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Abstract

Greenhouse gas (GHG) emission estimates originating from river networks remain highly uncertain in many
parts of the world, leading to gaps in global inventories and preventing effective management. In-situ sensor
technology advances, coupled with mobile sensors on robotic sensor-deployment platforms, will allow more
effective data acquisition to monitor carbon cycle processes influencing river CO2and CH4 emissions; however,
if countries are to respond effectively to global climate change threats, data sensors must be installed more
strategically to ensure that they can be used to directly evaluate a range of management responses across
river networks. We evaluate how sensors and analytical advances can be integrated into networks that are
adaptable to monitor a range of catchment processes and human modifications. The most promising data
analytics that provide processing, modelling, and visualising approaches for high-resolution river system data
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are assessed, illustrating how multi-sensor data coupled with machine learning solutions can improve both
proactive (e.g. forecasting) and reactive strategies to better manage river catchment carbon emissions.

Keywords: carbon dioxide; machine learning; methane; metabolism; sensors; water quality;

Graphical abstract

Data measurement and integration can be used to advance assessments and management of river carbon
dynamics and water quality.

Introduction

Despite the importance of river systems for water supply and other ecosystem services, such as regulation of
nutrient cycles (e.g. nitrogen and phosphorus) and supporting fisheries, they are highly degraded ecosystems
due to anthropogenic stressors such as modified flows, urbanisation, agriculture and wastewater (Vörösmarty
et al., 2010). By altering physical, chemical and biological components of freshwaters, anthropogenic inter-
ventions play an important role influencing climate change through greenhouse gas (GHG) emissions. River
systems globally contribute estimated annual CO2 emissions equivalent to 20-24% of fossil fuel emissions,
35-65% of the CH4emissions from all sources, and 4-5% of N2O total emissions (Rosentreter et al., 2021,
Friedlingstein et al., 2022, Battin et al., 2023). However, global estimates of river GHG emissions remain
highly uncertain, due to sparse data availability and inconsistent monitoring practices, perpetuating large
gaps in international emissions inventories and preventing effective management (Rudee & Phillips, 2021).
The Paris Agreement signed at the UN Climate Change Conference (COP21) in 2015 recognized the crucial
need to quantify GHG emissions from sources and sinks that have not yet been adequately quantified. More
effective river catchment monitoring and management are needed urgently for countries to respond effectively
to global climate change threats by better managing carbon emissions.

Quantifying aquatic carbon cycle processes is challenging. Processes such as photo-oxidation, metabolism
(production, respiration) and methanogenesis can be estimated from dissolved gas measurements, organic
matter degradation assays, GHG emissions (e.g., floating chambers) or from dissolved gas concentrations
relative to atmospheric concentrations (Duc et al., 2013, Appling et al., 2018, Aho et al., 2021). However, most
studies have collected short-duration datasets in-situ, at small numbers of sites, with low temporal resolution.
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Estimates of photo-oxidation and decomposition with experimental manipulations are also typically resolved
at weekly-to-monthly timescales. Even where daily-to-weekly sampling takes place, it often occurs at selected
locations during daylight hours, or misses important events such as flow peaks (Bieroza et al., 2023). Thus,
we lack a clear understanding of how river stressors and management activities influence emission ‘hotspots’
in space, and/or ‘hot moments’ in time (Zhang et al., 2021b), risking either over- or under-estimation
of emissions. Recent reviews and opinion articles have broadly outlined a need for global river observation
systems for river carbon monitoring (Battin et al., 2023, Dean & Battin, 2024) but lacked details on how these
networks could be implemented. Here we evaluate how recent advances in autonomous (field deployable and
wireless) sensor networks, and robotic mobile sensing platforms, can be harnessed to meet this requirement
by combining high-frequency, continuous data at multiple locations, with machine learning (ML) models to
improve carbon emission estimates and overall water management in river networks.

The emergence of sensor technologies for high-resolution space/time monitoring offers the potential to eva-
luate fundamental linkages between hydrological regime, physicochemical conditions and nutrient dynamics
to fill knowledge gaps in understanding processes related to carbon emissions. Links between river physical
properties, network structure and ecosystem carbon cycle parameters, including metabolism, have advan-
ced notably with Cole et al.’s (2007) concept of “leaky pipes” for carbon loss along the land-ocean aquatic
continuum (LOAC), and the Pulse-Shunt Concept, which added transport vs reaction timescales related to
flow (Raymond et al., 2016). Wollheim et al. (2018) proposed a similar River Network Saturation (RNS)
concept, describing how river networks become saturated with carbon at high flows, particularly in low-order
streams, where terrestrial carbon is “pulsed” to river networks and “shunted” downstream because high flows
restrict time for uptake reactions in quantifiable amounts. Thus, most annual downstream carbon export
occurs during a small number of high flow events (Raymond et al., 2016). At low flows, particularly in high-
order rivers, carbon uptake fluxes and subsequent emissions are much higher as transport timescales are long
and reactions can occur by photomineralization and co-metabolism on bio-aggregates (Battin et al., 2008).
Continuous measurements of dissolved oxygen have enabled many of these advances in understanding river
carbon cycling processes of primary production and respiration, but the spatial distribution of monitoring
systems remains limited and globally unbalanced. For example, across North America, the relatively wi-
despread availability of sensor data (Figure 1), has promoted an understanding of key drivers of river carbon
cycling and CO2 emissions, as demonstrated through the StreamPULSE project (Appling et al., 2018). A
range of datasets are also collected in regional initiatives (e.g. Figure 1b, c) yet for large parts of the world,
including much of the global south, we still have only patchy knowledge of the parameters needed to quantify
carbon transformations and emissions, or data collected are not open access (Dean & Battin, 2024). Even
in countries with advanced sensor networks, there are still large gaps spatially between sensor locations (Fig
1b), and high-order, poorly mixed rivers, which present challenges to developing representative datasets,
unless multiple sensors are deployed across river cross sections.

Sensor network developments can improve our understanding of spatial and temporal carbon dynamics
significantly (Segatto et al., 2023) but cost prevents monitoring all rivers. Coupling sensor developments
with advances in fixed sensor technology and data analytics, as well as mobile robotics and ML, will be vital
to achieve spatially continuous data and interpolate spatially explicit datasets to derive whole catchment
understanding (O’Grady et al., 2021, Khandelwal et al., 2023). By automating sensors using computer
science advances and telemetry systems, it is becoming possible to monitor, in near real-time, how aquatic
ecosystems are functioning. Additionally, the Internet of Things (IoT) offers significant potential in delivering
up-to-date water quality data with a high level of precision and accuracy, enabling the detection of even
minor fluctuations in water quality. IoT facilitates the connection of various instruments, including electronic
devices and sensors, utilising the communication infrastructure and cloud computing resources already in
place (Amador-Castro et al., 2024). This offers the potential to validate existing carbon dynamic scientific
models and develop the next generation of catchment-scale numerical predictive models. There is now a
potential for a step-change in adaptive management, moving away from current low-resolution, relatively
slow turnover data collection, with delayed analytics that impede effective decision-making, to faster and
more accurate workflows, even at national scales. This will subsequently enable scientists to advance emission
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quantifications at national to global levels and develop intervention plans.

Figure 1. The global distribution of river monitoring stations with sensors suitable for develop-
ing metabolism estimates and carbon emissions has a strong spatial bias . Examples of the most
dense nationwide networks are: (a) StreamPULSE sites in the continental USA; (b) Spanish Environmen-
tal Department Water Quality Automatic Information System (SAICA); (c) a catchment-scale monitoring
network in the Connecticut River, NE USA (Hosen et al., 2021)

In this review, we evaluate the potential for using sensor data and machine-learning to advance river carbon
cycle processes and emission management, both responsively to stressor events and proactively to enhance
the management of both water resource security and downstream river system services. Taking into con-
sideration the key drivers of river carbon processes and emissions, we demonstrate how recent technological
advances in the development and implementation of sensor networks for river catchment management can be
harnessed to improve knowledge of aquatic processes. We examine how sensor and analytics advances offer
new opportunities to develop strategic monitoring networks that can capture impacts resulting from a range
of catchment processes and human modifications. We illustrate the benefits of incorporating emerging, afford-
able sensor technologies, and novel robotic sensor deployment technologies, which allow for high-resolution
monitoring, and explain how a variety of water quality parameters can be used to develop causal relation-
ships between drivers and response variables. We then assess the most promising analytical approaches and
methods for processing, modelling, and visualising high-resolution river system data, demonstrating how
novel applications of sensor networks coupled with artificial intelligence (AI) solutions could be developed.

Advancing river management with sensor networks and data analytics
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Many traditional methods for monitoring river systems are resource-intensive and deliver results sometimes
weeks-months after sampling and ecosystem changes occur (e.g. biological sampling followed by labora-
tory identification, then analysis/interpretation, or; ‘snapshot’ sampling of water chemistry (Dean & Battin,
2024)). Manually operated sensors furthermore offer only a snapshot of temporal dynamics. Both delays and
low-resolution data can result in less effective management responses, such as detecting pollution incidents,
or optimizing water systems where trade-offs between water supply and environmental needs are required.
In contrast, there is increasing availability of affordable, robust, and high-resolution sensors, coupled with
distributed data transfer systems (e.g. LoRaWAN - long range wide area network) and the array of data
analytics solutions. If we are to truly revolutionise water resource management, river monitoring needs to
embrace the collation of large, integrated datasets in complete packages rather than considering layered ap-
proaches (Dean & Battin, 2024) that re-iterate long-standing collection protocols. For instance, IoT devices
can incorporate software sensors (such as those based on machine learning) for predicting a range of water
quality parameters based on the information from physical sensors (Ba-Alawi et al., 2023), reducing moni-
toring costs. River ecosystem metabolism for example, which can be quantified routinely and continuously
using optical measurements of dissolved oxygen, would be a core carbon cycle process measurement which
has been found to respond consistently to environmental change with a high sensitivity, including detecting
effects of river restoration practices (Ferreira et al., 2020), wastewater treatment upgrades (Arroita et al.,
2019) and stressor events such as sedimentation (Aspray et al., 2017). When combined with a range of other
sensor-based measurements, it offers significant potential for assessing the impacts of river system responses
to human modification.

Reactive management responses to sensor data

Coupling telemetered sensor networks to data analytics solutions will be needed to enable the development
of dynamic visualisation dashboards, providing environmental managers with unprecedented insights into
the real-time status of the whole river network. These sensor systems also present new opportunities for
the democratisation of catchment data with public-facing web-hosted applications. By engaging the public
in the process, initiatives that improve insights into water quality by enhancing the level of detail and
coverage in both space and time supplement the data generated by scientists and government organizations.
To achieve this, it is crucial to establish and distribute appropriate and consistent protocols to the public
(Amador-Castro et al., 2024). With additional potential for alerting citizen scientists, reliable information
on water quality could be obtained quickly during events, increasing the spatiotemporal resolution and
complementing the data produced by scientists and government institutions. As ML methods improve, the
ability to upscale from localised data collection points in space, and to robustly infer system dynamics over
time where data gaps exist (Segatto et al., 2021), offers potential for significant improvements in both reactive
and proactive management (Figure 2). Predictions of future conditions (forecasting) will become possible,
similar to recent advances applied to standing freshwaters (Lofton et al., 2023), enabling improved responses
to future problems. Sensor data can be used directly or aggregated to develop metrics for evaluating the
ecological status of a river section. Such data will be used together with information on water quality and
discharge to support decisions on water management, especially by elucidating links between water quality,
ecosystem respiration, and carbon emission.
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Figure 2. Distributed sensor networks can be developed to support water resource manage-
ment : (a) REACTIVE ; a river catchment with sensor locations denoted by numbers (1-7) spanning river
channels. At t1, a stressor (e.g. organic pollution, sedimentation) appears (upstream of location 7) lead-
ing to enhanced ecosystem respiration (ER). Real-time analytics and visualisation allow pollutant tracking
through t2-t4, enabling water abstraction (denoted by x) to be deactivated at t3. (b)PROACTIVE ; a river
catchment with a large headwater reservoir. Hydrograph shows discharge (Q) scenarios f1-4. Low flow f1
elevates ER in the mainstem. With a regulatory target of ER 1-2.5, water release in f2 modifies only the
segment below the reservoir. Excessive water release in f3 leads to overshoot of targets, allowing an optimal
solution in f4 to trade-off ecosystem recovery and water supply.

For example, abstractors using river water for drinking water supply can identify contamination issues, such
as high dissolved organic carbon (DOC) concentrations upstream, thus avoiding problems whereby disin-
fection byproducts make water unsuitable for human consumption (Valdivia-Garcia et al., 2019). Specific
examples include water utilities and hydropower companies that withdraw, store, and redistribute water
around river systems facing management challenges related to altered water quality (Gillespie et al., 2015).
Such approaches are already being tested, by diverting episodic events with elevated DOC in raw water
sources away from water treatment works (Yorkshire Water, 2023), but sensor networks can be costly to
implement and maintain. The integration of forecasting into ML architecture promises to strengthen and
advance scientific understanding further by feeding back to field sensors and samplers to collect higher res-
olution data. For example, enhanced data collection during contamination events could be used to support
regulator investigations, and during storms where runoff peaks are often missed, for enhanced understanding
of water quality and carbon cycle dynamics.

Regulators and decision makers need access to high-quality data to develop, monitor and enforce catch-
ment management plans and legislation, and identify areas where persistent problems highlight the need for
restoration, such as through payment for ecosystem service or nature-based solution initiatives. Addition-
ally, managers of agricultural basins, which are recognized as a leading source of global water contamination
(Liu et al., 2022) need evidence to manage and reduce the effects of sediment loads and adsorbed contam-
inants originating from soil erosion, and the use of agrochemicals (nutrients, herbicides, pesticides), all of
which can lead to elevated GHG emissions from rivers (Xiao et al., 2021). By pinpointing river sections or
sub-catchments suffering from stressors, prioritized and targeted management practices can meet multiple
objectives to reduce emissions as part of the water-energy-food nexus in global resource systems.

Proactive management responses to sensor data

Proactive uses of sensor networks and analytics portals will benefit from long-term management planning
through research and adaptive management. For example, experimental campaigns can be initiated to
optimize management by modifying environmental flows from reservoirs (Figure 2b). At present, reservoir
operators release water to support downstream ecosystems, aiming to maintain the quantity and quality
of water, based on the taxonomic or behavioural response of targeted biological groups, such as fish and
invertebrates (Gillespie et al., 2015). However, these flows additionally modify downstream water quality,
such as temperature, which is a strong control on carbon cycle processes (Yvon-Durocher et al., 2011). The
water release also alters emissions from previously dry sediments (Perez-Calpe et al., 2022), and transfers
dissolved GHG from in-reservoir processing (Shi et al., 2023) to modify downstream emissions (Guerin et
al., 2006). With the ability of sensor networks to provide rapid insights into downstream river ecosystem
responses to changes in outflow volume, reservoir managers could more effectively balance water supply
requirements with minimising downstream ecosystem damage and emissions.

GHGs are known to be emitted from all freshwaters, but the lack of direct accounting for many of these
systems, despite studies showing their important role in GHG budgets both naturally and when modified,
can now be remedied with enhanced environmental data collection. Without such investments, commit-
ments to develop net-zero adaptation policies by governments and businesses, such as water and hydropower
companies, are likely to be hampered if freshwater systems remain understudied. Following recent IPCC
inventory refinements (IPCC, 2019), emissions from managed inland waters (e.g. farm ponds, reservoirs,
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and their outflows) now need to be quantified, which is adding some impetus to data collection, but for river
systems it is also necessary to consider business operations effects ‘offsite’ or ‘downstream’, such as lengths
of watercourses influenced by upstream contaminant inputs (Hu et al., 2018) or flow modifications (Shi et
al., 2023). The integration of sensor networks with ML models will be a key step toward meeting this need
for whole catchment understanding and improved management.

Developing sensor networks to enhance river catchment management

Drivers of river carbon cycle processes

Understanding the drivers of carbon cycling in rivers is needed to predict the effects of modification by
stressors such as warming, land use changes and flow regulation (Bernhardt et al., 2018). Unlike terrestrial
systems, carbon processing in rivers may not be synchronized with subsequent emissions of the produced
GHG due to the dynamic nature and spatiotemporal variability in their physicochemical and biological
characteristics(Dodds et al., 2013). Continuous measurements of the key drivers of metabolism in rivers
(e.g. hydrological conditions, light, temperature, organic matter availability, and nutrient concentrations)
are needed therefore to compare and pinpoint their relative importance under different stressor regimes.
Additionally, because metabolism and physicochemical drivers act at multiple spatial scales, from local
(riparian vegetation, channel morphology) to regional (climate, topography), and vary along the river network
(Alberts et al., 2017), their combined impacts can only be examined by in-situ sensor networks and remotely-
sensed data products. For example, the extra dimensionality offered by mobile robots with on-board sensors
offers a potential solution to measuring spatial variation in such parameters along the course of a river.

River hydrology plays a significant role in shaping metabolism in rivers due to its control on ecosystem
structure and functioning (Von Schiller et al., 2008, Hosen et al., 2019, Maavara et al., 2023). In their
study based on sensor data from 222 US rivers, Bernhardt et al. (2022) found light and flow stability (and
their interaction) to be key controls on primary production and respiration. Studies in temperate rivers
have shown that, in addition to the obvious seasonal drivers of Gross Primary Production (GPP) (i.e. light
availability, including canopy shading, and temperature), GPP’s dependence on flow should be considered in
the context of river size (Hosen et al., 2019). In large rivers, GPP is maximized at low flows, but reduced in
high flows due to short water residence times and high turbidity obscuring light availability (Roberts et al.,
2007, Pathak et al., 2022), while there is little flow-related change on GPP fluxes in smaller rivers (Hosen
et al., 2021, Maavara et al., 2023). The dependence of ecosystem respiration (ER) on flow is somewhat less
straightforward; low flows may reduce benthic production due to riverbed drying, but ER can increase after
flow resumes, fuelled by the accumulation of terrestrial organic matter on the dry riverbed (Acuna et al.,
2005). Maavara et al. (2023) showed that ER was generally maximized in a temperate forested watershed
close to median flows when water residence times allowed ample time for carbon uptake to occur, with higher
flows resulting in a deeper and wider water column allowing for more DOC availability and more uptake due
to larger water column volume.

Although light availability is a key driver of primary production (Savoy & Harvey, 2021), it is not straight-
forward to model GPP as other factors impact river autotrophs such as turbidity, vegetation, nutrient
availability/stoichiometry, and shading (Behrenfeld & Falkowski, 1997). Light and temperature models can
be developed for whole river networks by calibrating ML approaches from local sensor data and scaling the
findings using remote sensing products such as land use/cover classifications and digital elevation models
for topographical information (Segatto et al., 2021, Maavara et al., 2023). Drones with attached sensors
could be utilised to build and validate such models with high spatial resolution data. Light availability
can also modify temperature (Nebgen & Herrman, 2019), which has a stronger control on ER compared
to GPP, indicating a possibility of higher CO2 emissions from rivers with climate warming (Demars et al.,
2011). However, the impact of warming on emissions is still less predictable compared to estimates derived
from metabolic theory (Battin et al., 2023). Incoming solar radiation can also mineralise DOC to inorganic
forms and this must be considered alongside aquatic biological processes (Maavara et al., 2021). Indeed,
recent research has shown that the magnitude of photomineralization during low flows as well as in winter
often dramatically exceeds ER fluxes. Failing to consider year-round photomineralization fluxes may vastly
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underestimate the total magnitude of DOC uptake and CO2 production (Maavara et al., 2023).

While GPP and ER are sensitive to nutrient loading, studies have yielded equivocal results regarding the
impact of nutrient loading. Some studies have reported an increase in GPP and ER due to nitrogen and/or
phosphorus loading (Kominoski et al., 2018), whereas others have suggested that nutrient concentrations
may be only secondary drivers due to the effects of light and food web structure (Dodds & Cole, 2007).
Conversely, some studies have found evidence for reverse causality, where metabolism variations strongly
control riverine nutrient dynamics (Jarvie et al., 2018, Pathak et al., 2022). The development of sensor
networks, and sensor deployment technologies, designed specifically to monitor river ecosystem carbon dy-
namics will therefore enable the relative importance of multivariate drivers of metabolic processes and their
feedback to be understood in far more detail. Moreover, bidirectional relationships between water quality
and biogeochemical cycles could eventually be explained and predicted through ML using both water quality
information from sensors alongside next generation sequencing data focused on microbial communities and
their biogeochemical processes (Dı́az-Torres et al., 2022) such as sulphur, nitrogen, phosphorus and carbon
metabolism.

Sensor networks for river system monitoring

Catchment management aimed at improving freshwater quality and reducing carbon emission is complicated
due to multiple transport pathways that convey water and a wide range of contaminants into rivers (Khamis
et al., 2018). These include point sources such as industrial and municipal wastes, and non-point contributions
such as agriculture. Identifying hotspot areas (both sources and impacts) is a critical first step in developing
adequate intervention measures to improve water quality; however, monitoring is needed to evaluate the
effects of these intervention efforts, protect water quality, and meet regulations (Lofton et al., 2023). Sensor
networks provide the potential to meet these aims, but operational water quality monitoring programs
globally are commonly based on fixed sampling points with periodic manual collection of ”grab” samples
and subsequent laboratory analysis for targeted parameters. Due to limitations of personnel, equipment, and
access this type of sampling can provide good spatial snapshots of river conditions at the time of sampling
(Meyer et al., 2019) but is difficult to implement across entire catchments (Xing et al., 2013). These sampling
approaches also largely miss sporadic extreme events, such as contaminant releases or stormflows (Charriau
et al., 2016). In response to deficiencies in capturing event-based changes in river ecosystem properties,
and with the emergence of more reliable sensor technology, high-frequency monitoring using field deployable
sensors and actuators is increasing (Blaen et al., 2016, Bieroza et al., 2023). Autonomous and remotely
operated robotic surface vehicles with on-board sensors have increased the achievable spatial resolution of
field-deployed water quality sensors(Lee et al., 2023), and show great potential to improve detection of, and
response to, short-term changes in river environments (Powers et al., 2018). For example, localisation of a
pollution hotspot could trigger reactive behaviours, such as increasing the resolution of data collection or
tracking concentration gradients.

In-situ automated systems with multiple sensors that measure at high-frequency (typically 15-60 min reso-
lution but can vary depending on the application) can be used to deliver near real-time data (Meyer et al.,
2019, Singh et al., 2022). Various sensors can be deployed to quantify carbon cycling or to supply information
on physicochemical drivers (Table 1). However, to advance catchment scale carbon management, networks
of these automated systems (i.e. sensor nodes (Figure 3)) are needed to pinpoint areas, such as those with
high emissions, and to track event propagation through river basins (Zia et al., 2013). Further potential
for enhancing the dimensionality of environmental data is emerging from the development of autonomous
robotic platforms to deploy sensors in parts of river systems that are difficult to access. The integration of
these approaches and datasets presents a challenge, but these networks offer significant potential for advances
in real-time understanding and mitigation of risk for river users, managers, decision-makers, and regulators
(Jankowski et al., 2021, O’Grady et al., 2021).
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Figure 3. Data measurement and integration can be used to advance assessments and man-
agement of river carbon dynamics and water quality . (a) Sensor arrays along river catchments
(locations 1-7) provide time-series of parameters (including carbon/metabolism). Real-time data from the
suite of sensors can then be exchanged and processed together with other automated information sources
such as weather forecasts, satellite data, and local measurements (white arrows). ML tools can be incorpo-
rated to (b) alert humanized control centers for proposed actions, or take actions automatically using alarm
rationalization (distinguishing between alarms and alerts). The dimensionality of data collection at these
nodes (c, d) can be augmented by deploying mobile/autonomous systems to capture information from river
cross sections, as well as from the reaches between fixed sensor nodes. Hierarchically nested structures of
sensor arrays and other information sources can thus be used to advance optimization in water resource
management.

Table 1. Multiple parameters can be measured routinely with high-frequency sensors to ad-
vance understanding and management of river carbon cycling and emissions.

Sensor parameter
Relevance to freshwater C
processes and emissions

Example studies (citations in []
are open-source sensor examples)

cDOM, tryptophan-like
fluorescence, and absorption at
254nm

Measures fractions of organic
matter and correlates with
DOC and Total organic Carbon
(TOC) to understand c cycling

(Spencer et al., 2009, Lee et al.,
2015)

Chlorophyll a and Phycocyanin Represents processes of algae
growth and primary production

(Chegoonian et al., 2022,
Peipoch & Ensign, 2022)

CO2/CH4 gas flux chambers Provides direct measurements
of GHG emitted from water
surfaces

(McClure et al., 2021, Zheng et
al., 2022) [(Duc et al., 2013,
Maher et al., 2019)]

Dissolved CO2 / CH4 Dissolved GHG that can be
potentially emitted

(Roberts et al., 2007, Crawford
et al., 2017) [(Butturini &
Fonollosa, 2022)]

Dissolved oxygen Primary production produces
oxygen whilst respiration
consumes it.

(Aspray et al., 2017, Mejia et
al., 2018, Jankowski et al.,
2021) [(Chan et al., 2021)]
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Sensor parameter
Relevance to freshwater C
processes and emissions

Example studies (citations in []
are open-source sensor examples)

Electrical conductivity Hydrological tracer within open
system calculations of river
metabolism

(Vieweg et al., 2016)
[(Mendez-Barroso et al., 2020)]

Nitrate Primary production can serve
as an important nitrate sink

(Jarvie et al., 2018, Murray et
al., 2020)

pH Significant control on most
biological processes, and
influences bicarbonate buffering
system, thus dissolved CO2

(Hong et al., 2021, Klemme et
al., 2022)

Turbidity Elevated
turbidity/sedimentation can
block sunlight to primary
producers, reducing primary
production

(Snyder et al., 2018, Honious et
al., 2022) [(Droujko et al.,
2023)]

Water level Indicates changes in flow, which
influence the rates of primary
production and respiration

(Bernhardt et al., 2022)
[(Bresnahan et al., 2023)]

Water temperature Direct impact on gas solubility,
metabolic rates (primary
production, respiration,
methanogenesis).Warming can
shift the balance towards more
CO2 and CH4 release rather
than uptake into biomass

(Demars et al., 2011,
Yvon-Durocher et al., 2011)
[(Hong et al., 2021)]

With the decreasing footprint and power consumption of contemporary environmental sensors, they can now
typically be integrated into multiparameter sensor platforms (i.e. sondes) to provide new opportunities for
quantifying an array of carbon cycle processes. Miniaturisation and lower power requirements have also
increased the portability of environmental sensors for deployment onboard mobile robots, leading to the
emergence of commercially available, remotely operated and autonomous surface vehicles for environmental
monitoring (Wallingford, no date, YSI, no date). However, probes for measuring dissolved CO2, CH4, and
other proxies for organic matter (e.g., cDOM, UV254, etc.) remain poorly incorporated into t carbon
cycling estimations. Available sensors either require further development to improve their resolution and
detection of multiple compounds such as emerging contaminants, or for dissolved gases atmospheric sensors
must be deployed in bespoke water-tight, gas-permeable sleeves (Aho et al., 2021, Bernal et al., 2022) or
direct measurements require combined chemical and optical measurements(Mendes et al., 2019). Despite
the increasing number of sensors that measure parameters related to carbon, most river studies estimating
whole-stream metabolism have used dissolved oxygen time series (Hoellein et al., 2013) but this method
cannot resolve the change in respiration between day and night (Tromboni et al., 2022). Conversion of
oxygen data to CO2 production/uptake then relies on the use of respiratory quotients, with further work
needed using concurrent O2 and CO2 measurements to understand sources of uncertainty, including organic
matter composition and biological community influences (Bernal et al., 2022) as well as processes such as
denitrification and sulphate oxidation that produce CO2 without consuming dissolved oxygen.

Additional uncertainty must be minimised with appropriate corrections for reaeration of atmospheric-aquatic
gas exchanges, using either tracer injections of inverse model fitting to sensor-derived dissolved gas time-
series (Holtgrieve et al., 2016). Novel biosensors based on microbial-fuel cells (MFC), such as two-electrode
bioelectrochemical systems that use microbial respiration to convert chemical energy to electricity (Cui
et al., 2019), offer potential solutions to environmental sensors for aquatic respiration-related parameters.

10
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The MFC voltage or current response to aquatic respiration-related parameters (including DO, BOD, COD
and GHG) has been used as the basis for developing MFC-based biosensors (Wu et al., 2019), including
commercial devices (e.g. HABS-2000 Online BOD Analyser). MFC-based sensors have additional benefits
including low cost, environmental sustainability, the possibility of self-powered operation, portability and
reduced response times in the order of minutes.

Affordable sensor networks

In general, the high cost of using standard commercial sensors for water quality and carbon cycling presents
a significant limiting factor for implementing high spatio-temporal sensor networks. ‘Affordable’ sen-
sors/devices have a price of at least one order of magnitude lower than an off-the-shelf commercial product.
Developments in affordable, open-source computing hardware, such as microprocessors (e.g. Arduino) and
single-board microcomputers (e.g. Raspberry Pi) could bridge the gap between low-cost sensing and data
logging, with wireless real-time data transmitting (Chan et al., 2021) enabling their use in a wide range of
geographic locations and by a range of users, including citizen scientists, particularly IoT networks become
more widespread. While there are advantages to adopting citizen science methods for monitoring water
quality, there are also several obstacles to overcome. Research indicates that the technology utilized for cit-
izen science water quality monitoring should be cost-effective, easy to use, and capable of producing precise
outcomes. In this context, IoT devices and sensors integrated with smartphones show potential as viable
solutions (Amador-Castro et al., 2024)

Currently, there are low-cost reported solutions for aquatic measurements of multiple parameters directly
relevant to understanding C cycling in aquatic systems (Table 1, column 3). In addition, there are multiple
affordable datalogging devices and wireless communication options relying on local-, cellular-, and satellite-
based solutions (Levintal et al., 2021). The field of affordable sensors is evolving rapidly, with new capabilities
constantly emerging. For example, a compact multi-gas sensing platform for CO2, CH4 and N2O sub-ppm
measurements is under development (Wastine et al., 2022). Such a device can be used in automatic flux
chambers to quantify, in real-time, emissions of all three main GHGs, from different locations within one
river catchment. Despite this, highly specialized equipment will increase monitoring costs, which is only
feasible for limited initiatives. With respect to carbon cycling in rivers, there is still a need for affordable
solutions for dissolved organic matter (DOM), nutrients, and dissolved gases other than O2 and CO2. The
use of low-cost auto-samplers(Carvalho, 2020), portable spectrophotometers (Laganovska et al., 2020) or UV
fluorescence spectroscopy (Yeshno et al., 2021) can potentially provide relevant solutions for autonomous
water sampling and analysis, thus meeting the need for high-resolution monitoring without excessive costs.
However, given the increasing availability of low-cost solutions for deployment by a range of users, these
sensors must be developed, deployed, and maintained in line with robust protocols to ensure data accuracy.

In many cases, affordable sensors have not been designed for use in aquatic systems. Installing or developing
a sensor station (node) may take longer to implement than standard commercial sensors and require different
steps such as waterproofing, calibration, or processing of raw data, which can present barriers to non-technical
users (Chan et al., 2021). There are also major challenges with incorporating multiple sensors, possibly with
different outputs, into a single and stable working system, for example a monitoring robot. Another barrier
is psychological, as affordable sensors can sometimes be wrongly considered less appropriate for rigorous
scientific research (Chan et al., 2021)Overcoming these challenges will lead to the development of low-
cost sensor nodes, which will increase the affordability of deploying multiple nodes within an environment,
increasing the spatial resolution, particularly valuable in areas where unpredictable extreme events are
increasingly likely. Increasing accessibility of this technology, to economically developing nations will also be
improved.

Mobile sensors and monitoring robots

Advances in mobile sensors and monitoring robots have increased the spatial resolution of environmental
sensing, enabling capabilities such as detecting the location of pollution hotspots within water bodies (Pow-
ers et al., 2018). Mobile sensors can be divided into those designed to travel passively within water currents
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(Marchant et al., 2015, Gardner et al., 2020), and those that are actively mobilised using robotic technol-
ogy. Unmanned robots are a promising solution for sensing in hard-to-reach locations, enabling spatially
continuous data collection and monitoring over longer distances and time periods.

Unmanned/unpiloted aerial vehicles (UAV), also known as aerial drones, can monitor large areas and use
multi-spectral imaging and on-board probes and samplers to measure parameters such as algal blooms,
temperature and light. Small-scale, uncrewed surface vehicles/vessels (USV), also known as unmanned
surface vehicles/vessels can be equipped with on-board bathymetric, light detection and ranging (LiDAR),
GPS, and flow sensors, which enable correlation of geographical and hydrological parameters with water
quality sensing (e.g. temperature, suspended solids concentration and hydrocarbon concentration (Martinez
Vargas et al., 2023)). In addition to carrying water quality sensors, samplers are also beginning to emerge
with the ability to automate water sample collection and analysis on-board USVs, providing further potential
for monitoring in-situ ecosystem processes (e.g. biochemical oxygen demand for respiration) (Fornai et al.,
2012, Shabani et al., 2021). The availability of relatively low-cost autonomous underwater vehicles (AUV),
USVs and miniaturised environmental sensors has already led to the emergence of commercially available
sensor deployment robots (Lee et al., 2023). These devices are typically remotely controlled, with the state-
of-the-art ability to navigate autonomously due to advances in artificial intelligence and ML and particularly
deep learning (DL) methods (Qiao et al., 2023).

Remaining obstacles to the use of robotic mobile sensing include legal constraints and physical limitations,
such as achievable battery life. Autonomous navigation remains a challenge due to the high non-linearity and
uncertainty of natural, and particularly, aquatic environments. As a result, AUVs are not yet well-developed
for use in rivers, as the complex, low visibility environment is difficult to navigate, and many communication
and localisation technologies (e.g. GPS) cannot be used underwater. However, USVs and AUVs are well
established in marine monitoring, showing the potential of this technology to be applied within rivers with
further development.

Integrating high-resolution sensor data with analytics advances

Sensor networks present opportunities to develop a new understanding of fundamental environmental pro-
cesses alongside applied management scenarios, by coupling high-resolution data sources with concurrent
advances in statistical analysis and modeling. For example, 10 years ago, many studies using dissolved oxy-
gen sensing technology typically comprised snapshots of metabolism on daily timescales at the river reach
(~10-100m) scale (Hoellein et al., 2013, Demars et al., 2015), sometimes with seasonal repeat sampling (Von
Schiller et al., 2008). With the development of more reliable and robust sensors including automatic cleaning
(e.g. wipers, pressurized air), dissolved oxygen time-series data have been collected to calculate continuous
metabolism (i.e. GPP, ER, NEP) over periods of months-years (Roberts et al., 2007, Pathak et al., 2022).
The spatial distribution of sampling networks has also seen a recent shift from reach-based assessments to-
ward efforts to quantify metabolism for catchments and whole river systems (Rodŕıguez-Castillo et al., 2019,
Segatto et al., 2021, Segatto et al., 2023). Large volumes of high-resolution water quality data are becoming
available from continental-global scale networks (Bernhardt et al., 2022). These ongoing increases in sensor
data coverage offer the potential for significant improvements in pinpointing key drivers and constraints
of aquatic ecosystem health, such as temperature, light, nutrients and discharge (Bernhardt et al., 2018)
enabling improved decision-making and more strategic intervention efforts.

Modelling approaches

River DOM processing is influenced by multiple dynamic drivers that often respond non-linearly to hydro-
climatological events across catchments, such as floods, drought, and warming (Battin et al., 2023). In the
past, modelling of DOM, carbon and nutrient reaction and transport through river networks was hindered
by the lack of high-resolution hydrology and hydrography data products at watershed, national, and global
scales. As a result, models were typically limited to specific water body types (e.g. lakes only, river rea-
ches/segments only) or grouped catchments where output could not be discretized in such a way to allow for
spatiotemporal trends to be identified. The intersection of sensor technology, river models and ML advances

12



P
os

te
d

on
16

A
pr

20
24

|C
C

-B
Y

4.
0

|h
tt

ps
:/

/d
oi

.o
rg

/1
0.

22
54

1/
es

so
ar

.1
71

32
26

96
.6

98
31

02
9/

v1
|T

hi
s

is
a

pr
ep

ri
nt

an
d

ha
s

no
t

be
en

pe
er

-r
ev

ie
w

ed
.

D
at

a
m

ay
be

pr
el

im
in

ar
y.

presents new opportunities for aquatic scientists and managers to develop digital representations of river
systems (aka digital twins) to enhance aquatic science and management.

Increasing volumes of sensor data have enabled the expansion of metabolism estimation from the river reach
scale to the network scale (Figure 4) using a range of model methods, including process-based (Segatto et
al., 2020), empirical (Rodŕıguez-Castillo et al., 2019), ML (Segatto et al., 2021), or a combination (Pathak et
al., 2022, Maavara et al., 2023). As sensor networks can gather data on the physical and chemical properties
of rivers, such as temperature, light intensity, dissolved oxygen and nutrient concentrations, these data are
usually used as input in process-based metabolism models to estimate reach-scale processes (Demars et
al., 2015, Appling et al., 2018). Local metabolism rates can then be combined with information about the
catchment environment to upscale to the river network scale, and as inputs for ML algorithms such as
decision trees or neural networks.

Figure 4. Catchment-scale river metabolism estimates can now be developed from distributed
sensor networks : (a) GPP measured in the 1200km2 Deva-Cares catchment, northern Spain (Rodŕıguez-
Castillo et al., 2019); (b) GPP measured in the 256km2 Ybbs river, Austria (Segatto et al., 2021). Network
outputs such as these can be developed as visualisation tools to aid catchment management decision-making,
with dynamic updating in near-real time from linked sensors, telecommunication systems, and computational
models.

In the past five years, high-resolution river network data products have become available at both national and
global scales, including MERIT-Hydro and the associated GRADES dataset (Lin et al., 2019, Yamazaki et
al., 2019) with 35 years of daily flow data from nearly 3 million river segments worldwide. These river network
maps have enabled the further development of biogeochemical models that can be used alongside discrete
location sensor data to quantify how nutrient and carbon sources, sinks, and transformations vary according
to river size, flow, and season in large watershed networks. For example, Maavara et al. (2023) used the US
National Hydrology Dataset (NHD Plus HR) product to develop a DOC model for the Connecticut River
watershed, NE USA (Figure 1). This model calibrated GPP, terrestrial DOC loading, photo-mineralization,
and respiration, partly from a sensor network at 10 locations from 1st-8th order rivers. These continuous
dissolved oxygen measurements at 15-min intervals were used to estimate GPP and ER using a Markov
Chain Monte Carlo algorithm, which was then scaled to estimate GPP across the entire watershed during
all flows and seasons, by calibrating a random forest ML model (Appling et al., 2018)
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Efforts in improving process-based metabolism models have focused on expanding estimation to a more
diverse set of river environments than previously possible, including estimation in river reaches with large
discontinuities (e.g. flow and water quality regulation) or river reaches with significant transient storage
(Pathak & Demars, 2023). Progress in this direction is valuable for reducing uncertainties in global estimates
of freshwater carbon fluxes. Such process-based models could facilitate large-scale assessments of metabolism
and its drivers across river environments, when combined with ML methods (Appling et al., 2018, Bernhardt
et al., 2022). Several other physical properties currently overlooked in field studies may significantly impact
metabolism and will need to be incorporated into future network models, for example sediment movement
(Risse-Buhl et al., 2023, Schulz et al., 2023) and groundwater interactions (Galloway et al., 2019), which can
have major impacts on ER.

Quantification of spatial and temporal dynamics of metabolism across river networks is important for esti-
mating regional carbon emissions from rivers (Battin et al., 2023). However, only a few studies have focused
on metabolism estimation at the river network scale (Figure 4). Rodŕıguez-Castillo et al.(2019) utilized the
spatial stream network model to identify the factors that govern spatial variations in river metabolism wi-
thin the Deva-Cares catchment in northern Spain, highlighting benthic biomass, river channel properties,
and human activities as important controlling factors. Segatto et al. (2021, 2023) found that ER played a
larger role in metabolic stability at the river network scale in the Ybbs River Austria, whereas GPP showed
higher sensitivity to flow-induced disturbances and variations in light availability. Mejia et al. (2018) used
the BAyesian Single-station Estimation (BASE) (Grace et al., 2015) model to estimate metabolism over a
year at ten sites across the Methow River network in Washington State, USA. Their findings indicated that
metabolism timing may vary between sites within a river catchment due to the combined influence of local
physicochemical conditions, despite having similar regional climates. Metabolism studies at the river net-
work scale are admittedly data-intensive and these approaches need to be evaluated in river systems that are
heavily polluted and where water quality often varies significantly over even short distances (Casillas-Garćıa
et al., 2021). In these systems the implications may be that more dense networks of fixed and robot-mounted
sensors are required, alongside additional predictor datasets such as point-source input locations and land
use; however, such information is increasingly becoming available with advances in sensor technology, remote
sensing products, and modelling techniques including ML. Mobile robots can be used to both increase the
range and spatial resolution of the data on which models are trained and validate predictive models by
increasing empirical field data collection.

Machine learning advances

ML is a type of data-driven approach that trains a regression or classification model through complex
nonlinear mapping with adjustable parameters, based on a training data set. Several recent river carbon
cycle studies have used random forest ML algorithms (RF); for example, Maavara et al.(Maavara et al., 2023)
calibrated a RF that extrapolated GPP to almost 100,000 river reaches and lakes within the watershed using
available predictor data such as flow, temperature, and canopy cov(Abbe & Montgomery, 1996)er. Segatto
et al. (2021, 2023) also improved metabolic upscaling by incorporating a temporal dimension into their
predictions of metabolic regimes by training RFs using long-term, sensor-based estimates of GPP and ER in
the Ybbs River catchment in Austria, as well as catchment physical and climate properties. However, RFs
typically require large datasets and their transferability to systems for which they have not been trained
can be problematic. DL is an additional branch of ML, distinguished by multiple layers of neurons in neural
network architecture, which provide a higher ability to represent complex functions than non-deep neural
networks (Zhang et al., 2021a).

Accurate quantification of carbon emissions from aquatic systems remains constrained by scientific uncer-
tainties, high complexity of physical and chemical process linkages such as non-stationarity, dynamism, and
non-linearity. As a result, prediction and forecasting with process-driven methods can be inaccurate; for ri-
vers, water temperature and discharge data currently provide the best opportunities for forecasting, whereas
research on near-term biological/chemical predictions has advanced more quickly for lakes (McClure et al.,
2021). DL has been suggested as a potential means to overcome uncertainty and nonlinearity in river sciences
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(Shen, 2018) and is now being applied in hydrologic predictions (water level, discharge (Xu et al., 2022)),
regional rainfall-runoff linkages (Zhang et al., 2021a) and water quality dynamics (Zheng et al., 2023). This
is important due to the increased need to reduce flood risk due to climate change. DL also has relevance in
aquatic ecosystem prediction, including data mining and identifying outliers (Kim et al., 2022). With respect
to water quality data, DL methods have been shown to offer potential to predict N and P concentrations from
physical data that can be collected more easily with sesnors (e.g. pH, turbidity, temperature, DO, conducti-
vity) (Ba-Alawi et al., 2023). Moreover, DL can serve both as an auxiliary tool for process-driven methods,
reducing computational loads in uncertainty analyses (Li et al., 2020) and as a component of process-driven
models, describing a process difficult to characterize mathematically (Huang et al., 2022).

Physical models can now be embedded into DL models to improve performance and mitigate risks, by pro-
viding important supplementary information (Reichstein et al., 2019, Huang et al., 2022). Physics-informed
neural network (PINN) models incorporate the residual of physics principles (e.g. governing equations) as
a regulation in loss functions to enable learning by penalizing poor predictions (Tartakovsky et al., 2020).
PINN is increasingly being applied in areas such as estimating water quantity and quality (Liang et al., 2019).
Therefore, the development of physics informed surrogate models that link DOM concentrations and other
water quality data with river flows could offer the potential for forecasting carbon emissions with greater
accuracy and with improved consideration of uncertainty propagation.

Transfer learning (TL) developments offer additional potential for DL applications in water resource science
and management. TL recognizes knowledge from a previous task and applies it to a new task (Pan & Yang,
2010). The previous task is usually an efficient ML model trained on large datasets, and then new tasks
are related to the previous task but with smaller datasets. TL methods in hydrology have focused mainly
on data interpolation and prediction in areas where observed data are missing or unavailable. For example,
Willard et al. (2021) showed how lake water temperature can be predicted in areas without monitoring,
and Zhou(Zhou, 2020) developed real-time predictions of river water quality applied to situations where
data were missing (e.g. broken sensors). Applications to river carbon cycle understanding and management
could include learning between catchments that differ in data availability (e.g. Figure 1), enabling knowledge
gained from the better-studied catchment(s) to advance understanding of the less-studied system(s).

Despite numerous successful DL applications in aquatic sciences, challenges and risks remain in applying these
approaches for aquatic carbon management. Overarching issues for all ML applications include the potential
for sensor and data processing security breaches (Richards et al., 2023) leading to risks for water security. A
second issue concerns detection, as the accuracy of DL methods relies on the quantity of observational data.
Insufficient data may prevent DL from achieving satisfactory precision (Cao et al., 2022); however, even in
developed countries with well-established infrastructures, the cost of obtaining a substantial volume of high-
precision environmental monitoring data such as that needed for river carbon cycle estimation could hinder
the application of DL in some locations (Richards et al., 2023). Moreover, even water quality monitoring
networks in developing countries are often limited by financial resources and technical capabilities and so
must prioritize resource allocation. Third, DL methods work well only when training and test data are drawn
from the same data feature space and distribution (Pan & Yang, 2010). This implies that DL methods must
be specifically designed and tailored for context. Due to the influence of factors such as geometry and land
cover, aquatic systems often differ between watersheds, meaning models from other study areas can lead to
errors in prediction and risks for decision-making. However, by incorporating explicit mechanisms into the
training process DL models are beginning to emerge to overcome these issues, offering strong potential to
advance further our understanding of river carbon cycling and emissions.

Conclusions

Global challenges associated with climate change adaptation and mitigation underpin the need for an accurate
understanding of factors influencing carbon cycling at whole catchment scales, to then inform effective
management responses (Battin et al., 2023). A primary barrier is the lack of water quality and emissions
data, which are also key to improving water management generally in river basins around the world. The
coincident need for data collection at higher resolution should be addressed by capitalising on advances in
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distributed high-resolution sensor networks, combined with data analytic advances including ML methods.
These systems provide an opportunity to overcome challenges including resource limitation, access to remote
areas, inconsistent monitoring practices, and/or data collection with insufficient spatial/temporal resolution.
Benefits from expanding the river carbon cycle process and emission understanding include closing knowledge
gaps in international emissions inventories (IPCC, 2019) and facilitating more effective river catchment
management.

While enhanced data collection and processing using in-situ sensors and other data products can fill large
gaps, logistical and financial constraints will still limit comprehensive sampling of complex spatial river
networks at high-resolution. Therefore, advanced data analytics methods need to be developed concurrently
to allow for scaling-up from point estimates in space, for filling in data gaps in time-series (Segatto et al.,
2023), and for predicting water quality parameters for which robust and reliable sensors do not yet exist
(Ba-Alawi et al., 2023). DL methods have created significant opportunities and challenges in environmental
research (Reichstein et al., 2019), although PINN and TL now provide a new basis to advance traditional DL
methods. These methods are still in the research stage and significant investment will be needed to ensure
confidence in water resource management applications. Nevertheless, rapid developments in data collection
and analysis, with reducing costs present unprecedented new potential for monitoring and improving the
status of freshwater systems worldwide. Capitalising on these technological advances quickly will be vital
to address intersecting global crises in freshwater availability, water quality, biodiversity and climate change
(Vörösmarty et al., 2010, Zhang et al., 2023) and maintain for future generations the array of critical
ecosystem services that freshwaters provide to humanity.
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