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Abstract21

Relativistic electron precipitation (REP) is a relatively high-latitude phenomenon where22

high-energy electrons trapped in the outer radiation belt are lost into the Earth’s atmo-23

sphere. REP events observed at low Earth orbit show varying temporal profiles and global24

distributions. While the precipitation origin has been attributed to specific wave modes25

or scattering sources, the sorting of REP events by type or driver remains an unsolved26

challenge. In this study, we analyze the temporal profile of relativistic electron precip-27

itation events observed by the CALorimetric Electron Telescope (CALET) experiment28

on board the International Space Station. We use an unsupervised machine learning tech-29

nique called Self-Organizing-Maps (SOM) to automatically detect and then classify rel-30

ativistic electron events observed by the two scintillator layers at the top of the appa-31

ratus, sensitive to electrons with energies > 1.5 MeV and > 3.4 MeV, respectively. We32

calculate the power spectral density (PSD) of the count rates observed by both sensors33

and use them as an input for the SOM. The SOM technique groups the PSDs by their34

similarity, resulting in a classification of relativistic electron events by the periodicity of35

the observed precipitation. We investigate the L-shell and magnetic local time distribu-36

tion of the resulting classification, and energy spectral index associated with the obser-37

vations. Clear precipitation patterns are observed and compared to past precipitation38

categorization attempts as well as known distributions of various scattering mechanisms.39

The classification reveals features through the sorting of the variability of the rapid pre-40

cipitation, allowing the identification of different precipitation populations with varying41

properties.42

Plain Language Summary43

Fast electrons are normally trapped by the Earth’s magnetic field. However, they44

often get released in bursts and impact the upper layers of the atmosphere near the poles.45

The underlying processes are still not well understood and debated. In this study we use46

an unsupervised artificial intelligence technique called Self-Organizing-Maps (SOM) to47

automatically detect and classify the observations made by a charged particle detector48

onboard the International Space Station (ISS). The SOM categorizes the bursts based49

on their variability and group together observations by their similarity. We compare the50

categorization with the spatial location of the electron bursts. Clear patterns are observed51

and compared with past categorizations attempts.52
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1 Introduction53

Relativistic Electron Precipitation (REP) refers to electrons with energies greater54

than hundreds of keV and initially trapped in the outer Van Allen radiation belt that55

fall into the upper atmosphere due to pitch angle scattering in the loss cone (Shprits et56

al., 2006; Loto’Aniu et al., 2006; Millan & Thorne, 2007). This phenomenon represents57

a source of radiation capable of generating atmospheric heating as well as posing a long58

term health risk for airline pilots and in both, short and long term for astronauts, es-59

pecially during extravehicular activities (RA et al., 1995; Dachev, 2018; Ueno et al., 2020;60

Xu et al., 2021). Currently, the most widely accepted mechanism for REP is pitch an-61

gle scattering associated with wave-particle interaction or current sheet scattering (CSS)62

(Summers & Thorne, 2003; W. Li & Hudson, 2019). The former process occurs as re-63

sult of the resonance of magnetospheric waves with parallel velocity of counter-streaming64

energetic electrons (Lorentzen et al., 2001; Millan & Thorne, 2007; Blum, Halford, et al.,65

2015; Blum & Breneman, 2020). Meanwhile, the latter arises from the violation of the66

first adiabatic invariant when the Earth’s magnetic field curvature radius is compara-67

ble to the gyroradius of the electrons. It mainly occurs near the equatorial region of the68

current sheet, hence the name current sheet scattering (Sergeev & Tsyganenko, 1982;69

Sergeev et al., 1983; Capannolo et al., 2022). Since both mechanisms can generate large70

losses of relativistic electrons, they are important for maintaining the equilibrium of the71

outer Van Allen belt, and efforts continue to be made to obtain direct observations of72

both scattering mechanisms in the radiation belts and precipitation into the upper at-73

mosphere.74

Several direct REP measurements have been conducted by spacecraft and balloons75

during the last four decades. The Heavy Ion Large Telescope (HILT) experiment from76

the Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX) observed that77

REP events usually have a latitudinal extension of 2-3◦, and can persist for several hours78

(Blake et al., 1996). SAMPEX observations also showed the existence of 10-30 seconds79

time-scale precipitation bands mostly observed in the dusk-midnight sector and of more80

rapid variations (∼100 ms) known as microbursts predominantly observed in the dawn-81

noon sector (Nakamura et al., 1995; Blake et al., 1996; Bortnik et al., 2006; Blum, Li,82

& Denton, 2015; Crew et al., 2016; Shumko et al., 2018). These REP events have been83

categorized based on their location in L-shell and MLT coordinate as well as with their84

correlation with proton precipitation, and lower energetic electrons. Yahnin et al. (2016)85
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identified a total of three groups of REP events. The first group corresponds to electrons86

from the isotropic zone near the trapped limit for electrons. This type of precipitation87

always occurs in the nightside and is likely result of CSS. They also observed a second88

and third group from electrons deeper in the trapped zone which suggest they are the89

result from the interaction with waves. The second group corresponds to relativistic elec-90

trons observed simultaneously with lower energetic electrons (> 30keV ). These events91

are observed at all MLTs, with a maximum at the pre-midnight sector, and they are more92

likely to be related to electrostatic waves near the upper-hybrid-frequency, and plasma-93

spheric hiss. The third group corresponds to REP events correlated with energetic pro-94

tons observations, suggesting an interaction with EMIC waves, mostly observed in the95

dusk and pre-midnight sectors.96

Blum et al. (2013) and K. Zhang et al. (2017) used the Colorado Student Space97

Weather Experiment (CSSWE) cubesat and Balloon Array for Radiation-belt Relativis-98

tic Electron Losses (BARREL) to study a total of three different precipitation bands events99

during 18-19 January 2013. Both studies estimated a net loss of the 0.58-1.63 MeV elec-100

trons close to 5% of the total electron content, showing the significance of precipitation101

bands as nearly 15-20 events could deplete the outer belt. Similarly, Shekhar et al. (2020)102

used NOAA/POES satellites and BARREL to quantify the relativistic electron loss for103

11 events on January 17, 2013. They estimate a net loss of 5% of the electrons with en-104

ergies above 700 keV.105

Thorne and Kennel (1971) suggested that Electromagnetic Ion Cyclotron (EMIC)106

waves can generate REP in the E >1 MeV range, which would imply simultaneous ob-107

servation of REP and increases in proton precipitation in the anisotropic proton zone108

where protons are unstable to wave growth. This correlation was observed by Søraas et109

al. (2005) using the Polar Operational Environmental Satellites (POES) by matching the110

proton flux increases observed by the P1 (52 keV differential proton flux) and relativis-111

tic electron increases observed by P6 (> 800 keV when used for electrons) channels. Sandanger112

et al. (2007, 2009) used the same channels to show that the proton and electron enhance-113

ments are consistent with scattering into the loss cone by EMIC waves. Carson et al. (2013)114

analyzed EMIC-driven REP using 12 years of POES observations and found that the ma-115

jority of events occur in the pre-midnight and midnight sectors around L∼5. Other space-116

craft such as the FIREBIRD-II cubesats observed electron precipitation in the 200-300117

keV range while in conjunction with EMIC waves detected by the the Van Allen Probes,118
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suggesting that EMIC waves can efficiently scatter a wide energy range of electrons (Capannolo119

et al., 2021). REP has been also observed by the Balloon Array for Radiation belt Rel-120

ativistic Electron Losses (BARREL) in conjunction to EMIC waves measured by a Geo-121

stationary Operational Environmental Satellite (GOES) spacecraft at dusk (Blum, Hal-122

ford, et al., 2015), and at pre-midnight by Van Allen Probes (J. Zhang et al., 2016). How-123

ever, EMIC-driven events account for only a portion of all the REP occurring in the mid-124

night sector, as CSS also plays an important role scattering relativistic electrons in the125

current sheet (Smith et al., 2016; Shekhar et al., 2017; Capannolo et al., 2022).126

The periodicities observed by low altitude orbit spacecraft can help to detect REP127

events and also to distinguish between radiation belt crossings, precipitation bands, or128

microbursts. They can be examined with spectrograms to investigate the time evolution129

of the REP (Nakamura et al., 1995). Kataoka et al. (2016) used four-month data from130

the CALorimetric Electron Telescope (CALET) on the International Space Station (ISS)131

to show that 5-20s (50 - 200 mHz) periodicities are frequently present during REP events.132

These periodicities have been regularly observed (Mursula et al., 2001; Jacobs, 2012),133

and they have been associated with nonlinear wave growth of EMIC-triggered emissions134

as proposed by several numerical simulations (Omura & Zhao, 2012; Shoji & Omura, 2013;135

Kubota et al., 2015).136

The use of periodicity analysis is an alternative to other methods currently used137

for the identification of REP events. In general, automatic algorithms are more efficient138

than methods based on visual inspection of data, and are less sensitive to biases in the139

analysis of large amount of data (Bortnik et al., 2007). However, they are susceptible140

to noise-to-signal ratio problems inducing false positive cases if the detection threshold141

is reduced with the intention of identifying small amplitude events (Guralnik & Srivas-142

tava, 1999). Currently, microburst-detection algorithms have shown to be effective, but143

have not been equally efficient for the detection of precipitation bands (O’brien et al.,144

2003; Blum, Li, & Denton, 2015). We present here a novel method for automatic detec-145

tion and analysis of REP.146

1.1 The CALET Experiment147

The CALET experiment was designed to observe high-energy cosmic rays and has148

been operational since October 2015. The instrument is attached to the Japanese Mod-149
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ule “Kibo” at the ISS and has the scientific objective to study high-energy phenomena150

of the Universe (Torii & Collaboration, 2007; Torii, 2016; Asaoka et al., 2018; Torii et151

al., 2019). The two scintillator arrays constituting the charge detector (CHDX and CHDY)152

at the top of the apparatus used to identify the incident cosmic rays charge are also sen-153

sitive to electrons with energies > 1.5 MeV and >3.4 MeV, respectively (Bruno et al.,154

2022). This makes the CHDX, CHDY pair suitable for the detection of hard spectra REP155

events (Kataoka et al., 2016). This capability is particularly useful since CALET is one156

of the few instruments available at this energy range for conjugate MeV electrons stud-157

ies during the Van Allen probes era (2012-2019). Its data have already been used for the158

study of the relation between some REP events and magnetospheric waves (Kataoka et159

al., 2020; Bruno et al., 2022).160

The REP events observed by CALET are identified by isolated increases in count161

rates measured by the CHDX/CHDY detectors. Figure 1a shows several hours of data162

from November 10, 2015 where the peaks correspond to relativistic electrons. Figure 1b163

shows an example of a REP observation. They are characterized by rapid variations that164

can last from a few seconds to several minutes. In some cases, both types of profiles (smooth165

and rapid profiles) are present at the same time (see Figure 1c). Automated detection166

algorithms for these types of events can be more complex to design as they would also167

require a previous knowledge about the existence of each type of signature and their char-168

acteristics. Another class of events consists in smooth profiles mostly associated with pro-169

tons detected in the South-Atlantic-Anomaly region and, similarly, electrons in the in-170

nermost part of the outer radiation belt (L ∼ 3) (Kataoka et al., 2016, 2020; Bruno et171

al., 2022). Such events are identified as a gradual increase-then-decrease of the count rates172

with a timescale typically of 5-10 minutes. Figures 1e to g consist of the continuous wavelet173

transform (Aguiar-Conraria & Soares, 2014) of the observations showing the contrast-174

ing variability of the CHDX channel for smooth and rapid relativistic electrons profiles,175

respectively. It is important to mention that since REP events can last several hours and176

extend in latitude and longitude, the same REP event can be detected during consec-177

utive orbits (Nakamura et al., 1995; Blake et al., 1996; Blum et al., 2013; Bruno et al.,178

2022).179

The data used in this study have a continuous coverage from October 2015 to Oc-180

tober 2021. The data has quasi-periodic sampling time resolution, with an average pe-181

riod of 1 second. The ISS (therefore CALET) is located at low Earth orbit (LEO) at 370-182
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Figure 1. (a) Ten hours of CALET CHDX (red; E> 1.5 MeV) and CHDY (blue; E> 3.4

MeV) data in counts/s. The sharp spikes represent sudden increases of relativistic electrons. (b)

Example of a rapid electron precipitation event. (c) Example of a combined smooth and rapid

profiles of relativistic electrons. (d) Example of a smooth profile of relativistic electrons. (e)

Continuous wavelet transform of the rapid electron precipitation event shown in plot b. (f) Con-

tinuous wavelet transform of combined event shown in plot c. (g) Continuous wavelet transform

of a smooth profile of relativistic electrons event shown in d. Data gap is present between 12:30

and 14:00.

460 km of altitude and has an inclination of 51.6◦. As a resultIn consequence, the ISS183

visits L=4-7 regions several times a day at a similar magnetic local time (MLT) enabling184

periodic sampling of the outer radiation belt. The ISS exhibits a precession time of 60185

days. This implies that the MLT at which the CALET probes the high L-shell also fol-186

lows the same 60-day periodicity.187

2 Methodology188

A self-organizing-map (SOM) is an unsupervised machine learning technique used189

to define an ordered mapping, as a projection from a set of given data items onto a reg-190

ular, usually two-dimensional grid of nodes. A data item will be mapped into the most191

similar node, based on the smallest distance from the node in some metric (Kohonen,192

1982, 1990, 2013). The SOM technique has been widely used for unsupervised cluster-193
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ing of different kinds of data set in biology, chemistry, sociology, and economics (Akman194

et al., 2019; Mele & Crowley, 2008; Yang & Chou, 2003; Collan et al., 2007), but lately195

also for identification of magnetospheric regions (Innocenti et al., 2021) and categoriza-196

tion of plasma waves (Vech & Malaspina, 2021).197

The SOM is a competitive learning neural network model. The neural network con-198

sists of a grid of nodes initially built from randomly selected samples in the data set. This199

means that identical results can theoretically only be guaranteed when the same seed200

is used during the pseudo-random selection of samples. However, converging results will201

generate mirrored, rotated, or identical maps. Since the distribution of the clusters with202

respect to each other in mirrored or rotated maps is the same, the interpretation of the203

map remains unchanged in these cases.204

The learning process is based on an iterative search of the best-matching-unit (BMU)205

for each one of the samples in the data set. The BMU is the most similar unit (or node)206

to each value of the data set during each iteration. The similarity between the nodes and207

the data can be evaluated with multiple metrics; the most popular one, used in this study208

is the Euclidean distance
(
d(qi, pi) =

√∑
(qi − pi)2

)
where q and p represent the cur-209

rent sample and current unit, respectively. During each iteration, the BMU and the nodes210

surrounding it are updated to become more similar to the latest input sample evaluated.211

The updates are made based in the learning rate (η = η0 e−tλ) that controls how much212

weight the last sample has on the update of the BMU. The radius of influence (σ = σ0 e−tβ)213

determines the influence of the input vector in the surrounding clusters where t corre-214

spond to the current iteration and λ and β are the respective decay rates for the learn-215

ing rate and the radius of influence, respectively. For both steps we used η0 = 0.1, σ0 =216

√
2 and β = 0.1. The behavior of the SOM to these free parameters is standard to any217

SOM, they are initially defined defined by the size of the map and the similarity between218

the observations and later adjusted for better performance. Different parameters will de-219

termine how fast (i.e. after how many iterations) the map converges to a stable solution220

or if it does not converge at all. We tested multiple combinations of parameters and se-221

lected the above because they result in the map converging to the same result even when222

different seeds are used for the random selection of the initial map, which is evidence of223

a converging solution. In addition, as it will be shown below, we observed only a small224

number of incorrectly classified observations using these parameters.225
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Here we implement the SOM technique to classify the observations from CALET226

and analyze the precipitation patterns found. This process is performed in two steps:227

(1) detection of rapid electron precipitation observation events; (2) and classification of228

rapid precipitation observation events. The first step uses the Power-Spectral-Density229

(PSD) calculated from 10 minute windows of data as input for the SOM while the sec-230

ond step uses an interval-integrated-PSD. The details of the implementation of the SOM231

are explained in the following section and a diagram of the methodology implemented232

can be found in the Supporting Information (Figure S2).233

The CALET data set is collected at a nearly constant rate of 1-second. The data234

is re-sampled to 1-second as uniform sampling is required for spectral analysis used in235

this study. The re-sampling helps to reduce aliasing and contributes to removing small236

data gaps. Windows with gaps larger than 3 seconds are discarded as they would intro-237

duce a spurious response during the application of the Fast-Fourier-Transform (FFT).238

The re-sampled data is subdivided into 10 minute windows starting from October 2015239

until October 2021. This choice is based on the ISS orbital constraints, since REP events240

can be observed only for a few minutes during each pass. The SOM technique is applied241

two times for similar, but different objectives. In the first place, the SOM is applied with242

the objective of distinguishing rapid precipitation from the smooth profile intervals, and243

background noise. During this step, the SOM is implemented using the PSD of each one244

of the windows as input; the PSDs are calculated from the count rates of the CHD chan-245

nels to capture the intrinsic variability of the observed relativistic electrons. In this step,246

the Euclidean distance is computed using the current event spectral power at each fre-247

quency (qi) and the current node spectral power at each frequency (pi). The PSD are248

calculated using the Fast-Fourier-Transform FFT with 100 FFT points, in order to compute249

the PSD while keeping a fast computational time. The number of FFT points should250

be increased if data with higher sampling resolution is used. The output is a map of clus-251

ters where every cluster contains a subset of PSD with shared similarities in overall power252

and power distribution in frequency. Exclusively focusing on REP events, we chose clus-253

ters with zero smooth profiles or background noise, effectively eliminating these elements254

from the analyzed sample. We are then left with a “cleaned” data set of only rapid pre-255

cipitation observations for further study.256

During the second step only rapid precipitation observations are considered. How-257

ever, it is possible that more than one rapid precipitation event occurs during a 10 minute258
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interval. In order to separate multiple REP events in the same 10 minute interval, we259

apply a 60-second long moving window that computes the variance along the interval,260

and normalize such variance by dividing by its norm. Based on visual inspection we es-261

tablished a tolerance of 0.1 [counts/s]2 to detect the beginning and ending of the rapid262

precipitation event. There are cases when two consecutive rapid precipitation observa-263

tions occur in periods less than 10 minutes: this usually happens when the ISS crosses264

a region where relativistic precipitation is observed by CALET during the ascending and265

descending orbital passes. When these observations are separated, two time series of dif-266

ferent lengths are generated. To obtain two same-length time series consistent with the267

rest of the data, the edges of the series are filled with generated background noise sim-268

ilar to that seen by CALET when only background particles are observed.269

The lower limit on the PSDs are set to 100 mHz to remove the effects associated270

with the rapid movement of the ISS. The upper limit of the PSDs are set to 500 mHz271

since aliasing due to 1 second sampling rate should equally affect the detection of all very272

rapid precipitation observed. Since the SOM technique is most efficient with a low num-273

ber of variables, we created an equivalent representation of the PSDs with a lower num-274

ber of variables by dividing each PSD in 10 bins with 50% overlap and integrating the275

PSD each bin to obtain a simplified PSD profile. This procedure allows us to simplify276

the PSD and forces the SOM to classify by overall power of the PSD and power distri-277

bution in frequency.278

Once all the events are individualized and standardized, we apply the k -means tech-279

nique to calculate the number of clusters (k -value) that minimize total variances between280

all the events contained in each cluster. Finally, the SOM technique is applied to the interval-281

integrated-PSD of the rapid precipitation observations with the objective of classifying282

different features of the precipitation in order to identify different types of rapid precip-283

itation events.284

The output is a grid of clusters (or map) where each cluster consists of precipita-285

tion events with similar PSD characteristics. We examine the properties of the precip-286

itation events in each cluster to explore their dependence on various variables and bet-287

ter determine the physical meaning behind the SOM’s categorizations.288
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3 Results289

3.1 First Step Results290

The objective of the first step is to detect rapid precipitation observations with-291

out the need of extensive visual inspection of the data, or an algorithm that requires a292

detailed knowledge about the characteristics of the data. The SOM is able to not only293

identify isolated rapid precipitation intervals, but also events where smooth profiles and294

rapid precipitation occur simultaneously. In order to validate the SOM technique with295

CALET data, we visually inspected all the clusters to verify the observations were cor-296

rectly classified. During the time period covered in this study, the SOM identified 1448297

rapid precipitation events, 21301 intervals were classified as smooth profiles of relativis-298

tic electrons and the rest (275241) identified as background noise. We visually inspected299

all 1448 events classified by the SOM as rapid precipitation and found 87 events (6.0%)300

to be false positives (events incorrectly classified as rapid). We also performed a survey301

over half of the events that were classified as smooth profile events to quantify the num-302

ber of false negatives. From a visual survey of 11545 events that were identified as smooth303

profile events, we found 27 false negatives or 0.23% of the events. The number of win-304

dows classified as noise is too large to be evaluated by visual inspection, so we randomly305

selected 5000 time windows classified by the SOM as noise for visual identification. Of306

this sample we found 9 false negatives, or 0.18% of the events. We performed a z-test307

to calculate a confidence interval and found the total number of false negatives in the308

background noise to be 495 ±172 with a 95% of confidence.309

As demonstrated by Figure 2a, the geographic distribution of smooth-profile events310

concentrates in the South-Atlantic-Anomaly region. Another component is present in311

the southern hemisphere around L∼3, corresponding to trapped and quasi-trapped (drift-312

loss-cone) electrons in the inner boundary of the outer radiation belt, where trapped elec-313

trons correspond to electrons that can stably drift around Earth unless perturbed, and314

quasi-trapped correspond to electrons that will bounce several times before precipita-315

tion occurs (Selesnick et al., 2003; Tu et al., 2010; Pham et al., 2017; K. Zhang et al.,316

2017). Meanwhile, the rapid profiles (Figure 2c) are typically detected at higher mag-317

netic latitudes, mapping to the footprint of the outer radiation belt (L∼ 4-6).318
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Figure 2. (a) Positions of the first 1000 smooth profiles as an example. (b) Geographic lon-

gitude histogram of all smooth profile events. (c) Positions of all REP events between October

2015 to October 2021. The color indicates the counts/s observed by CALET. L-shell curves from

L=1 to L=8 in dark gray. (d) Geographic longitude histogram of all rapid events. Note that the

latitude of CALET observations is constrained by the inclination of the ISS orbit (51.6◦).

3.2 Second Step Results319

The objective of the second step is to analyze the maps generated in step 2, con-320

sisting of only REP events to uncover patterns associated with the magnitude and vari-321

ability of the REP events observed. The number of clusters is determined using the k -322

means (k being the number of clusters) technique (Likas et al., 2003). k -means acts as323

a classifier that minimizes the within-cluster variances given a predetermined number324
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of clusters. We found that the optimal number of clusters is 15 and to simplify the anal-325

ysis the rapid precipitation observation events are classified into 16 clusters to keep the326

map square. With the objective to study the precipitation L-MLT patterns and the as-327

sociated variability, we evaluate the clusters in terms of the frequency interval that car-328

ries the maximum power in the PSD, the energy spectra index, and the distance to the329

plasmapause of the observations.330

The median frequency at which the PSD peaks considering all events is 183 mHz331

(T=5.5 seconds). Figure 3 shows the PSD of the classified clusters. Clusters 1-4 and 6-332

8, and 11 have most of their power above 183 mHz, while clusters 5, 9-10, and 12-16 are333

dominated by lower frequency signatures. Since each cluster is filled with individual PSDs334

corresponding to precipitation events, for each of them we calculate a median curve of335

the PSDs using the median value at each frequency. We also estimate the 25% and 75%336

curves to observe the distribution of the variability of the events at each frequency.337

For each cluster four representative values are calculated for the events in the re-338

spective cluster: The median of the frequency at the PSD maximum amplitude of each339

PSD; the median of the maximum amplitude of each PSD; the median of the maximum340

spectral hardness; and the median of the distance to the plasmapause. The clusters are341

then sorted using each one of these values. We compare the group of clusters that show342

the maximum dissimilarity to enhance the characteristics that could be useful for anal-343

ysis. We achieve this by comparing the clusters below the 25 and above 75 percentile,344

respectively of the four computed values that represent one characteristic of the clusters.345

When comparing the representative frequency at the PSD maximum amplitude,346

the two groups show differences in their MLT and L-shell distributions. Since the dis-347

tributions were close to a Gaussian, we performed the significance Z-test with a Z-value=5.86.348

Similarly, we use Monte Carlo test to compute the probability that such distribution dif-349

ference can be due to randomness. The median difference between both distributions is350

larger than in 96.2% of random distributions computed. Both tests are performed with351

a 95% of confidence to estimate that the discrepancy between both distributions is sta-352

tistically significant.353

Figure 4 shows the distribution in the mapmaps of different characteristics of the354

clustered events. They demonstrate how other characteristics associated to the events355

distribute when the SOM organizes the events by their PSD. Figure 4a shows the result-356
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Figure 3. PSD of all clusters. The black curves represent the median of all the events of each

cluster. Gray curves correspond to the 25 and 75 percentiles at each frequency of the PSD of the

events in each cluster. Red numbers indicate the number of the respective cluster.

ing map where the colors indicate the median frequency in each cluster at which power357

spectral density peaks. The clusters where the dominant frequency is above 183 mHz358

contain events where high-frequency periodicity electron precipitation is dominant. Fig-359

ure 4b displays the percentage of REP weighed by the total number of passes through360

every L-MLT grid cell, demonstrating that low-periodicity (below the 25 percentile)361

events are dominant at pre-midnight and between L=5-6. Figures 4c shows that high-362

periodicity (above the 75 percentile) events occur at local times, but are more likely363

to occur in the midnight sector between L=5-7.364

Figure 4d displays the median value of the highest amplitude in the PSD for each365

cluster. We use again the clusters where the median frequency is below the 25th or above366

the 75th percentile to separate them into two groups. Figure 4e shows that small am-367

plitude events occur predominantly at midnight. In the midnight sector they are observed368

at L=5-7. Finally, Figure 4f demonstrates that rapid precipitation with larger amplitudes369

is dominant in the pre-midnight sector and between L=5-6.370

We also evaluate the event energy spectra in each cluster. We use the ratio between371

the count rates measured by the two sensors to calculate an energy spectral index (CHDX/CHDY).372
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Figure 4. Left column: Maps of clusters. Middle column: Bivariant histogram of clusters

under the 25 percentile. Right column: Bivariant histogram of clusters above the 75 percentile.

(a-c) Median of the dominant periodicities. (d-f) Median of the PSD amplitude. (g-i) Median of

the energy spectral index. (j-l) Median of the distance to the plasmapause. L-shell histograms

can be found in the Supporting Information.
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The energy spectral index was calculated using the maximum CHDX/CHDY ratio dur-373

ing the event. Since CHDX and CHDY detect electrons with energies above 1.5 and 3.4374

MeV, respectively, larger values of the spectral index correspond to a softer spectrum375

associated with the precipitation. Figure 4g shows the same kind of map as Figures 4a376

and 4d, but with the color code denoting the median energy spectral index of each clus-377

ter. Figure 4h demonstrates that events from clusters with softer energy spectral index378

(CHDX/CHDY above 75th percentile) are concentrated in the pre-midnight sector and379

at L = 5-6. In contrast, Figure 4i shows that events from clusters with a harder energy380

spectral index (CHDX/CHDY below 25th percentile) are common at all MLT, but pre-381

dominantly observed in the midnight sector at L=5-7.382

Lastly, we calculate the location of the events with respect to the plasmapause. Moldwin383

et al. (2002) MLT-dependant empirical model has been used in numerous other stud-384

ies to analyze the spatial distribution of waves (Carson et al., 2013; D. Wang et al., 2015;385

Saikin et al., 2016), and to investigate the location of the outer belt with respect to the386

plasmapause (X. Li et al., 2006) among other studies. We use this model to calculate387

the location of the plasmapause and estimate its distance to the REP detection location388

(∆L) in order to see if different precipitation types exhibit any correlation by their dis-389

tance to the plasmapause. Figure 4j shows the median ∆L of the events in each cluster.390

Figure 4k shows that the clusters with a median distance to the plasmapause below the391

25th percentile are more common near the pre-midnight sector L=5-6. In contrast, the392

clusters with a median distance above the 75th percentile are more frequent in the pre-393

midnight and midnight sectors at L=5-7.394

4 Discussion395

The results presented in the previous sections suggest that the SOM is an efficient396

tool for separating different types of REP observations time series by classifying their397

PSD. It effectively distinguishes rapid precipitation events from smooth profiles, and back-398

ground noise, eliminating the need for extensive visual inspection or the use of standard399

automated algorithms that are often sensitive to signal-to-noise ratio detection thresh-400

olds. The SOM is also capable of classifying rapid precipitation events by the period-401

icities and the power of the PSD. We use the median, in addition to 25 and 75 percentiles402

values of the dominant frequency, peak PSD amplitude, energy spectral index, and dis-403

tance to plasmapause of the rapid precipitation as reference to separate the precipita-404
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tion into different populations. The results show that precipitation with different char-405

acteristics can generate similar precipitation patterns, demonstrating the classification406

of rapid precipitation is a multidimensional problem. They also reveal features through407

sorting based on PSD alone, allowing the identification of different precipitation com-408

ponents with varying properties.409

Microbursts and precipitation bands are example of two types of REP with the pe-410

riodicity of the electron fluxes among the observational characteristics that distinguish411

them. While whistler mode chorus waves are the primary mechanism believed to drive412

microbursts, electrostatic and EMIC waves are believed to drive precipitation bands (Thorne413

& Kennel, 1971; Blum, Li, & Denton, 2015). However, the observation of precipitation414

bands at conjugated locations and consecutive orbits (Blake et al., 1996), suggests that415

their characteristic signature is related to spatial rather than temporal characteristics416

(Lorentzen et al., 2001; Bortnik et al., 2006; Blum, Li, & Denton, 2015).417

Carson et al. (2013); Z. Wang et al. (2014); Gasque et al. (2021) used an algorithm418

applied to POES P1 (52 keV differential proton flux) and P6 (>800 keV when used for419

electrons) channels to detect EMIC-driven REP events. These authors found that EMIC-420

driven REP are predominantly detected in the dusk-midnight sector around L∼5. The421

CSS mechanism also occurs in the midnight sector and it is sometimes even more effi-422

cient than wave-driven REP. While previous studies have associated REP near midnight423

to EMIC waves, it has been speculated that softer REP events are driven by CSS while424

harder precipitation events are more likely to be driven by EMIC waves (Smith et al.,425

2016; Shekhar et al., 2018; Capannolo et al., 2021). Capannolo et al. (2022) performed426

a conservative classification between EMIC-driven and CSS-driven REP events to en-427

sure events were truly driven by one mechanism alone and found that near 40% of the428

classified events were CSS-driven.429

The results of this analysis show similarities with the findings of aforementioned430

studies. For instance, Figures 4h and i show that REP events can be separated by their431

relative spectral hardness into at least two populations that overlap near midnight. Fig-432

ure 4h shows that softer precipitation events mainly occur in the pre-midnight sector be-433

tween L=4-5. Figure 4i shows that hard precipitation is observed at all MLT, but they434

are mainly localized in the midnight sector. Some events are seen in the morning sec-435

tor where microbursts are commonly observed. However, the microburst variability (∼100436
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ms) cannot be resolved by the 1 second time resolution of the CALET data set used in437

this work, making it hard to investigate the origin of these hard precipitation events.438

The classification by variability also separates the REP observations into two pop-439

ulations. Kataoka et al. (2016) also studied periodicities observed by CALET in the dusk440

and pre-midnight sector finding similar periodicities that have been associated to non-441

linear wave growth of EMIC-triggered emissions by several numerical simulations and442

observational studies. The REP events with low variability are more frequent in the pre-443

midnight sector where EMIC-driven precipitation is more commonly observed. On the444

other hand, REP events with higher variability are more frequently observed in the mid-445

night sector near where CSS-driven precipitation is more frequent. The morphology of446

the REP patterns and their similarity to EMIC-driven REP and CSS-driven REP pat-447

terns reported by Yahnin et al. (2016) suggests a potential connection between the vari-448

ability observed and the driver of the precipitation. Low variability REP are more com-449

mon in the same region where EMIC-driven REP are often observed. Meanwhile, high450

variability REP are observed where CSS-driven REP are most commonly observed.451

In all cases, an L-MLT pattern with a predominant occurrence of events in the pre-452

midnight sector has been generated, similar to the one observed for EMIC-driven REP.453

However, the REP classification cannot be directly associated with drivers without con-454

jugated observations. Typically, EMIC-driven REP and CSS-driven REP have been dif-455

ficult to distinguish from each other as they often can occur simultaneously, and currently456

only a small portion of the observations can be truly classified as EMIC or CSS-driven457

precipitation (Capannolo et al., 2022).458

The results of this work demonstrate that there is information about REP hidden459

in the variability of the observations that can be used for future studies to distinguish460

and analyze their drivers.461

5 Conclusions462

In this study, we have described a new use of an unsupervised machine learning tech-463

nique to classify time series of relativistic electron precipitation. We have tested the ca-464

pabilities of SOM for the analysis of the rapid relativistic electron precipitation observed465

by CALET in the 2015-2021 period. The SOM has automatically detected rapid elec-466

tron precipitation intervals and classified them by the main characteristics of their PSD.467
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It has been shown that the SOM technique is a robust method for event detection. The468

SOM is capable of detecting rapid electron precipitation events of any magnitude, even469

if they are superposed with smooth profiles. The SOM has also been implemented to clas-470

sify the rapid precipitation observations. The output of the maps suggests that the SOM471

technique can categorize rapid precipitation into different types of precipitation with dif-472

ferent properties.473

The energy spectral index and distance to the plasmapause exhibit a similar L-MLT474

pattern than the one obtained for periodicities and amplitude, but when different clus-475

ters are grouped. This is most likely due to the existence of multiple high and low pe-476

riodicities for rapid precipitation, such as microbursts and precipitation bands that have477

different L-MLT distributions. This also reveals the complexities of REP analysis as mul-478

tiple precipitation types, with different characteristics, may have similar patterns in L-479

MLT. It also shows that unsupervised machine learning is a useful tool for disentangling480

this multidimensional problem.481

We have demonstrated that this technique has the potential for the identification482

of electron precipitation in LEO observations, and to distinguish different types of pre-483

cipitation. As next steps, we plan to use it in conjugated studies between CALET and484

the Van Allen Probes that would help to determine the specific common characteristics485

of rapid precipitation observations in each one of the clusters obtained from the SOM.486

6 Data Availability Statement487

The CALET data used in this study are publicly available (data.darts.isas.jaxa488

.jp/pub/calet/cal-v1.1/CHD/level1.1/obs/) in ASCII format in the Data ARchives489

and Transmission System (DARTS) of the Japan Aerospace Exploration Agency (JAXA).490

The catalog of REP observation events is attached in a text file. The Supporting Infor-491

mation contains a description of the catalog and necessary considerations when using492

the catalog.493
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