
P
os
te
d
on

16
A
p
r
20
24

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
es
so
ar
.1
71
32
27
52
.2
52
01
27
8/
v
1
—

T
h
is

is
a
p
re
p
ri
n
t
a
n
d
h
a
s
n
o
t
b
ee
n
p
ee
r-
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

Interoperable POSIX and Zarr Formats

Charles Zender1, Charlie Zender2, Ed Hartnett2, Dennis Heimbigner2, and Ward Fisher2

1Affiliation not available
2Departments of Earth System Science and Computer Science, UC Irvine

April 16, 2024

1

Interoperable POSIX and Zarr Formats
in_z="file://${HOME}/in#mode=nczarr,file"
in_p="${HOME}/in.nc"
out_z="file://${HOME}/foo#mode=nczarr,file"
out_p="${HOME}/foo.nc"

ncks ${in_z} # Print Zarr contents
ncks -v var ${in_p} ${out_p} # P->P
ncks -v var ${in_p} ${out_z} # P->Z
ncks -v var ${in_z} ${out_p} # Z->P
ncks -v var ${in_z} ${out_z} # Z->Z

Interoperability Lessons Migrating netCDF Workflows from POSIX to Zarr
Charlie Zender, Departments of Earth System Science and Computer Science, UC Irvine

Ed Hartnett (NOAA), Dennis Heimbigner (Unidata), and Ward Fisher (Unidata)

Acknowledgements
This material is based upon work supported by DOE E3SM
(DE-SC0019278), NASA (OSTFL 80NSSC22K1743), and NSF (OAC-2004993).
Work performed at UC Irvine, located on the ancestral, unceded
homelands of the Acjachemen and Tongva peoples.

Introduction
The netCDF Operator (NCO) toolkit introduced support for the object-based
Zarr storage format via the NCZarr library in 2022. As of Fall 2023, NCZarr in
netCDF 4.9.3-beta supports all commonly used netCDF4 features, including
compression and quantization. NCO commands work as expected for all front
and back-end storage formats. Operators can ingest and output netCDF3,
netCDF4, and/or Zarr backend file formats. The primary interoperability
barrier to using workflows built for traditional (POSIX) backend formats on
Zarr object stores is filename handling. Zarr object names are URIs
incompatible with standard POSIX globbing and wildcards often used to select
input files for scripts and Multi-File Operators (MFOs). A new script,
ncz2psx,combined with standard input/output techniques, emulates
globbing and wildcard features used for multi-file operators.

Takeaways
netCDF treats extended (aka netCDF4) Common Data Model datasets
equivalently whether their backend storage format is POSIX (HDF5), Zarr,
or other (e.g., DAP2/DAP4, PnetCDF). This enables NCO to manipulate
(print, subset, hyperslab, annotate, regrid, perform arithmetic) Zarr
datasets with familiar commands. Migration from POSIX to Zarr is
straightforward, except for handling dataset name changes from POSIX
paths to Zarr URIs in some multi-file workflows. Translator scripts (here,
ncz2psx) help with this.
netCDF is a (the?) standard storage API for geoscientific, weather, climate,
satellite data. netCDF supported only one free lossless compressor, and no
lossy methods. We incorporated modern lossless codecs and IEEE-754
compatible quantization that can reduce required storage by about 4x and
eliminate false precision.

Methods
NCZarr is a Zarr-superset adapted to suit the features of the extended (aka
netCDF4) Common Data Model (CDM) first supported by the POSIX
(HDF5-based) netCDF4 external format. The netCDF library treats datasets in
external POSIX and Zarr formats equivalently, with one exception: NCZarr
does not yet support user-defined types (enum, vlen, compound). Conversely,
Zarr does not support scalars (NCZarr does). To support NCZarr in NCO, we
had only to update NCO's file management routines to support NCZarr object
trees in addition to "normal" POSIX files.

NCO leverages netCDF library access to system codecs (Blosc, Bzip2, Zstd) and
transparently encodes/decodes and/or quantizes datasets as necessary. Fully
back-compatible, supports MPI with Parallel I/O (PIO) library in C/Fortran.

Future Work
● Support S3, the AWS storage scheme (Winter 2024)
● Better support Zarr in ncclimo, ncremap scripts
● Support Zarr in ncatted, ncrename binaries
● Propose 4x CMIP6 compression for CMIP7
● Invoke modern codecs in DOE E3SM, NSF CESM (NOAA GFS is done!)
● Support nccopy codec API

Interoperable, Customizable Compression and Quantization

ncks --cmp='gbr|shf|zst' ${in_p} ${out_z} # Quant/Cmp POSIX
ncks --cmp='gbr|shf|zst' ${in_z} ${out_z} # Quant/Cmp Zarr
ncra --cmp='gbr|shf|zst' ${in_z} ${out_z} # Quant/Cmp Zarr
ncremap --cmp='gbr|shf|zst' ${in_z} ${out_z} # Quant/Cmp Zarr
ncks --cmp='zst' ... # Invoke Zstandard (no Shuffle)
ncks --cmp='shf|zst' ... # Invoke Shuffle then Zstandard
ncks --cmp='shf|bls' ... # Blosc (not HDF5) Shuffle, Blosc LZ
ncks --ppc dfl=3 --cmp='shf|zst' ... # Reasonable default
ncks --ppc dfl=3#Q.?=5#FS.?,FL.?=4 --cmp='shf|zst' … # Custom
ncks --baa=4 --ppc dfl=3#Q.?=5#FS.?,FL.?=4 --cmp='shf|zst' ...
ncks --baa=8 --ppc dflt=9#Q.?=15#FS.?,FL.?=12 --cmp='shf|zst' ...
ls -d in* | ncz2psx | ncra --cmp='gbr|shf|zst' ${out_z}
ls -d in* | ncz2psx | ncrcat --cmp='gbr|shf|zst' ${out_z}

 Why (Lossily) Compress?
● Datacenters use ~1-3% of global electrical power
● Storage accounts for ~40% of datacenter emissions
● Scientific computing archives mostly false precision
● Same storage cost for higher resolution simulations
Our improvements to netCDF reduce the power requirements and thus
greenhouse gas emissions during long term storage of floating point
scientific data. Research workflows that employ these methods are more
sustainable, economical, and ethical.

CMIP6
CR~1.8

CMIP7
Lossy?

Granular BitRound π = 3.14159265 to 1 ≤ NSD ≤ 8 significant digits
Quantization Produces Compressible Bit Patterns

 NCO Zarr-Compliance and Limitations
All NCO executables support NCZarr except for ncatted, ncrename (their
functionality for NCZarr is in ncap2).

ncap2 -s 'RH=0.5' ${in_z} ${out_z} # Algebra
ncbo ${in1_z} ${in2_z} ${out_z} # Subtract
ncecat ${in1_z} … ${inN_z} ${out_z} # Ensemble Cat.
nces ${in1_z} … ${inN_z} ${out_z} # Ensemble Stat.
ncclimo --split ${in1_z} … ${inN_z} # Timeseries
ncflint ${in1_z} ${in2_z} ${out_z} # Interpolate
ncks --map=map.nc ${in1_z} ${out_z} # Regrid
ncpdq -a lat,lon ${in1_z} ${out_z} # Permute
ncrcat ${in1_z} … ${inN_z} ${out_z} # Concatenate
ncremap --map=map.nc ${in_z} ${out_z} # Regrid
ncwa -a lat,lon ${in1_z} ${out_z} # Average

ncz2psx "Globs" Zarr Datasets for Multi-File Operators (MFOs)
NCO's new script ncz2psx prepends a desired Zarr scheme (e.g., "file://") and appends a
fragment (e.g., "#mode=nczarr,file") to names. This reduces tedious typing for MFO input:

ncra in*_p.nc out_p.nc # Glob list of POSIX input files
ls in*_p.nc | ncra out_p.nc # Pipe globbed list to stdin
$ ls -d in1 | ncz2psx # "file://in1#mode=nczarr,file"
ls -d in1 | ncz2psx | ncremap ${out_z} # Zarr single input via stdin
ls -d in* | ncz2psx | ncra ${out_z} # Zarr MFO input via stdin
ls -d in* | ncz2psx | ncrcat ${out_z} # Zarr MFO input via stdin
ls -d in* | ncz2psx --scheme=file --mode=nczarr,file | ncra ${out_z}

