Climate impact of marine cloud brightening solar climate intervention under a susceptibility based strategy simulated by CESM2

Chih-Chieh Chen¹, Jadwiga H. Richter¹, Walker R. Lee¹, Mari Rachel Tye¹, Douglas G. MacMartin², and Ben Kravitz^{3,4}

¹National Center for Atmospheric Research (UCAR) ²Cornell University ³Indiana University ⁴Pacific Northwest National Laboratory

April 16, 2024

Abstract

The efficiency of marine cloud brightening in cooling Earth's surface temperature is investigated by using a medium ensemble of simulations with the Community Earth System Model version 2 (CESM2). Various cloud seeding schemes based on susceptibility are examined to determine what area extent will be required to induce 1°C cooling under SSP2-4.5. The results indicate that cloud seeding over 5% of the ocean area is capable of achieving this goal. Under this seeding scheme, cloud seeding is mainly deployed over lower latitudes where strong surface temperature and precipitation responses are induced. The simulations also reveal that the 5% cloud seeding scheme induces an overall reduction in global precipitation, with an increase over land and a decrease over the ocean.

1 2 3	Climate impact of marine cloud brightening solar climate intervention under a susceptibility based strategy simulated by CESM2
4	CC. Chen ¹ , J. H. Richter ¹ , Walker R. Lee ¹ , Mari Tye ^{1,2} , Douglas G. MacMartin ³ , Ben Kravitz ^{4,5}
5	¹ Climate and Global Dynamics Division, NSF National Center for Atmospheric Research, Boulder, CO
6	² Whiting School of Engineering, Johns Hopkins University, Baltimore, MD
7	³ Cornell University
8	⁴ Department of Earth and Atmospheric Sciences, Indiana University, Bloomington, IN
9	⁵ Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory,
10	Richland, WA
11	
12	Key Points:
13	
14	• Susceptibility-based marine cloud brightening is simulated by a medium ensemble of
15	CESM2 simulations.
16	• Cloud seeding over 5% of the most easily brightened ocean surface is capable of
17	producing a net cooling of 1 °C.
18	• The 5% seeding strategy induces strong temperature and precipitation responses in lower
19	latitudes, resembling a La Niña-like pattern.
20	Plain Language Summary:
21	Marine cloud brightening, a form of solar climate intervention, could reflect some sunlight back
22	to space and cool the planet. We used a state-of-the-art climate model to investigate what might
23	happen if we target the regions of the ocean that are most easily brightened. Deploying marine
24	cloud brightening over 5% of the ocean area can cool the planet by 1 °C in this model. However,
25	it causes temperature and precipitation changes that look like La Niña. This may be undesirable
26	for some people, meaning other marine cloud brightening strategies need to be investigated.
27	
28	
20	
29 30	Corresponding author: C -C Chen_cchen@ucar.edu
31	contesponding addition of crement, <u>content e deditedat</u>
32	
33	
24	
34	

35 Abstract

36 The efficiency of marine cloud brightening in cooling Earth's surface temperature is 37 investigated by using a medium ensemble of simulations with the Community Earth System 38 Model version 2 (CESM2). Various cloud seeding schemes based on susceptibility are examined 39 to determine what area extent will be required to induce 1 °C cooling under SSP2-4.5. The results 40 indicate that cloud seeding over 5% of the ocean area is capable of achieving this goal. Under this 41 seeding scheme, cloud seeding is mainly deployed over lower latitudes where strong surface 42 temperature and precipitation responses are induced. The simulations also reveal that the 5% 43 cloud seeding scheme induces an overall reduction in global precipitation, with an increase over 44 land and a decrease over the ocean.

45

146 Introduction

47 A number of solar climate intervention strategies have been proposed to counteract 48 anthropogenic global warming. These strategies seek to enhance the albedo of the Earth and thus 49 reflect more solar radiation back to space to induce a cooling effect. One strategy more 50 extensively investigated is stratospheric aerosol injection (hereafter SAI) which attempts to 51 mimic the cooling effect of large volcanic eruptions by injecting aerosols or their precursors into 52 the stratosphere. Another less explored strategy seeks to brighten the marine boundary clouds by 53 injecting sea salt particles to induce an increase in cloud drop number concentration [Latham, 54 1990]. One of the reasons marine cloud brightening (hereafter MCB) is relatively less researched 55 than SAI is due to the challenge of accurately simulating aerosol-cloud interactions in climate 56 models (IPCC, 2021).

MCB aims to achieve a reduction in global surface temperature mainly by cloud indirect
effects. By enhancing drop number concentration in clouds, cloud drops become smaller and thus
clouds become more reflective of incoming solar radiation, known as the cloud albedo or
Twomey effect [Twomey, 1974;Twomey, 1977]. As the cloud drop size is reduced, precipitation
may be suppressed and the clouds become more persistent. This also leads to reflecting more
solar radiation, known as the cloud lifetime or Albrecht effect [Albrecht, 1989].

63 There have been two main approaches in simulating a cloud seeding strategy for MCB 64 intervention. The first approach assumes deployment of cloud seeding over fixed regions [Jones 65 et al., 2009; Baugman et al., 2012]. The second seeks to maximize the cooling effects of cloud 66 seeding by first searching for regions most susceptible to seeding and then constructing a seeding 67 scheme accordingly [Latham et al., 2008;Rasch et al.,2009]. The first approach makes it a 68 straightforward task to determine what causes the induced regional climate impact due to MCB climate intervention. The advantage of the second approach, however, is its capability of inducinga maximum radiative effect with a minimum area extent to deploy cloud seeding.

71 Since MCB aims at enhancing cloud drop number concentration in boundary layer 72 clouds, it is important for the model employed to be capable of accurately simulating cloud-73 aerosol interactions. For example, Wood [2021] demonstrated that the radiative forcing of MCB 74 simulated by climate models could be highly sensitive to the assumption made in the aerosol 75 activation parameterization. Alterskjær et al. [2013] found that injecting sea salt particles in 76 certain sizes might lead to a warming effect instead of cooling; their simulations suggest that 77 injection of sea salt in the Aitken mode could suppress the occurrence of supersaturation which 78 led to reduction in activation of background aerosols, and consequently reduced the cloud drop 79 number concentration. One method of obtaining the climate effects from MCB without aerosol 80 microphysical parameterization uncertainties confounding the results is, instead of injecting sea 81 salt particles in the model simulation, the cloud drop number concentrations for the boundary 82 layer clouds within the designated seeding regions can be artificially increased. Latham et al. 83 [2008] and Rasch et al. [2009] followed this approach; they used the Community Climate System 84 Model version 3 (CCSM3) to conduct MCB simulations even though the model did not simulate 85 cloud-aerosol interactions. More recently, Stjern et al. [2018] and Hirasawa et al. [2023] also 86 conducted MCB simulations under this approach. Assuming sea salt particles of correct sizes are 87 injected, the cloud drop number concentration can be enhanced to ~500/cm3 as shown in 88 Alterskjær et al. [2013].

89 In this study, we present results from MCB simulations by the Community Earth System 90 Model version 2 (CESM2), which has many updates from a much older generation of the model 91 CCSM3 utilized in Latham et al. [2008] and Rasch et al. [2009]. Even though CESM2 is capable 92 of simulating cloud-aerosol interactions, we will limit our investigation based on the constrained 93 approach to reduce the uncertainty of the work resulting from the aerosol activation 94 parameterization. We first identified regions most susceptible to cloud seeding following the 95 methodology described in Latham et al, [2008] and Rasch et al. [2009] (also described in Section 96 2.3 below) to construct susceptibility-based seeding schemes. Then, we investigated the area 97 extent required for cloud seeding to generate 1 °C cooling relative to pre-industrial conditions. 98 Finally, a 10-member ensemble under the seeding scheme capable of producing 1 °C cooling was conducted, and we examined the climate impacts. 99 **2**00 Methods

101 2.1. Model description

102	We use the Community Earth System Model version 2 (CESM2)
103	[Danabasoglu et al., 2020] for all simulations in this study. This version was
104	employed for the Coupled Model Intercomparison Project Phase 6 (CMIP6)
105	[Eyring et al., 2016] in which CESM2 ranks highly among CMIP6 models in
106	terms of simulating large-scale circulations and tropospheric climate over the
107	historical time period [Simpson et al., 2020;Duviver et al., 2020;Coburn and
108	Pruor, 2021].
109	CESM2 is a fully coupled Earth system model with prognostic
110	atmosphere, land, ocean, sea-ice, and land-ice components. The atmosphere
111	component, the Community Atmosphere Model version 6 (CAM6), uses a finite
112	volume dynamical core with a 1.25°x0.9° longitude-latitude mesh and 32 vertical
113	levels with the model top at around 40 km. CAM6 uses the Zhang and McFarlane
114	[1995] scheme for deep convection, the Cloud Layers Unified By Binormals
115	(CLUBB) [Golaz et al., 2002;Larson, 2017] for shallow convection, boundary
116	layer, and an updated version of Morrison-Gettelman microphysics scheme
117	(MG2) [Gettelman and Morrison, 2015] for stratiform clouds and precipitation
118	processes.
119	The ocean component remains the same as in CESM1 and is based on
120	the Parallel Ocean Program version 2 (POP2) [Smith et al., 2010;Danabasoglu et
121	al., 2012] with several advances. These include a new parameterization for
122	mixing effects in estuaries, increased mesoscale eddy (isopycnal) diffusivities at
123	depth, use of prognostic chlorophyll for shortwave absorption, use of salinity-
124	dependent freezing-point together with sea-ice model, and a new Langmuir
125	mixing parameterization in conjunction with the new wave model component
126	[Danabasoglu et al., 2020]. POP2 operates on a mesh which is uniform in the
127	zonal direction (1.125°) and varies significantly in the meridional direction with
128	the finest resolution of 0.27° at the equator. In the Northern Hemisphere high
129	latitudes, the finest/coarsest resolution is about 0.38% 0.64% at the northwestern
130	Atlantic Ocean/northwestern Pacific Ocean. In the Southern Hemisphere, the
131	resolution monotonically changes to 0.53° at 32°S and remains constant further
132	south. There are 60 vertical levels with a maximum depth of 5500 m with a
133	uniform resolution of 10 m in the upper 160 m. CESM2 uses CICE version 5.1.2
134	(CICE5) [Hunke et al., 2015] as its sea-ice component and uses the same
135	horizontal grid as POP2.

136		CESM2 uses the Community Land Model version 5 (CLM5) [Lawrence
137		et al., 2019] with many updates from CLM4. CLM5 improves the model's
138		hydrological and ecological realism and enhances the representation of
139		anthropogenic land use activities on climate and carbon cycle [Danabasoglu et
140		al., 2020]. The River Transport Model (RTM) used in CESM1 has been replaced
141		with the Model for Scale Adaptive River transport (MOSART) [Li et al., 2013].
142		
143	2.2.	Reference simulations
144		We assume the moderate Shared Socioeconomic Pathway scenario of
145		SSP2-4.5 for this study. SSP2-4.5, a continuation of the Representative
146		Concentration Pathway 4.5 (RCP4.5) scenario, is considered "middle of the
147		road" and represents a medium range of future forcing pathways [O'Neill et al.,
148		2016]. A 5-member reference ensemble with CESM2 under SSP2-4.5 was
149		conducted for years 2015-2100 as part of the Coupled Model Intercomparison
150		Project Phase 6 (CMIP6; Eyring et al., 2018). Surface temperature evolution and
151		equilibrium climate sensitivity in these simulations are described in Meehl et al.
152		[2020]. Since then, 5 additional ensemble members were carried out. Thus, a
153		total of 10 ensemble members of CESM2 simulations under SSP2-4.5 are
154		employed in this study. However, daily maximum and minimum temperatures
155		were only archived for five members of the SSP2-4.5 ensemble [Richter et al.,
156		2022]; statistical significance testing was therefore based on a bootstrap analysis
157		to accommodate the reduced sample size.
158		
159	2.3.	Construction of seeding strategies
160		In this study, we follow the methodology described in Latham et al.
161		[2008] and Rasch et al. [2009] to employ a susceptibility-based strategy for cloud
162		seeding. As aforementioned, the simulations are performed under a constrained
163		approach, i.e. the cloud drop number concentration of low clouds within the
164		boundary layer clouds over the designated seeding regions is prescribed to a
165		predetermined value, set to 375/cm ³ below 850 hPa. 375/cm ³ is selected in this
166		study because it was the more realistic number concentration assumed in Latham
167		et al. [2008] and Rasch et al. [2009], as the higher assumed number concentration
168		(1000/cm ³) in these studies might not be achievable in reality (through personal
169		conversation with Dr. Andrew Gettelman).

170	To determine susceptibility to cloud seeding for each grid cell over the
171	ocean, two simulations under SSP2-4.5 between 2015 and 2034 are compared:
172	one baseline run and the other with cloud seeding at every grid point over the
173	ocean within the boundary layer clouds. Susceptibility is determined by the
174	shortwave cloud forcing difference between the two simulations, i.e., if cloud
175	seeding over a grid point induces stronger (more negative) shortwave cloud
176	forcing (SWCF), it is considered more susceptible to seeding. Susceptibility of
177	all grid points over the ocean is ranked based on shortwave cloud forcing
178	differences. Seeding masks are built based on a designated percentage of the
179	ocean area. As shown in Fig. 1, seeding masks ranging between 2.5% and 20% of
180	the ocean surface are depicted. Since shortwave cloud forcing is the gauge for
181	susceptibility, one factor that influences susceptible regions for cloud seeding is
182	where incoming solar radiation is abundant. Another key factor in determining
183	regions most susceptible to cloud seeding is the distribution of low clouds. As
184	revealed in Fig. 1, during the boreal summer regions most susceptible to cloud
185	seeding are mainly over the west coast of the US where stratocumulus is
186	frequently present [Warren et al., 1998]. During the boreal winter, the most
187	susceptible regions for cloud seeding shift to the southern hemisphere, mainly off
188	the west coast of South America. These regions are over the eastern flank of an
189	ocean gyre where persistent cloud decks are present. Fig. 2 shows the annual
190	seeding masks. The results indicate that when cloud seeding is deployed over less
191	than 5% of the ocean surface, regions most susceptible to seeding are mainly off
192	the west coast of North and South America. When the seeding area expands,
193	regions most susceptible to cloud seeding extend to the west coast of Australia
194	and Africa. Nevertheless, it is important to note that even though the
195	susceptibility-based cloud seeding strategy maximizes the radiative forcing by
196	MCB intervention, it does not necessarily maximize the induced temperature
197	effect.
198	The radiative forcing induced under the susceptibility-based seeding
199	strategy simulated by CESM2 is depicted in Fig. 3a. Under the same
200	methodology, Latham et al. [2008] showed a net negative shortwave cloud
201	forcing of ~2.5 W/m^2 for seeding over 20% of the ocean area. Nevertheless, by
202	CESM2 under SSP2-4.5, the net negative shortwave cloud forcing for the same
203	amount of seeding is \sim 7.5 W/m ² . The three fold difference can be explained by

204		the low cloud biases in the earlier model versions. As shown in Kay et al. [2012]
205		there were strong negative low cloud biases in the Community Atmosphere
206		Model version 4 (CAM4), most pronounced over the stratocumulus regions
207		which are the ideal locations to deploy MCB. Since CAM4 is a model similar to
208		what was used in Latham et al. [2008] and Rasch et al. [2009], it explains the
209		much lower induced radiative forcing by MCB. With various updates in the
210		physics of the model, CAM5 was found to significantly improve the
211		representation of low clouds [Kay. et al., 2012]. Through personal conversation
212		with Dr. Jen Kay, CAM6, the atmosphere component of CESM2, maintains the
213		improvements in the representation of low clouds as found in CAM5.
214		Consequently, MCB simulations carried out by CESM2 are much more credible
215		due to its superior representation of low clouds compared with CCSM3
216		employed in Latham et al. [2008] and Rasch et al. [2009]. However, even with
217		the significant improvement on the representation of low clouds in CAM5 over
218		CAM4, CAM5 still maintains negative low cloud biases over the stratocumulus
219		regions and thus the radiative forcing induced by MCB is likely to be
220		underestimated within the current model framework.
221		It is worth noting that the radiative forcing at the tail portion of the ocean
222		area is positive (Fig. 3a). Fig. 3b reveals that the incremental radiative forcing
223		induced by seeding the top 15% of the ocean surface is very high. It becomes
224		much lower until about 80%, and reveres signs beyond that. This is because this
225		methodology is susceptibility-based and the grid points with positive SWCF
226		differences induced by cloud seeding (a warming effect) will have the lowest
227		rankings. Fig. 3b shows differential radiative forcing against percentage of the
228		ocean area with cloud seeding.
2 29	Results	
230	3.1.	Seeding strategy in meeting temperature targets
231		In this study, we follow a similar experimental design to that outlined in
232		Richter et al. [2022] for a 10-member ensemble of CESM2 simulations utilizing
233		SAI in setting the climate target for the MCB ensemble simulations. Hence, we
234		choose the main target to restore the global mean surface temperature (T0)
235		between 2050 and 2069 to the 2020-2039 level under SSP2-4.5. The deployment
236		of MCB is assumed to start in 2035. In addition to global average surface
237		temperature (T0), Kravitz et al. [2017] proposed two extra temperature targets

238		which may be set for the purpose of climate intervention: 1) inter-hemispheric
239		temperature gradient (T1), and 2) equator-to-pole temperature gradient (T2). T1
240		and T2 will also be assessed in the MCB ensemble, as in Richter et al. [2022].
241		To assess the area extent of cloud seeding required to meet the
242		temperature target, we first conduct simulations under four seeding schemes:
243		2.5%, 5%, 7.5% and 12.5% of the ocean surface. The global mean surface
244		temperature for these four simulations is illustrated in Fig. 4 which suggests that
245		seeding over 5% of the ocean surface most closely reaches the T0 goal in the
246		2050 - 2069 average.
247	3.2.	Ensemble MCB simulations
248		The first set of experiments suggest that seeding over 5% of the ocean
249		surface is sufficient to meet the temperature target set in this study. We then
250		proceed to conduct a 10-member ensemble simulations with the same seeding
251		scheme. The ensemble simulations confirm that indeed cloud seeding over 5% of
252		the ocean surface is what is needed to meet the temperature target set in this
253		study (see Fig. 5a). Since here we only apply a constant seeding (and hence
254		roughly constant forcing), the global mean surface temperature of the MCB
255		ensemble is in a clear upward trend and exceeds the temperature target during the
256		last 10 years of the simulations. In contrast, in the SAI simulations in Richter et
257		al (2022) a feedback algorithm was used to adjust the injection rates annually to
258		maintain a roughly constant global mean temperature.
259		Next, we examine the regional temperature response by the 5% MCB
260		intervention. The impact on mean surface temperature by the 5% seeding scheme
261		is illustrated by the difference between the 2050-2069 average under the MCB
262		ensemble and the 2020-2039 average under the control ensemble (Figs. 6 a,d,g).
263		The application of MCB results in intense regional surface temperature responses
264		with magnitudes much stronger than the effect of climate change (compare Figs
265		6a,d,g with Figs. 6 c,f,i). The most pronounced cooling is found over the
266		stratocumulus regions off the west coast of North and South America where
267		cloud seeding is deployed regularly (see Fig. 2b), and cooling extends to the
268		tropical West Pacific. Furthermore, it is found that the annual averaged surface
269		temperature is lower over Alaska (Fig. 6a) which is mainly attributed to the
270		stronger cooling during the boreal winter (Fig. 6c). The MCB ensemble
271		simulations also reveal that over the Northwest Pacific, the Eastern US, the

272Southern Ocean, and the Antarctic, the surface temperature is significantly273warmer (Figs. 6 a,d,g) than the 2020-2039 average, indicating the MCB scheme274employed is not able to restore the surface temperature in these regions back to275the 2020-2039 level.

276 When using the 2050-2069 level from the control ensemble mean as the 277 basis for comparison, the induced surface temperature response by MCB shows a 278 different picture (Figs. 6 b,d,f). In such a comparison, lower surface temperature 279 is found in a much broader area. Pronounced cooling over the main seeding 280 regions, i.e. off the west coast of North and South America, is found in the 281 annual mean (Fig. 6b) as well as during the boreal winter (Fig. 6d) and boreal 282 summer (Fig. 6f). It is interesting to note that during the boreal winter even 283 though seeding is mainly deployed in the Southern Hemisphere, strong cooling is 284 present over the Arctic (Fig. 6d). Warmer surface temperature, however, is also 285 present in the MCB ensemble mean, mainly over the Northwest Pacific and the 286 South Pacific Convergence Zone (SPCZ). This reveals that under the MCB 287 intervention, surface temperature becomes even warmer in these regions which 288 will further intensify the warming effect by climate change. Thus, this is a highly 289 undesirable outcome for such MCB intervention.

290 The pronounced cooler and warmer regions arising from the 5% seeding 291 are further emphasized in the surface temperature extremes (annual hottest and 292 coldest days and nights) illustrated in Fig.7a,d,g,j. In contrast with SAI 293 simulations [e.g. Richter et al., 2022; Tye et al., 2022], the greatest response is 294 observed in the annual minimum daily minimum temperature ("Coldest Night"; 295 Fig. 7j) while the least impact is apparent for the annual maximum daily 296 maximum temperature ("Hottest Day"; Fig.7b). Regions of particularly elevated 297 temperature are primarily over land in the highest latitudes for the daily 298 maximum temperatures (Figs. 7a,d), with increases up to 2K higher than those 299 shown for surface mean temperature. Cooling of a similar magnitude is not as 300 extensive, and only appears in the daily minimum temperatures (Figs. 7g,j).

301Comparing the 2050-2069 level from the control ensemble mean to the302annual temperature extremes under the MCB ensemble (Figs. 7b,e,h,k) also303shows a different response than that of the surface mean temperature in Fig. 6.304While the mean surface temperatures show decreases in temperature over most of305the globe with comparison to climate change, only the hottest night (Fig. 7h) and

306	coldest night (Fig. 7k) show a similar universal cooling. In contrast, the coldest
307	day (Fig. 7a) and hottest day (Fig. 7e) are cooler relative to climate change only
308	over the areas of seeding; over land the temperatures are increased relative to
309	climate change). As noted above, the differences in extreme temperature induced
310	by climate change alone (the average between 2050 and 2069 against the average
311	between 2020 and 2039, Figs. 7 c,f,i,l) is generally less than the differences with
312	MCB. Increases are also greater in the higher latitudes (Kim et al. 2020), and by
313	reason of their rarity only show statistical significance in regions where the
314	changes, and also interannual variability, are small [e.g. Katz, 2010].
315	Next, we assess T1 and T2 under the MCB ensemble. The simulations
316	indicate that the MCB ensemble cannot restore T1 and T2 between 2050 and
317	2069 to the 2020-2039 level. The MCB ensemble mean of T1 between 2050 and
318	2069 is lower than the average between 2020 and 2039 by the control ensemble,
319	and higher for T2 (Figs. 5b,c). Different seeding strategies would be required to
320	restore T1 and T2, assuming these are within the space of achievable objectives
321	(Lee et al. 2020).
322	The annual precipitation response induced by MCB shows similar
323	patterns by using either the 2020-2039 average or the 2050-2069 average of the
324	control ensemble (Figs. 8 a,b) as the basis for comparison. The precipitation
325	response is highly concentrated in the lower latitudes. Precipitation with MCB is
326	seen to reduce over the Intertropical Convergence Zone (ITCZ) where colder
327	surface temperature is induced by MCB, and the ITCZ slightly shifts northward
328	as a strip of increased precipitation is present. Precipitation is also found to
329	increase under MCB over the SPCZ, the maritime continent, Australia, and the
330	Amazon. When broken down by convective and stratiform precipitation, it is
331	found that both exhibit very similar patterns but the change in convective
332	precipitation plays a more important role (Figs. 8c,d,e,f), which responds
333	strongly to the surface temperature.
334	In comparison, the change in precipitation due to climate change is
335	illustrated in Figs. 8c,f,i, which is in general much weaker in magnitude. The
336	strongest difference is enhanced precipitation over the ITCZ (Fig. 8c), mainly
337	due to convective precipitation (compare Figs. 8f,i). However, the magnitude of
338	the change is still much weaker than that induced by the MCB intervention.

339 The precipitation response during the boreal winter and boreal summer is 340 illustrated in Figs. 9 and 10. Similar to the annual precipitation response (Fig. 8), 341 the most pronounced seasonal precipitation response is mainly found in the lower 342 latitudes and exhibits similar features as the annual mean, e.g. decreased 343 precipitation over the ITCZ, and increased precipitation over the SPCZ, the maritime continent, and Australia (see Figs. 9a,9b,10a,10b). However, such 344 345 precipitation response is stronger in the boreal winter than in the boreal summer 346 because the induced lower surface temperature by MCB over the tropical West 347 Pacific is more pronounced during the boreal winter (compare Figs. 6d,g). 348 Differences in seasonal precipitation induced by MCB can be detected in

349several regions. Increased precipitation over the Northwest Pacific and the350Amazon and decreased precipitation over the Northeast Pacific are only found351during the boreal winter (compare Figs. 9a,9b,10a,10b). Since these features are352also present in the annual mean (Figs. 8a,b), it is conceivable that such regional353response is mainly attributed to the boreal winter. Finally, as previously observed354in the annual mean, convective precipitation response is also stronger than355stratiform precipitation in the seasonal average (compare Figs. 9c,d,e,f,10c,d,e,f).

356 The differing responses of convective and stratiform precipitation are 357 reflected in the changes in the annual maximum daily precipitation total ("wettest 358 day", Fig. 11a). Increases in the wettest day are focused over the SPCZ and 359 Australia, with a narrow increase over the Pacific Ocean aligned with a 360 northward shift in the ITCZ. The largest decreases in the wettest day correlate 361 with the colder regions over the main seeding region. The contrast between the 362 simulations with and without MCB is accentuated for the most extreme 363 precipitation, as it is for surface temperature extremes (Fig. 11b). While mean 364 precipitation under unabated climate change shows distinctly wetter and drier 365 regions, the wettest day increases everywhere (Fig. 11c).

366Even though the surface temperature over the Northwest Pacific is367warmer under the MCB ensemble annual mean (Figs. 6 a,d,g), precipitation is368only increased in DJF (Fig. 9a) but not in JJA (Fig. 10a). The response in sea-369level pressure over the North Pacific in DJF under the MCB ensemble (Fig. 12a)370is in good agreement with the induced surface temperature change (Fig. 6d): the371Aleutian low is weakened as surface temperature is cooler, and the sea-level372pressure over the Northwest Pacific is lower as surface temperature is warmer. In

373	DJF, the warmer surface temperature over the Northwest Pacific enhances
374	convective precipitation (Fig. 9d) and the lower sea-level pressure promotes
375	stratiform precipitation (Fig. 9g). However in JJA, the warmer surface
376	temperature over the Northwest Pacific leads to an increase in sea-level pressure
377	(Fig. 12b). This suggests that the subtropical high (a warm core high) over the
378	North Pacific extends over the west Pacific. The MCB ensemble average
379	indicates that convective precipitation is increased (Fig. 10d), likely due to
380	warmer surface temperature, but stratiform precipitation is decreased, likely due
381	to subsidence induced by the subtropical high. Increases in convective
382	precipitation are most likely to result in increases in the most extreme
383	precipitation (Fig. 11a). These features imply that the MCB intervention is likely
384	to influence the large-scale circulation over the North Pacific.
385	The MCB ensemble reveals that precipitation is increased over Amazon
386	in DJF but not in JJA. This is likely due to the induced difference in total
387	precipitable water. The MCB ensemble shows an increase in total precipitable
388	water over the Northern Amazon in DJF (Fig. 12c), but the total precipitable
389	water is decreased in JJA (Fig. 12d). The precipitation response over Amazon in
390	DJF (Figs. 9a,d,g) shows a dipole structure, i.e., precipitation is increased in the
391	north but is decreased in the south. Thus, the impact of the MCB intervention is
392	to shift the precipitation over Amazon northward in DJF which is in good
393	agreement with the change in total precipitable water.
394	Next, we examine the impact of the 5% ocean area seeding scheme on
395	the globally averaged precipitation. As aforementioned, this seeding scheme is
396	sufficient to restore T0 between 2050 and 2069 to the 2020-2039 level (Fig. 5a).
397	Under this seeding scheme, the ensemble mean in global precipitation between
398	2050 and 2069 is lower than the 2020-2039 level (Fig. 13a). This result is
399	consistent as Rasch et al. [2009] in which it was found that restoring precipitation
400	required less area extent for cloud seeding than to restore T0; similar conclusions
401	have been found for solar reduction (e.g., Bala et al 2008) and for SAI. The
402	simulations also show that this seeding scheme induces lower precipitation over
403	the ocean between 2050 and 2069 than the 2020-2039 level (Fig. 13b), but the
404	precipitation over land between 2050 and 2069 is higher than the 2020-2039
405	level (Fig. 13c). As revealed in Fig. 8a, the increased precipitation over land is
406	mainly found over Australia, India, and the maritime continent.

407	Next, we examine differences in radiative fluxes induced by the 5%
408	MCB scheme. Longwave flux at the model top is in general reduced in the lower
409	latitudes except in the equatorial region where longwave flux is increased (Fig.
410	14a). Lower longwave flux at the model top in the lower latitudes is consistent
411	with lower surface temperature (Fig. 14q) which is a key factor in determining
412	the upward longwave flux at the surface (Fig. 14h) based on the Stefan-
413	Boltzmann law. The increase in longwave flux at the model top in the equatorial
414	region is mainly attributed to cloud forcing (Fig. 14c). As shown in Fig. 8b,
415	convective precipitation over the tropical Pacific is significantly reduced by the
416	MCB intervention, which also results in reduction in mid and high clouds (Figs.
417	14n,o). Thus, less longwave radiation is absorbed by clouds in the equatorial
418	region and thus higher longwave flux can reach the model top.
419	Induced response in all-sky shortwave flux at the model top by the MCB
420	intervention (Fig. 14d) is dominated by cloud forcing (Fig. 14f). Shortwave flux
421	at the model top is overall lower in the lower latitudes but is increased in the
422	equatorial region. The lower shortwave flux at the model top in the lower
423	latitudes is a direct response to the higher low cloud fraction (Fig. 14m) which
424	reflects more shortwave radiation. Nevertheless, mid and high clouds in the
425	equatorial region are reduced (Figs. 14n,o), likely due to suppression of
426	convection by MCB intervention, and the total cloud fraction is lower (Fig. 14p),
427	indicating the contribution from mid and high clouds more than offset the
428	increase in low clouds. Thus less shortwave radiation is reflected which in turn
429	increases shortwave flux at the model top (Fig. 14d) in the equatorial region.
430	It is interesting to note that both all-sky and clear-sky shortwave fluxes at
431	the model top are increased over high latitudes in the southern hemisphere (Figs.
432	14d,e), which implies that less shortwave radiation is reflected. Since the
433	difference in shortwave cloud forcing in this region is negative, i.e. more
434	shortwave radiation is reflected by clouds, much less shortwave radiation is
435	reflected by the surface. Due to negative shortwave cloud forcing differences in
436	high latitudes over the southern hemisphere (Fig. 14f), less shortwave radiation is
437	capable of reaching the surface (Fig. 141). However, even less shortwave
438	radiation is reflected by the surface in this region (Fig. 14k) which is due to loss
439	of sea ice (Fig. 14r).

440	It is worth noting that the ensemble spread for sea ice in the northern
441	hemisphere (Fig. 14r) is quite large even though the ensemble mean difference is
442	near zero. This is potentially a reflection of a large ensemble spread in surface
443	temperature difference (Fig. 14q). This indicates that the uncertainty for the
444	prediction over the Arctic is quite high. In the southern hemisphere, however, the
445	ensemble spread in sea ice is relatively smaller as well as the surface
446	temperature. The ensemble simulations also suggest that the MCB intervention is
447	incapable of restoring sea ice in the southern hemisphere between 2050 and 2069
448	to the 2020-2039 level (Fig. 14r).
449	Even though we have demonstrated through a 10-member ensemble
450	simulations that cloud seeding over 5% of the ocean surface is capable of
451	meeting the global average surface temperature goal, applying a steady forcing
452	will not, of course, maintain a steady global average surface temperature, as
453	shown in Fig. 5a. Maintaining a steady global average surface temperature
454	would require that the seeding area be gradually increased.
455	The 5% MCB scheme induces cooling mostly confined in the lower
456	latitudes. Furthermore, surface temperature becomes warmer under MCB
457	intervention than the baseline ensemble average, mainly over the Northwest
458	Pacific and the SPCZ (Figs. 6b,e,h), which is on top of warming due to climate
459	change (Figs. 6c,f,i), and with greatest effect on the hottest days and nights
460	(Figs.7a,d,g). In order to eliminate such undesirable responses, it will require
461	different MCB strategies than that examined in this study.
462	
4 63	Conclusions
464	In this study, we examine the efficiency of MCB climate intervention by CESM2
465	ensemble simulations. Compared with the previous study using CCSM3 [Latham et al., 2008,
466	Rasch et al., 2009], it is found that MCB may induce a much greater impact with the same area
467	extent of cloud seeding under CESM2. This is mainly due to the much more realistic
468	representation of low clouds, especially stratocumulus, in CESM2 than CCSM3. Since cloud
469	seeding aims to enhance the albedo of low clouds, it is thus essential to have good representation
470	of low clouds in the model employed for MCB simulations.
471	We follow the methodology described in Latham et al. [2008] and Rasch et al. [2009] to
472	build a seeding strategy based on susceptibility of cloud seeding over all oceanic model grid
473	points. The advantage of this strategy is its capability to generate a maximum (negative) radiative

effect with minimum cloud seeding efforts. However, the disadvantage of this approach is the
difficulty in interpreting the cause of certain regional climate impacts. If cloud seeding is
assumed to occur over fixed regions, it will thus make it straightforward to interpret the cause of
regional climate impact of MCB intervention. The downside of this approach, of course, is its
lower efficiency to induce a cooling effect.

479 Under the protocol design in this study, it is found that cloud seeding over 5% of ocean 480 surface is capable of restoring the global average surface temperature between 2050 and 2069 to 481 the 2020-2039 level, under the SSP2.4-5 scenario. The 10-member ensemble of CESM2 482 simulations shows that MCB yields cooling mostly confined within lower latitudes. The most 483 pronounced cooling in surface temperature occurs over where cloud seeding is regularly 484 deployed, mainly off the west coast of North and South America, and cooling extends to the 485 tropical west Pacific. As a result, MCB induces a La Nina-like response and shifts the ITCZ 486 slightly northward. Furthermore, surface temperature over the Northwest Pacific and SPCZ under 487 MCB intervention becomes warmer than the baseline ensemble mean (Fig. 6b) which indicates 488 that the MCB intervention further intensifies warming due to climate change (Fig. 6c) over these 489 regions. These features are highly undesirable outcomes delivered by the MCB intervention.

490 The MCB climate intervention is also found to induce a significant impact on 491 precipitation. The most pronounced decrease in precipitation is *not* found over the places where 492 MCB is deployed even though the direct impact of cloud seeding would lead to a decrease in 493 precipitation due to the Albrecht effect. Instead, the strongest precipitation reduction is found 494 over the ITCZ where lower sea surface temperature is induced by MCB. The simulations also 495 reveal that reduction of convective precipitation plays a more important role in the total 496 precipitation decrease. Even though the global average precipitation is reduced by MCB, it is 497 found that precipitation is increased over land, mainly over Australia, the maritime continent, and 498 the Amazon, with these regions also receiving considerable increases in the most extreme 499 precipitation.

500 In the current study, we prescribe cloud drop number concentration in the designated 501 cloud seeding regions instead of injecting sea salt particles. This bypasses the representation of 502 aerosol activation processes which remain highly uncertain in climate models. While this 503 constrained approach eliminates the uncertainty resulting from the model representation of 504 aerosol activation, it also lacks the direct aerosol effect due to sea salt particle injections. In our 505 future study we will investigate how deployment of MCB by injecting sea salt particles may 506 impact the climate. Additionally, different seeding strategies will be explored which may 507 simultaneously meet the temperature targets of T0, T1 and T2.

509 Acknowledgements:

- 510 The work is based upon work supported by the NOAA ERB grant NA22OAR4310481, and the
- 511 NSF National Center for Atmospheric Research which is a major facility sponsored by the US
- 512 National Science Foundation under Cooperative Agreement no. 1852977. The Community Earth
- 513 System Model (CESM) project is supported primarily by the National Science Foundation.
- 514 Computing and data storage resources, including the Cheyenne supercomputer
- 515 (doi:10.5065/D6RX99HX), were provided by the Computational and Information Systems
- 516 Laboratory (CISL) at NSF NCAR. Support for BK was provided in part by the Indiana University
- 517 Environmental Resilience Institute. The Pacific Northwest National Laboratory is operated for the
- 518 US Department of Energy by Battelle Memorial Institute under contract DE-AC05-76RL01830.
- 519

520 Open Research

521 Data Availability Statement

- 522 CESM tag cesm2.1.4-rc.08 was used to carry out the simulations and is also available at
- 523 https://doi.org/10.5281/zenodo.7271743 (CESM Team, 2022). CESM2 simulation output
- 524 presented in this paper is available at https://doi.org/10.5065/MRH9-B809.
- 525

526 References

- 527 Albrecht, B. A.: Aerosols, Cloud Microphysics, and Fractional Cloudiness, Science, 245,
- 528 1227–1230, https://doi.org/10.1126/science.245.4923.1227, 1989.
- Alterskjær, K. and Kristjánsson, J. E.: The sign of the radiative forcing from marine cloud
 brightening depends on both particle size and injection amount, Geophys. Res. Lett., 40,
- 531 210–215, https://doi.org/10.1029/2012GL054286, 2013.
- Baughman, E., Gnanadesikan, A., Degaetano, A., and Adcroft, A.: Investigation of the Surface
 and Circulation Impacts of Cloud-Brightening Geoengineering, J. Climate, 25,
- 534 7527–7543, <u>https://doi.org/10.1175/JCLI-D-11-00282.1</u>, 2012.
- 535 Coburn, J. and Pryor, S. C.: Differential Credibility of Climate Modes in CMIP6, J. Climate, 34,
 536 8145–8164, 2021.
- 537 Danabasoglu, G., Bates, S. C., Briegleb, B. P., Jayne, S. R., Jochum, M., Large, W. G., Peacock,
- 538 S., & Yeager, S. G. (2012). The CCSM4 ocean component. *Journal of Climate*, 25,
 539 1361–1389. https://doi.org/10.1175/JCLI-D-11-00091.1
- 540 Danabasoglu, G., Lamarque, J.-F., Bacmeister, J., Bailey, D. A., DuVivier, A. K., Edwards, J., et
- al. (2020). The Community Earth System Model Version 2 (CESM2). *Journal of*

542 Advances in Modeling Earth Systems, 12, e2019MS001916. 543 https://doi.org/10.1029/2019MS001916 544 DuVivier, A. K., Holland, M. M., Kay, J. E., Tilmes, S., Gettelman, A., and Bailey, D. A.: Arctic 545 and Antarctic sea ice mean state in the Community Earth System Model Version 2 and 546 the influence of atmospheric chemistry, J. Geophys. Res.-Oceans, 125, e2019JC015934, 547 https://doi.org/10.1029/2019JC015934, 2020. 548 Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., & Taylor, K. E. 549 (2016). Overview of the Coupled Model Intercomparison Project phase 6 (CMIP6) 550 experimental design and organization. Geoscientific Model Development, 9, 1937–1958. 551 https://doi.org/10.5194/gmd-9-1937-2016 552 Gettelman, A., & Morrison, H. (2015). Advanced two-moment bulk microphysics for global 553 models. Part I: Off-line tests and comparison with other schemes. Journal of Climate, 28, 554 1268–1287. https://doi.org/10.1175/JCLI-D-14-00102.1 555 Golaz, J.-C., Larson, V. E., & Cotton, W. R. (2002). A PDF-based model for boundary layer 556 clouds. Part I: Method and model description. Journal of the Atmospheric Sciences, 59, 557 3540-3551. 558 Hirasawa, H., Hingmire, D., Singh, H. A., Rasch, P. J., and Mitra, P. (2023) "Effect of Regional 559 Marine Cloud Brightening Interventions on Climate Tipping Elements" Geophysical 560 Research Letters, Accepted. Preprint DOI: 10.22541/essoar.168319813.32335439/v1 561 Hunke, E. C, Lipscomb, W. H., Turner, A. K., Jeffery, N., & Elliott, S. (2015). CICE: The Los 562 Alamos Sea Ice Model. Documentation and Software User's Manual. Version 5.1. T-3 563 Fluid Dynamics Group, Los Alamos National Laboratory, Tech. Rep. LA-CC-06-012. 564 Intergovernmental Panel on Climate Change (IPCC). Climate Change 2021 – The Physical 565 Science Basis: Working Group I Contribution to the Sixth Assessment Report of the 566 Intergovernmental Panel on Climate Change. Cambridge University Press; 2023. 567 Jones, A., Haywood, J., and Boucher, O.: Climate impacts of geoengineering marine 568 stratocumulus clouds, J. Geophys. Res., 114, D10106, 569 https://doi.org/10.1029/2008JD011450, 2009. 570 Katz, Richard W. "Statistics of Extremes in Climate Change." Climatic Change 100, no. 1 (May 571 2010): 71-76. https://doi.org/10.1007/s10584-010-9834-5. 572 Kay, J. E., and Coauthors, 2012: Exposing Global Cloud Biases in the Community Atmosphere 573 Model (CAM) Using Satellite Observations and Their Corresponding Instrument 574 Simulators. J. Climate, 25, 5190–5207, https://doi.org/10.1175/JCLI-D-11-00469.1. 575 Kim, Y.-H., S.-K. Min, X. Zhang, J. Sillmann, and M. Sandstad. "Evaluation of the CMIP6

576	Multi-Model Ensemble for Climate Extreme Indices." Weather and Climate Extremes 29
577	(September 2020): 100269. https://doi.org/10.1016/j.wace.2020.100269.
578	Larson, V. E., (2017). CLUBB-SILHS: A parameterization of subgrid variability in the
579	atmosphere. arXiv:1711.03675v2 [physics.ao-ph].
580	Latham, J.: Control of global warming?, Nature, 347, 339–340,
581	https://doi.org/10.1038/347339b0, 1990.
582	Latham, J., Rasch, P., Chen, CC., Kettles, L., Gadian, A., Gettelman, A., Morrison, H., Bower,
583	K., and Choularton, T.: Global Temperature Stabilization via Controlled Albedo
584	Enhancement of Low-Level Maritime Clouds, Philos. T. R. Soc. A, 366, 1882,
585	3969-3987, https://doi.org/10.1098/rsta.2008.0137, 2008.
586	Lawrence, D. M., Fisher, R. A., Koven, C. D., Oleson, K. W., Swenson, S. C., Bonan, G., Collier,
587	N., Ghimire, B., van Kampenhout, L., Kennedy, D., Kluzek, E., Lawrence, P. J., Li, F.,
588	Li, H., Lombardozzi, D., Riley, W. J., Sacks, W. J., Shi, M., Vertenstein, M., Wieder, W.
589	R., Xu, C., Ali, A. A., Badger, A. M., Bisht, G., Brunke, M. A., Burns, S. P., Buzan, J.,
590	Clark, M., Craig, A., Dahlin, K., Drewniak, B., Fisher, J. B., Flanner, M., Fox, A. M.,
591	Gentine, P., Hoffman, F., Keppel-Aleks, G., Knox, R., Kumar, S., Lenaerts, J., Leung, L.
592	R., Lipscomb, W. H., Lu, Y., Pandey, A., Pelletier, J. D., Perket, J., Randerson, J. T.,
593	Ricciuto, D. M., Sanderson, B. M., Slater, A., Subin, Z. M., Tang, J., Thomas, R. Q., Val
594	Martin, M., & Zeng, X. (2019). The Community Land Model Version 5: Description of
595	new features, benchmarking, and impact of forcing uncertainty. Journal of Advances in
596	Modeling Earth Systems, 11, 4245-4287. https://doi.org/10.1029/2018MS001583
597	Lee, W., MacMartin, D., Visioni, D., and Kravitz, B.: Expanding the design space of
598	stratospheric aerosol geoengineering to include precipitation-based objectives and
599	explore trade-offs, Earth Syst. Dynam., 11, 1051–1072, https://doi.org/10.5194/esd-11-
600	<u>1051-2020</u> , 2020.
601	Li, F., Levis, S., & Ward, D. S. (2013). Quantifying the role of fire in the Earth system—Part 1:
602	Improved global fire modeling in the Community Earth System Model (CESM1).
603	Biogeosciences, 10, 2293-2314. https://doi.org/10.5194/bg-10-2293-2013
604	Meehl, G. A, Arblaster, J. M., Bates, S., Richter, J. H., Tebaldi, C., Gettleman, A., Medeiros, B.,
605	Bacmeister, J., DeRepentigny, P., Rosenbloom, N., Shields, C., Hu, A., Teng, H., Mills,
606	M. J., and Strand, G.: Characteristics of future warmer base states in CESM2, Earth
607	Space Sci., 7, e2020EA001296, https://doi.org/10.1029/2020EA001296, 2020.
608	O'Neill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti, R.,
609	Kriegler, E., Lamarque, JF., Lowe, J., Meehl, G. A., Moss, R., Riahi, K., and

610	Sanderson, B. M.: The Scenario Model Intercomparison Project (ScenarioMIP) for
611	CMIP6, Geosci. Model Dev., 9, 3461–3482, https://doi.org/10.5194/gmd-9-3461-2016,
612	2016.
613	Rasch, P. J., Latham, J., and Chen, CC.: Geoengineering by Cloud Seeding: Influence on Sea
614	Ice and Climate System, Environ. Res. Lett., 4, 045112,
615	https://doi.org/10.1088/1748-9326/4/4/045112, 2009.
616	Richter, J. H., Visioni, D., MacMartin, D. G., Bailey, D. A., Rosenbloom, N., Dobbins, B., Lee,
617	W. R., Tye, M., and Lamarque, JF.: Assessing Responses and Impacts of Solar climate
618	intervention on the Earth system with stratospheric aerosol injection (ARISE-SAI):
619	protocol and initial results from the first simulations, Geosci. Model Dev., 15, 8221-
620	8243, https://doi.org/10.5194/gmd-15-8221-2022, 2022.
621	Simpson, I. R., Bacmeister, J., Neale, R. B., Hannay, C., Gettelman, A., Garcia, R. R., et al.
622	(2020). An evaluation of the large-scale atmospheric circulation and its variability in
623	CESM2 and other CMIP models. Journal of Geophysical Research: Atmospheres, 125,
624	e2020JD032835. https://doi.org/10.1029/2020JD032835
625	Smith, R., P. Jones, B. Briegleb, F. Bryan, G. Danabasoglu, J. Dennis, J. Dukowicz, C. Eden, B.
626	Fox-Kemper, P. Gent, M. Hecht, S. Jayne, M. Jochum, W. Large, K. Lindsay, M.
627	Maltrud, N. Norton, S. Peacock, M. Vertenstein, & S. Yeager (2010). The Parallel Ocean
628	Program (POP) reference manual, Ocean component of the Community Climate System
629	Model (CCSM), LANL Tech. Report, LAUR-10-01853, 141 pp.
630	Stjern, C. W., Muri, H., Ahlm, L., Boucher, O., Cole, J. N. S., Ji, D., Jones, A., Haywood, J.,
631	Kravitz, B., Lenton, A., Moore, J. C., Niemeier, U., Phipps, S. J., Schmidt, H., Watanabe,
632	S., and Kristjánsson, J. E.: Response to marine cloud brightening in a multi-model
633	ensemble, Atmos. Chem. Phys., 18, 621–634, https://doi.org/10.5194/acp-18-621-2018,
634	2018.
635	Twomey, S.: Pollution and the planetary albedo, Atmos. Environ., 8, 1251–1256, 1974.
636	Twomey, S.: The Influence of Pollution on the Shortwave Albedo of Clouds, J. Atmos. Sci., 34,
637	1149–1152, https://doi.org/10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2,
638	1977.
639	Tye, M. R., K. Dagon, M. J. Molina, J. H. Richter, D. Visioni, B. Kravitz, and S. Tilmes. "Indices
640	of Extremes: Geographic Patterns of Change in Extremes and Associated Vegetation
641	Impacts under Climate Intervention." Earth System Dynamics 13 (2022): 1233-57.
642	https://doi.org/10.5194/esd-13-1233-2022.
643	Warren, S G, Hahn, C J, London, J, Chervin, R M, Jenne, R L, Colorado Univ., Boulder, CO,

644	Colorado Univ., Boulder, CO, and National Center for Atmospheric Research, Boulder,
645	CO. Global distribution of total cloud cover and cloud type amounts over the ocean.
646	United States: N. p., 1988. Web. doi:10.2172/5415329.
647	Wood, R.: Assessing the potential efficacy of marine cloud brightening for cooling Earth using a
648	simple heuristic model, Atmos. Chem. Phys., 21, 14507-14533,
649	https://doi.org/10.5194/acp-21-14507-2021, 2021.
650	Zhang, G. J., & McFarlane, N. A. (1995). Sensitivity of climate simulations to the
651	parameterization of cumulus convection in the Canadian climate center general-
652	circulation model. Atmosphere-Ocean, 33(3), 407–446
653	
654	
655	
656	
657	
658	
659	
660	
661	
662	
663	
664	
665	

Figure 1: Monthly seeding masks based on the optimal seeding approach by using CESM2

simulations between 2015 and 2034 under SSP2-4.5 at 2.5% to 20% of the ocean area.

Figure 2: As in Fig. 1, but for the annually accumulated seeding masks. 1 means cloud seedingtakes place in one month, and 12 means cloud seeding takes place all 12 months.

Figure 3: (a) Shortwave cloud forcing computed based on cloud seeding over all grid points over the ocean by using simulations between 2015 and 2034 under SSP2-4.5 as a function of areal extent for cloud seeding with a prescribed drop number concentration of 375/cm³, (b) differential shortwave cloud forcing based on the percentage of the ocean surface with cloud seeding. Annual

(ANN) and seasonal (DJF, JJA, MAM, SON) averages are plotted.

717 Figure 4: Time series of global average temperature. Black solid line represents the 10-member

ensemble mean of the CESM2 simulations under SSP2-4.5, and the ensemble spread is two

standard deviations of the ensemble. The black dashed line is the average between 2020 and

720 2039. The four colored solid lines represent MCB simulations over: 1) 2.5% (green), 2) 5% (red),

3) 7.5% (blue), and 4) 12.5% (magenta) of the ocean surface, and the dashed colored lines areaverages between 2050 and 2069.

Figure 5: Time series of a) global mean temperature (T0), b) inter-hemispheric temperature

747 gradient (T1), and c) equator-to-pole temperature gradient (T2). Black and red solid lines

- represent the 10-member ensemble mean of the control and MCB (over 5% ocean surface)
- simulations with an ensemble spread of two standard deviations. The black dashed line is the
- average between 2020 and 2039, and the red dashed line is the average between 2050 and 2069.

754 755

Figure 6: Difference in surface temperature (TS) in K between: 1) the ensemble mean of MCB over 5% ocean surface between 2050 and 2069 against the control ensemble mean between 2020

over 5% ocean surface between 2050 and 2069 against the control ensemble mean between 2020
and 2039 (a,d,g), 2) the ensemble mean of MCB over 5% ocean surface between 2050 and 2069

against the control ensemble mean between 2050 and 2069 (b,e,h), and 3) the ensemble mean of

the baseline model between 2050 and 2069 against the ensemble mean of the baseline model

- between 2020 and 2039 (c,f,i). Top panels are for annual average (ANN), middle panels are for
- the boreal winter average (DJF), and the bottom panels are for the boreal summer average (JJA).
- 762 Differences under the 95% significance level are marked in gray dots.
- 763

(c) Δ ANN minimum daily maximum (K), base(2050-2069) - base(2020-2039)

-4

um (K), MCB(2050-2069) - base(2020-2039) (e) Δ ANN maximum daily maximum (K), MCB(2050-2069) - base(2050-2069)

aily minimum (K), MCB(2050-2069) - base(2020-2039)

(h) Δ ANN minimum daily mi

(K), base(2050-2069) - base(2020-2039

(k) Δ ANN maximum daily minimum (K), MCB(2050-2069 (I) △ ANN maximum daily minimum (K), base(2050-2069) - base(2020-2039

2

Å

-2 0 764 765 Figure 7: Difference in surface temperature between 1) the ensemble mean of MCB over 5% 766 ocean surface between 2050 and 2069 against the control ensemble mean between 2020 and 2039 767 (a,d,g,j), 2) the ensemble mean of MCB over 5% ocean surface between 2050 and 2069 against 768 the control ensemble mean between 2050 and 2069 (b,e,h,k), and 3) the ensemble mean of the 769 baseline model between 2050 and 2069 against the ensemble mean of the baseline model between 770 2020 and 2039 (c,f,i,l). Row 1 is for annual minimum daily maximum ("Coldest Day"), row 2 is 771 for annual maximum daily maximum ("Hottest Day"), row 3 is for annual minimum daily 772 minimum ("Coldest Night"), row 4 is for annual maximum daily minimum ("Hottest Night"). 773 Differences under the 95% significance level are marked in gray dots. 774

Figure 8: Difference in annual precipitation in mm/day between: 1) the ensemble mean of MCB

over 5% ocean surface between 2050 and 2069 against the control ensemble mean between 2020

- and 2039 (a,d,g), 2) the ensemble mean of MCB over 5% ocean surface between 2050 and 2069
- against the control ensemble mean between 2050 and 2069 (b,e,h), and 3) the ensemble mean of
- the baseline model between 2050 and 2069 against the ensemble mean of the baseline model
- between 2020 and 2039 (c,f,i). Top panels are for total precipitation (PRECT), middle panels are
- 783 for convective precipitation (PRECC), and the bottom panels are for stratiform precipitation
- 784 (PRECL). Differences under the 95% significance level are marked in gray dots.

Figure 9: Similar as Fig. 8 but for precipitation difference in boreal winter (DJF).

Figure 10: Similar as Fig. 8 but for precipitation difference in boreal summer (JJA).

820	-40 -20 0 20 40
821	Figure 11: Difference in annual maximum daily precipitation between: 1) the ensemble mean of
822	MCB over 5% ocean surface between 2050 and 2069 against the control ensemble mean between
823	2020 and 2039 (a), 2) the ensemble mean of MCB over 5% ocean surface between 2050 and 2069
824	against the control ensemble mean between 2050 and 2069 (b), and 3) the ensemble mean of the
825	baseline model between 2050 and 2069 against the ensemble mean of the baseline model between
826	2020 and 2039 (c). Differences under the 95% significance level are marked in gray dots.
827	
828	
829	
830	
831	
832	
833	
834	
835	
836	
837	
838	
839	
840	

Fig. 12: Differences between the MCB ensemble mean between 2050 and 2069 and the control

ensemble between 2020 and 2039: (a) sea-level pressure in DJF, (b) sea-level pressure in JJA, (c)

- total precipitable water in DJF, and (d) total precipitable water in JJA.

Figure 13: Time series of ensemble mean (thick lines) and spread (two standard deviations) of
precipitation: (a) globally, (b) over ocean, and (c) over land. Control ensemble simulations are in
black and ensemble simulation with MCB over 5% ocean surface are in red. Average between
2020 and 2039 from the control ensemble mean is in a thin black line, and average between 2050
and 2069 from the MCB ensemble mean is in a thin red line.

872

873 Figure 14: Ensemble mean difference and ensemble spread (two standard deviations) of zonal 874 mean between the MCB (2050-2069) and control (2020-2039) ensemble simulations: (a) all-sky 875 longwave flux at model top, (b) clear-sky longwave flux at model top, (c) longwave cloud 876 forcing, (d) all-sky shortwave flux at model top, (e) clear-sky shortwave flux at model top, (f) 877 shortwave cloud forcing, (g) total longwave flux at surface, (h) upward longwave flux at surface, 878 (i) downward longwave flux at surface, (j) total shortwave flux at surface, (k) upward shortwave 879 flux at surface, (1) downward shortwave flux, (m) low cloud fraction, (n) mid cloud fraction, (o) 880 low cloud fraction, (p) total cloud fraction, (q) surface temperature, and (r) sea-ice fraction. 881

1 2 3	Climate impact of marine cloud brightening solar climate intervention under a susceptibility based strategy simulated by CESM2
4	CC. Chen ¹ , J. H. Richter ¹ , Walker R. Lee ¹ , Mari Tye ^{1,2} , Douglas G. MacMartin ³ , Ben Kravitz ^{4,5}
5	¹ Climate and Global Dynamics Division, NSF National Center for Atmospheric Research, Boulder, CO
6	² Whiting School of Engineering, Johns Hopkins University, Baltimore, MD
7	³ Cornell University
8	⁴ Department of Earth and Atmospheric Sciences, Indiana University, Bloomington, IN
9	⁵ Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory,
10	Richland, WA
11	
12	Key Points:
13	
14	• Susceptibility-based marine cloud brightening is simulated by a medium ensemble of
15	CESM2 simulations.
16	• Cloud seeding over 5% of the most easily brightened ocean surface is capable of
17	producing a net cooling of 1 °C.
18	• The 5% seeding strategy induces strong temperature and precipitation responses in lower
19	latitudes, resembling a La Niña-like pattern.
20	Plain Language Summary:
21	Marine cloud brightening, a form of solar climate intervention, could reflect some sunlight back
22	to space and cool the planet. We used a state-of-the-art climate model to investigate what might
23	happen if we target the regions of the ocean that are most easily brightened. Deploying marine
24	cloud brightening over 5% of the ocean area can cool the planet by 1 °C in this model. However,
25	it causes temperature and precipitation changes that look like La Niña. This may be undesirable
26	for some people, meaning other marine cloud brightening strategies need to be investigated.
27	
28	
20	
29 30	Corresponding author: C -C Chen_cchen@ucar.edu
31	contesponding addition of crement, <u>content e dearread</u>
32	
33	
24	
34	

35 Abstract

36 The efficiency of marine cloud brightening in cooling Earth's surface temperature is 37 investigated by using a medium ensemble of simulations with the Community Earth System 38 Model version 2 (CESM2). Various cloud seeding schemes based on susceptibility are examined 39 to determine what area extent will be required to induce 1 °C cooling under SSP2-4.5. The results 40 indicate that cloud seeding over 5% of the ocean area is capable of achieving this goal. Under this 41 seeding scheme, cloud seeding is mainly deployed over lower latitudes where strong surface 42 temperature and precipitation responses are induced. The simulations also reveal that the 5% 43 cloud seeding scheme induces an overall reduction in global precipitation, with an increase over 44 land and a decrease over the ocean.

45

146 Introduction

47 A number of solar climate intervention strategies have been proposed to counteract 48 anthropogenic global warming. These strategies seek to enhance the albedo of the Earth and thus 49 reflect more solar radiation back to space to induce a cooling effect. One strategy more 50 extensively investigated is stratospheric aerosol injection (hereafter SAI) which attempts to 51 mimic the cooling effect of large volcanic eruptions by injecting aerosols or their precursors into 52 the stratosphere. Another less explored strategy seeks to brighten the marine boundary clouds by 53 injecting sea salt particles to induce an increase in cloud drop number concentration [Latham, 54 1990]. One of the reasons marine cloud brightening (hereafter MCB) is relatively less researched 55 than SAI is due to the challenge of accurately simulating aerosol-cloud interactions in climate 56 models (IPCC, 2021).

MCB aims to achieve a reduction in global surface temperature mainly by cloud indirect
effects. By enhancing drop number concentration in clouds, cloud drops become smaller and thus
clouds become more reflective of incoming solar radiation, known as the cloud albedo or
Twomey effect [Twomey, 1974;Twomey, 1977]. As the cloud drop size is reduced, precipitation
may be suppressed and the clouds become more persistent. This also leads to reflecting more
solar radiation, known as the cloud lifetime or Albrecht effect [Albrecht, 1989].

63 There have been two main approaches in simulating a cloud seeding strategy for MCB 64 intervention. The first approach assumes deployment of cloud seeding over fixed regions [Jones 65 et al., 2009; Baugman et al., 2012]. The second seeks to maximize the cooling effects of cloud 66 seeding by first searching for regions most susceptible to seeding and then constructing a seeding 67 scheme accordingly [Latham et al., 2008;Rasch et al.,2009]. The first approach makes it a 68 straightforward task to determine what causes the induced regional climate impact due to MCB climate intervention. The advantage of the second approach, however, is its capability of inducinga maximum radiative effect with a minimum area extent to deploy cloud seeding.

71 Since MCB aims at enhancing cloud drop number concentration in boundary layer 72 clouds, it is important for the model employed to be capable of accurately simulating cloud-73 aerosol interactions. For example, Wood [2021] demonstrated that the radiative forcing of MCB 74 simulated by climate models could be highly sensitive to the assumption made in the aerosol 75 activation parameterization. Alterskjær et al. [2013] found that injecting sea salt particles in 76 certain sizes might lead to a warming effect instead of cooling; their simulations suggest that 77 injection of sea salt in the Aitken mode could suppress the occurrence of supersaturation which 78 led to reduction in activation of background aerosols, and consequently reduced the cloud drop 79 number concentration. One method of obtaining the climate effects from MCB without aerosol 80 microphysical parameterization uncertainties confounding the results is, instead of injecting sea 81 salt particles in the model simulation, the cloud drop number concentrations for the boundary 82 layer clouds within the designated seeding regions can be artificially increased. Latham et al. 83 [2008] and Rasch et al. [2009] followed this approach; they used the Community Climate System 84 Model version 3 (CCSM3) to conduct MCB simulations even though the model did not simulate 85 cloud-aerosol interactions. More recently, Stjern et al. [2018] and Hirasawa et al. [2023] also 86 conducted MCB simulations under this approach. Assuming sea salt particles of correct sizes are 87 injected, the cloud drop number concentration can be enhanced to ~500/cm3 as shown in 88 Alterskjær et al. [2013].

89 In this study, we present results from MCB simulations by the Community Earth System 90 Model version 2 (CESM2), which has many updates from a much older generation of the model 91 CCSM3 utilized in Latham et al. [2008] and Rasch et al. [2009]. Even though CESM2 is capable 92 of simulating cloud-aerosol interactions, we will limit our investigation based on the constrained 93 approach to reduce the uncertainty of the work resulting from the aerosol activation 94 parameterization. We first identified regions most susceptible to cloud seeding following the 95 methodology described in Latham et al, [2008] and Rasch et al. [2009] (also described in Section 96 2.3 below) to construct susceptibility-based seeding schemes. Then, we investigated the area 97 extent required for cloud seeding to generate 1 °C cooling relative to pre-industrial conditions. 98 Finally, a 10-member ensemble under the seeding scheme capable of producing 1 °C cooling was conducted, and we examined the climate impacts. 99 **2**00 Methods

101 2.1. Model description

102	We use the Community Earth System Model version 2 (CESM2)
103	[Danabasoglu et al., 2020] for all simulations in this study. This version was
104	employed for the Coupled Model Intercomparison Project Phase 6 (CMIP6)
105	[Eyring et al., 2016] in which CESM2 ranks highly among CMIP6 models in
106	terms of simulating large-scale circulations and tropospheric climate over the
107	historical time period [Simpson et al., 2020;Duviver et al., 2020;Coburn and
108	Pruor, 2021].
109	CESM2 is a fully coupled Earth system model with prognostic
110	atmosphere, land, ocean, sea-ice, and land-ice components. The atmosphere
111	component, the Community Atmosphere Model version 6 (CAM6), uses a finite
112	volume dynamical core with a 1.25°x0.9° longitude-latitude mesh and 32 vertical
113	levels with the model top at around 40 km. CAM6 uses the Zhang and McFarlane
114	[1995] scheme for deep convection, the Cloud Layers Unified By Binormals
115	(CLUBB) [Golaz et al., 2002;Larson, 2017] for shallow convection, boundary
116	layer, and an updated version of Morrison-Gettelman microphysics scheme
117	(MG2) [Gettelman and Morrison, 2015] for stratiform clouds and precipitation
118	processes.
119	The ocean component remains the same as in CESM1 and is based on
120	the Parallel Ocean Program version 2 (POP2) [Smith et al., 2010;Danabasoglu et
121	al., 2012] with several advances. These include a new parameterization for
122	mixing effects in estuaries, increased mesoscale eddy (isopycnal) diffusivities at
123	depth, use of prognostic chlorophyll for shortwave absorption, use of salinity-
124	dependent freezing-point together with sea-ice model, and a new Langmuir
125	mixing parameterization in conjunction with the new wave model component
126	[Danabasoglu et al., 2020]. POP2 operates on a mesh which is uniform in the
127	zonal direction (1.125°) and varies significantly in the meridional direction with
128	the finest resolution of 0.27° at the equator. In the Northern Hemisphere high
129	latitudes, the finest/coarsest resolution is about 0.38% 0.64% at the northwestern
130	Atlantic Ocean/northwestern Pacific Ocean. In the Southern Hemisphere, the
131	resolution monotonically changes to 0.53° at 32°S and remains constant further
132	south. There are 60 vertical levels with a maximum depth of 5500 m with a
133	uniform resolution of 10 m in the upper 160 m. CESM2 uses CICE version 5.1.2
134	(CICE5) [Hunke et al., 2015] as its sea-ice component and uses the same
135	horizontal grid as POP2.

136		CESM2 uses the Community Land Model version 5 (CLM5) [Lawrence
137		et al., 2019] with many updates from CLM4. CLM5 improves the model's
138		hydrological and ecological realism and enhances the representation of
139		anthropogenic land use activities on climate and carbon cycle [Danabasoglu et
140		al., 2020]. The River Transport Model (RTM) used in CESM1 has been replaced
141		with the Model for Scale Adaptive River transport (MOSART) [Li et al., 2013].
142		
143	2.2.	Reference simulations
144		We assume the moderate Shared Socioeconomic Pathway scenario of
145		SSP2-4.5 for this study. SSP2-4.5, a continuation of the Representative
146		Concentration Pathway 4.5 (RCP4.5) scenario, is considered "middle of the
147		road" and represents a medium range of future forcing pathways [O'Neill et al.,
148		2016]. A 5-member reference ensemble with CESM2 under SSP2-4.5 was
149		conducted for years 2015-2100 as part of the Coupled Model Intercomparison
150		Project Phase 6 (CMIP6; Eyring et al., 2018). Surface temperature evolution and
151		equilibrium climate sensitivity in these simulations are described in Meehl et al.
152		[2020]. Since then, 5 additional ensemble members were carried out. Thus, a
153		total of 10 ensemble members of CESM2 simulations under SSP2-4.5 are
154		employed in this study. However, daily maximum and minimum temperatures
155		were only archived for five members of the SSP2-4.5 ensemble [Richter et al.,
156		2022]; statistical significance testing was therefore based on a bootstrap analysis
157		to accommodate the reduced sample size.
158		
159	2.3.	Construction of seeding strategies
160		In this study, we follow the methodology described in Latham et al.
161		[2008] and Rasch et al. [2009] to employ a susceptibility-based strategy for cloud
162		seeding. As aforementioned, the simulations are performed under a constrained
163		approach, i.e. the cloud drop number concentration of low clouds within the
164		boundary layer clouds over the designated seeding regions is prescribed to a
165		predetermined value, set to 375/cm ³ below 850 hPa. 375/cm ³ is selected in this
166		study because it was the more realistic number concentration assumed in Latham
167		et al. [2008] and Rasch et al. [2009], as the higher assumed number concentration
168		(1000/cm ³) in these studies might not be achievable in reality (through personal
169		conversation with Dr. Andrew Gettelman).

170	To determine susceptibility to cloud seeding for each grid cell over the
171	ocean, two simulations under SSP2-4.5 between 2015 and 2034 are compared:
172	one baseline run and the other with cloud seeding at every grid point over the
173	ocean within the boundary layer clouds. Susceptibility is determined by the
174	shortwave cloud forcing difference between the two simulations, i.e., if cloud
175	seeding over a grid point induces stronger (more negative) shortwave cloud
176	forcing (SWCF), it is considered more susceptible to seeding. Susceptibility of
177	all grid points over the ocean is ranked based on shortwave cloud forcing
178	differences. Seeding masks are built based on a designated percentage of the
179	ocean area. As shown in Fig. 1, seeding masks ranging between 2.5% and 20% of
180	the ocean surface are depicted. Since shortwave cloud forcing is the gauge for
181	susceptibility, one factor that influences susceptible regions for cloud seeding is
182	where incoming solar radiation is abundant. Another key factor in determining
183	regions most susceptible to cloud seeding is the distribution of low clouds. As
184	revealed in Fig. 1, during the boreal summer regions most susceptible to cloud
185	seeding are mainly over the west coast of the US where stratocumulus is
186	frequently present [Warren et al., 1998]. During the boreal winter, the most
187	susceptible regions for cloud seeding shift to the southern hemisphere, mainly off
188	the west coast of South America. These regions are over the eastern flank of an
189	ocean gyre where persistent cloud decks are present. Fig. 2 shows the annual
190	seeding masks. The results indicate that when cloud seeding is deployed over less
191	than 5% of the ocean surface, regions most susceptible to seeding are mainly off
192	the west coast of North and South America. When the seeding area expands,
193	regions most susceptible to cloud seeding extend to the west coast of Australia
194	and Africa. Nevertheless, it is important to note that even though the
195	susceptibility-based cloud seeding strategy maximizes the radiative forcing by
196	MCB intervention, it does not necessarily maximize the induced temperature
197	effect.
198	The radiative forcing induced under the susceptibility-based seeding
199	strategy simulated by CESM2 is depicted in Fig. 3a. Under the same
200	methodology, Latham et al. [2008] showed a net negative shortwave cloud
201	forcing of ~2.5 W/m^2 for seeding over 20% of the ocean area. Nevertheless, by
202	CESM2 under SSP2-4.5, the net negative shortwave cloud forcing for the same
203	amount of seeding is \sim 7.5 W/m ² . The three fold difference can be explained by

204		the low cloud biases in the earlier model versions. As shown in Kay et al. [2012]
205		there were strong negative low cloud biases in the Community Atmosphere
206		Model version 4 (CAM4), most pronounced over the stratocumulus regions
207		which are the ideal locations to deploy MCB. Since CAM4 is a model similar to
208		what was used in Latham et al. [2008] and Rasch et al. [2009], it explains the
209		much lower induced radiative forcing by MCB. With various updates in the
210		physics of the model, CAM5 was found to significantly improve the
211		representation of low clouds [Kay. et al., 2012]. Through personal conversation
212		with Dr. Jen Kay, CAM6, the atmosphere component of CESM2, maintains the
213		improvements in the representation of low clouds as found in CAM5.
214		Consequently, MCB simulations carried out by CESM2 are much more credible
215		due to its superior representation of low clouds compared with CCSM3
216		employed in Latham et al. [2008] and Rasch et al. [2009]. However, even with
217		the significant improvement on the representation of low clouds in CAM5 over
218		CAM4, CAM5 still maintains negative low cloud biases over the stratocumulus
219		regions and thus the radiative forcing induced by MCB is likely to be
220		underestimated within the current model framework.
221		It is worth noting that the radiative forcing at the tail portion of the ocean
222		area is positive (Fig. 3a). Fig. 3b reveals that the incremental radiative forcing
223		induced by seeding the top 15% of the ocean surface is very high. It becomes
224		much lower until about 80%, and reveres signs beyond that. This is because this
225		methodology is susceptibility-based and the grid points with positive SWCF
226		differences induced by cloud seeding (a warming effect) will have the lowest
227		rankings. Fig. 3b shows differential radiative forcing against percentage of the
228		ocean area with cloud seeding.
2 29	Results	
230	3.1.	Seeding strategy in meeting temperature targets
231		In this study, we follow a similar experimental design to that outlined in
232		Richter et al. [2022] for a 10-member ensemble of CESM2 simulations utilizing
233		SAI in setting the climate target for the MCB ensemble simulations. Hence, we
234		choose the main target to restore the global mean surface temperature (T0)
235		between 2050 and 2069 to the 2020-2039 level under SSP2-4.5. The deployment
236		of MCB is assumed to start in 2035. In addition to global average surface
237		temperature (T0), Kravitz et al. [2017] proposed two extra temperature targets

238		which may be set for the purpose of climate intervention: 1) inter-hemispheric
239		temperature gradient (T1), and 2) equator-to-pole temperature gradient (T2). T1
240		and T2 will also be assessed in the MCB ensemble, as in Richter et al. [2022].
241		To assess the area extent of cloud seeding required to meet the
242		temperature target, we first conduct simulations under four seeding schemes:
243		2.5%, 5%, 7.5% and 12.5% of the ocean surface. The global mean surface
244		temperature for these four simulations is illustrated in Fig. 4 which suggests that
245		seeding over 5% of the ocean surface most closely reaches the T0 goal in the
246		2050 - 2069 average.
247	3.2.	Ensemble MCB simulations
248		The first set of experiments suggest that seeding over 5% of the ocean
249		surface is sufficient to meet the temperature target set in this study. We then
250		proceed to conduct a 10-member ensemble simulations with the same seeding
251		scheme. The ensemble simulations confirm that indeed cloud seeding over 5% of
252		the ocean surface is what is needed to meet the temperature target set in this
253		study (see Fig. 5a). Since here we only apply a constant seeding (and hence
254		roughly constant forcing), the global mean surface temperature of the MCB
255		ensemble is in a clear upward trend and exceeds the temperature target during the
256		last 10 years of the simulations. In contrast, in the SAI simulations in Richter et
257		al (2022) a feedback algorithm was used to adjust the injection rates annually to
258		maintain a roughly constant global mean temperature.
259		Next, we examine the regional temperature response by the 5% MCB
260		intervention. The impact on mean surface temperature by the 5% seeding scheme
261		is illustrated by the difference between the 2050-2069 average under the MCB
262		ensemble and the 2020-2039 average under the control ensemble (Figs. 6 a,d,g).
263		The application of MCB results in intense regional surface temperature responses
264		with magnitudes much stronger than the effect of climate change (compare Figs
265		6a,d,g with Figs. 6 c,f,i). The most pronounced cooling is found over the
266		stratocumulus regions off the west coast of North and South America where
267		cloud seeding is deployed regularly (see Fig. 2b), and cooling extends to the
268		tropical West Pacific. Furthermore, it is found that the annual averaged surface
269		temperature is lower over Alaska (Fig. 6a) which is mainly attributed to the
270		stronger cooling during the boreal winter (Fig. 6c). The MCB ensemble
271		simulations also reveal that over the Northwest Pacific, the Eastern US, the

272Southern Ocean, and the Antarctic, the surface temperature is significantly273warmer (Figs. 6 a,d,g) than the 2020-2039 average, indicating the MCB scheme274employed is not able to restore the surface temperature in these regions back to275the 2020-2039 level.

276 When using the 2050-2069 level from the control ensemble mean as the 277 basis for comparison, the induced surface temperature response by MCB shows a 278 different picture (Figs. 6 b,d,f). In such a comparison, lower surface temperature 279 is found in a much broader area. Pronounced cooling over the main seeding 280 regions, i.e. off the west coast of North and South America, is found in the 281 annual mean (Fig. 6b) as well as during the boreal winter (Fig. 6d) and boreal 282 summer (Fig. 6f). It is interesting to note that during the boreal winter even 283 though seeding is mainly deployed in the Southern Hemisphere, strong cooling is 284 present over the Arctic (Fig. 6d). Warmer surface temperature, however, is also 285 present in the MCB ensemble mean, mainly over the Northwest Pacific and the 286 South Pacific Convergence Zone (SPCZ). This reveals that under the MCB 287 intervention, surface temperature becomes even warmer in these regions which 288 will further intensify the warming effect by climate change. Thus, this is a highly 289 undesirable outcome for such MCB intervention.

290 The pronounced cooler and warmer regions arising from the 5% seeding 291 are further emphasized in the surface temperature extremes (annual hottest and 292 coldest days and nights) illustrated in Fig.7a,d,g,j. In contrast with SAI 293 simulations [e.g. Richter et al., 2022; Tye et al., 2022], the greatest response is 294 observed in the annual minimum daily minimum temperature ("Coldest Night"; 295 Fig. 7j) while the least impact is apparent for the annual maximum daily 296 maximum temperature ("Hottest Day"; Fig.7b). Regions of particularly elevated 297 temperature are primarily over land in the highest latitudes for the daily 298 maximum temperatures (Figs. 7a,d), with increases up to 2K higher than those 299 shown for surface mean temperature. Cooling of a similar magnitude is not as 300 extensive, and only appears in the daily minimum temperatures (Figs. 7g,j).

301Comparing the 2050-2069 level from the control ensemble mean to the302annual temperature extremes under the MCB ensemble (Figs. 7b,e,h,k) also303shows a different response than that of the surface mean temperature in Fig. 6.304While the mean surface temperatures show decreases in temperature over most of305the globe with comparison to climate change, only the hottest night (Fig. 7h) and

306	coldest night (Fig. 7k) show a similar universal cooling. In contrast, the coldest
307	day (Fig. 7a) and hottest day (Fig. 7e) are cooler relative to climate change only
308	over the areas of seeding; over land the temperatures are increased relative to
309	climate change). As noted above, the differences in extreme temperature induced
310	by climate change alone (the average between 2050 and 2069 against the average
311	between 2020 and 2039, Figs. 7 c,f,i,l) is generally less than the differences with
312	MCB. Increases are also greater in the higher latitudes (Kim et al. 2020), and by
313	reason of their rarity only show statistical significance in regions where the
314	changes, and also interannual variability, are small [e.g. Katz, 2010].
315	Next, we assess T1 and T2 under the MCB ensemble. The simulations
316	indicate that the MCB ensemble cannot restore T1 and T2 between 2050 and
317	2069 to the 2020-2039 level. The MCB ensemble mean of T1 between 2050 and
318	2069 is lower than the average between 2020 and 2039 by the control ensemble,
319	and higher for T2 (Figs. 5b,c). Different seeding strategies would be required to
320	restore T1 and T2, assuming these are within the space of achievable objectives
321	(Lee et al. 2020).
322	The annual precipitation response induced by MCB shows similar
323	patterns by using either the 2020-2039 average or the 2050-2069 average of the
324	control ensemble (Figs. 8 a,b) as the basis for comparison. The precipitation
325	response is highly concentrated in the lower latitudes. Precipitation with MCB is
326	seen to reduce over the Intertropical Convergence Zone (ITCZ) where colder
327	surface temperature is induced by MCB, and the ITCZ slightly shifts northward
328	as a strip of increased precipitation is present. Precipitation is also found to
329	increase under MCB over the SPCZ, the maritime continent, Australia, and the
330	Amazon. When broken down by convective and stratiform precipitation, it is
331	found that both exhibit very similar patterns but the change in convective
332	precipitation plays a more important role (Figs. 8c,d,e,f), which responds
333	strongly to the surface temperature.
334	In comparison, the change in precipitation due to climate change is
335	illustrated in Figs. 8c,f,i, which is in general much weaker in magnitude. The
336	strongest difference is enhanced precipitation over the ITCZ (Fig. 8c), mainly
337	due to convective precipitation (compare Figs. 8f,i). However, the magnitude of
338	the change is still much weaker than that induced by the MCB intervention.

339 The precipitation response during the boreal winter and boreal summer is 340 illustrated in Figs. 9 and 10. Similar to the annual precipitation response (Fig. 8), 341 the most pronounced seasonal precipitation response is mainly found in the lower 342 latitudes and exhibits similar features as the annual mean, e.g. decreased 343 precipitation over the ITCZ, and increased precipitation over the SPCZ, the maritime continent, and Australia (see Figs. 9a,9b,10a,10b). However, such 344 345 precipitation response is stronger in the boreal winter than in the boreal summer 346 because the induced lower surface temperature by MCB over the tropical West 347 Pacific is more pronounced during the boreal winter (compare Figs. 6d,g). 348 Differences in seasonal precipitation induced by MCB can be detected in

349several regions. Increased precipitation over the Northwest Pacific and the350Amazon and decreased precipitation over the Northeast Pacific are only found351during the boreal winter (compare Figs. 9a,9b,10a,10b). Since these features are352also present in the annual mean (Figs. 8a,b), it is conceivable that such regional353response is mainly attributed to the boreal winter. Finally, as previously observed354in the annual mean, convective precipitation response is also stronger than355stratiform precipitation in the seasonal average (compare Figs. 9c,d,e,f,10c,d,e,f).

356 The differing responses of convective and stratiform precipitation are 357 reflected in the changes in the annual maximum daily precipitation total ("wettest 358 day", Fig. 11a). Increases in the wettest day are focused over the SPCZ and 359 Australia, with a narrow increase over the Pacific Ocean aligned with a 360 northward shift in the ITCZ. The largest decreases in the wettest day correlate 361 with the colder regions over the main seeding region. The contrast between the 362 simulations with and without MCB is accentuated for the most extreme 363 precipitation, as it is for surface temperature extremes (Fig. 11b). While mean 364 precipitation under unabated climate change shows distinctly wetter and drier 365 regions, the wettest day increases everywhere (Fig. 11c).

366Even though the surface temperature over the Northwest Pacific is367warmer under the MCB ensemble annual mean (Figs. 6 a,d,g), precipitation is368only increased in DJF (Fig. 9a) but not in JJA (Fig. 10a). The response in sea-369level pressure over the North Pacific in DJF under the MCB ensemble (Fig. 12a)370is in good agreement with the induced surface temperature change (Fig. 6d): the371Aleutian low is weakened as surface temperature is cooler, and the sea-level372pressure over the Northwest Pacific is lower as surface temperature is warmer. In

373	DJF, the warmer surface temperature over the Northwest Pacific enhances
374	convective precipitation (Fig. 9d) and the lower sea-level pressure promotes
375	stratiform precipitation (Fig. 9g). However in JJA, the warmer surface
376	temperature over the Northwest Pacific leads to an increase in sea-level pressure
377	(Fig. 12b). This suggests that the subtropical high (a warm core high) over the
378	North Pacific extends over the west Pacific. The MCB ensemble average
379	indicates that convective precipitation is increased (Fig. 10d), likely due to
380	warmer surface temperature, but stratiform precipitation is decreased, likely due
381	to subsidence induced by the subtropical high. Increases in convective
382	precipitation are most likely to result in increases in the most extreme
383	precipitation (Fig. 11a). These features imply that the MCB intervention is likely
384	to influence the large-scale circulation over the North Pacific.
385	The MCB ensemble reveals that precipitation is increased over Amazon
386	in DJF but not in JJA. This is likely due to the induced difference in total
387	precipitable water. The MCB ensemble shows an increase in total precipitable
388	water over the Northern Amazon in DJF (Fig. 12c), but the total precipitable
389	water is decreased in JJA (Fig. 12d). The precipitation response over Amazon in
390	DJF (Figs. 9a,d,g) shows a dipole structure, i.e., precipitation is increased in the
391	north but is decreased in the south. Thus, the impact of the MCB intervention is
392	to shift the precipitation over Amazon northward in DJF which is in good
393	agreement with the change in total precipitable water.
394	Next, we examine the impact of the 5% ocean area seeding scheme on
395	the globally averaged precipitation. As aforementioned, this seeding scheme is
396	sufficient to restore T0 between 2050 and 2069 to the 2020-2039 level (Fig. 5a).
397	Under this seeding scheme, the ensemble mean in global precipitation between
398	2050 and 2069 is lower than the 2020-2039 level (Fig. 13a). This result is
399	consistent as Rasch et al. [2009] in which it was found that restoring precipitation
400	required less area extent for cloud seeding than to restore T0; similar conclusions
401	have been found for solar reduction (e.g., Bala et al 2008) and for SAI. The
402	simulations also show that this seeding scheme induces lower precipitation over
403	the ocean between 2050 and 2069 than the 2020-2039 level (Fig. 13b), but the
404	precipitation over land between 2050 and 2069 is higher than the 2020-2039
405	level (Fig. 13c). As revealed in Fig. 8a, the increased precipitation over land is
406	mainly found over Australia, India, and the maritime continent.

407	Next, we examine differences in radiative fluxes induced by the 5%
408	MCB scheme. Longwave flux at the model top is in general reduced in the lower
409	latitudes except in the equatorial region where longwave flux is increased (Fig.
410	14a). Lower longwave flux at the model top in the lower latitudes is consistent
411	with lower surface temperature (Fig. 14q) which is a key factor in determining
412	the upward longwave flux at the surface (Fig. 14h) based on the Stefan-
413	Boltzmann law. The increase in longwave flux at the model top in the equatorial
414	region is mainly attributed to cloud forcing (Fig. 14c). As shown in Fig. 8b,
415	convective precipitation over the tropical Pacific is significantly reduced by the
416	MCB intervention, which also results in reduction in mid and high clouds (Figs.
417	14n,o). Thus, less longwave radiation is absorbed by clouds in the equatorial
418	region and thus higher longwave flux can reach the model top.
419	Induced response in all-sky shortwave flux at the model top by the MCB
420	intervention (Fig. 14d) is dominated by cloud forcing (Fig. 14f). Shortwave flux
421	at the model top is overall lower in the lower latitudes but is increased in the
422	equatorial region. The lower shortwave flux at the model top in the lower
423	latitudes is a direct response to the higher low cloud fraction (Fig. 14m) which
424	reflects more shortwave radiation. Nevertheless, mid and high clouds in the
425	equatorial region are reduced (Figs. 14n,o), likely due to suppression of
426	convection by MCB intervention, and the total cloud fraction is lower (Fig. 14p),
427	indicating the contribution from mid and high clouds more than offset the
428	increase in low clouds. Thus less shortwave radiation is reflected which in turn
429	increases shortwave flux at the model top (Fig. 14d) in the equatorial region.
430	It is interesting to note that both all-sky and clear-sky shortwave fluxes at
431	the model top are increased over high latitudes in the southern hemisphere (Figs.
432	14d,e), which implies that less shortwave radiation is reflected. Since the
433	difference in shortwave cloud forcing in this region is negative, i.e. more
434	shortwave radiation is reflected by clouds, much less shortwave radiation is
435	reflected by the surface. Due to negative shortwave cloud forcing differences in
436	high latitudes over the southern hemisphere (Fig. 14f), less shortwave radiation is
437	capable of reaching the surface (Fig. 141). However, even less shortwave
438	radiation is reflected by the surface in this region (Fig. 14k) which is due to loss
439	of sea ice (Fig. 14r).

440	It is worth noting that the ensemble spread for sea ice in the northern
441	hemisphere (Fig. 14r) is quite large even though the ensemble mean difference is
442	near zero. This is potentially a reflection of a large ensemble spread in surface
443	temperature difference (Fig. 14q). This indicates that the uncertainty for the
444	prediction over the Arctic is quite high. In the southern hemisphere, however, the
445	ensemble spread in sea ice is relatively smaller as well as the surface
446	temperature. The ensemble simulations also suggest that the MCB intervention is
447	incapable of restoring sea ice in the southern hemisphere between 2050 and 2069
448	to the 2020-2039 level (Fig. 14r).
449	Even though we have demonstrated through a 10-member ensemble
450	simulations that cloud seeding over 5% of the ocean surface is capable of
451	meeting the global average surface temperature goal, applying a steady forcing
452	will not, of course, maintain a steady global average surface temperature, as
453	shown in Fig. 5a. Maintaining a steady global average surface temperature
454	would require that the seeding area be gradually increased.
455	The 5% MCB scheme induces cooling mostly confined in the lower
456	latitudes. Furthermore, surface temperature becomes warmer under MCB
457	intervention than the baseline ensemble average, mainly over the Northwest
458	Pacific and the SPCZ (Figs. 6b,e,h), which is on top of warming due to climate
459	change (Figs. 6c,f,i), and with greatest effect on the hottest days and nights
460	(Figs.7a,d,g). In order to eliminate such undesirable responses, it will require
461	different MCB strategies than that examined in this study.
462	
4 63	Conclusions
464	In this study, we examine the efficiency of MCB climate intervention by CESM2
465	ensemble simulations. Compared with the previous study using CCSM3 [Latham et al., 2008,
466	Rasch et al., 2009], it is found that MCB may induce a much greater impact with the same area
467	extent of cloud seeding under CESM2. This is mainly due to the much more realistic
468	representation of low clouds, especially stratocumulus, in CESM2 than CCSM3. Since cloud
469	seeding aims to enhance the albedo of low clouds, it is thus essential to have good representation
470	of low clouds in the model employed for MCB simulations.
471	We follow the methodology described in Latham et al. [2008] and Rasch et al. [2009] to
472	build a seeding strategy based on susceptibility of cloud seeding over all oceanic model grid
473	points. The advantage of this strategy is its capability to generate a maximum (negative) radiative

effect with minimum cloud seeding efforts. However, the disadvantage of this approach is the
difficulty in interpreting the cause of certain regional climate impacts. If cloud seeding is
assumed to occur over fixed regions, it will thus make it straightforward to interpret the cause of
regional climate impact of MCB intervention. The downside of this approach, of course, is its
lower efficiency to induce a cooling effect.

479 Under the protocol design in this study, it is found that cloud seeding over 5% of ocean 480 surface is capable of restoring the global average surface temperature between 2050 and 2069 to 481 the 2020-2039 level, under the SSP2.4-5 scenario. The 10-member ensemble of CESM2 482 simulations shows that MCB yields cooling mostly confined within lower latitudes. The most 483 pronounced cooling in surface temperature occurs over where cloud seeding is regularly 484 deployed, mainly off the west coast of North and South America, and cooling extends to the 485 tropical west Pacific. As a result, MCB induces a La Nina-like response and shifts the ITCZ 486 slightly northward. Furthermore, surface temperature over the Northwest Pacific and SPCZ under 487 MCB intervention becomes warmer than the baseline ensemble mean (Fig. 6b) which indicates 488 that the MCB intervention further intensifies warming due to climate change (Fig. 6c) over these 489 regions. These features are highly undesirable outcomes delivered by the MCB intervention.

490 The MCB climate intervention is also found to induce a significant impact on 491 precipitation. The most pronounced decrease in precipitation is *not* found over the places where 492 MCB is deployed even though the direct impact of cloud seeding would lead to a decrease in 493 precipitation due to the Albrecht effect. Instead, the strongest precipitation reduction is found 494 over the ITCZ where lower sea surface temperature is induced by MCB. The simulations also 495 reveal that reduction of convective precipitation plays a more important role in the total 496 precipitation decrease. Even though the global average precipitation is reduced by MCB, it is 497 found that precipitation is increased over land, mainly over Australia, the maritime continent, and 498 the Amazon, with these regions also receiving considerable increases in the most extreme 499 precipitation.

500 In the current study, we prescribe cloud drop number concentration in the designated 501 cloud seeding regions instead of injecting sea salt particles. This bypasses the representation of 502 aerosol activation processes which remain highly uncertain in climate models. While this 503 constrained approach eliminates the uncertainty resulting from the model representation of 504 aerosol activation, it also lacks the direct aerosol effect due to sea salt particle injections. In our 505 future study we will investigate how deployment of MCB by injecting sea salt particles may 506 impact the climate. Additionally, different seeding strategies will be explored which may 507 simultaneously meet the temperature targets of T0, T1 and T2.

509 Acknowledgements:

- 510 The work is based upon work supported by the NOAA ERB grant NA22OAR4310481, and the
- 511 NSF National Center for Atmospheric Research which is a major facility sponsored by the US
- 512 National Science Foundation under Cooperative Agreement no. 1852977. The Community Earth
- 513 System Model (CESM) project is supported primarily by the National Science Foundation.
- 514 Computing and data storage resources, including the Cheyenne supercomputer
- 515 (doi:10.5065/D6RX99HX), were provided by the Computational and Information Systems
- 516 Laboratory (CISL) at NSF NCAR. Support for BK was provided in part by the Indiana University
- 517 Environmental Resilience Institute. The Pacific Northwest National Laboratory is operated for the
- 518 US Department of Energy by Battelle Memorial Institute under contract DE-AC05-76RL01830.
- 519

520 Open Research

521 Data Availability Statement

- 522 CESM tag cesm2.1.4-rc.08 was used to carry out the simulations and is also available at
- 523 https://doi.org/10.5281/zenodo.7271743 (CESM Team, 2022). CESM2 simulation output
- 524 presented in this paper is available at https://doi.org/10.5065/MRH9-B809.
- 525

526 References

- 527 Albrecht, B. A.: Aerosols, Cloud Microphysics, and Fractional Cloudiness, Science, 245,
- 528 1227–1230, https://doi.org/10.1126/science.245.4923.1227, 1989.
- Alterskjær, K. and Kristjánsson, J. E.: The sign of the radiative forcing from marine cloud
 brightening depends on both particle size and injection amount, Geophys. Res. Lett., 40,
- 531 210–215, https://doi.org/10.1029/2012GL054286, 2013.
- Baughman, E., Gnanadesikan, A., Degaetano, A., and Adcroft, A.: Investigation of the Surface
 and Circulation Impacts of Cloud-Brightening Geoengineering, J. Climate, 25,
- 534 7527–7543, <u>https://doi.org/10.1175/JCLI-D-11-00282.1</u>, 2012.
- 535 Coburn, J. and Pryor, S. C.: Differential Credibility of Climate Modes in CMIP6, J. Climate, 34,
 536 8145–8164, 2021.
- 537 Danabasoglu, G., Bates, S. C., Briegleb, B. P., Jayne, S. R., Jochum, M., Large, W. G., Peacock,
- 538 S., & Yeager, S. G. (2012). The CCSM4 ocean component. *Journal of Climate*, 25,
 539 1361–1389. https://doi.org/10.1175/JCLI-D-11-00091.1
- 540 Danabasoglu, G., Lamarque, J.-F., Bacmeister, J., Bailey, D. A., DuVivier, A. K., Edwards, J., et
- al. (2020). The Community Earth System Model Version 2 (CESM2). *Journal of*

542 Advances in Modeling Earth Systems, 12, e2019MS001916. 543 https://doi.org/10.1029/2019MS001916 544 DuVivier, A. K., Holland, M. M., Kay, J. E., Tilmes, S., Gettelman, A., and Bailey, D. A.: Arctic 545 and Antarctic sea ice mean state in the Community Earth System Model Version 2 and 546 the influence of atmospheric chemistry, J. Geophys. Res.-Oceans, 125, e2019JC015934, 547 https://doi.org/10.1029/2019JC015934, 2020. 548 Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., & Taylor, K. E. 549 (2016). Overview of the Coupled Model Intercomparison Project phase 6 (CMIP6) 550 experimental design and organization. Geoscientific Model Development, 9, 1937–1958. 551 https://doi.org/10.5194/gmd-9-1937-2016 552 Gettelman, A., & Morrison, H. (2015). Advanced two-moment bulk microphysics for global 553 models. Part I: Off-line tests and comparison with other schemes. Journal of Climate, 28, 554 1268–1287. https://doi.org/10.1175/JCLI-D-14-00102.1 555 Golaz, J.-C., Larson, V. E., & Cotton, W. R. (2002). A PDF-based model for boundary layer 556 clouds. Part I: Method and model description. Journal of the Atmospheric Sciences, 59, 557 3540-3551. 558 Hirasawa, H., Hingmire, D., Singh, H. A., Rasch, P. J., and Mitra, P. (2023) "Effect of Regional 559 Marine Cloud Brightening Interventions on Climate Tipping Elements" Geophysical 560 Research Letters, Accepted. Preprint DOI: 10.22541/essoar.168319813.32335439/v1 561 Hunke, E. C, Lipscomb, W. H., Turner, A. K., Jeffery, N., & Elliott, S. (2015). CICE: The Los 562 Alamos Sea Ice Model. Documentation and Software User's Manual. Version 5.1. T-3 563 Fluid Dynamics Group, Los Alamos National Laboratory, Tech. Rep. LA-CC-06-012. 564 Intergovernmental Panel on Climate Change (IPCC). Climate Change 2021 – The Physical 565 Science Basis: Working Group I Contribution to the Sixth Assessment Report of the 566 Intergovernmental Panel on Climate Change. Cambridge University Press; 2023. 567 Jones, A., Haywood, J., and Boucher, O.: Climate impacts of geoengineering marine 568 stratocumulus clouds, J. Geophys. Res., 114, D10106, 569 https://doi.org/10.1029/2008JD011450, 2009. 570 Katz, Richard W. "Statistics of Extremes in Climate Change." Climatic Change 100, no. 1 (May 571 2010): 71-76. https://doi.org/10.1007/s10584-010-9834-5. 572 Kay, J. E., and Coauthors, 2012: Exposing Global Cloud Biases in the Community Atmosphere 573 Model (CAM) Using Satellite Observations and Their Corresponding Instrument 574 Simulators. J. Climate, 25, 5190–5207, https://doi.org/10.1175/JCLI-D-11-00469.1. 575 Kim, Y.-H., S.-K. Min, X. Zhang, J. Sillmann, and M. Sandstad. "Evaluation of the CMIP6

576	Multi-Model Ensemble for Climate Extreme Indices." Weather and Climate Extremes 29
577	(September 2020): 100269. https://doi.org/10.1016/j.wace.2020.100269.
578	Larson, V. E., (2017). CLUBB-SILHS: A parameterization of subgrid variability in the
579	atmosphere. arXiv:1711.03675v2 [physics.ao-ph].
580	Latham, J.: Control of global warming?, Nature, 347, 339–340,
581	https://doi.org/10.1038/347339b0, 1990.
582	Latham, J., Rasch, P., Chen, CC., Kettles, L., Gadian, A., Gettelman, A., Morrison, H., Bower,
583	K., and Choularton, T.: Global Temperature Stabilization via Controlled Albedo
584	Enhancement of Low-Level Maritime Clouds, Philos. T. R. Soc. A, 366, 1882,
585	3969-3987, https://doi.org/10.1098/rsta.2008.0137, 2008.
586	Lawrence, D. M., Fisher, R. A., Koven, C. D., Oleson, K. W., Swenson, S. C., Bonan, G., Collier,
587	N., Ghimire, B., van Kampenhout, L., Kennedy, D., Kluzek, E., Lawrence, P. J., Li, F.,
588	Li, H., Lombardozzi, D., Riley, W. J., Sacks, W. J., Shi, M., Vertenstein, M., Wieder, W.
589	R., Xu, C., Ali, A. A., Badger, A. M., Bisht, G., Brunke, M. A., Burns, S. P., Buzan, J.,
590	Clark, M., Craig, A., Dahlin, K., Drewniak, B., Fisher, J. B., Flanner, M., Fox, A. M.,
591	Gentine, P., Hoffman, F., Keppel-Aleks, G., Knox, R., Kumar, S., Lenaerts, J., Leung, L.
592	R., Lipscomb, W. H., Lu, Y., Pandey, A., Pelletier, J. D., Perket, J., Randerson, J. T.,
593	Ricciuto, D. M., Sanderson, B. M., Slater, A., Subin, Z. M., Tang, J., Thomas, R. Q., Val
594	Martin, M., & Zeng, X. (2019). The Community Land Model Version 5: Description of
595	new features, benchmarking, and impact of forcing uncertainty. Journal of Advances in
596	Modeling Earth Systems, 11, 4245-4287. https://doi.org/10.1029/2018MS001583
597	Lee, W., MacMartin, D., Visioni, D., and Kravitz, B.: Expanding the design space of
598	stratospheric aerosol geoengineering to include precipitation-based objectives and
599	explore trade-offs, Earth Syst. Dynam., 11, 1051–1072, https://doi.org/10.5194/esd-11-
600	<u>1051-2020</u> , 2020.
601	Li, F., Levis, S., & Ward, D. S. (2013). Quantifying the role of fire in the Earth system—Part 1:
602	Improved global fire modeling in the Community Earth System Model (CESM1).
603	Biogeosciences, 10, 2293-2314. https://doi.org/10.5194/bg-10-2293-2013
604	Meehl, G. A, Arblaster, J. M., Bates, S., Richter, J. H., Tebaldi, C., Gettleman, A., Medeiros, B.,
605	Bacmeister, J., DeRepentigny, P., Rosenbloom, N., Shields, C., Hu, A., Teng, H., Mills,
606	M. J., and Strand, G.: Characteristics of future warmer base states in CESM2, Earth
607	Space Sci., 7, e2020EA001296, https://doi.org/10.1029/2020EA001296, 2020.
608	O'Neill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti, R.,
609	Kriegler, E., Lamarque, JF., Lowe, J., Meehl, G. A., Moss, R., Riahi, K., and

610	Sanderson, B. M.: The Scenario Model Intercomparison Project (ScenarioMIP) for
611	CMIP6, Geosci. Model Dev., 9, 3461–3482, https://doi.org/10.5194/gmd-9-3461-2016,
612	2016.
613	Rasch, P. J., Latham, J., and Chen, CC.: Geoengineering by Cloud Seeding: Influence on Sea
614	Ice and Climate System, Environ. Res. Lett., 4, 045112,
615	https://doi.org/10.1088/1748-9326/4/4/045112, 2009.
616	Richter, J. H., Visioni, D., MacMartin, D. G., Bailey, D. A., Rosenbloom, N., Dobbins, B., Lee,
617	W. R., Tye, M., and Lamarque, JF.: Assessing Responses and Impacts of Solar climate
618	intervention on the Earth system with stratospheric aerosol injection (ARISE-SAI):
619	protocol and initial results from the first simulations, Geosci. Model Dev., 15, 8221-
620	8243, https://doi.org/10.5194/gmd-15-8221-2022, 2022.
621	Simpson, I. R., Bacmeister, J., Neale, R. B., Hannay, C., Gettelman, A., Garcia, R. R., et al.
622	(2020). An evaluation of the large-scale atmospheric circulation and its variability in
623	CESM2 and other CMIP models. Journal of Geophysical Research: Atmospheres, 125,
624	e2020JD032835. https://doi.org/10.1029/2020JD032835
625	Smith, R., P. Jones, B. Briegleb, F. Bryan, G. Danabasoglu, J. Dennis, J. Dukowicz, C. Eden, B.
626	Fox-Kemper, P. Gent, M. Hecht, S. Jayne, M. Jochum, W. Large, K. Lindsay, M.
627	Maltrud, N. Norton, S. Peacock, M. Vertenstein, & S. Yeager (2010). The Parallel Ocean
628	Program (POP) reference manual, Ocean component of the Community Climate System
629	Model (CCSM), LANL Tech. Report, LAUR-10-01853, 141 pp.
630	Stjern, C. W., Muri, H., Ahlm, L., Boucher, O., Cole, J. N. S., Ji, D., Jones, A., Haywood, J.,
631	Kravitz, B., Lenton, A., Moore, J. C., Niemeier, U., Phipps, S. J., Schmidt, H., Watanabe,
632	S., and Kristjánsson, J. E.: Response to marine cloud brightening in a multi-model
633	ensemble, Atmos. Chem. Phys., 18, 621–634, https://doi.org/10.5194/acp-18-621-2018,
634	2018.
635	Twomey, S.: Pollution and the planetary albedo, Atmos. Environ., 8, 1251–1256, 1974.
636	Twomey, S.: The Influence of Pollution on the Shortwave Albedo of Clouds, J. Atmos. Sci., 34,
637	1149–1152, https://doi.org/10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2,
638	1977.
639	Tye, M. R., K. Dagon, M. J. Molina, J. H. Richter, D. Visioni, B. Kravitz, and S. Tilmes. "Indices
640	of Extremes: Geographic Patterns of Change in Extremes and Associated Vegetation
641	Impacts under Climate Intervention." Earth System Dynamics 13 (2022): 1233-57.
642	https://doi.org/10.5194/esd-13-1233-2022.
643	Warren, S G, Hahn, C J, London, J, Chervin, R M, Jenne, R L, Colorado Univ., Boulder, CO,

644	Colorado Univ., Boulder, CO, and National Center for Atmospheric Research, Boulder,
645	CO. Global distribution of total cloud cover and cloud type amounts over the ocean.
646	United States: N. p., 1988. Web. doi:10.2172/5415329.
647	Wood, R.: Assessing the potential efficacy of marine cloud brightening for cooling Earth using a
648	simple heuristic model, Atmos. Chem. Phys., 21, 14507-14533,
649	https://doi.org/10.5194/acp-21-14507-2021, 2021.
650	Zhang, G. J., & McFarlane, N. A. (1995). Sensitivity of climate simulations to the
651	parameterization of cumulus convection in the Canadian climate center general-
652	circulation model. Atmosphere-Ocean, 33(3), 407–446
653	
654	
655	
656	
657	
658	
659	
660	
661	
662	
663	
664	
665	

Figure 1: Monthly seeding masks based on the optimal seeding approach by using CESM2

simulations between 2015 and 2034 under SSP2-4.5 at 2.5% to 20% of the ocean area.

Figure 2: As in Fig. 1, but for the annually accumulated seeding masks. 1 means cloud seedingtakes place in one month, and 12 means cloud seeding takes place all 12 months.

Figure 3: (a) Shortwave cloud forcing computed based on cloud seeding over all grid points over the ocean by using simulations between 2015 and 2034 under SSP2-4.5 as a function of areal extent for cloud seeding with a prescribed drop number concentration of 375/cm³, (b) differential shortwave cloud forcing based on the percentage of the ocean surface with cloud seeding. Annual

(ANN) and seasonal (DJF, JJA, MAM, SON) averages are plotted.

717 Figure 4: Time series of global average temperature. Black solid line represents the 10-member

ensemble mean of the CESM2 simulations under SSP2-4.5, and the ensemble spread is two

standard deviations of the ensemble. The black dashed line is the average between 2020 and

720 2039. The four colored solid lines represent MCB simulations over: 1) 2.5% (green), 2) 5% (red),

3) 7.5% (blue), and 4) 12.5% (magenta) of the ocean surface, and the dashed colored lines areaverages between 2050 and 2069.

Figure 5: Time series of a) global mean temperature (T0), b) inter-hemispheric temperature

747 gradient (T1), and c) equator-to-pole temperature gradient (T2). Black and red solid lines

- represent the 10-member ensemble mean of the control and MCB (over 5% ocean surface)
- simulations with an ensemble spread of two standard deviations. The black dashed line is the
- average between 2020 and 2039, and the red dashed line is the average between 2050 and 2069.

754 755

Figure 6: Difference in surface temperature (TS) in K between: 1) the ensemble mean of MCB over 5% ocean surface between 2050 and 2069 against the control ensemble mean between 2020

over 5% ocean surface between 2050 and 2069 against the control ensemble mean between 2020
and 2039 (a,d,g), 2) the ensemble mean of MCB over 5% ocean surface between 2050 and 2069

against the control ensemble mean between 2050 and 2069 (b,e,h), and 3) the ensemble mean of

- the baseline model between 2050 and 2069 against the ensemble mean of the baseline model
- between 2020 and 2039 (c,f,i). Top panels are for annual average (ANN), middle panels are for
- the boreal winter average (DJF), and the bottom panels are for the boreal summer average (JJA).
- 762 Differences under the 95% significance level are marked in gray dots.
- 763

(c) Δ ANN minimum daily maximum (K), base(2050-2069) - base(2020-2039)

um (K), MCB(2050-2069) - base(2020-2039) (e) Δ ANN maximum daily maximum (K), MCB(2050-2069) - base(2050-2069)

aily minimum (K), MCB(2050-2069) - base(2020-2039)

(h) ∆ ANN minimum daily mi

(K), base(2050-2069) - base(2020-2039

(k) Δ ANN maximum daily minimum (K), MCB(2050-2069 (I) △ ANN maximum daily minimum (K), base(2050-2069) - base(2020-2039

2

4

0

101	7	6	4
-----	---	---	---

765 Figure 7: Difference in surface temperature between 1) the ensemble mean of MCB over 5% 766 ocean surface between 2050 and 2069 against the control ensemble mean between 2020 and 2039 767 (a,d,g,j), 2) the ensemble mean of MCB over 5% ocean surface between 2050 and 2069 against 768 the control ensemble mean between 2050 and 2069 (b,e,h,k), and 3) the ensemble mean of the 769 baseline model between 2050 and 2069 against the ensemble mean of the baseline model between 770 2020 and 2039 (c,f,i,l). Row 1 is for annual minimum daily maximum ("Coldest Day"), row 2 is 771 for annual maximum daily maximum ("Hottest Day"), row 3 is for annual minimum daily 772 minimum ("Coldest Night"), row 4 is for annual maximum daily minimum ("Hottest Night"). 773 Differences under the 95% significance level are marked in gray dots. 774 775

-2

-4

Figure 8: Difference in annual precipitation in mm/day between: 1) the ensemble mean of MCB

over 5% ocean surface between 2050 and 2069 against the control ensemble mean between 2020

- and 2039 (a,d,g), 2) the ensemble mean of MCB over 5% ocean surface between 2050 and 2069
- against the control ensemble mean between 2050 and 2069 (b,e,h), and 3) the ensemble mean of
- the baseline model between 2050 and 2069 against the ensemble mean of the baseline model
- between 2020 and 2039 (c,f,i). Top panels are for total precipitation (PRECT), middle panels are
- 783 for convective precipitation (PRECC), and the bottom panels are for stratiform precipitation
- 784 (PRECL). Differences under the 95% significance level are marked in gray dots.

Figure 9: Similar as Fig. 8 but for precipitation difference in boreal winter (DJF).

Figure 10: Similar as Fig. 8 but for precipitation difference in boreal summer (JJA).

820	-40 -20 0 20 40
821	Figure 11: Difference in annual maximum daily precipitation between: 1) the ensemble mean of
822	MCB over 5% ocean surface between 2050 and 2069 against the control ensemble mean between
823	2020 and 2039 (a), 2) the ensemble mean of MCB over 5% ocean surface between 2050 and 2069
824	against the control ensemble mean between 2050 and 2069 (b), and 3) the ensemble mean of the
825	baseline model between 2050 and 2069 against the ensemble mean of the baseline model between
826	2020 and 2039 (c). Differences under the 95% significance level are marked in gray dots.
827	
828	
829	
830	
831	
832	
833	
834	
835	
836	
837	
838	
839	
840	

Fig. 12: Differences between the MCB ensemble mean between 2050 and 2069 and the control

ensemble between 2020 and 2039: (a) sea-level pressure in DJF, (b) sea-level pressure in JJA, (c)

- total precipitable water in DJF, and (d) total precipitable water in JJA.

Figure 13: Time series of ensemble mean (thick lines) and spread (two standard deviations) of
precipitation: (a) globally, (b) over ocean, and (c) over land. Control ensemble simulations are in
black and ensemble simulation with MCB over 5% ocean surface are in red. Average between
2020 and 2039 from the control ensemble mean is in a thin black line, and average between 2050
and 2069 from the MCB ensemble mean is in a thin red line.

872

873 Figure 14: Ensemble mean difference and ensemble spread (two standard deviations) of zonal 874 mean between the MCB (2050-2069) and control (2020-2039) ensemble simulations: (a) all-sky 875 longwave flux at model top, (b) clear-sky longwave flux at model top, (c) longwave cloud 876 forcing, (d) all-sky shortwave flux at model top, (e) clear-sky shortwave flux at model top, (f) 877 shortwave cloud forcing, (g) total longwave flux at surface, (h) upward longwave flux at surface, 878 (i) downward longwave flux at surface, (j) total shortwave flux at surface, (k) upward shortwave 879 flux at surface, (1) downward shortwave flux, (m) low cloud fraction, (n) mid cloud fraction, (o) 880 low cloud fraction, (p) total cloud fraction, (q) surface temperature, and (r) sea-ice fraction. 881