, CSD is typically estimated through either: (1) the temporal 200 

integration of analytical ISD solutions using numerical methods, which can be cumbersome and 201 

potentially subject to discretization errors; or (2) numerical solutions of the groundwater flow 202 

equation. In the present study, two new cumulative streamflow depletion solutions were derived: 203 

one closed-form analytical solution and one numerical adjoint solution. The analytical solution is 204 

suited to assessments of CSD in data poor areas or is suitable for didactic purposes. As a 205 

numerical solution, the adjoint solution features relatively fewer assumptions and is therefore 206 

suitable for assessments of CSD in data rich and/or hydrogeologically complex contexts. An 207 

additional key benefit of the adjoint solution is the ability to use a single numerical model run to 208 

assess CSD resulting from any potential extraction location. 209 

2. Methods  210 

The numerical integration of analytical ISD solutions was used to provide benchmarks 211 

against which new analytical and numerical adjoint solutions were compared for three flow 212 

system conceptualizations. The Hunt (1999) analytical solution for ISD was used as the basis for 213 

derivation of a new closed-form analytical solution for CSD, which is appropriate for use in data 214 

poor investigations. A new numerical adjoint solution was also derived for the calculation of 215 

CSD, which is appropriate for use in data rich investigations. This was compared to both 216 

numerically integrated ISD solutions and the analytical CSD solution in a relatively simple 217 

application. The numerical adjoint CSD solution was also compared to perturbation-based 218 

numerical solutions in a relatively complex application. 219 
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2.1. Forward model 220 

The governing equation for two-dimensional groundwater flow in a heterogeneous, 221 

anisotropic unconfined aquifer featuring stream–aquifer exchange and non-head-dependent 222 

source/sink terms is an extended version of the Boussinesq equation (Bear, 1979):  223 

−𝑆𝑦(𝐱, 𝑡) 
𝜕ℎ(𝐱, 𝑡) 

𝜕𝑡
+ ∇ ∙ [𝐊(𝐱, 𝑡) ℎ(𝐱, 𝑡) ∇ℎ(𝐱, 𝑡)]

−
𝐾𝑠

𝑏𝑠
[ℎ(𝐱, 𝑡) − ℎ𝑠(𝐱, 𝑡)] 𝐴𝑆(𝐱) − 𝑄𝐵(𝐱, 𝑡) 𝛿(𝐱 − 𝐱𝐵) + 𝑁(𝐱, 𝑡)  

= 0  

(8) 

where 𝐱=[𝑥, 𝑦], 𝑆𝑦 is aquifer specific yield (unitless), ℎ is aquifer hydraulic head (L), the ∇ 224 

operator represents divergence in x and y dimensions, 𝐊 is a 2-D tensor of aquifer hydraulic 225 

conductivity values (L.T
–1

), 𝐴𝑆 is a dimensionless indicator function with a value of unity along 226 

the stream network and a value of zero elsewhere, 𝑄𝐵 represents groundwater extractions (L
3
.T

–
227 

1
) at locations 𝐱𝐵, and 𝑁 represents spatially distributed non-head-dependent source terms (L.T

–
228 

1
), including recharge. A key assumption of the Boussinesq equation is that vertical flow 229 

velocities are small in comparison to their horizontal counterparts; i.e., Dupuit-Forchheimer 230 

conditions. To increase the tractability of solving this governing equation, it can be further 231 

simplified by assuming that drawdown resulting from extraction is small in comparison to the 232 

saturated thickness of the unconfined aquifer. The resulting linearized two-dimensional 233 

governing equation is therefore (Hunt, 1999):  234 

−𝑆𝑦
𝜕ℎ(𝐱, 𝑡)

𝜕𝑡
+ ∇ ∙ [𝐓 ∇ℎ(𝐱, 𝑡)] −

𝐾𝑆 

𝑏𝑆
[ℎ(𝐱, 𝑡) − ℎ𝑆(𝐱, 𝑡)] 𝐴𝑆(𝐱) − 𝑄𝐵 𝛿(𝐱 − 𝐱𝐵)

+ 𝑁(𝐱, 𝑡) = 0  
(9) 

where 𝐓 is a 2-D tensor of aquifer transmissivity values [L
2
.T

–1
], in which elements are defined 235 

as 𝑇𝑖𝑗 = 𝐾𝑖𝑗(ℎ − 𝑧𝑏𝑜𝑡), where 𝑧𝑏𝑜𝑡 is the elevation of the base of the aquifer. Again, each term 236 

contained in this governing equation has units of L.T
–1

. This simplified formulation also enabled 237 
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comparisons of the new analytical and numerical adjoint solutions derived in the present study to 238 

previously published analytical streamflow depletion solutions, which were based on the same 239 

simplifying assumptions. This simplified governing equation can be solved using one more of 240 

the following boundary conditions: 241 

ℎ(𝐱, 𝑡) = 𝑔1(𝐱, 𝑡) where 𝐱 ∈ 𝛤1 (10) 

∇ℎ(𝐱, 𝑡) ∙ 𝐧 = 𝑔2(𝐱, 𝑡) where 𝐱 ∈ 𝛤2 (11) 

[𝛼 ℎ (𝐱, 𝑡) − 𝐓 ∇ℎ(𝐱, 𝑡)] ∙ 𝐧 = 𝑔3(𝐱, 𝑡) where 𝐱 ∈ 𝛤3 (12) 

and the initial condition: 242 

ℎ(𝐱, 𝑡) = ℎ0(𝐱) where 𝑡 = 𝑡0 (13) 

where 𝑔1, 𝑔2, 𝑔3 are known functions of 𝐱 and 𝑡, 𝛼 (L.T
–1

) is a flow conductance parameter, and 243 

ℎ0(𝐱) is the initial condition specified at 𝐱. Specifically, first-type (Dirichlet) conditions 244 

represent boundaries (𝛤1) along which hydraulic head values remain constant in time. Second-245 

type (Neumann) conditions represent boundaries (𝛤2) along which an inward or outward flux 246 

remains constant in time. Third-type (Cauchy) conditions represent boundaries (𝛤3) along which 247 

an inward or outward flux is dependent upon the gradient between aquifer hydraulic head on the 248 

boundary and an external hydraulic head value and mediated by a flow conductance parameter. 249 

2.2. Numerical integration of existing ISD solutions 250 

The numerical integration of analytical ISD solutions provided a benchmark against 251 

which other solutions were compared. The Theis, Hantush, and Hunt ISD solutions were 252 

numerically integrated using Clenshaw–Curtis quadrature, which was implemented using the 253 

SciPy library for Python (Virtanen et al., 2020). Absolute discrepancies were calculated as the 254 

arithmetic difference between the results of alternative methods and those of numerical 255 
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integration. Percent difference discrepancies were expressed as a proportion of absolute 256 

discrepancies calculated by numerical integration. 257 

2.3. Derivation of a new analytical CSD solution 258 

A closed-form solution for the total volume of cumulative streamflow depletion (𝑉𝐶𝑆𝐷) 259 

resulting from continuous groundwater extraction over a finite period (i.e., from 𝑡0 to 𝑡𝑓), at the 260 

end of the extraction period (𝑡𝑓), was derived through temporal integration of equation (6): 261 

𝑉𝐶𝑆𝐷(𝑡𝑓; Δ𝑥) =  𝑄𝐵 {(2 𝐺
2 + 𝑡𝑓 +

1

𝐻2
+
2 𝐺

𝐻
) erfc (

𝐺

√𝑡𝑓
) 

−
𝑒2 𝐺 𝐻+𝐻

2𝑡𝑓

𝐻2
 erfc (

𝐺

√𝑡𝑓
+ 𝐻√𝑡𝑓) −

2 (𝐺 𝐻 + 1) 

𝐻 √𝜋
√𝑡𝑓 𝑒

−𝐺2  𝑡𝑓⁄   

−(2 𝐺2 + 𝑡0 +
1

𝐻2
+
2 𝐺

𝐻
) erfc (

𝐺

√𝑡0
) 

+
𝑒2 𝐺 𝐻+𝐻

2𝑡0

𝐻2
 erfc (

𝐺

√𝑡0
+ 𝐻√𝑡0) +

2 (𝐺 𝐻 + 1) 

𝐻 √𝜋
√𝑡0 𝑒

−𝐺2  𝑡0⁄ } 

(14) 

where the coefficient 𝐺, which has units of √T, is defined as: 262 

𝐺 = √
(Δ𝑥)2 𝑆𝑦
4 𝐾 𝑏

 (15) 

A comprehensive description of the derivation is provided in Electronic Supplementary Material 263 

S1. For the TGB case, the value of the 𝐻 coefficient, which has units of √T−1, is equal to 264 

infinity. In practical terms, this means that all terms in equation (14) that are a function of 𝐻 265 

become zero-valued and can be omitted. For the Hunt case, the 𝐻 coefficient is defined as: 266 

𝐻 = √
𝜆2

4 𝑆𝑦 𝐾 𝑏
 (16) 
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For the Hantush case, the parameter 𝜆, which has units of L.T
–1

, is defined specifically as 267 

𝜆 = 2 𝐾𝑆 𝑏 𝑏𝑆⁄  ; therefore, the 𝐻 coefficient is defined as: 268 

𝐻 = √ 
4 𝐾𝑆

2 𝑏2

𝑏𝑆
2 (

1

4 𝑆𝑦 𝐾 𝑏
 ) =

𝐾𝑆
𝑏𝑆

√
𝑏

𝑆𝑦 𝐾
 (17) 

For the special case where 𝑡0=0, equation (14) can instead be applied as a function of time 269 

elapsed since the onset of extraction and all terms dependent on 𝑡0 become zero-valued. Under 270 

these conditions, equation (14) simplifies to:  271 

𝑉𝐶𝑆𝐷(𝑡𝑓; Δ𝑥) = 𝑄𝐵 [(2 𝐺
2 + 𝑡𝑓 +

1

𝐻2
+
2 𝐺

𝐻
)  erfc (

𝐺

√𝑡𝑓
)

−
𝑒2 𝐺 𝐻+𝐻

2𝑡𝑓

𝐻2
 erfc (

𝐺

√𝑡𝑓
+ 𝐻 √𝑡𝑓) −

2 (𝐺 𝐻 + 1)

𝐻 √𝜋
 √𝑡𝑓 𝑒

−𝐺2  𝑡𝑓⁄ ] 

(18) 

For a simplified conceptualization featuring a fully penetrating stream and well in the absence of 272 

a streambed conductance layer (i.e., which is consistent with the Theis-Glover-Balmer solution 273 

for ISD), equation (14) is independent of 𝐻 and therefore simplifies further to: 274 

𝑉𝐶𝑆𝐷(𝑡𝑓; Δ𝑥) = 𝑄𝐵  [(2 𝐺
2 + 𝑡𝑓) erfc (

𝐺

√𝑡𝑓
) −

2 𝐺√𝑡𝑓 𝑒
−𝐺2 𝑡𝑓⁄  

√𝜋
] (19) 

The expressions presented in equations (14), (18), and (19) feature two dependent 275 

variables (i.e. ∆𝑥, 𝑡𝑓) and five parameters (𝐾, 𝑆𝑦, 𝑏, 𝐾𝑠, 𝑄𝐵), each of which are physically-based 276 

and are therefore measurable, or able to be estimated or constrained. This parameter space can be 277 

reduced by use of dimensionless analysis. Dimensionless CSD (𝑉𝐶𝑆𝐷
∗ ) can be defined by 278 

normalizing the total volume of stream-aquifer exchange (𝑉𝑆) by the total volume of groundwater 279 

extracted (𝑉𝐵) over a given duration of extraction (i.e. 𝑉𝐶𝑆𝐷
∗ = 𝑉𝑆/𝑉𝐵).  Dimensionless CSD 280 

values can be expressed as a function of dimensionless distance (defined as (Δ𝑥)∗ = 𝜆Δ𝑥/𝑇) and 281 

dimensionless time (defined as 𝑡∗ = 4𝑇𝑡𝑓/[𝑆𝑦(Δ𝑥)
2]). Dimensionless CSD values were 282 
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calculated using equation (18) for Δ𝑥𝐷 ∈ (10
–2

, ∞) and 𝑡𝐷 ∈ (10
–1

, 10
4
) (Figure 1). A similar 283 

dimensionless analysis for ISD was presented by Hunt (1999, Figure 4). Dimensionless CSD 284 

increases sigmoidally as a function of dimensionless time. The rate of increase in 𝑉𝐶𝑆𝐷
∗  over 285 

dimensionless time increases as a function of dimensionless distance; therefore, CSD is 286 

positively correlated with 𝐾𝑟 and Δ𝑥, and is negatively correlated with 𝑏𝑟 and 𝑇. Sigmoidal 287 

increases in 𝑉𝐶𝑆𝐷
∗  values over dimensionless time rapidly approach an asymptotic upper limit (at 288 

Δ𝑥∗ = ∞) for Δ𝑥∗ values > 0.1. Therefore, CSD estimates are relatively less sensitive to 289 

variations in large streambed conductance values, large stream–bore separation distances, and 290 

small aquifer transmissivity values.  291 

 292 

Figure 1. Dimensionless cumulative streamflow depletion (𝑉𝐶𝑆𝐷
∗ , defined as 𝑉𝐶𝑆𝐷

∗ = 𝑉𝑆/𝑉𝐵) versus dimensionless 293 

time (𝑡∗, defined as 𝑡∗ = 4 𝑇 𝑡𝑓 / [𝑆𝑦(Δ𝑥)
2]) for selected values of dimensionless distance [(Δ𝑥)∗, defined as 294 

(Δ𝑥)∗ = 𝜆 Δ𝑥 / 𝑇]. 295 

To the authors’ knowledge, the solutions presented in equations (14), (18), and (19) have 296 

not been derived previously. These equations can be implemented using scripted languages or 297 

spreadsheet software and avoid the need for cumbersome numerical integration of existing ISD 298 
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solutions. These analytical CSD solutions will typically provide conservative predictions of 299 

maximum cumulative streamflow depletion, due to assumptions of full stream penetration extent, 300 

spatially uniform hydraulic properties, and (in the TGB case), the absence of a streambed 301 

conductance layer.  302 

2.4. Numerical perturbation-based CSD solution  303 

The perturbation method of estimating cumulative streamflow depletion resulting from 304 

groundwater extraction at a given location and for a given duration involves the calculation of 305 

two solutions; i.e., the solutions of equation (9) with 𝑄𝐵 = 0, and with 𝑄𝐵 > 0. The total volume 306 

of stream–aquifer exchange is calculated for each of (1) the reference case featuring zero 307 

extraction [i.e., 𝑉𝑆(𝑡𝑓; ℎ)] and (2) for the perturbed case featuring non-zero extraction [i.e., 308 

𝑉𝑆(𝑡𝑓; ℎ, 𝐱𝐵)]. Cumulative streamflow depletion can then be calculated as the difference between 309 

these two results as: 310 

𝑉𝐶𝑆𝐷(𝑡𝑓; 𝐱𝐵) = 𝑉𝑆(𝑡𝑓; ℎ, 𝐱𝐵) − 𝑉𝑆(𝑡𝑓; ℎ) (20) 

When the number of potential extraction locations is large, the corresponding number of 311 

evaluations of equation (20) will also be large. This process can be computationally expensive, 312 

depending upon forward model runtimes, which depend partly upon how easily model 313 

convergence can be achieved. 314 

2.5. Derivation of a numerical adjoint CSD solution   315 

The expression for cumulative streamflow depletion presented in equation (7) involves 316 

the integration of the sensitivity of stream-aquifer exchange flux (𝑄𝑠) to the rate of groundwater 317 

extraction (𝑄𝐵) at a single given location of extraction (𝑥𝐵). By integrating this over the duration 318 

of extraction and then multiplying by 𝑄𝐵, the resulting volume of CSD can be calculated. In 319 
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contrast, the key benefit of the adjoint state approach is the ability to evaluate the volume of 320 

cumulative streamflow depletion resulting from extraction from a single well at any potential 321 

location. In this context, the adjoint state variable [𝜓∗(𝐱, 𝑡)] represents the sensitivity of stream-322 

aquifer exchange flux to the rate of groundwater extraction at any location 𝐱. For this reason, it 323 

can replace the integrand in equation (7); i.e.: 324 

𝑉𝐶𝑆𝐷(𝑡𝑓; 𝐱) = 𝑄𝐵 ∫ 𝜓∗(𝐱, 𝑡) 𝑑𝑡

𝑡0

𝑡𝑓

= 𝑄𝐵 ∫ 𝜓∗(𝐱, 𝑡𝑓 − 𝑡) 𝑑𝑡

𝑡𝑓

𝑡0

= 𝑄𝐵∫ 𝜓∗(𝐱, 𝜏) 𝑑𝜏

𝜏𝑓

0

 (21) 

where is the adjoint state variable (𝜓∗) is obtained from solution of the adjoint equation of 325 

equation (8) (described by equations 22−26 below). For convenience, an alternative independent 326 

variable, 𝜏, is also introduced here and represents backwards time, defined as 𝜏 = 𝑡𝑓 − 𝑡. Full 327 

details of the derivation of equation (21) are provided in Electronic Supplementary Material S2. 328 

This expression states that, for any given extraction well location, the volume of cumulative 329 

streamflow depletion can be calculated as the temporal integral of the adjoint state variable at 330 

that well location. For this reason, CSD resulting from extraction at any potential location 𝐱 can 331 

be predicted using a single adjoint state model run. The governing equation for the adjoint state 332 

model was defined as:  333 

𝑆𝑦
𝜕𝜓∗(𝐱, 𝜏)

𝜕𝜏
+ ∇ ∙ [𝐓 ∇𝜓∗(𝐱, 𝜏)] −

𝐾𝑆 

𝑏𝑆
𝐴𝑆(𝐱)[𝜓

∗(𝐱, 𝜏) − 1] = 0 (22) 

with boundary conditions: 334 

𝜓∗(𝐱, 𝜏) = 0 where 𝐱 = 𝛤1 (23) 

∇𝜓∗(𝐱, 𝜏) ∙ 𝐧 = 0 where 𝐱 = 𝛤2 (24) 

[𝛼 𝜓∗(𝐱, 𝜏) − 𝐓 ∇𝜓∗(𝐱, 𝜏)] ∙ 𝐧 = 0 where 𝐱 = 𝛤3 (25) 

and the terminal condition: 335 
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𝜓∗(𝐱, 𝜏) = 0 where 𝜏 = 𝑡𝑓 − 𝑡𝑓 = 0 (26) 

The form of the governing equation for the adjoint state model (equation 22) is similar to that of 336 

the forward model (equation 9), with the following exceptions. The dependent variable used in 337 

the adjoint state model is backwards time (i.e., 𝜏), rather than forward time (i.e., 𝑡). This 338 

substitution allows the specification of terminal conditions (where 𝑡=𝑡𝑓 and 𝜏=0), rather than 339 

initial conditions (where 𝑡=𝑡0 and 𝜏=𝑡𝑓 – 𝑡0). Spatially distributed source/sink terms (i.e., 𝑁, 340 

including recharge) do not appear in the governing equation for the adjoint state model, as these 341 

are not dependent upon the rate of groundwater extraction (i.e., 𝜕𝑁 𝜕𝑄𝐵⁄ = 0). The groundwater 342 

extraction term itself was replaced by a value of unity (since 𝜕𝑄𝐵 𝜕𝑄𝐵⁄ = 1) and was 343 

subsequently incorporated into the loading term, which was defined as: 344 

(
𝐾𝑆

𝑏𝑆
) 𝐴𝑆(𝐱)[𝜓

∗(𝐱, 𝜏) − 1]  (27) 

If equation (22) is divided through by specific yield (i.e., if the value of specific yield is spatially 345 

uniform), the loading term then becomes: 346 

(
𝐾𝑆

𝑏𝑆 𝑆𝑦
)  𝐴𝑆(𝐱)[𝜓

∗(𝐱, 𝜏) − 1]  (288) 

Prior to numerical solution, the adjoint state variable was rescaled linearly and an offset was 347 

applied as:  348 

Ψ∗(𝐱, 𝜏) = 𝜓∗(𝐱, 𝜏) 𝛾 + 𝛽  (29) 

The scaling parameter (𝛾) is the inverse of that used by Neupauer and Griebling (2012) and 349 

Griebling and Neupauer (2013). This alternative formulation was preferred as it better clarifies 350 

the linear transformation from 𝜓∗ to Ψ∗ during model pre-processing (and, conversely, from Ψ∗ 351 

to 𝜓∗ during the post-processing of model outputs). There are two reasons for this adjustment 352 

(Neupauer and Griebling, 2012; Griebling and Neupauer, 2013). First, for certain parameter 353 
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values, the magnitude of the loading term will be small with respect to numerical solution 354 

precision. Similarly, the spatial gradient of the adjoint state in the local vicinity of the loading 355 

term may also be small in relative terms. Therefore, a scaling parameter (𝛾) was used to increase 356 

the magnitude of the loading term. Second, depending upon the reference datum used in the 357 

vertical plane, the value of the loading term may be smaller than the specified bottom of the 358 

aquifer elevation. Therefore, an offset parameter (𝛽) was used to ensure that loading term values 359 

were always larger than bottom of aquifer elevations.  360 

In the next section, the accuracy of the new analytical and numerical adjoint solutions for 361 

CSD were demonstrated using a simple synthetic test case through comparisons to an equivalent 362 

numerical forward model, as well as to the numerical integration of ISD analytical solutions for 363 

instantaneous streamflow depletion. The efficacy of the new numerical adjoint solution for the 364 

prediction of CSD in more complex contexts is subsequently demonstrated through application 365 

to a numerical groundwater flow model of the Gloucester River Basin alluvial aquifer in New 366 

South Wales, Australia. 367 

3. Synthetic demonstration 368 

Neupauer and Griebling (2012) presented a conceptual model to demonstrate an adjoint 369 

solution for instantaneous streamflow depletion (Figure 2). In the present study, this model was 370 

modified to facilitate comparisons to numerical integration of analytical solutions. Specifically, 371 

the two-sided Neupauer and Griebling solution was simplified to a single-sided solution by using 372 

a Cauchy boundary condition (BC) to represent a stream on one side of the model domain. 373 

Dirichlet BCs were specified on all other boundaries. Model outputs were checked to ensure that 374 

inflows did not occur through Dirichlet boundaries. This arrangement of BCs was consistent with 375 
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an infinite aquifer extent, as assumed by the analytical streamflow depletion solutions to which 376 

numerical model results were compared. 377 

 378 

Figure 2. Synthetic groundwater flow model boundary conditions, initial condition, and parameterization, modified 379 

from the demonstration model previously presented by Neupauer and Griebling (2012). 380 

Initial hydraulic head values were set equal to the aquifer top elevation to ensure 381 

equilibrium with Dirichlet boundary conditions. This specification also served, in combination 382 

with the use of conservative extraction rates, to ensure that desaturated conditions (i.e., hydraulic 383 

heads below base of aquifer elevations) were not induced. The stage parameter of the Cauchy BC 384 

representing the stream was also set equal to the aquifer top elevation to ensure equilibrium 385 

initial conditions, and therefore consistency with the analytical solutions to which results were 386 

compared. Streambed elevations were set equal to the base of the aquifer (i.e., 0 m), to ensure 387 

consistency with the assumption of full stream penetration extent used by the TGB and Hantush 388 
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conductivity. Model outputs were generated at every time step. For adjoint state model 392 

simulations, scale and offset parameter values were set to 𝛾=100 (–) and 𝛽=200 m respectively.  393 

All numerical solutions (both forward and adjoint) were computed using the finite-394 

difference flow simulator MODFLOW-2005 (Harbaugh, 2005). The model domain was 395 

discretized using spatially uniform cell dimensions of 50 m × 50 m × 50 m, resulting in a total of 396 

100 rows and 100 columns. A simulated duration of 365 days was discretized using a uniform 397 

time step of 1 day, resulting in a total of 365 stress periods. The numerical solution was 398 

computed using the preconditioned conjugate gradient solver (Hill, 1990). Solver convergence 399 

criteria of 10
–3

 m and 10
–3

 m
3
.d

–1
 were specified for hydraulic head and flux calculations, 400 

respectively. 401 

For the conceptualization featuring a fully penetrating stream without a conductance 402 

layer present, numerical integration of the TGB ISD analytical solution (equation 4) was used as 403 

the basis for comparisons (Figure 3a-c). For the conceptualization featuring a fully penetrating 404 

stream with a conductance layer present, numerical integration of the Hantush ISD analytical 405 

solution (equation 5) was used (Figure 3d-f). For the conceptualization featuring a partially 406 

penetrating stream with conductance layer present, numerical integration of the Hunt ISD 407 

analytical solution was used (equation 6) (Figure 3g-i). The analytical CSD solution was in near-408 

exact agreement with the numerical integration of ISD solutions in all three conceptualizations 409 

(Figure 3a, 3d, 3g). In percentage terms, numerical CSD solutions were in near-exact agreement 410 

with numerical integration of ISD solutions when extraction occurred less than 3 km from the 411 

stream boundary condition (Figure 3b, 3e, 3h). However, these were associated with 412 

discrepancies of relatively small magnitude (Figure 3c, 3f, 3i). Therefore, in practical terms, 413 

these percent discrepancies were not substantial. 414 
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 415 

Figure 3. Analytical and numerical solutions for cumulative streamflow depletion (first column) and corresponding 416 

discrepancies with respect to numerical integration of ISD solutions, in percentage terms (second column) and as 417 

raw values (third column). All results are presented as functions of well-stream separation distance. (a-c) streambed 418 

conductance layer absent (Theis-Glover-Balmer conceptualization); (d-f) streambed conductance layer present 419 

(Hantush conceptualization); (g-i) streambed conductance layer present and stream partially penetrating the aquifer 420 

(Hunt conceptualization). Extraction well to stream distances were oriented perpendicular to the stream orientation. 421 

Abbreviations used: INT=numerical integration of analytical ISD solution; CFA=closed-form analytical CSD 422 

solution; PER=numerical perturbation-based solution; ADJ=numerical adjoint state solution. 423 

4. Case study 424 

To demonstrate the suitability of the numerical adjoint approach for the estimation of 425 

cumulative streamflow depletion, the method was applied to an existing numerical groundwater 426 

flow model of the Gloucester Basin, Australia (Peeters et al., 2018). The Gloucester sedimentary 427 
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basin is located approximately 200 km north-northeast of the city of Sydney in New South 428 

Wales, Australia. The region features a sub-tropical climate with a mean annual rainfall of 1100 429 

mm and annual pan evaporation ranging from 1400 to 1700 mm. The Gloucester Basin contains 430 

up to 2500 m of faulted, deformed, and eroded coal-bearing Permian sedimentary and volcanic 431 

rocks located along a sinuous north to northeast-oriented strike. The basin is entirely bounded by 432 

outcropping Carboniferous basement rocks. In the north of the basin the Avon River enters from 433 

the west and flows northward through the towns of Stratford and Gloucester before discharging 434 

into the Gloucester River at a confluence that also includes the Barrington River. Mean annual 435 

streamflow of 177×10
6
 m

3
 occurs in the Avon River. An alluvial aquifer associated with the 436 

Avon River served as the case study for the present study. This aquifer is composed of 437 

Quaternary sediments ranging in size from clays to gravels, the total vertical thickness of which 438 

ranges up to 15 m. This aquifer is incised into the underlying basement geology and 439 

consequently its spatial extent is limited, with a maximum separation distance of approximately 440 

one kilometer between the stream network and the nearest aquifer (no-flow) boundary. Mean 441 

annual diffuse net recharge to the alluvial aquifer was estimated at 1 % of rainfall; i.e., 11 mm. 442 

Mean annual rates of evapotranspiration from shallow groundwater are estimated to range up to 443 

50 % of rainfall; i.e., up to 550 mm. Watertable elevations are less than one metre below ground 444 

surface in locations proximal to the river. Under common flow conditions, the Avon River is 445 

characterised as a gaining system; i.e., local groundwater flows are consistently oriented toward 446 

the river and its tributaries. Limited extraction from the alluvial aquifer currently occurs for stock 447 

and domestic water supply (McVicar et al., 2014; Dawes et al., 2018; Peeters et al., 2018).  448 

As part of the Bioregional Assessments Program for the Australian Federal Government, 449 

Peeters et al. (2018) developed a numerical groundwater flow model of the alluvial aquifer 450 



 

Turnadge et al.  |  Cumulative Streamflow Depletion Solutions  |  Page 25 of 52 

 

associated with the Avon River and its tributaries. The finite-difference flow simulator 451 

MODFLOW-2005 (Harbaugh, 2005) was used to solve the relevant form of the groundwater 452 

flow equation. The spatial extent of the alluvial aquifer was discretized using a uniform grid of 453 

225 rows and 140 columns (Figure 4a). A total of 4448 active cells were used for model 454 

calculations, with uniform dimensions of 90 m x 90 m. While the top and bottom elevations of 455 

model cells were variable, all cells featured a consistent thickness (and therefore maximum 456 

saturated thickness) of 15 m. A period of 120 years of extraction was simulated, which was 457 

discretized using 1440 month-long steps. Hydraulic properties were represented using uniform 458 

values, with horizontal hydraulic conductivity = 1 m.d
–1

 and specific yield = 16 %. Time-varying 459 

net recharge was represented by applying a spatially distributed flux to each model cell, which 460 

ranged from 0.4 to 0.7 mm per month. Evapotranspiration was represented as a head-dependent 461 

process, with a maximum rate of 3.213×10
–4

 m.d
–1

 when hydraulic head was equal to ground 462 

surface and declined linearly to zero when hydraulic head was equal to or less than an extinction 463 

depth of 2 m below ground surface. Groundwater discharge to the Avon River and its tributaries 464 

was represented using third-type (i.e., head-dependent) boundary conditions at a total of 598 465 

cells (Figure 4a), using a spatially uniform streambed conductance value of 0.6 m.d
–1

. Due to a 466 

lack of historical surface water monitoring, spatially variable but constant-in-time river stage 467 

values were specified, based upon the interpolation of the limited gauging station data available 468 

(Peeters et al., 2018). Similarly, due to a lack of direct observations (e.g., from field testing), 469 

hydraulic properties were parameterized using spatially uniform values, as was streambed 470 

conductance. 471 
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 472 

Figure 4. Numerical groundwater flow model of the Gloucester Basin alluvial aquifer. (a) Spatial discretization, 473 

with active cells represented by grey open squares and stream boundary conditions represented as blue open squares. 474 

(b) Spatial distribution of hydraulic head calculated by the forward model (from which extraction was excluded) 475 

after 120 years of simulation. 476 

A number of modifications to the model described by Peeters et al. (2018) were 477 

undertaken to maximize the clarity of the adjoint state solution demonstration. In many cases, 478 

modifications also served to minimize model run times required for the calculation of 479 

perturbation-based results. These modifications to the forward model are described as follows. 480 
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The lower layer of the model (representing the basement rock aquifer) was removed, in order to 481 

avoid the need to specify a second adjoint state variable. The representation of head-dependent 482 

evapotranspiration by the EVT package was omitted, as it was inconsistent with the governing 483 

equation used to derive the adjoint state solution for CSD. Stream-aquifer exchange fluxes were 484 

represented by the RIV package rather than the DRN package. The latter did not permit the 485 

specification of river stage values, which was required to implement a constant source of adjoint 486 

state along the river network. The SIP solver was replaced by the PCG2 solver in order to 487 

maximize solution precision. Perhaps most importantly, the unconfined aquifer was simulated as 488 

being confined, in accordance with the Dupuit-Forchheimer assumption; i.e., that changes in 489 

saturated thickness (e.g., due to extraction) were small with respect to the total saturated 490 

thickness. 491 

All numerical solutions (both forward and adjoint) were computed using the finite-492 

difference flow simulator MODFLOW-2005 (Harbaugh, 2005), for which hydraulic head and 493 

flux convergence criteria of 10
–3

 m and 10
–3

 m
3
.d

–1
 were specified, respectively. The simulated 494 

groundwater flow field was generally oriented northwards, away from headwater areas at the 495 

southern extents of each alluvial valley (Figure 4b). The modelled spatial distribution of 496 

hydraulic heads was consistent with fully connected, gaining conditions at all locations along the 497 

Avon River and its tributaries. Model outputs were generated at every time step. Pre- and post-498 

processing of model outputs was undertaken using the FloPy library for Python (Bakker et al., 499 

2016). Additional model information, including discretization and parameterization details, are 500 

listed in Table 1.  501 
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Table 1. Gloucester Basin groundwater flow model summary, including discretization and parameterization details. 502 

Parameter Value Units 

Spatial extent (x,y) 20.25 × 12.60 km 

Model cell size (x,y) 90 × 90 m 

Spatial extent (z) 15 m 

Model cell size (z) 15 m 

Temporal extent 120 y 

Time step length 30.4375 d 

Number of active cells 4448 cells 

Aquifer hydraulic conductivity, 𝐾 1 m.d–1 

Aquifer specific yield, 𝑆𝑦  16 %  

Streambed conductance, 𝐶𝑠 0.6 m.d–1 

Extraction flux, 𝑄𝐵  100 m3.d–1 

 503 

The prediction of interest for this case study was the volume of cumulative streamflow 504 

depletion resulting from groundwater extraction at a rate of 100 m
3
.d

–1
 (i.e., approximately equal 505 

to 1.2 L.s
–1

) at a single well located in any given cell in the model domain (other than the cells 506 

representing the Avon River and its tributaries) over the simulated duration of 120 years. The 507 

numerical adjoint solution was used to provide these predictions across the model domain. For 508 

comparison purposes, predictions were also calculated using the perturbation approach, which 509 

required a total of 3850 forward model runs. For adjoint state model simulations, scale and offset 510 

parameter values were set to 𝛾=100 (–) and 𝛽=200 m respectively.  511 

Calculated cumulative streamflow depletion volumes were normalized by the total 512 

extracted volume (i.e., 4.383×10
6
 m

3
) prior to analysis (Figure 5). Normalized CSD values 513 

calculated from a total of 3850 model runs using the perturbation method ranged from near-zero 514 

values at model cells distant from the stream network (purple cells) to a maximum of 0.972 at 515 

model cells immediately adjacent to the river network (yellow cells) (Figure 5a). In comparison, 516 
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normalized CSD volumes calculated by a single adjoint state model run varied over an identical 517 

range and featured a consistent spatial distribution (Figure 5b).  518 

 519 

Figure 5. (a) Normalized cumulative streamflow depletion (𝑉𝐶𝑆𝐷 𝑉𝐵⁄ ) resulting from single well extraction in the 520 

Gloucester Basin calculated via the perturbation method using 3850 numerical forward model runs. (b) Equivalent 521 

results calculated via an adjoint state solution using a single numerical adjoint model run. Model cells representing 522 

the Avon River network (which were not assessed as potential extraction locations) are represented as grey open 523 

squares. 524 
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Arithmetic differences between perturbation and adjoint method results ranged from –525 

2×10
6
 m

3
 to +14×10

6
 m

3
 (Figure 6a). All arithmetic difference values were relatively small (i.e., 526 

<1 %) with respect to the total volume of aquifer inflow (via recharge) over the simulated 527 

duration of 120 years; i.e., ~10
9
 m

3
. Similarly, the majority (i.e., 93 %) of arithmetic difference 528 

values were relatively small (i.e., <5 %) with respect to the total volume of water extracted; i.e., 529 

4.383×10
6
 m

3
. Percent difference values (defined as the discrepancy between adjoint and 530 

perturbation results, normalized by the latter results) ranged from –2 % to +55 % (Figure 6b). 531 

The majority (i.e., 92 %) of absolute percent difference values were less than 5 %. Three percent 532 

of percent difference values exceeded 10 %, the locations of which agreed with those where 533 

relatively large arithmetic differences were observed. More generally, the signs of arithmetic and 534 

percentage discrepancies were in agreement across the entirety of the active model domain.  535 
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 536 

Figure 6. (a) Discrepancies between cumulative streamflow depletion volumes calculated via the perturbation and 537 

adjoint state methods, expressed as arithmetic differences. (b) Equivalent discrepancies expressed as percent 538 

differences, with respect to values calculated using the perturbation approach. Model cells representing the Avon 539 

River network (which were not assessed as potential extraction locations) are represented as grey open squares. 540 

Note: non-uniform color bar bin sizes were used to maximize figure information content. 541 

5. Discussion 542 

The results of the two case study applications are now discussed in terms of four themes, 543 

including the computational efficiency of the numerical adjoint method and insights derived 544 
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from the parameterization of the loading term in the adjoint state solution. Assumptions and 545 

limitations of the numerical adjoint solution are recognized, and potential broader applications of 546 

the numerical adjoint solution are also proposed. 547 

5.1. Computational efficiency 548 

In practical terms, the primary advantage of the adjoint state approach to CSD estimation 549 

was the substantial reduction in computational time achieved by avoiding the need to run a 550 

unique forward model in order to assess every potential extraction location. For the Gloucester 551 

Basin flow model, each single forward model run required approximately five seconds to achieve 552 

numerical convergence. In addition, approximately 25 seconds were required for the automated 553 

pre- and post-processing of each model via a Python language script. As the Gloucester Basin 554 

model contained 3850 active cells (excluding cells representing the Avon River and its 555 

tributaries), the evaluation of all potential extraction locations using the perturbation approach 556 

required approximately 27 hours in total to perform. The total time required when using the 557 

perturbation approach can be reduced through the use of parallel computing resources. In 558 

comparison, estimates of CSD resulting from all potential extraction locations were estimated 559 

simultaneously from a single numerical adjoint model run, which also required approximately 560 

five seconds to achieve numerical convergence.  561 

5.2. Insights from the derivation of the numerical adjoint solution 562 

In addition to computational advantages, an often-overlooked benefit of developing 563 

adjoint state solutions is the ability to derive closed-form expressions for the sensitivity of a 564 

specified model output to a specified model input. For closed-form analytical solutions, similar 565 

expressions can be derived through direct differentiation of the governing equation. For more 566 

complex models, which require the use of numerical methods to solve ordinary or partial 567 
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differential equations, adjoint state solutions provide a similar benefit. Adjoint state solutions for 568 

model sensitivities typically include two key components: (1) a loading term, and (2) a set of 569 

steps for processing modelled outputs. The former is defined by the state of interest (e.g., 570 

pressure or flux), including whether it is an instantaneous measure (i.e., at a given location and 571 

time) or a cumulative measure (e.g., integrated along a boundary, over an area, or through time). 572 

In comparison, the latter is defined by the parameter of interest; e.g., hydraulic properties, or an 573 

imposed source/sink flux, such as groundwater extraction.  574 

A numerical adjoint solution for instantaneous streamflow depletion (ISD) was 575 

previously derived by Neupauer and Griebling (2012) in which the loading term contained in the 576 

governing equation (specifically, by equation 28) was composed of three parameters: streambed 577 

hydraulic conductivity (𝐾𝑠), streambed thickness (𝑏𝑠) and aquifer specific yield (𝑆𝑦). The 578 

identification of the significance of these three parameters to the estimation of ISD was 579 

consistent with past studies. For example, Sophocleous et al. (1995) used numerical models to 580 

demonstrate that fluxes through a third-type boundary (representing groundwater discharge to 581 

streams, for example) are most sensitive to the streambed conductance parameter. The presence 582 

of aquifer specific yield in the loading term is also consistent with the known influence of this 583 

parameter on the timing of responses to hydraulic perturbations more generally; for example, as 584 

observed in pumping and slug test responses (e.g., McElwee and Yukler, 1978). 585 

Post-processing of adjoint model outputs in the present study simply required the 586 

integration (performed as a summation) of the adjoint state variable at the potential location of 587 

extraction over the simulated duration (equation 21). Unlike typical adjoint state solutions to 588 

groundwater flow problems (e.g., Sykes et al., 1985; Wilson and Metcalfe, 1985), this did not 589 

require the combination of adjoint state model outputs with those of an associated forward 590 
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model. The temporal integration of the adjoint state variable can be interpreted as follows. Early 591 

derivations of adjoint solutions in nuclear reactor engineering research interpreted the meaning 592 

of the adjoint state variable as an “importance” function (e.g., Weinberg, 1952; Lewins, 1965). 593 

That is, the adjoint state variable describes the importance of a given system state at a given 594 

location and time to a given sensitivity of interest. In the present study, the sensitivity of interest 595 

was cumulative streamflow depletion; i.e., the change in total stream-aquifer exchange volume to 596 

groundwater extraction at a given location and undertaken over a specified duration. Therefore, 597 

for any potential extraction location of interest, the value of the adjoint state at any given point in 598 

time can be interpreted as the “importance” of an observation of hydraulic head (at a given 599 

location and time) to the estimation of CSD. 600 

5.3. Assumptions and limitations of the numerical adjoint CSD solution 601 

It is generally acknowledged that best modelling practice includes making explicit the 602 

assumptions associated with a given solution (Saltelli et al., 2013; Saltelli et al., 2020). 603 

Assumptions used in the derivation and calculation of the numerical adjoint CSD solution 604 

included the following. Stream stage was assumed to be insensitive to extraction. This 605 

assumption is common to many existing ISD solutions and is not unique to the numerical adjoint 606 

solution for CSD presented in this study. The simulation of changes in stream stage resulting 607 

from extraction over time would require the modelling of a separate mass balance for the stream 608 

network. For example, this could be simulated using the streamflow routing (SFR) package 609 

(Prudic, 1989) for the MODFLOW family of groundwater flow simulation codes. A separate 610 

adjoint state variable relating to stream stage would then need to be defined and simulated 611 

independently. For example, Neupauer and Griebling (2013) implemented an adjoint state 612 

approach to instantaneous streamflow depletion estimation using the SFR package in a 613 
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MODFLOW-2000 model (Harbaugh et al., 2000). This implementation featured three adjoint 614 

state variables that each varied in space and time, representing unconfined hydraulic head, 615 

confined hydraulic head, and stream stage. The form of the adjoint state governing equation was 616 

not consistent with that of the corresponding forward model, which necessitated modification of 617 

the numerical simulation code. The computation time required by a single adjoint state model 618 

was approximately one order of magnitude larger than for the corresponding forward model. 619 

However, this was still smaller than the total runtime required for solution of the thousands of 620 

forward model runs required for an equivalent analysis using the perturbation approach. In 621 

summary, the application of the adjoint state approach described in the present study is not 622 

limited to forward models in which surface water stages are represented using stationary values. 623 

Instead, the complexity of the forward model will determine that of the adjoint state solution. For 624 

both forward and adjoint solutions, a compromise is always required between (a) the level of 625 

complexity (and therefore accuracy) of process representations and (b) the levels of both data 626 

availability to underpin model solutions and resources required to develop them. 627 

Groundwater extraction was assumed to be continuous over simulated time. Extension of 628 

the numerical adjoint CSD solution to include discontinuous extraction would require 629 

convolution of the present adjoint state solute with a time-varying extraction function (e.g., 630 

Neupauer et al. [2023b], equation 11). Similarly, the numerical adjoint CSD solution derived 631 

here is not suitable to assess continued CSD following the cessation of extraction (Neupauer et 632 

al., 2023b). However, it should be noted that this is a limitation of the forward, rather than 633 

adjoint state, model used in the present study. If a suitable forward model of post-extraction 634 

depletion could be identified, then it would provide the basis for deriving a suitable adjoint state 635 

solution for CSD following the cessation of extraction.  636 
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The numerical adjoint method derived and presented in the present study does rely, 637 

however, on one key assumption: the linearity of surface water-groundwater exchange responses 638 

to variations in groundwater extraction. The linearity of this driver–response relationship 639 

underpins the adjoint state approach and is also consistent with analytical ISD solutions. 640 

Specifically, the system response to a perturbation applied at the observation of interest (in the 641 

present study, the total reduction in groundwater discharge to a stream network, summed over 642 

time) is proportional to the system response resulting from an applied perturbation (in the present 643 

study, groundwater extraction). The simulation of confined (rather than unconfined) aquifer 644 

conditions was required to ensure linearity, as was the linear parameterization of the third-type 645 

boundary conditions to represent groundwater discharge to the stream network.  646 

5.4. Potential broader applications of the numerical adjoint CSD solution 647 

The forward models used in the present study for benchmarking and demonstration 648 

purposes featured spatially uniform and isotropic parameterizations of aquifer thickness, 649 

hydraulic conductivity, specific yield, and streambed conductance values. However, it should be 650 

noted that applications of numerical adjoint solutions are not limited to flow models featuring 651 

homogeneous parameterizations. Unlike many other groundwater flow-related performance 652 

functions assessed using the adjoint state approach (e.g., Sykes et al., 1985; Metcalfe and 653 

Wilson, 1985), the expression used to calculate CSD (equation 21) is a function of only the 654 

adjoint state variable. It does not depend explicitly on the solution of the forward model 655 

governing equation, upon which the adjoint solution is based. The approach to deriving a 656 

numerical adjoint solution for CSD presented here is generally applicable to models featuring 657 

heterogeneous parameterizations. However, relaxing the assumption of homogeneity (e.g., for 658 

parameters such as aquifer or streambed hydraulic conductivity, or aquifer specific yield) would 659 
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require re-derivation of the adjoint state, in order to redefine the value of the loading term 660 

applied along the stream network.  661 

Although the example presented in the present study featured a perennial gaining stream 662 

and a steady, continuous extraction rate, the numerical adjoint approach to CSD estimation is not 663 

limited to this specific scenario. The numerical adjoint solution is also appropriate for application 664 

to streams featuring non-monotonic interactions (i.e., fluctuations between gaining and losing 665 

type. Since the performance measure of interest (i.e., the volume of CSD) is a relative measure of 666 

change, it may represent any of the following: reductions in groundwater discharge to streams; a 667 

change from gaining to losing stream conditions; or an increase in aquifer recharge from streams. 668 

The key assumption here is that stream–aquifer exchanges remain fully hydraulically connected, 669 

irrespective of the extraction rate and duration applied. Rates of groundwater extraction were 670 

assumed to be constant and uniform in time. The numerical adjoint solution presented here used 671 

the same temporal discretization scheme as the equivalent forward model. For this reason, the 672 

numerical adjoint solution presented is also appropriate for assessments of CSD resulting from 673 

discontinuous rates of groundwater extraction. This would require the groundwater extraction 674 

term in the performance measure (equation 21) to be incorporated within the temporal integral 675 

as: 676 

𝑉𝐶𝑆𝐷(𝑡𝑓; 𝐱) = ∫ 𝑄𝐵(𝐱, 𝑡) 𝜓
∗(𝐱, 𝑡𝑓 − 𝑡) 𝑑𝑡

𝑡𝑓

𝑡0

= ∫ 𝑄𝐵(𝐱, 𝜏𝑓 − 𝜏 + 𝑡0) 𝜓
∗(𝐱, 𝜏) 𝑑𝜏

𝜏𝑓

0

 (30) 

This operation can be seen as the convolution of the dimensionless adjoint state variable 677 

with a time-varying (e.g., discontinuous) volumetric extraction rate. To the authors’ knowledge, 678 

the sensitivity of groundwater flow model states (i.e., hydraulic head or flow rate) to time-679 
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varying (including discontinuous) extraction has not been estimated using the adjoint state 680 

method in studies published to date. 681 

6. Conclusions 682 

The traditional metric of streamflow depletion describes the instantaneous change in the 683 

volumetric rate of aquifer–stream exchange and is appropriate when applied at local scales. 684 

However, conjunctive management of surface and groundwater resources at regional scales 685 

typically involves estimation of volumetric water balances, which are often averaged over finite 686 

time periods. This requires a streamflow depletion metric that can be expressed as a total net 687 

annual volume, which can then be related to other water balance components. For this reason, an 688 

alternative metric of streamflow depletion was considered in the present study: cumulative 689 

stream depletion (CSD). This described the total volumetric reduction in flow from an aquifer to 690 

a stream resulting from continuous groundwater extraction over a finite period, at the end of the 691 

extraction period.  692 

A novel analytical solution for the prediction of CSD was derived, based upon a forward 693 

solution that accounted for streambed conductance and partial stream penetration. The solution 694 

can alternatively be parameterized to represent full stream penetration. A simplified version of 695 

the analytical solution was also presented, which excluded the effects of both partial stream 696 

penetration and streambed conductance. These analytical solutions for CSD are appropriate for 697 

use in data poor investigations and represent upper limits for CSD predictions.  698 

Separately, a novel numerical solution for prediction of CSD was presented, based on the 699 

derivation and calculation of an adjoint state solution. The accuracy and efficiency of the 700 

numerical adjoint solution was demonstrated through applications to simple and complex 701 
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groundwater flow models. Numerical adjoint solution results were compared to those obtained 702 

from both (a) forward numerical models and (b) the newly derived closed-form analytical 703 

solutions. In all cases, the accuracy of numerical adjoint solutions was demonstrated. The 704 

parameterization of the loading term used in the adjoint state solution identified three parameters 705 

of relevance to CSD prediction. These were streambed hydraulic conductivity and thickness, 706 

both of which contribute to the lumped parameterization of streambed conductance, as well as 707 

aquifer specific yield, which controls the rate at which hydraulic perturbations propagate through 708 

an aquifer. These findings were consistent with past sensitivity analyses of streamflow depletion 709 

solutions (e.g., Sophocleous et al., 1995) and interpretations of hydraulic testing.  710 

The numerical adjoint method relied on the assumption that groundwater discharge 711 

responses to variations in groundwater extraction were linear. The simplified representation of 712 

unconfined conditions using confined flow was required to ensure linearity, as was the use of 713 

linear third-type boundary conditions to represent groundwater discharge to the stream network. 714 

For these reasons, the numerical adjoint approach to CSD is unsuitable for applications to 715 

circumstances in which linearized conditions are not met. These may include when extraction 716 

results in considerable variation in aquifer saturated thickness, or when stream-aquifer exchange 717 

fluxes are a nonlinear function of hydraulic gradient.  718 

The computational advantage of the numerical adjoint solution was highlighted, where a 719 

single numerical model can be used to predict CSD impacts from all potential groundwater 720 

extraction locations in the vicinity of a gaining stream network. In comparison to the use of 721 

many forward models to calculate impacts by difference, the reduction in computational time 722 

required was proportional to the number of potential extraction well locations. For the case study 723 

presented, a substantial reduction in model run time of approximately 27 hours (i.e., a reduction 724 
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of almost 100 %) was achieved. More generally, when the number of potential locations is large 725 

then similar reductions in model run times can be achieved when the adjoint state approach to 726 

CSD estimation is employed. 727 
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9. Table of symbols 740 

Symbol Units Description 

𝐴𝑆 – Dimensionless function with a value of unity along streams and zero elsewhere 

𝑏 L Aquifer saturated thickness 

𝑏𝑆 L Streambed thickness 

𝐶𝑆 L.T–1 Streambed conductance 

𝐺 √T √(Δ𝑥)2 𝑆𝑦 (4 𝐾 𝑏)⁄  

𝐻 √T−1 √𝜆2 (4 𝑆𝑦 𝐾 𝑏)⁄  

ℎ L Aquifer hydraulic head 

ℎ𝑆 L Stream stage elevation 

𝐾 L.T–1 Aquifer hydraulic conductivity 

𝐾𝑆 L.T–1 Streambed hydraulic conductivity  

 𝑥 L Numerical model domain extent in x-plane 

 𝑦 L Numerical model domain extent in y-plane 

𝑁 L.T–1 Spatially distributed source/sink terms 

𝑄𝐵 L3.T–1 Volumetric rate of well extraction 

𝑄𝑆 L3.T–1 Volumetric rate of aquifer–stream exchange 

𝑄𝐼𝑆𝐷 L3.T–1 Volumetric rate of instantaneous streamflow depletion 

𝑅 L 𝐾 𝑏𝑆 𝐾𝑆⁄  

𝑆𝑦 – Aquifer specific yield 

𝑇 L2.T–1 Aquifer transmissivity 

𝑡0 T Initial time; i.e., at which groundwater extraction commences 

𝑡𝑓 T Final time; i.e., at which groundwater extraction ceases 

𝑊𝑆 L Streambed width 

𝑉𝐵 L3 Total well extraction volume 

𝑉𝐶𝑆𝐷 L3 Cumulative streamflow depletion volume 

𝑉𝐶𝑆𝐷
∗   – Dimensionless cumulative streamflow depletion, defined as 𝑉𝐶𝑆𝐷

∗ = 𝑉𝑆/𝑉𝐵  

𝑉𝑆 L3 Total volume of stream–aquifer exchange 

𝐱𝐵 [L, L] Extraction well location vector 

𝑧𝑏𝑜𝑡 L Elevation of base of unconfined aquifer 

𝛼 L.T–1 Cauchy boundary condition parameter 

𝛽 – Adjoint state variable offset parameter for numerical simulation 

𝛾 – Adjoint state variable rescaling parameter for numerical simulation 

𝜆 L.T–1 Streambed leakance  

𝜓∗ – Adjoint state variable 

Ψ∗ – Scale and offset parameters used during numerical adjoint simulation 

𝜏 T Backward time, with respect to the final time of simulation, where 𝜏 = 𝑡𝑓 − 𝑡  



 

Turnadge et al.  |  Cumulative Streamflow Depletion Solutions  |  Page 42 of 52 

 

10. References 741 

Ahlfeld, D. P., Mulvey, J. M., Pinder, G. F., and Wood, E. F. (1988a). Contaminated 742 

groundwater remediation design using simulation, optimization, and sensitivity theory: 1. 743 

Model development. Water Resources Research, 24(3), 431-441. 744 

Ahlfeld, D. P., Mulvey, J. M., and Pinder, G. F. (1988b). Contaminated groundwater remediation 745 

design using simulation, optimization, and sensitivity theory: 2. Analysis of a field site. 746 

Water Resources Research, 24(3), 443-452. 747 

Bakker, M., Post, V. E. A., Langevin, C. D., Hughes, J. D., White, J. T., Starn, J. J., and Fienen, 748 

M. N. (2016). Scripting MODFLOW model development using Python and FloPy. 749 

Groundwater, 54(5), 733-739.  750 

Barlow, P. M., and Leake, S. A. (2012). Streamflow depletion by wells: Understanding and 751 

managing the effects of groundwater pumping on streamflow. U.S. Geological Survey 752 

Circular no. 1376, Reston, Virginia, U.S.A., 84p. 753 

Bear, J. (1979). Hydraulics of Groundwater. Dover Publications, Mineola, New York, U.S.A., 754 

569p. 755 

Brunner, P., Simmons, C. T., Cook, P. G., and Therrien, R. (2010). Modeling surface water‐756 

groundwater interaction with MODFLOW: Some considerations. Groundwater, 48(2), 174-757 

180. 758 

Brunner, P., Cook, P. G., and Simmons, C. T. (2011). Disconnected surface water and 759 

groundwater: from theory to practice. Groundwater, 49(4), 460-467. 760 

Butler, J. J., Zlotnik, V. A. and Tsou, M. S. (2001). Drawdown and stream depletion produced by 761 

pumping in the vicinity of a partially penetrating stream. Groundwater, 39(5), 651-659. 762 



 

Turnadge et al.  |  Cumulative Streamflow Depletion Solutions  |  Page 43 of 52 

 

Butler, J. J., Zhan, X., and Zlotnik, V. A. (2007). Pumping‐induced drawdown and stream 763 

depletion in a leaky aquifer system. Groundwater, 45(2), 178-186. 764 

Cacuci, D. G. (1981a). Sensitivity theory for nonlinear systems. I. Nonlinear functional analysis 765 

approach. Journal of Mathematical Physics, 22(12), 2794-2802. 766 

Cacuci, D. G. (1981b). Sensitivity theory for nonlinear systems. II. Extensions to additional 767 

classes of responses. Journal of Mathematical Physics, 22(12), 2803-2812. 768 

Cacuci, D. G. (2003). Sensitivity and Uncertainty Analysis. Volume 1: Theory. CRC Press, 769 

London, UK, 285p. 770 

Cacuci, D. G., Ionescu-Bujor, M., and Navon, I. M. (2005). Sensitivity and Uncertainty 771 

Analysis. Volume 2: Applications to Large-Scale Systems. CRC Press, London, UK, 367p. 772 

Carter, R. D., Kemp Jr, L. F., Pierce, A. C., and Williams, D. L. (1974). Performance matching 773 

with constraints. Society of Petroleum Engineers Journal, 14(02), 187-196. 774 

Chan, Y. K. (1976). Improved image-well technique for aquifer analysis. Journal of Hydrology, 775 

29(1–2), 149-164. 776 

Chan, Y. K., Mullineux, N., Reed, J. R., and Wells, G. G. (1978). Analytic solutions for 777 

drawdowns in wedge-shaped artesian aquifers. Journal of Hydrology, 36, 233-246. 778 

Chavent, G., Dupuy, M., and Lemmonier, P. (1975). History matching by use of optimal theory. 779 

Society of Petroleum Engineers Journal, 15(01), 74-86. 780 

Chen, X., and Yin, Y. (2004). Semianalytical solutions for stream depletion in partially 781 

penetrating streams. Groundwater, 42(1), 92-96. 782 

Christensen, S. (2000). On the estimation of stream flow depletion parameters by drawdown 783 

analysis. Groundwater, 38(5), 726-734. 784 



 

Turnadge et al.  |  Cumulative Streamflow Depletion Solutions  |  Page 44 of 52 

 

Darama, Y. (2001). An analytical solution for stream depletion by cyclic pumping of wells near 785 

streams with semipervious beds. Groundwater, 39(1), 79-86. 786 

Dawes, W. R., Macfarlane, C., McVicar, T. R., Wilkes, P. G., Rachakonda, P. K., Henderson, B. 787 

L., Ford, J. H., Hayes, K. R., Holland, K. L., O’Grady, A. P., Marvanek, S. P., and 788 

Schmidt, R. K. (2018) Conceptual modelling for the Gloucester subregion: Product 2.3 for 789 

the Gloucester subregion from the Northern Sydney Basin Bioregional Assessment. 790 

Department of the Environment and Energy, Bureau of Meteorology, CSIRO and 791 

Geoscience Australia, Australia, 124p. 792 

Fox, G. A. (2004). Evaluation of a stream aquifer analysis test using analytical solutions and 793 

field data. Journal of the American Water Resources Association, 40(3), 755-763. 794 

Fox, G. A., DuChateau, P., and Dumford, D. S. (2002). Analytical model for aquifer response 795 

incorporating distributed stream leakage. Groundwater, 40(4), 378-384. 796 

Fox, G. A., Heeren, D. M., and Kizer, M. A. (2011). Evaluation of a stream-aquifer analysis test 797 

for deriving reach-scale streambed conductance. Transactions of the ASABE, 54(2), 473-798 

479. 799 

Gandini, A. (1967). A generalized perturbation method for bi-linear functionals of the real and 800 

adjoint neutron fluxes. Journal of Nuclear Energy, 21(10), 755-765. 801 

Glover, R. E., and Balmer, G. G. (1954). River depletion resulting from pumping a well near a 802 

river. Eos, Transactions American Geophysical Union, 35(3), 468-470. 803 

Gradshteyn, I. S., and Ryzhik, I. M. (2007). Table of Integrals, Series, and Products. 7th edition. 804 

Edited by Alan Jeffrey and Daniel Zwillinger. Academic Press, London, U.K., 1171p. 805 

Griebling, S. A., and Neupauer, R. M. (2013). Adjoint modeling of stream depletion in 806 

groundwater‐surface water systems. Water Resources Research, 49(8), 4971-4984. 807 



 

Turnadge et al.  |  Cumulative Streamflow Depletion Solutions  |  Page 45 of 52 

 

Hantush, M. S. (1965). Wells near streams with semipervious beds. Journal of Geophysical 808 

Research, 70(12), 2829-2838. 809 

Harbaugh, A. W., E. R. Banta, M. C. Hill, and M. G. McDonald (2000). MODFLOW-2000, the 810 

U.S. Geological Survey Modular Ground-Water Model—User Guide to Modularization 811 

Concepts and the Ground-Water Flow Process. Open-File Report 00-92, U.S. Geological 812 

Survey, Reston, Virginia, U.S.A., 121p. 813 

Harbaugh, A. W. (2005). MODFLOW-2005, the US Geological Survey modular ground-water 814 

model: The ground-water flow process. Techniques and Methods report no. 6-A16, US 815 

Department of the Interior, U.S. Geological Survey, Reston, Virginia, U.S.A., 253p. 816 

Herron N. F., Crosbie, R. S., Viney, N. R., Peeters, L. J. M., and Zhang, Y. Q. (2018). Water 817 

balance assessment for the Gloucester subregion: Product 2.5 for the Gloucester subregion 818 

from the Northern Sydney Basin Bioregional Assessment. Department of the Environment 819 

and Energy, Bureau of Meteorology, CSIRO and Geoscience Australia, Australia, 40p. 820 

Hill, M. C. (1990). Preconditioned conjugate-gradient 2 (PGC2), a computer program for solving 821 

groundwater flow equations. Water Resources Investigations report 90-4048, U.S. 822 

Geological Survey, Denver, Colorado, U.S.A., 43p. 823 

Huang, C. S., and Yeh, H. D. (2015). Estimating stream filtration from a meandering stream 824 

under the Robin condition. Water Resources Research, 51, 4848-4857.  825 

Huang, C. S., Lin, W. S., and Yeh, H. D. (2014). Stream filtration induced by pumping in a 826 

confined, unconfined or leaky aquifer bounded by two parallel streams or by a stream and 827 

an impervious stratum. Journal of Hydrology, 513, 28-44.  828 

Huang, C. S., Yang, T., and Yeh, H. D. (2018). Review of analytical models to stream depletion 829 

induced by pumping: Guide to model selection. Journal of Hydrology, 561, 277-285. 830 



 

Turnadge et al.  |  Cumulative Streamflow Depletion Solutions  |  Page 46 of 52 

 

Huang, C.S., Yang, S.Y., and Yeh, H.D. (2015). Technical Note: Approximate solution of 831 

transient drawdown for constant-flux pumping at a partially penetrating well in a radial 832 

two-zone confined aquifer. Hydrology and Earth System Sciences, 19, 2639-2647. 833 

Hunt, B. (1999). Unsteady stream depletion from ground water pumping. Groundwater, 37(1), 834 

98-102. 835 

Hunt, B. (2003). Unsteady stream depletion when pumping from semiconfined aquifer. Journal 836 

of Hydrologic Engineering, 8(1), 12-19. 837 

Hunt, B. (2008). Stream depletion for streams and aquifers with finite widths. Journal of 838 

Hydrologic Engineering, 13(2), 80-89. 839 

Hunt, B. (2009). Stream depletion in a two-layer leaky aquifer system. Journal of Hydrologic 840 

Engineering, 14(9), 895-903. 841 

Hunt, B. (2014). Review of stream depletion solutions, behavior, and calculations. Journal of 842 

Hydrologic Engineering, 19(1), 167-178. 843 

Intaraprasong, T., and Zhan, H. B. (2009). A general framework of stream-aquifer interaction 844 

caused by variable stream stages. Journal of Hydrology, 373(12), 112-121. 845 

Jacquard, P. and Jain, C. (1965). Permeability distribution from field pressure data. Society of 846 

Petroleum Engineers Journal, 5(04), 281-294. 847 

Jenkins, C. T. (1968). Techniques for computing rate and volume of stream depletion by wells. 848 

Groundwater, 6(2), 37-46. 849 

Kabala, Z. J., and Milly, P. C. D. (1990). Sensitivity analysis of flow in unsaturated 850 

heterogeneous porous media: Theory, numerical model, and its verification. Water 851 

Resources Research, 26(4), 593-610. 852 



 

Turnadge et al.  |  Cumulative Streamflow Depletion Solutions  |  Page 47 of 52 

 

Lehmann, F., and Ackerer, P. (1997). Determining soil hydraulic properties by inverse method in 853 

one-dimensional unsaturated flow. Journal of Environmental Quality, 26(1), 76-81. 854 

Lewins, J. (1965). Importance, the adjoint function: The Physical Basis of the Variational and 855 

Perturbation Theory in Transport and Diffusion Problems. Pergamon Press, New York, 856 

U.S.A., 172p. 857 

Lough, H. K., and Hunt, B. (2006). Pumping test evaluation of stream depletion parameters. 858 

Groundwater, 44(4), 540-546. 859 

Marchuk, G. I. (1975). Formulation of the theory of perturbations for complicated models. 860 

Applied Mathematics and Optimization, 2(1), 1-33. 861 

Marchuk, G. I. (1994). Adjoint equations and analysis of complex systems. Kluwer Academic 862 

Publishers, Boston, Massachusetts, U.S.A., 466p. 863 

McElwee, C. D., and Yukler, M. A. (1978). Sensitivity of groundwater models with respect to 864 

variations in transmissivity and storage. Water Resources Research, 14(3), 451-459. 865 

McVicar, T. R., Langhi, L., Barron, O. V., Rachakonda, P. K., Zhang, Y. Q., Dawes, W. R., 866 

MacFarlane, C., Holland, K. L., Wilkes, P. G., Raisbeck-Brown, N., Marvanek, S. P., Li, 867 

L. T., and Van Niel, T. G. (2014). Context statement for the Gloucester subregion: Product 868 

1.1 from the Northern Sydney Basin Bioregional Assessment. Department of the 869 

Environment, Bureau of Meteorology, CSIRO and Geoscience Australia, Australia, 104p. 870 

Mehl, S., and Hill, M. C. (2010). Grid-size dependence of Cauchy boundary conditions used to 871 

simulate stream–aquifer interactions. Advances in Water Resources, 33(4), 430-442. 872 

Miller, C. D., Durnford, D., Halstead, M. R., Altenhofen, J., and Flory, V. (2007). Stream 873 

depletion in alluvial valleys using the SDF semianalytical model. Groundwater, 45(4), 506-874 

514. 875 



 

Turnadge et al.  |  Cumulative Streamflow Depletion Solutions  |  Page 48 of 52 

 

Neuman, S. P., and Yakowitz, S. (1980). A statistical approach to the inverse problem of aquifer 876 

hydrology: 1. Theory. Water Resources Research, 15(4), 845-860. 877 

Neuman, S. P., Fogg, G. E., and Jacobson, E. A. (1980). A statistical approach to the inverse 878 

problem of aquifer hydrology: 2. Case study. Water Resources Research, 16(1), 33-58. 879 

Neupauer, R. M., and Griebling, S. A. (2012). Adjoint simulation of stream depletion due to 880 

aquifer pumping. Groundwater, 50(5), 746-753. 881 

Neupauer, R. M., and Wilson, J. L. (1999). Adjoint method for obtaining backward‐in‐time 882 

location and travel time probabilities of a conservative groundwater contaminant. Water 883 

Resources Research, 35(11), 3389-3398. 884 

Neupauer, R. M., and Wilson, J. L. (2001). Adjoint‐derived location and travel time probabilities 885 

for a multidimensional groundwater system. Water Resources Research, 37(6), 1657-1668. 886 

Neupauer, R.M., Lackey, G. D., and Pitlick, J. (2021). Exaggerated stream depletion in streams 887 

with spatio-temporally varying streambed conductance. Journal of Hydrologic 888 

Engineering, 26(2), 04020066, doi:10.1061/(ASCE)HE.1943-5584.0002043. 889 

Neupauer, R.M., Okkonen, J., and Tyson, E. (2023a). Prevention of thermal pollution of 890 

groundwater near open loop geothermal systems. World Environmental and Water 891 

Resources Congress, American Society of Civil Engineers, Henderson, Nevada, U.S.A. 892 

Neupauer, R. M., Turnadge, C., and Okkonen, J. (2023b). Forward and adjoint modeling of 893 

sensitivities to periodic forcings in groundwater flow and transport. Mathematical 894 

Geosciences, 55(8), 1217-1241. 895 

Ng, E. W., and Geller, M. (1969). A table of integrals of the error functions. Journal of Research 896 

of the National Bureau of Standards - B. Mathematical Sciences, 73B(1), 1-20. 897 



 

Turnadge et al.  |  Cumulative Streamflow Depletion Solutions  |  Page 49 of 52 

 

Peeters, L. J. M., Dawes, W. R., Rachakonda, P. R., Pagendam, D. E., Singh, R. M., Pickett, T. 898 

W., Frery, E., Marvanek, S. P., and McVicar, T. R. (2018). Groundwater numerical 899 

modelling for the Gloucester subregion: Product 2.6.2 for the Gloucester subregion from 900 

the Northern Sydney Basin Bioregional Assessment. Department of the Environment and 901 

Energy, Bureau of Meteorology, CSIRO and Geoscience Australia, Australia, 160p. 902 

Prudic, D. E. (1989). Documentation of a Computer Program to Simulate Stream-Aquifer 903 

Relations Using a Modular, Finite-Difference, Ground-Water Flow Model. Open-File 904 

Report 88-729, U.S. Geological Survey, Carson City, Nevada, U.S.A., 120p.  905 

Reeves, H. W. (2008). STRMDEPL08-An extended version of STRMDEPL with additional 906 

analytical solutions to calculate streamflow depletion by nearby pumping wells. Open-File 907 

Report 2008-1166, U.S. Geological Survey, Reston, Virginia, U.S.A., 22p. 908 

Rushton, K. (1999). Discussion of “Unsteady stream depletion from ground water pumping” by 909 

B. Hunt. Groundwater, 37(6), 805. 910 

Saltelli, A., Bammer, G., Bruno, I., Charters, E., Di Fiore, M., Didier, E., Espeland, W. N., Kay, 911 

J. Lo Piano, S., and Mayo, D. (2020). Five ways to ensure that models serve society: A 912 

manifesto. Nature, 582, 482–484. 913 

Saltelli, A., Guimaraes Pereira, Â., Van der Sluijs, J. P., and Funtowicz, S. (2013). What do I 914 

make of your latinorum? Sensitivity auditing of mathematical modelling. International 915 

Journal of Foresight and Innovation Policy, 9(2-3-4), 213-234. 916 

Sedghi, M. M., Samani, N., and Sleep, B. (2009). Three-dimensional semi-analytical solution to 917 

groundwater flow in confined and unconfined wedge-shaped aquifers. Advances in Water 918 

Resources, 32(6), 925-935.  919 



 

Turnadge et al.  |  Cumulative Streamflow Depletion Solutions  |  Page 50 of 52 

 

Sophocleous, M., Koussis, A., Martin, J. L., and Perkins, S. P. (1995). Evaluation of simplified 920 

stream‐aquifer depletion models for water rights administration. Groundwater, 33(4), 579-921 

588. 922 

Sun, D. M., and Zhan, H. B. (2007). Pumping induced depletion from two streams. Advances in 923 

Water Resources, 30(4), 1016-1026. 924 

Sykes, J. F., Wilson, J. L., and Andrews, R. W. (1985). Sensitivity analysis for steady state 925 

groundwater flow using adjoint operators. Water Resources Research, 21(3), 359-371. 926 

Theis, C. V. (1941). The effect of a well on the flow of a nearby stream. Eos, Transactions 927 

American Geophysical Union, 22(3), 734-738. 928 

Townley, L. R., and Wilson, J. L. (1985). Computationally efficient algorithms for parameter 929 

estimation and uncertainty propagation in numerical models of groundwater flow. Water 930 

Resources Research, 21(12), 1851-1860. 931 

Tsou, P. R., Feng, Z. Y., Yeh, H. D., and Huang, C. S. (2010). Stream depletion rate with 932 

horizontal or slanted wells in confined aquifers near a stream. Hydrology and Earth System 933 

Sciences, 14(8), 1477-1485. 934 

Turnadge, C. (2024). christurnadge/streamflow_depletion_adjoint_sensitivities (v1.1). 935 

[Software]. Zenodo. https://doi.org/10.5281/zenodo.10906143.  936 

Vemuri, V., and Karplus, W. J. (1969). Identification of nonlinear parameters of ground water 937 

basins by hybrid computation. Water Resources Research, 5(1), 172-185. 938 

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., 939 

Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, 940 

J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, . 941 

J., Polat, I., Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., 942 



 

Turnadge et al.  |  Cumulative Streamflow Depletion Solutions  |  Page 51 of 52 

 

Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, 943 

F., and Van Mulbregt, P. (2020). SciPy 1.0: Fundamental algorithms for scientific 944 

computing in Python. Nature Methods, 17(3), 261-272. 945 

Wallace, R. B., Darama, Y., and Annable, M. D. (1990). Stream depletion by cyclic pumping of 946 

wells. Water Resources Research, 26(6), 1263-1270. 947 

Ward, N. D., and Falle, S. (2012). Simulation of a multilayer leaky aquifer with stream 948 

depletion. Journal of Hydrologic Engineering, 18(6), 619-629. 949 

Ward, N. D., and Lough, H. (2011). Stream depletion from pumping a semiconfined aquifer in a 950 

two-layer leaky aquifer system. Journal of Hydrologic Engineering, 16(11), 955-959. 951 

Weinberg, A. M. (1952). Current status of nuclear reactor theory. American Journal of Physics, 952 

20(7), 401-412. 953 

Weinberg, A. M. and Wigner, E. P. (1958). The Physical Theory of Neutron Chain Reactors. 954 

University of Chicago Press, Chicago, Illinois, U.S.A., 801p. 955 

Wigner, E. P. (1945). Effect of small perturbations on pile period. Manhattan Project Report CP-956 

G-3048. 957 

Wilson, J. L., and Metcalfe, D. E. (1985). Illustration and verification of adjoint sensitivity 958 

theory for steady state groundwater flow. Water Resources Research, 21(11), 1602-1610. 959 

Yeh, H. D., and Chang, Y. C. (2006). New analytical solutions for groundwater flow in wedge-960 

shaped aquifers with various topographic boundary conditions. Advances in Water 961 

Resources, 29(3), 471-480.  962 

Zipper, S. C., Gleeson, T., Kerr, B., Howard, J. K., Rohde, M. M., Carah, J., and Zimmerman, J. 963 

(2019). Rapid and accurate estimates of streamflow depletion caused by groundwater 964 



 

Turnadge et al.  |  Cumulative Streamflow Depletion Solutions  |  Page 52 of 52 

 

pumping using analytical depletion functions. Water Resources Research, 55(7), 5807-965 

5829. 966 

Zlotnik, V. A. (2004). A concept of maximum stream depletion rate for leaky aquifers in alluvial 967 

valleys. Water Resources Research, 40(6). 968 

Zlotnik, V. A. (2014). Analytical methods for assessment of land-use change effects on stream 969 

runoff. Journal of Hydrologic Engineering, 20(7), 06014009-1–06014009-5. 970 

Zlotnik, V. A., and Tartakovsky, D. M. (2008). Stream depletion by groundwater pumping in 971 

leaky aquifers. Journal of Hydrologic Engineering, 13(2), 43-50. 972 



Figure 1.





Figure 2.



𝐾 = 1 m.d–1

𝑆𝑦 = 0.02

𝑏 = 50 m

𝐾𝑠 = 10–3 m.d-1

𝑏𝑠 = 1 m

𝑄𝐵 = 9 m3.d–1

ℎ(𝑡=0) = 50 m

Neumann BC (𝐾 𝑏 Τ𝑑ℎ 𝑑𝑦 = 0)

N
eu

m
an

n
 B

C
 (

𝐾
 𝑏

Τ
𝑑

ℎ
𝑑

𝑥
=

0
)

Neumann BC (𝐾 𝑏 Τ𝑑ℎ 𝑑𝑦 = 0)

C
au

ch
y
 B

C
 (

𝛼
 ℎ

−
𝐾

 𝑏
Τ

𝑑
ℎ

𝑑
𝑥

=
𝑄

𝑠
)

𝐿𝑥 = 5000 m

S
tr

ea
m
–

aq
u

if
er

 e
x
ch

an
g
e 

b
o
u

n
d

ar
y

𝐿
𝑦
 =

 5
0

0
0

 m



Figure 3.





Figure 4.





Figure 5.





Figure 6.




	Slide 1
	Article File
	Figure 1 legend
	Figure 1
	Figure 2 legend
	Figure 2
	Figure 3 legend
	Figure 3
	Figure 4 legend
	Figure 4
	Figure 5 legend
	Figure 5
	Figure 6 legend
	Figure 6

