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Abstract

Capsule summary. Extreme temperatures in the UK (July 2022) and India/Pakistan (Spring 2022) are confidently attributed

to climate change using an automated system. Similarly attributable extremes occurred frequently worldwide in 2022.

1



1 

File generated with AMS Word template 2.0 

Human Fingerprints on Daily Temperatures in 2022 1 

 2 

Daniel M. Gilforda, Andrew J. Pershinga, Joseph Giguerea, and Friederike E. L. Ottob 3 

a Climate Central, Princeton, NJ, USA 4 

b Grantham Institute of Climate Change, Imperial College London, UK 5 

 6 

Corresponding author: D. M. Gilford, dgilford@climatecentral.org  7 



2 

File generated with AMS Word template 2.0 

Capsule summary. Extreme temperatures in the UK (July 2022) and India/Pakistan (Spring 8 

2022) are confidently attributed to climate change using an automated system. Similarly 9 

attributable extremes occurred frequently worldwide in 2022. 10 

1. Introduction 11 

2022 was an exceptional year for heat worldwide. Heat-related disasters worsened droughts 12 

and forest fires, and threatened millions of people’s health (EM-DAT 2008; Ballester et al. 13 

2023). While human-induced climate change is no doubt responsible for the globally-14 

increasing rate and intensity of extreme heat (Masson-Delmotte et al. 2021), there is an ongoing 15 

need to investigate and communicate the extent of this human influence depending on time of 16 

year, region, and event persistence (Swain et al. 2020). 17 

The rapid advancement of climate attribution science is enabling quantitative and confident 18 

attribution of human influences on the likelihood of individual heat events within days of 19 

occurrence (National Academies of Sciences 2016; Masson-Delmotte et al. 2021; Clarke et al. 20 

2022). The World Weather Attribution Initiative (WWA) has pioneered rapid attribution 21 

approaches, and regularly publishes detailed attribution reports of specific events using peer-22 

reviewed methods (e.g. Philip et al. 2020). These self-consistent reports reliably inform which 23 

2022 heat events were potentially most noteworthy and attributable (World Weather 24 

Attribution Initiative 2023; Otto and Raju 2023). But WWA’s in-depth studies require limited 25 

resources and days-to-weeks to produce, which restricts the number of heat events that can be 26 

assessed and attributed over a given year. 27 

A new automated attribution system has been developed to enable real-time climate 28 

attribution of heat events every day, everywhere (G22; Gilford et al. 2022). We implement this 29 

system to expand on WWA’s capacity, producing a hindcast of daily attribution estimates for 30 
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globally-resolved air temperatures in 2022. We also evaluate the system by comparing with 31 

WWA reports for two events: a 2-day event over the UK (July 2022) and a 2-month-long event 32 

over India/Pakistan (Mar/Apr 2022). Using these as a benchmark, we demonstrate the 33 

attributable scale and spatial-temporal scope of similarly-defined events around the world in 34 

2022. 35 

2. Approach and Data 36 

We quantify the attributable climate influence on observed daily and multi-day 37 

temperatures with a metric called the “Change in Information due to Perspective” (ChIP) based 38 

on the definition of Shannon information content from information theory (MacKay 2003; 39 

Pershing et al. 2023). ChIP compares the occurrence likelihood of daily temperature, 𝑇, in the 40 

modern climate (𝑃𝑚𝑜𝑑; +1.27 K global mean air temperature since pre-industrial) with that 41 

from a counterfactual climate without anthropogenic forcing (𝑃𝑐𝑓; +0 K), 42 

ChIP(𝑇) ≡ 𝑙𝑜𝑔2[𝑃𝑚𝑜𝑑(𝑇) / 𝑃𝑐𝑓(𝑇) ]   (1) 43 

ChIP has several advantages compared to traditional attribution metrics. The occurrence ratio 44 

in Eq. (1) considers changes in the likelihood of observing 𝑇, rather than commonly-45 

employed “probability ratios” (PRs; e.g. Philip et al. 2020) that consider changes in the 46 

likelihood of exceeding 𝑇. This approach enables attribution assessments for not only 47 

extremely hot days, but all days, allowing negative ChIP values to be assigned to conditions 48 

made less likely by climate change. Furthermore, ChIP’s logarithmic form allows its daily 49 

values to be averaged or summed, providing a meaningful attribution estimates for multi-day 50 

events. We use this feature to derive a variance-scaled ChIP that can be directly compared 51 

with WWA’s PRs estimated from multi-day mean temperatures. 52 
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To derive variance-scaled ChIP, we assume temperatures are normally distributed, and 53 

the likelihood of 𝑇 is given by 𝑃~𝒩(T, μ, σ), with mean, μ, and standard deviation, σ. The 54 

attributable change in likelihood between modern and counterfactual periods can then be 55 

described by a change in the mean, μ + δ, where δ is linearly related to attributable global 56 

mean temperature (GMT) changes in the framework’s median method (Supplementary 57 

Materials). Rewriting Eq. (1): 58 

ChIP(𝑇) ≃ 𝑙𝑜𝑔2[ 𝒩𝑚𝑜𝑑(𝑇, μ + δ, σ) /   𝒩𝑐𝑓(𝑇, μ, σ) ]   (2) 59 

≃ −
δ

2𝑙𝑛(2)𝜎2 (2μ + δ − 2𝑇)          (3) 60 

Assuming μ, δ, and daily σ are representative over an 𝑛-day period, then the ChIP of 𝑛-day 61 

average temperatures (�̅� = (1/𝑛) ∑ 𝑇𝑗
𝑛
𝑗=1 ) is, 62 

ChIP𝑛(�̅�) = (
𝜎2

𝜎𝑛
2) 𝐶ℎ𝐼𝑃̅̅ ̅̅ ̅̅ ̅(𝑇𝑗)           (4) 63 

where 𝜎𝑛 is the standard deviation of the 𝑛-day means. The resulting variance-scaled ChIP, 64 

𝐶ℎ𝐼𝑃𝑛(�̅�), quantifies climate change’s attributable influence on multi-day average 65 

temperatures. 66 

We implement G22’s multi-method attribution framework (Gilford et al. 2022; Pershing 67 

et al. 2023; Supplemental Materials) following established attribution protocols (Philip et al. 68 

2020) to create a 2022 daily hindcast of ChIP and ChIP𝑛(�̅�) around the world. The multi-69 

method approach uses observed trends from ERA5 (Hersbach et al. 2020) and climate 70 

simulations from CMIP6 (Eyring et al. 2016) to generate an ensemble of modern and 71 

counterfactual distributions. For each observed daily 2m maximum (𝑇𝑚𝑎𝑥), average (𝑇𝑎𝑣𝑔), 72 
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and minimum air temperature (𝑇𝑚𝑖𝑛) we calculate empirical- and model-derived 𝑃𝑚𝑜𝑑 and 73 

𝑃𝑐𝑓, which are synthesized to produce a ChIP for each daily temperature observation in 2022. 74 

 75 

 76 
Fig. 1. 17-18 July 2022 (a) average temperature anomalies and (b) the associated Change in 77 

Information due to Perspective (ChIP; i.e. this study’s daily attribution estimate). The 78 

accompanying table includes temperatures (the defining basis for similar extreme events, see 79 

text) and compares World Weather Attribution range of *lower bound probability ratios 80 

against this study’s ChIP estimates and the equivalent PR. (c) Number of 2-day average 81 

temperatures in 2022 consistent with the WWA UK event definition in each 2°×2° land pixel, 82 

and (d) the zonal-mean ChIP across these 2-day events. 83 

3. Results 84 

Figure 1 summarizes analyses of United Kingdom’s 2-day extreme heat event during 17-85 

18 July 2022. WWA analyzed two extreme event definitions averaged over the region (black 86 

box): the 2-day mean 𝑇𝑎𝑣𝑔 and the annual maximum of 𝑇𝑚𝑎𝑥. Both metrics were observed 87 

above their 1991–2020 climatological 99th percentiles. 88 
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Mean ChIP values during the UK event were 3.0 (𝑇𝑎𝑣𝑔) and 2.8 (𝑇𝑚𝑎𝑥), indicating the 89 

extreme temperatures were made 8× more likely because of climate change. This equivalent 90 

ratio is smaller than WWA’s final PR estimate (10×), but under near-record temperatures the 91 

underestimate is consistent with G22’s conservative system design. Because ChIP is 92 

constructed from occurrence likelihoods, the ratio in Eq. (1) will always be lower than the 93 

PR. Secondly, to enable autonomous real-time attribution, G22’s framework evaluates a 94 

continuous skew-normal fit across each temperature distribution rather than using extreme 95 

value theory in the tails (e.g., van Oldenborgh et al. 2021). This effectively bounds reliable 96 

ChIP calculations, because tail probabilities will be undersampled and hence uncertain. 97 

Pershing et al. (2023) codifies this limitation by fixing an absolute upper bound of |𝐶ℎ𝑖𝑃| ≤98 

4 on each method’s output, so the maximum equivalent PR is 16 (if the empirical- and 99 

model-based methods both reach this maximum). Altogether, while ChIP values are often a 100 

conservative underestimate, results agree with WWA that human-caused climate change 101 

made the UK event much more likely. Note that daily ChIP average standard errors—102 

estimated from the spread of CMIP6 simulations and regression uncertainties between local 103 

temperatures and GMT (Supplementary Materials)—are <0.5 on 0.3% of days/locations in 104 

2022 (not shown); e.g., the 40S–60N mean standard error during July 17-18 was 0.22. 105 

To screen for comparable events in 2022, we regrid temperature and ChIP to a resolution 106 

comparable to the UK event (2°×2°, black box Fig. 1a) and then search for when/where 2-day 107 

rolling-mean 𝑇𝑎𝑣𝑔 values exceeded their 1991–2020 climatological 99th percentile. Without a 108 

climate shifted distribution we would expect 3.7 exceedances per year, but globally we find 109 

these events were much more common in 2022. Hotspots with 20+ events include 110 

central/west N. America, Argentina/Paraguay, central Africa, western Europe, China, and 111 
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Papua New Guinea. These events were robustly attributable (ChIP > 0.5, shading Fig. 1c) 112 

with some reaching the maximum (ChIP = 4.0). Zonal-mean ChIP over these hotspots was 113 

typically between 1 and 2.5. 114 

Figure 2 summarizes analyses of India and Pakistan’s 2-month-long extreme heat during 115 

March/April 2022. Two-month-average daily 𝑇𝑚𝑎𝑥 anomalies peaked during the second 116 

warmest March/April since 1991, ranging from +1 K to +6 K across the averaging region 117 

(black polygon Fig. 2a); concurrent ChIP𝑛(�̅�) reached 16.0 along India’s northwest coastal 118 

region and ChIP𝑛(�̅�)~ 5 stretched into the interior during the event. ChIP𝑛(�̅�) = 16 implies 119 

that the 2-month average temperature was made 65,536× more likely because of climate 120 

change. Region-average equivalent PRs show these event anomalies were 2(3.1) = 8.6× more 121 

likely because of human-caused climate change, lower than the average but falling within the 122 

range of WWA PR estimates, 30× (2-140×). Despite cooler anomalies during the remainder 123 

of 2022, 2-month-average 𝑇𝑚𝑎𝑥 was robustly attributable throughout the year; this result 124 

implies that the signal of climate change in India/Pakistan 2-month-mean temperatures has 125 

effectively emerged from the baseline climate. 126 

 127 

 128 
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 129 
Fig. 2. March/April-mean 2022 (a) maximum temperature anomalies and (b) the associated 130 

variance-scaled ChIP. (c) Number of 2-monthly-mean maximum temperatures in 2022 (of 131 

twelve 2-monthly periods, Jan-Feb. through Dec-Jan.) consistent with the WWA 132 

India/Pakistan event definition (see text) in each 2°×2° land pixel, and (d) the zonal-mean 133 

variance-scaled ChIP associated with these events. (e) The 2022 seasonal cycle of 2-monthly-134 

mean maximum (red lines) and minimum (blue lines) temperature anomalies (dashed lines) 135 

and the zonal-mean variance-scaled ChIP levels across these 2-month events (solid lines). 136 

 137 

 138 

 139 

To find events similar to the WWA event definition, we search for places and periods 140 

around the world where the rolling 2-monthly-average temperatures in 2022 were ranked in 141 

the top two since 1991. The mapped number of monthly-pair events meeting this criteria (out 142 

of 12) shows many places globally where persistent heat stretched across multiple months. 143 

The most prominent hotspots include south-central US, western Europe, Mediterranean 144 

coasts, central and eastern Africa, most of China, northern Australia, and Papua New Guinea. 145 

ChIP𝑛(�̅�) estimates indicate these events are strongly attributable, consistently averaging ≥146 

4.0. 147 
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We also examined estimates of attributable 𝑇𝑚𝑖𝑛 over India/Pakistan. Despite cooler 148 

anomalies overall, regionally-averaged ChIP𝑛(�̅�) estimates of 2-monthly 𝑇𝑚𝑖𝑛 are reliably 149 

larger than those of 𝑇𝑚𝑎𝑥 (except in Jan/Feb), with a regional average of 7.0 in March/April 150 

(i.e. made 128× more likely by climate change). In September/October, cooler overall 𝑇𝑚𝑖𝑛 151 

values had attribution estimates of equivalent PR > 18,000×, consistent with climate change’s 152 

strong overnight influence (Karl et al. 1993; Doan et al. 2022). 153 

4. Discussion 154 

A hindcast attributing daily 2022 temperatures to human-caused climate change shows 155 

that the WWA definitions of short- (2-day) and long-lived (2-month) extreme temperature 156 

events were both relatively common across the globe and highly attributable. Using WWA 157 

event definitions, this study demonstrates good agreement between WWA attribution 158 

estimates and the Gilford et al. (2022) automated attribution system over two distinct extreme 159 

heat events: a 2-day event over the UK (July 2022) and a 2-month-long event over 160 

India/Pakistan (Mar/Apr 2022). While the framework’s conservative design often 161 

underestimates the climate influence compared with WWA’s numbers, we find the approach 162 

is capable of rapidly identifying and confidently attributing these events. It has also been 163 

extended to evaluate similar events on a daily, global basis, and can serve as an early-warning 164 

system to support immediate climate change communications. 165 

There are clear and robust human fingerprints on 2022’s daily weather. For instance, our 166 

results expose the powerful emergence of human influence on overnight temperatures, a well-167 

known (but often under-communicated and under-studied) result of climate change with 168 

potentially critical impacts on global health and economics (Roye et al. 2021; Wang et al. 169 

2022; Kim et al. 2023; He et al. 2022). While a thorough examination of the negative impacts 170 
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associated with these events is beyond our scope, multiple lines of early evidence indicate 171 

that widespread attributable heat had human consequences during 2022 (e.g. Ballester et al. 172 

2023; Tobias et al. 2023). Our analyses reveal that there are still many outstanding 173 

opportunities to study and communicate attributable temperature events throughout the world 174 

each year. 175 
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