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Abstract

Here we explore the relative contribution of the Madden-Julian Oscillation (MJO) and El Niño Southern Oscillation (ENSO) to

midlatitude subseasonal predictive skill of upper atmospheric circulation over the North Pacific, using an inherently interpretable

neural network applied to pre-industrial control runs of the Community Earth System Model version 2. We find that this

interpretable network generally favors the state of ENSO, rather than the MJO, to make correct predictions on a range

of subseasonal lead times and predictand averaging windows. Moreover, the predictability of positive circulation anomalies

over the North Pacific is comparatively lower than that of their negative counterparts, especially evident when the ENSO

state is important. However, when ENSO is in a neutral state, our findings indicate that the MJO provides some predictive

information, particularly for positive anomalies. We identify three distinct evolutions of these MJO states, offering fresh insights

into opportune forecasting windows for MJO teleconnections.
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Key Points:7

• An interpretable neural network is used to decompose contributions of MJO and8

ENSO to North Pacific subseasonal circulation predictability.9

• ENSO alone is overall more useful than the MJO for subseasonal predictions across10
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neutral conditions, are identified.13
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Abstract14

Here we explore the relative contribution of the Madden-Julian Oscillation (MJO)15

and El Niño Southern Oscillation (ENSO) to midlatitude subseasonal predictive skill of16

upper atmospheric circulation over the North Pacific, using an inherently interpretable17

neural network applied to pre-industrial control runs of the Community Earth System18

Model version 2. We find that this interpretable network generally favors the state of19

ENSO, rather than the MJO, to make correct predictions on a range of subseasonal lead20

times and predictand averaging windows. Moreover, the predictability of positive cir-21

culation anomalies over the North Pacific is comparatively lower than that of their neg-22

ative counterparts, especially evident when the ENSO state is important. However, when23

ENSO is in a neutral state, our findings indicate that the MJO provides some predic-24

tive information, particularly for positive anomalies. We identify three distinct evolu-25

tions of these MJO states, offering fresh insights into opportune forecasting windows for26

MJO teleconnections.27

Plain Language Summary28

Weather is hard to predict with longer forecast leads. Here, we use a data-driven29

statistical model to dissect tropical sources of predictability on 2 week to 2 month mid-30

latitude upper-level variability. This model was constructed so that we can identify the31

relative contributions of two tropical phenomena important for predictability on these32

timescales. Namely, we use the Madden-Jullian Oscillation (MJO) and the El Niño South-33

ern Oscillation (ENSO) as predictor variables, two phenomena that provide a telecon-34

necting signal from the tropics to midlatitude variability. We find that the ENSO sig-35

nal alone consistently provides more forecast predictability than the MJO. However, when36

ENSO is not active, the MJO provides distinct windows of forecast opportunity, partic-37

ularly for anomalously anticyclonic events. We identify three evolutions of the MJO which38

offer new insights into forecasting weather at long forecast leads.39

1 Introduction40

Forecasting for the subseasonal timescale (often defined as 2 weeks through 2 months)41

has received considerable attention over the last decade (White et al., 2017; Mariotti et42

al., 2020; Merryfield et al., 2020; White et al., 2021). These timescales are particularly43

difficult to predict as generally neither atmospheric initial conditions nor slower vary-44

ing boundary conditions provide sufficient information to make useful predictions (Vi-45

tart et al., 2012, 2017; Mariotti et al., 2020). Unfortunately, this is also a timescale in46

which many public and private sectors seek information to make informed, actionable47

decisions in order to save lives and property (White et al., 2017, 2021). One way to gar-48

ner skill on these timescales is to harness predictive skill from specific modes of variabil-49

ity known to provide enhanced subseasonal predictability when the mode is active – termed50

forecasts of opportunity (Mariotti et al., 2020). One such mode of variability that has51

gathered considerable attention in the subseasonal community is the Madden-Julian Os-52

cillation (MJO; Madden & Julian, 1971, 1972, 1994).53

The MJO consists of two oppositely signed zonally oriented convective anomalies54

that propagate from the Indian Ocean to the central Pacific, completing a cycle every55

20 to 90 days. The associated upper-level circulation anomalies can interact with the sub-56

tropical jet, exciting quasi-stationary Rossby waves (Hoskins & Ambrizzi, 1993), which57

influence midlatitude circulation anomalies on subseasonal timescales. Following specific58

phases (i.e. locations) of the MJO, this teleconnection can lead to improved prediction59

skill on subseasonal timescales (Tseng et al., 2018). The MJO teleconnection has been60

shown to manifest as a Pacific North American (PNA) - like system. In its positive phase,61

the PNA is characterized by a deepened Aleutian Low, and increased Canadian High,62
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and a deepened Florida low pattern which extends into the Atlantic (Wallace & Gut-63

zler, 1981). The Aleutian Low limb of the PNA, in particular, is responsible for greater64

downstream effects of precipitation and temperature anomalies across the whole of North65

America. In observations, the growth of the PNA anomaly is dominated by barotropic66

energy conversion from the zonally asymmetric climatological flow in the North Pacific67

storm track (e.g., Feldstein, 2002; Frederiksen, 1983; Simmons et al., 1983). However,68

a primary mode of Aleutian Low growth is also from excitation by tropical heating, such69

as from the MJO or El Niño Southern Oscillation (ENSO) Hoskins & Ambrizzi (1993);70

Sardeshmukh & Hoskins (1988).71

ENSO is an interannual coupled ocean-atmosphere mode in the tropical Pacific (Tren-72

berth, 1997), and the primary mode of tropical variability. However, it can also influ-73

ence the subseasonal timescale through its impact on the MJO (Hendon et al., 1999; Kessler,74

2001; Pohl & Matthews, 2007) and the basic state in which MJO teleconnections prop-75

agate (Namias, 1986; Moon et al., 2011; Takahashi & Shirooka, 2014), ultimately impact-76

ing the MJO’s influence in the midlatitudes (Stan et al., 2017; Henderson & Maloney,77

2018; Tseng et al., 2020; Arcodia et al., 2020) and subsequent subseasonal prediction skill78

(Johnson, Collins, Feldstein, L’Heureux, & Riddle, 2014; L. Wang & Robertson, 2019).79

Further, recent work suggests ENSO may play a main role in changes to midlatitude sub-80

seasonal predictability in a future, warmer climate (Mayer & Barnes, 2022). While ENSO81

is often used for seasonal prediction (e.g., Gibson et al., 2021; Winkler et al., 2001), there82

is also considerable literature that highlights ENSO teleconnections as a driver of mid-83

latitude subseasonal variability, particularly in boreal winter by also modulating the Aleu-84

tian Low (e.g., Kumar & Hoerling, 1998; Chapman et al., 2021). Notably, the ENSO tele-85

connection exhibits significant evolution throughout a season. This dynamic evolution86

contributes to heightened predictability and diverse surface responses, contingent on the87

time of year and the strength of the background flow (the mid-latitude jet). Consequently,88

this lends support to the suggestion that ENSO could rival the MJO as a dominant driver89

of subseasonal forecast skill (Chapman et al., 2021).90

These results raise the question as to the relative role of the MJO and ENSO in91

midlatitude subseasonal predictability. Johnson, Collins, Feldstein, L’Heureux, & Rid-92

dle (2014) showed that skillfull subseasonal forecasts can be derived solely using the state93

of the MJO and ENSO. However, given the time-scale of these two modes of variabil-94

ity, the utility of the MJO for midlatitude predictability dwindles as a function of lead-95

time while the ENSO utility remains a reliable source of longer range predictability. This96

study seeks to further elucidate the relative roles of both ENSO and MJO for midlat-97

itude subseasonal forecasting using a more complex and interpretable statistical tech-98

nique. We explore a range of forecast lead times and predictand averaging window lengths99

to investigate the relative role of these tropical drivers of subseasonal predictability for100

a variety of forecast criteria.101

In recent years, neural networks have been shown to be a powerful statistical tool102

for the atmospheric sciences due to their ability to identify non-linear, physical relation-103

ships within large amounts of data (Toms et al., 2020, 2021; Labe & Barnes, 2022; Mar-104

tin et al., 2022; Davenport & Diffenbaugh, 2021; Gordon et al., 2021). For example, on105

subseasonal timescales, explainable neural networks were demonstrated to identify sub-106

seasonal forecasts of opportunity using the network’s “confidence” in a given prediction107

as well as the associated tropical sources of predictability through explainability tech-108

niques (Mayer & Barnes, 2021). Here we utilize network confidence and an interpretable109

neural network architecture known as a Neural Additive Model (Agarwal et al., 2020;110

Gordon et al., 2023), to disentangle the relative contributions of the MJO and ENSO111

to subseasonal predictability over the North Pacific in the pre-industrial control simu-112

lations from the Community Earth System Model. Specifically, we create two artificial113

neural networks, one of which receives an MJO index while the other receives an ENSO114

index. The predictions from these two networks are linearly combined to generate the115
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final prediction for the sign of Z500 anomaly over the North Pacific on subseasonal timescales.116

This allows for the decomposition of a network’s prediction into the respective contri-117

butions from ENSO and MJO. We find that information about the state of ENSO alone118

is overall more important than that of the MJO for subseasonal predictability of North119

Pacific circulation in the pre-industrial simulations. However, the state of the MJO still120

provides important information particularly for shorter lead time predictions of positive121

Z500 anomalies during network-identified forecasts of opportunity.122

2 Data & Methods123

2.1 Data124

We leverage the Community Earth System Model version 2 (CESM2) pre-industrial125

control run (CESM2-PI) from model years 100-400 from the CMIP6 experiment suite126

(Danabasoglu et al., 2020). CESM2-PI has interactive land, coupled ocean with biogeo-127

chemistry, interacting sea-ice and non-evolving land ice, and constant 1850’s CO2 forc-128

ing. The model’s resolution is nominally 1 degree, with 32 vertical levels. A full descrip-129

tion of the CESM2-PI runs can be found in Danabasoglu et al. (2020). From those years130

we select the daily geopotential height at 500 hpa (Z500), sea surface temperature (SST),131

and zonal wind at 200 hPa and 850 hPa (U200 and U850, respectively). We then sep-132

arate the data into three independent data sets: training [model years 100-200], valida-133

tion [model years 201-300], and testing [model years 301-400]. 100 years of training data134

was found sufficient to have the machine learning models fully converge on optimal so-135

lutions, meaning, adding more data did not significantly change resultant learned net-136

work weights. There is concensus that the eastern Pacific teleconnections associated with137

MJO and ENSO peak during the boreal winter (e.g., Philander, 1985; Henderson et al.,138

2016; Chapman et al., 2021). Therefore, we focus our investigation exclusively on this139

seasonal period, restricting our model training and analysis to input dates ranging from140

November 1st to February 28th. Consequently, the forecasts extend until March 30th,141

with a lead time of 30 days.142

The practical relevance of this study relies on an accurate representation of the an-143

alyzed modes of variability in CESM2-PI. The primary rationale for scrutinizing predictabil-144

ity within CESM2-PI, rather than relying on observations, is to augment the size of the145

datasets used for training, testing, and validating the neural networks. CESM2-PI is rec-146

ognized as a cutting-edge model, particularly in its representation of the MJO and ENSO,147

along with their associated North Pacific teleconnections. Numerous studies have eval-148

uated the accuracy of this representation (Danabasoglu et al., 2020; J. Wang et al., 2022;149

Capotondi et al., 2020). To further corroborate the fidelity of these teleconnections, with150

particular attention to the task presented to the neural network, we present the frequency151

of anomalous Z500 signs 5-9 days after an active MJO in phases 3/4 and 6/7 in the sup-152

plementary material (Fig. S1), and compare that representation to that in ECMWF’s153

version 5 reanalysis product (ERA5, Hersbach et al., 2020). It is clear that the model154

represents the MJO teleconnection well, capturing the dominate location and sign of the155

Z500 anomalous for the two active teleconnection phases of the MJO.156

Additionally, the same suite of forecast variables was downloaded from ERA5 (1979-157

2020), to verify that the ML models results are valid on a global reanalysis product. The158

ERA5 product is regridded to the common CESM2 grid prior to any reanalysis using159

a bilinear interpolation scheme (Zhuang et al., 2018).160
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2.2 Methods161

2.2.1 MJO, ENSO, & Aleutian Low Indices162

We follow the methods of Lin et al. (2008) for calculation of the real-time multi-163

variate MJO indices (RMM1 and RMM2) in the CESM2-PI runs. Starting from the un-164

filtered observed daily averaged data of the OLR and zonal wind at 850-hPa and 200-165

hPa from model years 100-400, the time-mean, and the first three harmonics of the daily166

climatology are removed at every grid-point. Next, the time-series is filtered, by remov-167

ing the grid-point time-mean of the previous 120 days. Removing the previous 120-day168

average eliminates most of the interannual variability, including the effects of ENSO. A169

meridional band average is then taken from 15°S to 15°N for the three fields. Each vari-170

able is then normalized by its own zonal average of temporal standard deviation, the fields171

are combined and decomposed and the two leading EOFs are retained. The resulting struc-172

tures of the EOF modes are very similar to Wheeler & Hendon (2004, not shown).173

The ENSO index is computed by employing a rolling 90-day window and a cosine174

latitude weighted average of the Sea Surface Temperature (SST) anomaly within the con-175

ventional Nino3.4 region [5°N-5°S and 170°W-120°W]. The SST anomaly is determined176

by subtracting a 60-day rolling average centered on each day of the year.177

The target of the neural network is the sign of the Aleutian Low index. The Aleu-178

tian Low index is a representation the anomalous geopotential height at 500 hPa in the179

eastern North Pacific and is determined via the following process: Initially, a 60-day rolling180

average centered climatology is subtracted from the raw geopotential height data, with181

each center point corresponding the model day of year. Then the anomalous index within182

the target region [30°N to 60°N and 190°W to 250°W], is computed via a cosine latitude183

weighted average. Finally, the target averaging window is established by applying a for-184

ward rolling mean to the daily index data, using the desired target window length (2-185

28 days).186

Finally, previous studies have indicated that the wintertime evolution of the ba-187

sic state is non-trivial (Newman & Sardeshmukh, 1998) and thus tropically derived, east-188

ern Pacific, teleconnections [which feed off the barotropic energy conversion provided by189

the divergence of the background jet] vary greatly (Chapman et al., 2021; Sardeshmukh190

& Hoskins, 1988). Thus, we also input the day of the year (DOY), which is represented191

as a linearly increasing value spanning from the first of November to the final day of Febru-192

ary, encompassing all input days. The DOY index is subsequently normalized, ensuring193

it maintains a zero mean and a standard deviation of unity, prior to its incorporation194

into the neural network.195

2.2.2 Interpretable Neural Network196

Figure 1 shows a schematic of the interpretable neural network specifically constructed197

to dissect the relative contributions of the MJO and ENSO to subseasonal predictabil-198

ity over the North Pacific. Following the general architecture laid out in Gordon et al.199

(2023), two artificial neural networks are combined at the output layer through a linear200

combination to create the final output prediction. In our applications, both networks are201

tasked to predict the sign of the 500 hPa geopotential height anomaly averaged over the202

North Pacific at the target lead. However, the top network (Figure 1a) only receives in-203

formation about the state of ENSO and its evolution throughout 15 days prior (here-204

after referred to as the ENSO-network) while the bottom network only receives the RMM1205

and RMM2 index values and their evolution throughout the 15 days prior (Figure 1b;206

hereafter referred to as the MJO-network). Additionally, each network receives the DOY207

associated with t0 as input so that it may also learn variability in sources of predictabil-208

ity within the boreal winter season. The final predictions are taken as the linear com-209

bination of the outputs of the individual networks, meaning that the network must learn210
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Figure 1. Schematic of the interpretable neural network architecture. Input into the (a)

ENSO-network includes the ENSO index at t0 plus the 15 days prior (t−15) and associated nor-

malized day of year (DOY) at t0 to predict the sign of the Z500 anomaly averaged over North

Pacific (grey rectangle) at a specified lead (tL+avg, where “L” indicates the lead time and “avg”

indicates the Z500 temporal averaging window length). The (b) MJO-network is constructed

similarly but instead inputs RMM1 and RMM2 rather than the ENSO index. The predictions

from each network are linearly combined (grey shaded box) to make the final network prediction.

The bottom two panels include network performance [accuracy] across confidence thresholds for

the (c) testing dataset and (d) ERA5 reanalysis. The light/dark blue lines represent the mean

accuracy at each confidence level across all lead times (shading) for a Z500 averaging window of 2

days/28 days
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to strategically weight its contribution to the final prediction. Therefore, the individual211

output of each neural network can be considered its contribution to a prediction, allow-212

ing interpretation of the specific role of each predictor (i.e., ENSO or MJO) in the net-213

work’s skill.214

To explore the impact of lead and predictand temporal averaging on the source of215

predictabilty, we train separate neural networks for leads ranging from 5 to 30 days and216

predictand temporal averaging windows of 2 to 28 days. Furthermore, we train five net-217

works, each with a different random seed per lead and averaging window combination,218

to assess the network’s sensitivity to random initialization weights. Minimal differences219

between random initializations are observed, leading us to present the results as aver-220

ages across the five networks.221

Both the ENSO- and MJO- networks have one hidden layer with eight nodes and222

use the rectified linear unit (ReLU) activation function. We note that increasing the com-223

plexity of either network does not impact the results [not shown]. To train the model,224

we use a batch size of 32, categorical crossentropy as the loss function and the Adam Op-225

timizer (Kingma & Ba, 2014) for gradient descent with a learning rate of 0.001. The learn-226

ing rate is initially held constant for the first 19 epochs and then reduced by 90% after227

each epoch to help minimize the loss. To reduce overfitting to the training data, train-228

ing is completed after the validation loss does not improve for 20 epochs, at which time229

the network weights are reverted to 20 epochs prior. The softmax activation function230

is applied to the final layer of the total-network (Figure 1) so that the output values sum231

to one and represent a network estimation of likelihood, or “confidence”. Previous re-232

search has shown that network confidence can be used to identify forecasts of opportu-233

nity when accuracy increases with confidence (Mayer & Barnes, 2021), allowing us to234

explore the contributions of the MJO and ENSO for all predictions and during network-235

identified forecasts of opportunity. Here, we define confident predictions as the 20% most236

confident following (Mayer & Barnes, 2022).237

2.2.3 Quantifying Relative Contribution238

We employ two methods to quantify the relative contribution of the ENSO- and239

MJO- networks to the total-network predictions. The first explores the frequency that240

the final, total prediction is correctly predicted by a specific network while incorrectly241

predicted by the other. This illuminates how often either the ENSO- or MJO- network242

solely contributes to the correct total-network prediction while the other network acts243

incorrectly.244

The second metric quantifies the percentage of the total-network accuracy provided245

by either the ENSO- or MJO- network through permutation importance McGovern et246

al. (2019). Permutation importance is a technique used to remove relationships between247

the input and output through randomly shuffling the input data. The subsequent de-248

crease in network performance can then be attributed to the importance of that input249

data to the prediction. To calculate the importance (percentage of accuracy) contributed250

by the ENSO-network, we randomly shuffle the ENSO index testing samples (retaining251

the 15 day memory), calculate the accuracy of the total-network with the randomly shuf-252

fled data, and compare it to the accuracy of the total-network without shuffled data. To253

calculate the percentage of accuracy contributed by the MJO-network, we apply the same254

technique, but shuffle the RMM indices. We note that the random shuffling does not ac-255

count for memory between samples, and therefore, the network contribution to the to-256

tal accuracy could be larger.257
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3 Results258

3.1 Network Performance259

To evaluate network performance, we calculate the accuracy of the network on the260

testing data across confidence levels (Figure 1c). The testing data is randomly subset261

to an equal number of positive and negative anomalies so that random chance is 50%262

for all predictions (N≈11,500; 100% most confident). Across the range of Z500 averag-263

ing windows (lines) and lead times (shading), the network performs better than random264

change at ≥ 60% accuracy. We include the two extreme averaging windows (2 and 28265

days) for ease of visualization, however, the other averaging windows fall within these266

two curves. As network confidence increases, the accuracy of the network increases as267

well, indicating the network is able to identify periods of enhanced predictability (Fig-268

ure 1c). Further, we find similar performance when the network is evaluated on reanal-269

ysis data (Figure 1d), suggesting the network is identifying physically relevant forecasts270

of opportunity for subseasonal predictability of Z500 anomalies over the North Pacific271

(Mayer & Barnes, 2021).272

Previous work has also detailed the importance of the basic state evolution through-273

out boreal winter on tropically forced teleconnection propagation and its potential for274

improved subseasonal predictability (Newman & Sardeshmukh, 1998; Chapman et al.,275

2021, e.g.). Therefore, to account for any within season evolution of ENSO or MJO tele-276

connections to North Pacific predictability, DOY is included as an input into the net-277

work. We find that when the network is correct (grey histograms in Figure 2), the fre-278

quency of predictions are generally consistent across DOY with a slight increase towards279

the latter end of the season across leads 7 through 28 days. However, when the network280

is also confident (purple histograms in Figure 2), the frequency of predictions increases281

at the latter end of boreal winter. We note that the purple histograms become flatter282

with lead time (i.e. more early winter predictions) since longer lead time predictions made283

near the beginning of boreal winter are forecasting for the latter part of the season. These284

results indicate that the network has identified the latter half of boreal winter as a prefer-285

able period for enhanced subseasonal predictability, consistent with previous research286

(Newman & Sardeshmukh, 1998; Chapman et al., 2021). In other words, the network287

is able to identify a ”sub-seasonal” evolution of subseasonal predictability sourced from288

the MJO and ENSO.289

To ensure the network does not solely rely on DOY to classify confident predictions,290

we also train neural networks without DOY information, and find similar MJO and ENSO291

contribution results (not shown). To maximize samples, the following analysis examines292

predictions throughout the season, rather than only during the latter half of boreal win-293

ter.294

3.2 MJO- & ENSO-Network Contributions295

Due to the construction of the neural network, the relative contributions from each296

network to the final predictions can be quantified. Specifically, we calculate the frequency297

that either the ENSO- (teal) or MJO- (purple) network solely contributes to a correct,298

final prediction (Figure 3a). The frequency that both networks contribute to a correct299

prediction is also included in grey, so that the sum of the teal, purple and grey lines at300

a specific lead and Z500 averaging window is 100%. Lighter (darker) colors denote shorter301

(longer) temporal Z500 averaging windows.302

Overall, we find that the ENSO-network alone (teal) contributes more frequently303

to correct predictions than the MJO-network alone (purple) for almost all leads and Z500304

averaging windows. At shorter Z500 averaging windows (2 and 7 days), the MJO-network305

contributes more frequently until about a lead of 14-18 days, after which the ENSO-network306

becomes more frequently correct regardless of Z500 averaging windows. The most fre-307
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Figure 2. Frequency of a correct (grey) and confident (purple) network predictions by day of

year (DOY) for a lead of 7, 14, 21, and 28 days across all Z500 averaging windows.

quently correct network combination is when both networks agree on the correct predic-308

tion (grey lines). However, the information provided by the ENSO state begins to con-309

tribute as frequently at leads greater than 21 days and longer averaging windows (darker310

teal lines). In general, as either the Z500 averaging window or lead time increases, the311

ENSO-network alone contributes more frequently to a correct prediction than the MJO-312

network. These results show that while the MJO-state is important for making predic-313

tions, ENSO plays a greater role in making correct subseasonal predictions for the ma-314

jority of lead times and Z500 averaging windows.315

If we further subset the predictions into correct and confident predictions (i.e. network-316

identified forecasts of opportunity), a similar though more exaggerated, story emerges.317

After a lead of 7 days, the ENSO-network contributes more frequently to correct and con-318

fident predictions than the MJO-network, regardless of Z500 averaging window (Figure319

3b). At shorter leads the most frequent correct, confident predictions still occur when320

both the ENSO- and MJO-network correctly contribute to the predictions. However, the321

ENSO-network alone rivals these frequencies after a lead of 21 days. These results again322

demonstrate that the ENSO-network alone is generally more useful for correct (and con-323

fident) subseasonal predictions than the MJO-network.324

When confident and correct predictions are further separated into positive and neg-325

ative Z500 anomaly predictions, the contributions become more nuanced (Fig. 3b.1- b.2).326

For negative predictions, the ENSO-network more frequently contributes to correct, con-327

fident predictions than the MJO-network, regardless of lead time or averaging window.328

However, when examining positive predictions [note change to y-axis limits], the MJO-329

network alone contributes to correct, confident predictions more frequently than the ENSO-330

network at 5-7 day leads and Z500 averaging windows of 2 and 7 days (Fig. 3b.2). This331
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Figure 3. The frequency of a correct prediction provided by either the MJO- (purple) or

ENSO-network (teal) or by both MJO- and ENSO-networks (grey) for each prediction lead.

Lighter (darker) lines indicate shorter (longer) Z500 averaging windows. (b) As in (a) but for

correct and confident predictions, which is further divided into (b.1) positive and (b.2) negative

Z500 predictions [note different y-axis limits]. Lines are smoothed with a 3 day triangle filter for

ease of interpretation. (c,d) Change in accuracy across confidence thresholds after permuting (c)

RMM and (d) ENSO index input. The light/dark blue lines represent the mean of a 2 day/28

day Z500 averaging window across all lead times and the associated range of change in accuracy

is represented by the shading.
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suggests the MJO state is especially important for subseasonal prediction of anomalously332

high Z500 at shorter leads and averaging windows, particularly when the ENSO state333

is not useful (e.g. ENSO neutral conditions).334

The utility of the MJO-network to the total network can be further elucidated when335

the prediction problem is, for example, constructed with a lead of 10 days and a Z500336

averaging window of 5 days. We find that 42% of correct, confident positive Z500 anomaly337

predictions are periods with ENSO neutral conditions, when the tropical ocean should338

have the least control on the extratropical eastern Pacific. This is in stark contrast to339

confident, correct negative predictions which only occur in ENSO neutral states in 12%340

of cases. With that said, we note that negative predictions, of which the ENSO-network341

dominates, are overall more frequently confident and correct than positive predictions342

(Fig. 3b.1).343

The results of the relative network contributions generally suggests the ENSO-network344

is the main contributor to correct (and confident) predictions. However, the MJO-network345

shows its utility for positive predictions when the network is correct and confident. We346

can further explore the impact of the MJO-network and ENSO-network on prediction347

skill through permutation importance (Figure 3c,d). In particular, we can quantify the348

contribution of the ENSO-network to the accuracy of the total network (Figure 3d) by349

randomly shuffling the input into the ENSO-network. In doing so, we separate the con-350

nection between the predictor and predictand, and thus, the predictors importance for351

making correct predictions. We find that across lead (shading) and Z500 averaging win-352

dow (lines), the ENSO-network contributes between 5-12% for all predictions and close353

to 40% when the network is very confident. When permutation importance is instead354

applied to the MJO-network (Figure 3c), this contribution is about 1-5% across confi-355

dent thresholds. We again only include the two extreme Z500 averaging windows for vi-356

sualization, however, the other averaging window results lie within these curves. This357

further demonstrates that information provided by the ENSO-network is more impor-358

tant for higher skill, particularly at high confidence values (i.e. during forecasts of op-359

portunity), compared to the MJO-network.360

3.2.1 MJO-Network Importance361

In general, our network indicates that ENSO is a more consistent provider of fore-362

cast skill of Z500 anomalies over the North Pacific. Nevertheless, there are specific time363

frames when the MJO-network provides important information for predicting Z500. To364

delve deeper into the MJO’s optimal state for subseasonal predictability of Z500 in the365

North Pacific, K-means clustering is employed on the input features of the MJO network366

(RMM1 and RMM2). For brevity, we focus on a single lead time and averaging window367

(10 days and 5 days, respectively). This was found as a lead time and averaging window368

of relative peak importance for MJO driven predictability (Fig. 3b). This analysis fo-369

cuses on instances when the network is confident and accurate, only during neutral ENSO370

conditions. We employ elbow and silhouette analysis to ascertain the optimal number371

of clusters for both positive and negative confident and correct predictions (Fig. S2, Rousseeuw,372

1987). These methods offer a quantitative measure of how well-defined and separated373

the clusters are, providing insights into the cohesion within each cluster and the distinc-374

tiveness between clusters. This ensures a more nuanced evaluation of the clustering struc-375

ture and reinforces our confidence in the appropriateness of the chosen number of clus-376

ters (3; Figure S2). The silhouette analysis shows clearly separated clusters which en-377

hances the reliability of our clustering results, contributing to the overall robustness of378

our analysis. We then take a mean across the temporal dimension of each cluster to form379

a cluster composite of the input MJO RMM1/RMM2 predictor variables. Composites380

of the three clusters, for positive (top row) and negative (bottom row) Z500 anomaly pre-381

dictions, are shown in figure 4.382
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Figure 4. Composite clusters of MJO events when predictions are confident, correct, and

ENSO is in a neutral state for anomalously high (top row) and anomalously low (bottom row)

Aleutian Low states. Forecast lead is 10 days and a Z500 averaging window of 5 days. The RMM

indices progress in time from light- [t−15] to dark- [t0] colors.

Firstly, we observe the frequency of events in which ENSO is neutral and the net-383

work exhibits both confident and correct predictions, represented as an N value in each384

row. Positive predictions are approximately 2.5 times more likely than negative events385

to exhibit this forecast condition (N=230 vs. N=91). This implies that the network demon-386

strates greater confidence and accuracy when forecasting positive Z500 anomalies dur-387

ing ENSO neutral states. Consequently, the MJO proves to be a more effective predic-388

tor (in CESM2-PI) in phases 3/4, where downstream Rossby wave dispersion leads to389

positive Z500 North Pacific anomalies. It is important to note that this does not nec-390

essarily imply that positive anomalies are universally more predictable at the subseasonal391

range, as the total number of confident, correct negative predictions is higher than those392

predicting a positive state (refer to the discussion of Fig. 3 for further details), and this393

is largely driven by ENSO positive events.394

Positive predictions (row 1; high Z500 anomalies) show three distinct developing395

MJO states. Each developing MJO state is consistent with the phases that lead to a down-396

stream positive Z500 anomaly (peaking in phases 3/4/5), demonstrating that the neu-397

ral network has identified a physically justifiable link between the MJO and North Pa-398

cific circulation. Every cluster is above the threshold for active MJO events (1 sigma,399

inner dashed circle), and cluster 3 has periods which are above the 2 standard deviation400

threshold (97.5 percentile; outer dashed circle). Meaning, extremely anomalous events401

more consistently produce downstream extra-tropical Z500 anomalies. Cluster 1 shows402

a persistent anomaly in which the MJO stalls in between phases 3 and 4. These persis-403

tent cases have been previously identified as exciting a greater teleconnection response404

than fast moving MJO events (Yadav & Straus, 2017; Yadav et al., 2024). Finally, clus-405

ters 2 and 3 show events that are anomalously strong which then decay into MJO neu-406

tral states as they move towards initialization time. This is logical as MJO phase 6/7/8407
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is associated with a negative Z500 anomaly and thus would negate the current Z500 pos-408

itive prediction at subseasonal forecast leads. To the author’s knowledge, this is a unique409

aspect of this analysis showing that selective extremely anomalous MJO phases which410

then decay to a neutral MJO state can lead to enhanced subseasonal forecast skill, by411

not sparking MJO induced Rossby wave destructive interference. For the sake of brevity,412

we will simply note that the negative Z500 predictions (row2; low Z500 anomalies), largely413

mirror the findings found in the positive Z500 predictions.414

The authors acknowledge that the MJO and ENSO indices along with the day of415

year are the sole information available to the network for making predictions. Keeping416

this limitation in mind, in summary, the subseasonal predictability of the Eastern North417

Pacific Z500 anomaly is predominantly influenced by highly active or persistent MJO418

events during neutral ENSO conditions. Larger anomalies result in increased predictabil-419

ity, and MJO events with substantial anomalies that subsequently transition into neu-420

tral states significantly contribute to subseasonal forecast skill.421

4 Conclusion422

This study aims to use an interpretable neural network to enhance the scientific423

understanding of the contribution of two tropical modes of variability to subseasonal pre-424

dictability over the North Pacific: the MJO and ENSO. We find the network performs425

well on both the CESM2-PI testing data and ERA5 reanalysis across the range of lead426

time and averaging windows evaluated, suggesting the network is able to identify phys-427

ically relevant sources of predictability. Further, the network is able to identify a late428

boreal winter preference for enhanced subseasonal predictability (Fig. 2), consistent with429

previous research which explores the importance of the subseasonal evolution of the back-430

ground state for teleconnection propagation (e.g., Kumar & Hoerling, 1998; Chapman431

et al., 2021). This area of predictability research remains relatively unexplored, calling432

for more focused investigation.433

Through an analysis of the relative roles of the MJO- and ENSO-networks, we find434

that forecast lead time and predictand averaging windows have a limited effect on the435

relative importance of MJO-driven North Pacific variability. ENSO dominates as the pri-436

mary driver of subseasonal predictability for the majority of lead times and averaging437

windows, particularly at forecast ranges exceeding 7 days and averaging windows greater438

than 2 days (Fig. 3b,d). However, the MJO does provide some utility for prediction of439

positive Z500 anomalies during ENSO neutral states. In particular, persistent and par-440

ticularly anomalous MJO events that decay before creating destructive interference of-441

fer the greatest utility for subseasonal predictability from the MJO in this region (Fig.442

4).443

The authors acknowledge that we predict the sign of the Aleutian Low anomaly444

and the relative importance of each predictor variable could change if the predictive tar-445

get is changed to forecasting the magnitude or other, downstream affects of the MJO or446

ENSO (i.e., two-meter temperature or precipitation). Further, these results are for the447

CESM2-PI simulation, and therefore, does not account for possible affects from anthro-448

pogenic climate change. Recent research has shown that the MJO has become and will449

likely continue to become more predictable in a future climate (Du et al., 2023), which450

could subsequently improve midlatitude subseasonal skill provided by the MJO. On the451

other hand, previous research suggests ENSO may be the main tropical driver of future452

midlatitude subseasonal predictability changes (Mayer & Barnes, 2022). Therefore, fu-453

ture research should explore how our results may change in a future, warmer climate.454

Given the chaotic nature of the weather system, a priori identification of partic-455

ularly predictive windows offers a useful way forward for long range forecast skill (Al-456

bers & Newman, 2019; Mariotti et al., 2020). Ultimately, this paper demonstrates that457
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interpretable neural networks can be used to gain physical insight into predictability, par-458

ticularly through dissecting the relative importance of modes of variability thought im-459

portant for subseasonal predictability.460

5 Open Research461

To promote transparency and reproducibility, all model training scripts and fig-462

ures are readily accessible and can be downloaded using the provided code available on463

GitHub (https://github.com/kjmayer/ENSOvsMJO ; Mayer & Chapman, 2024). Com-464

prehensive instructions for each step of this study are documented in the repository’s README465

file. The authors leveraged the TensorFlow Python toolbox for machine learning and model466

training, a python machine learning environment can be found in this projects’ repos-467

itory. All data was produced as a part of the Community Earth System Model’s con-468

tribution to the CMIP6 suite and is archived at the U.S. National Science Foundation’s469

National Center for Atmospheric Research (NSF NCAR) computational and informa-470

tion systems lab (https://www2.cisl.ucar.edu/computing-data/data/cmip6-data-sets-glade).471

Raw ERA5 Reanalysis data can be obtained on the NSF NCAR Research Data Archive472

at: https://rda.ucar.edu/datasets/ds633.0/. Intermediate data files that can be lever-473

aged to run every neural network and produce every plot specified in the github repo are474

stored at NCAR’s Geoscience Data Exchange (Chapman & Mayer, 2024).475
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Merryfield, W. J., Baehr, J., Batté, L., & others. (2020). Current and emerging de-594

velopments in subseasonal to decadal prediction. Bulletin of the.595

Moon, J.-Y., Wang, B., & Ha, K.-J. (2011, September). ENSO regulation of MJO596

teleconnection. Clim. Dyn., 37 (5), 1133–1149.597

Namias, J. (1986, July). Persistence of flow patterns over north america and adja-598

cent ocean sectors. Mon. Weather Rev., 114 (7), 1368–1383.599

Newman, M., & Sardeshmukh, P. D. (1998). The impact of the annual cycle on the600

north pacific/north american response to remote low-frequency forcing. Journal of601

the Atmospheric Sciences, 55 (8), 1336–1353.602

Philander, S. (1985). El niño and la niña. Journal of Atmospheric Sciences, 42 (23),603

2652–2662.604

Pohl, B., & Matthews, A. J. (2007, June). Observed changes in the lifetime and605

amplitude of the Madden–Julian oscillation associated with interannual ENSO sea606

surface temperature anomalies. J. Clim., 20 (11), 2659–2674.607

Rousseeuw, P. J. (1987). Silhouettes: a graphical aid to the interpretation and val-608

idation of cluster analysis. Journal of computational and applied mathematics, 20 ,609

53–65.610

Sardeshmukh, P. D., & Hoskins, B. J. (1988). The generation of global rotational611

flow by steady idealized tropical divergence. Journal of the Atmospheric Sciences,612

45 (7), 1228–1251.613

–16–



manuscript submitted to Geophysical Research Letters

Simmons, A., Wallace, J., & Branstator, G. (1983). Barotropic wave propagation614

and instability, and atmospheric teleconnection patterns. Journal of the Atmo-615

spheric Sciences, 40 (6), 1363–1392.616

Stan, C., Straus, D. M., Frederiksen, J. S., Lin, H., Maloney, E. D., & Schumacher,617

C. (2017, December). Review of Tropical-Extratropical teleconnections on in-618

traseasonal time scales: The subseasonal to seasonal (S2S) teleconnection Sub-619

Project. Rev. Geophys., 55 (4), 902–937.620

Takahashi, C., & Shirooka, R. (2014, September). Storm track activity over the621

north pacific associated with the Madden-Julian oscillation under ENSO condi-622

tions during boreal winter. J. Geophys. Res., 119 (18), 10,663–10,683.623

Toms, B. A., Barnes, E. A., & Ebert-Uphoff, I. (2020, September). Physically624

interpretable neural networks for the geosciences: Applications to earth system625

variability. J. Adv. Model. Earth Syst., 12 (9).626

Toms, B. A., Kashinath, K., Yang, D., & Prabhat. (2021, July). Testing the re-627

liability of interpretable neural networks in geoscience using the Madden–Julian628

oscillation. Geosci. Model Dev., 14 (7), 4495–4508.629

Trenberth, K. E. (1997). The definition of el nino. Bull. Am. Meteorol. Soc., 78 (12),630

2771–2778.631

Tseng, K.-C., Barnes, E. A., & Maloney, E. D. (2018, January). Prediction of632

the midlatitude response to strong Madden-Julian oscillation events on S2S time633

scales: PREDICTION OF Z500 AT S2S TIME SCALES. Geophys. Res. Lett.,634

45 (1), 463–470.635

Tseng, K.-C., Maloney, E., & Barnes, E. A. (2020, May). The consistency of MJO636

teleconnection patterns on interannual time scales. J. Clim., 33 (9), 3471–3486.637

Vitart, F., Ardilouze, C., Bonet, A., Brookshaw, A., Chen, M., Codorean, C., . . .638

Zhang, L. (2017, January). The subseasonal to seasonal (S2S) prediction project639

database. Bull. Am. Meteorol. Soc., 98 (1), 163–173.640

Vitart, F., Robertson, A. W., & Anderson, D. L. T. (2012, January). Subseasonal to641

seasonal prediction project: Bridging the gap between weather and climate. WMO642

Bull., 61 (61).643

Wallace, J. M., & Gutzler, D. S. (1981). Teleconnections in the geopotential height644

field during the northern hemisphere winter. Monthly weather review , 109 (4),645

784–812.646

Wang, J., Kim, H., & DeFlorio, M. J. (2022). Future changes of pna-like mjo tele-647

connections in cmip6 models: Underlying mechanisms and uncertainty. Journal of648

Climate, 35 (11), 3459–3478.649

Wang, L., & Robertson, A. W. (2019, May). Week 3–4 predictability over the united650

states assessed from two operational ensemble prediction systems. Clim. Dyn.,651

52 (9), 5861–5875.652

Wheeler, M. C., & Hendon, H. H. (2004). An all-season real-time multivariate mjo653

index: Development of an index for monitoring and prediction. Monthly weather654

review , 132 (8), 1917–1932.655

White, C. J., Carlsen, H., Robertson, A. W., Klein, R. J. T., Lazo, J. K., Kumar,656

A., . . . Zebiak, S. E. (2017, July). Potential applications of subseasonal-to-657

seasonal (S2S) predictions. Met. Apps, 24 (3), 315–325.658

White, C. J., Domeisen, D. I. V., Acharya, N., Adefisan, E. A., Anderson, M. L.,659

Aura, S., . . . Wilson, R. G. (2021, November). Advances in the application and660

utility of subseasonal-to-seasonal predictions. Bull. Am. Meteorol. Soc., -1 (aop),661

1–57.662

Winkler, C. R., Newman, M., & Sardeshmukh, P. D. (2001). A linear model of win-663

tertime low-frequency variability. part i: Formulation and forecast skill. Journal of664

climate, 14 (24), 4474–4494.665

Yadav, P., Garfinkel, C. I., & Domeisen, D. I. (2024). The role of the stratosphere in666

teleconnections arising from fast and slow mjo episodes. Geophysical Research Let-667

–17–



manuscript submitted to Geophysical Research Letters

ters, 51 (1), e2023GL104826.668

Yadav, P., & Straus, D. M. (2017). Circulation response to fast and slow mjo669

episodes. Monthly Weather Review , 145 (5), 1577–1596.670
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Abstract14

Here we explore the relative contribution of the Madden-Julian Oscillation (MJO)15

and El Niño Southern Oscillation (ENSO) to midlatitude subseasonal predictive skill of16

upper atmospheric circulation over the North Pacific, using an inherently interpretable17

neural network applied to pre-industrial control runs of the Community Earth System18

Model version 2. We find that this interpretable network generally favors the state of19

ENSO, rather than the MJO, to make correct predictions on a range of subseasonal lead20

times and predictand averaging windows. Moreover, the predictability of positive cir-21

culation anomalies over the North Pacific is comparatively lower than that of their neg-22

ative counterparts, especially evident when the ENSO state is important. However, when23

ENSO is in a neutral state, our findings indicate that the MJO provides some predic-24

tive information, particularly for positive anomalies. We identify three distinct evolu-25

tions of these MJO states, offering fresh insights into opportune forecasting windows for26

MJO teleconnections.27

Plain Language Summary28

Weather is hard to predict with longer forecast leads. Here, we use a data-driven29

statistical model to dissect tropical sources of predictability on 2 week to 2 month mid-30

latitude upper-level variability. This model was constructed so that we can identify the31

relative contributions of two tropical phenomena important for predictability on these32

timescales. Namely, we use the Madden-Jullian Oscillation (MJO) and the El Niño South-33

ern Oscillation (ENSO) as predictor variables, two phenomena that provide a telecon-34

necting signal from the tropics to midlatitude variability. We find that the ENSO sig-35

nal alone consistently provides more forecast predictability than the MJO. However, when36

ENSO is not active, the MJO provides distinct windows of forecast opportunity, partic-37

ularly for anomalously anticyclonic events. We identify three evolutions of the MJO which38

offer new insights into forecasting weather at long forecast leads.39

1 Introduction40

Forecasting for the subseasonal timescale (often defined as 2 weeks through 2 months)41

has received considerable attention over the last decade (White et al., 2017; Mariotti et42

al., 2020; Merryfield et al., 2020; White et al., 2021). These timescales are particularly43

difficult to predict as generally neither atmospheric initial conditions nor slower vary-44

ing boundary conditions provide sufficient information to make useful predictions (Vi-45

tart et al., 2012, 2017; Mariotti et al., 2020). Unfortunately, this is also a timescale in46

which many public and private sectors seek information to make informed, actionable47

decisions in order to save lives and property (White et al., 2017, 2021). One way to gar-48

ner skill on these timescales is to harness predictive skill from specific modes of variabil-49

ity known to provide enhanced subseasonal predictability when the mode is active – termed50

forecasts of opportunity (Mariotti et al., 2020). One such mode of variability that has51

gathered considerable attention in the subseasonal community is the Madden-Julian Os-52

cillation (MJO; Madden & Julian, 1971, 1972, 1994).53

The MJO consists of two oppositely signed zonally oriented convective anomalies54

that propagate from the Indian Ocean to the central Pacific, completing a cycle every55

20 to 90 days. The associated upper-level circulation anomalies can interact with the sub-56

tropical jet, exciting quasi-stationary Rossby waves (Hoskins & Ambrizzi, 1993), which57

influence midlatitude circulation anomalies on subseasonal timescales. Following specific58

phases (i.e. locations) of the MJO, this teleconnection can lead to improved prediction59

skill on subseasonal timescales (Tseng et al., 2018). The MJO teleconnection has been60

shown to manifest as a Pacific North American (PNA) - like system. In its positive phase,61

the PNA is characterized by a deepened Aleutian Low, and increased Canadian High,62
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and a deepened Florida low pattern which extends into the Atlantic (Wallace & Gut-63

zler, 1981). The Aleutian Low limb of the PNA, in particular, is responsible for greater64

downstream effects of precipitation and temperature anomalies across the whole of North65

America. In observations, the growth of the PNA anomaly is dominated by barotropic66

energy conversion from the zonally asymmetric climatological flow in the North Pacific67

storm track (e.g., Feldstein, 2002; Frederiksen, 1983; Simmons et al., 1983). However,68

a primary mode of Aleutian Low growth is also from excitation by tropical heating, such69

as from the MJO or El Niño Southern Oscillation (ENSO) Hoskins & Ambrizzi (1993);70

Sardeshmukh & Hoskins (1988).71

ENSO is an interannual coupled ocean-atmosphere mode in the tropical Pacific (Tren-72

berth, 1997), and the primary mode of tropical variability. However, it can also influ-73

ence the subseasonal timescale through its impact on the MJO (Hendon et al., 1999; Kessler,74

2001; Pohl & Matthews, 2007) and the basic state in which MJO teleconnections prop-75

agate (Namias, 1986; Moon et al., 2011; Takahashi & Shirooka, 2014), ultimately impact-76

ing the MJO’s influence in the midlatitudes (Stan et al., 2017; Henderson & Maloney,77

2018; Tseng et al., 2020; Arcodia et al., 2020) and subsequent subseasonal prediction skill78

(Johnson, Collins, Feldstein, L’Heureux, & Riddle, 2014; L. Wang & Robertson, 2019).79

Further, recent work suggests ENSO may play a main role in changes to midlatitude sub-80

seasonal predictability in a future, warmer climate (Mayer & Barnes, 2022). While ENSO81

is often used for seasonal prediction (e.g., Gibson et al., 2021; Winkler et al., 2001), there82

is also considerable literature that highlights ENSO teleconnections as a driver of mid-83

latitude subseasonal variability, particularly in boreal winter by also modulating the Aleu-84

tian Low (e.g., Kumar & Hoerling, 1998; Chapman et al., 2021). Notably, the ENSO tele-85

connection exhibits significant evolution throughout a season. This dynamic evolution86

contributes to heightened predictability and diverse surface responses, contingent on the87

time of year and the strength of the background flow (the mid-latitude jet). Consequently,88

this lends support to the suggestion that ENSO could rival the MJO as a dominant driver89

of subseasonal forecast skill (Chapman et al., 2021).90

These results raise the question as to the relative role of the MJO and ENSO in91

midlatitude subseasonal predictability. Johnson, Collins, Feldstein, L’Heureux, & Rid-92

dle (2014) showed that skillfull subseasonal forecasts can be derived solely using the state93

of the MJO and ENSO. However, given the time-scale of these two modes of variabil-94

ity, the utility of the MJO for midlatitude predictability dwindles as a function of lead-95

time while the ENSO utility remains a reliable source of longer range predictability. This96

study seeks to further elucidate the relative roles of both ENSO and MJO for midlat-97

itude subseasonal forecasting using a more complex and interpretable statistical tech-98

nique. We explore a range of forecast lead times and predictand averaging window lengths99

to investigate the relative role of these tropical drivers of subseasonal predictability for100

a variety of forecast criteria.101

In recent years, neural networks have been shown to be a powerful statistical tool102

for the atmospheric sciences due to their ability to identify non-linear, physical relation-103

ships within large amounts of data (Toms et al., 2020, 2021; Labe & Barnes, 2022; Mar-104

tin et al., 2022; Davenport & Diffenbaugh, 2021; Gordon et al., 2021). For example, on105

subseasonal timescales, explainable neural networks were demonstrated to identify sub-106

seasonal forecasts of opportunity using the network’s “confidence” in a given prediction107

as well as the associated tropical sources of predictability through explainability tech-108

niques (Mayer & Barnes, 2021). Here we utilize network confidence and an interpretable109

neural network architecture known as a Neural Additive Model (Agarwal et al., 2020;110

Gordon et al., 2023), to disentangle the relative contributions of the MJO and ENSO111

to subseasonal predictability over the North Pacific in the pre-industrial control simu-112

lations from the Community Earth System Model. Specifically, we create two artificial113

neural networks, one of which receives an MJO index while the other receives an ENSO114

index. The predictions from these two networks are linearly combined to generate the115
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final prediction for the sign of Z500 anomaly over the North Pacific on subseasonal timescales.116

This allows for the decomposition of a network’s prediction into the respective contri-117

butions from ENSO and MJO. We find that information about the state of ENSO alone118

is overall more important than that of the MJO for subseasonal predictability of North119

Pacific circulation in the pre-industrial simulations. However, the state of the MJO still120

provides important information particularly for shorter lead time predictions of positive121

Z500 anomalies during network-identified forecasts of opportunity.122

2 Data & Methods123

2.1 Data124

We leverage the Community Earth System Model version 2 (CESM2) pre-industrial125

control run (CESM2-PI) from model years 100-400 from the CMIP6 experiment suite126

(Danabasoglu et al., 2020). CESM2-PI has interactive land, coupled ocean with biogeo-127

chemistry, interacting sea-ice and non-evolving land ice, and constant 1850’s CO2 forc-128

ing. The model’s resolution is nominally 1 degree, with 32 vertical levels. A full descrip-129

tion of the CESM2-PI runs can be found in Danabasoglu et al. (2020). From those years130

we select the daily geopotential height at 500 hpa (Z500), sea surface temperature (SST),131

and zonal wind at 200 hPa and 850 hPa (U200 and U850, respectively). We then sep-132

arate the data into three independent data sets: training [model years 100-200], valida-133

tion [model years 201-300], and testing [model years 301-400]. 100 years of training data134

was found sufficient to have the machine learning models fully converge on optimal so-135

lutions, meaning, adding more data did not significantly change resultant learned net-136

work weights. There is concensus that the eastern Pacific teleconnections associated with137

MJO and ENSO peak during the boreal winter (e.g., Philander, 1985; Henderson et al.,138

2016; Chapman et al., 2021). Therefore, we focus our investigation exclusively on this139

seasonal period, restricting our model training and analysis to input dates ranging from140

November 1st to February 28th. Consequently, the forecasts extend until March 30th,141

with a lead time of 30 days.142

The practical relevance of this study relies on an accurate representation of the an-143

alyzed modes of variability in CESM2-PI. The primary rationale for scrutinizing predictabil-144

ity within CESM2-PI, rather than relying on observations, is to augment the size of the145

datasets used for training, testing, and validating the neural networks. CESM2-PI is rec-146

ognized as a cutting-edge model, particularly in its representation of the MJO and ENSO,147

along with their associated North Pacific teleconnections. Numerous studies have eval-148

uated the accuracy of this representation (Danabasoglu et al., 2020; J. Wang et al., 2022;149

Capotondi et al., 2020). To further corroborate the fidelity of these teleconnections, with150

particular attention to the task presented to the neural network, we present the frequency151

of anomalous Z500 signs 5-9 days after an active MJO in phases 3/4 and 6/7 in the sup-152

plementary material (Fig. S1), and compare that representation to that in ECMWF’s153

version 5 reanalysis product (ERA5, Hersbach et al., 2020). It is clear that the model154

represents the MJO teleconnection well, capturing the dominate location and sign of the155

Z500 anomalous for the two active teleconnection phases of the MJO.156

Additionally, the same suite of forecast variables was downloaded from ERA5 (1979-157

2020), to verify that the ML models results are valid on a global reanalysis product. The158

ERA5 product is regridded to the common CESM2 grid prior to any reanalysis using159

a bilinear interpolation scheme (Zhuang et al., 2018).160
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2.2 Methods161

2.2.1 MJO, ENSO, & Aleutian Low Indices162

We follow the methods of Lin et al. (2008) for calculation of the real-time multi-163

variate MJO indices (RMM1 and RMM2) in the CESM2-PI runs. Starting from the un-164

filtered observed daily averaged data of the OLR and zonal wind at 850-hPa and 200-165

hPa from model years 100-400, the time-mean, and the first three harmonics of the daily166

climatology are removed at every grid-point. Next, the time-series is filtered, by remov-167

ing the grid-point time-mean of the previous 120 days. Removing the previous 120-day168

average eliminates most of the interannual variability, including the effects of ENSO. A169

meridional band average is then taken from 15°S to 15°N for the three fields. Each vari-170

able is then normalized by its own zonal average of temporal standard deviation, the fields171

are combined and decomposed and the two leading EOFs are retained. The resulting struc-172

tures of the EOF modes are very similar to Wheeler & Hendon (2004, not shown).173

The ENSO index is computed by employing a rolling 90-day window and a cosine174

latitude weighted average of the Sea Surface Temperature (SST) anomaly within the con-175

ventional Nino3.4 region [5°N-5°S and 170°W-120°W]. The SST anomaly is determined176

by subtracting a 60-day rolling average centered on each day of the year.177

The target of the neural network is the sign of the Aleutian Low index. The Aleu-178

tian Low index is a representation the anomalous geopotential height at 500 hPa in the179

eastern North Pacific and is determined via the following process: Initially, a 60-day rolling180

average centered climatology is subtracted from the raw geopotential height data, with181

each center point corresponding the model day of year. Then the anomalous index within182

the target region [30°N to 60°N and 190°W to 250°W], is computed via a cosine latitude183

weighted average. Finally, the target averaging window is established by applying a for-184

ward rolling mean to the daily index data, using the desired target window length (2-185

28 days).186

Finally, previous studies have indicated that the wintertime evolution of the ba-187

sic state is non-trivial (Newman & Sardeshmukh, 1998) and thus tropically derived, east-188

ern Pacific, teleconnections [which feed off the barotropic energy conversion provided by189

the divergence of the background jet] vary greatly (Chapman et al., 2021; Sardeshmukh190

& Hoskins, 1988). Thus, we also input the day of the year (DOY), which is represented191

as a linearly increasing value spanning from the first of November to the final day of Febru-192

ary, encompassing all input days. The DOY index is subsequently normalized, ensuring193

it maintains a zero mean and a standard deviation of unity, prior to its incorporation194

into the neural network.195

2.2.2 Interpretable Neural Network196

Figure 1 shows a schematic of the interpretable neural network specifically constructed197

to dissect the relative contributions of the MJO and ENSO to subseasonal predictabil-198

ity over the North Pacific. Following the general architecture laid out in Gordon et al.199

(2023), two artificial neural networks are combined at the output layer through a linear200

combination to create the final output prediction. In our applications, both networks are201

tasked to predict the sign of the 500 hPa geopotential height anomaly averaged over the202

North Pacific at the target lead. However, the top network (Figure 1a) only receives in-203

formation about the state of ENSO and its evolution throughout 15 days prior (here-204

after referred to as the ENSO-network) while the bottom network only receives the RMM1205

and RMM2 index values and their evolution throughout the 15 days prior (Figure 1b;206

hereafter referred to as the MJO-network). Additionally, each network receives the DOY207

associated with t0 as input so that it may also learn variability in sources of predictabil-208

ity within the boreal winter season. The final predictions are taken as the linear com-209

bination of the outputs of the individual networks, meaning that the network must learn210
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Figure 1. Schematic of the interpretable neural network architecture. Input into the (a)

ENSO-network includes the ENSO index at t0 plus the 15 days prior (t−15) and associated nor-

malized day of year (DOY) at t0 to predict the sign of the Z500 anomaly averaged over North

Pacific (grey rectangle) at a specified lead (tL+avg, where “L” indicates the lead time and “avg”

indicates the Z500 temporal averaging window length). The (b) MJO-network is constructed

similarly but instead inputs RMM1 and RMM2 rather than the ENSO index. The predictions

from each network are linearly combined (grey shaded box) to make the final network prediction.

The bottom two panels include network performance [accuracy] across confidence thresholds for

the (c) testing dataset and (d) ERA5 reanalysis. The light/dark blue lines represent the mean

accuracy at each confidence level across all lead times (shading) for a Z500 averaging window of 2

days/28 days
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to strategically weight its contribution to the final prediction. Therefore, the individual211

output of each neural network can be considered its contribution to a prediction, allow-212

ing interpretation of the specific role of each predictor (i.e., ENSO or MJO) in the net-213

work’s skill.214

To explore the impact of lead and predictand temporal averaging on the source of215

predictabilty, we train separate neural networks for leads ranging from 5 to 30 days and216

predictand temporal averaging windows of 2 to 28 days. Furthermore, we train five net-217

works, each with a different random seed per lead and averaging window combination,218

to assess the network’s sensitivity to random initialization weights. Minimal differences219

between random initializations are observed, leading us to present the results as aver-220

ages across the five networks.221

Both the ENSO- and MJO- networks have one hidden layer with eight nodes and222

use the rectified linear unit (ReLU) activation function. We note that increasing the com-223

plexity of either network does not impact the results [not shown]. To train the model,224

we use a batch size of 32, categorical crossentropy as the loss function and the Adam Op-225

timizer (Kingma & Ba, 2014) for gradient descent with a learning rate of 0.001. The learn-226

ing rate is initially held constant for the first 19 epochs and then reduced by 90% after227

each epoch to help minimize the loss. To reduce overfitting to the training data, train-228

ing is completed after the validation loss does not improve for 20 epochs, at which time229

the network weights are reverted to 20 epochs prior. The softmax activation function230

is applied to the final layer of the total-network (Figure 1) so that the output values sum231

to one and represent a network estimation of likelihood, or “confidence”. Previous re-232

search has shown that network confidence can be used to identify forecasts of opportu-233

nity when accuracy increases with confidence (Mayer & Barnes, 2021), allowing us to234

explore the contributions of the MJO and ENSO for all predictions and during network-235

identified forecasts of opportunity. Here, we define confident predictions as the 20% most236

confident following (Mayer & Barnes, 2022).237

2.2.3 Quantifying Relative Contribution238

We employ two methods to quantify the relative contribution of the ENSO- and239

MJO- networks to the total-network predictions. The first explores the frequency that240

the final, total prediction is correctly predicted by a specific network while incorrectly241

predicted by the other. This illuminates how often either the ENSO- or MJO- network242

solely contributes to the correct total-network prediction while the other network acts243

incorrectly.244

The second metric quantifies the percentage of the total-network accuracy provided245

by either the ENSO- or MJO- network through permutation importance McGovern et246

al. (2019). Permutation importance is a technique used to remove relationships between247

the input and output through randomly shuffling the input data. The subsequent de-248

crease in network performance can then be attributed to the importance of that input249

data to the prediction. To calculate the importance (percentage of accuracy) contributed250

by the ENSO-network, we randomly shuffle the ENSO index testing samples (retaining251

the 15 day memory), calculate the accuracy of the total-network with the randomly shuf-252

fled data, and compare it to the accuracy of the total-network without shuffled data. To253

calculate the percentage of accuracy contributed by the MJO-network, we apply the same254

technique, but shuffle the RMM indices. We note that the random shuffling does not ac-255

count for memory between samples, and therefore, the network contribution to the to-256

tal accuracy could be larger.257
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3 Results258

3.1 Network Performance259

To evaluate network performance, we calculate the accuracy of the network on the260

testing data across confidence levels (Figure 1c). The testing data is randomly subset261

to an equal number of positive and negative anomalies so that random chance is 50%262

for all predictions (N≈11,500; 100% most confident). Across the range of Z500 averag-263

ing windows (lines) and lead times (shading), the network performs better than random264

change at ≥ 60% accuracy. We include the two extreme averaging windows (2 and 28265

days) for ease of visualization, however, the other averaging windows fall within these266

two curves. As network confidence increases, the accuracy of the network increases as267

well, indicating the network is able to identify periods of enhanced predictability (Fig-268

ure 1c). Further, we find similar performance when the network is evaluated on reanal-269

ysis data (Figure 1d), suggesting the network is identifying physically relevant forecasts270

of opportunity for subseasonal predictability of Z500 anomalies over the North Pacific271

(Mayer & Barnes, 2021).272

Previous work has also detailed the importance of the basic state evolution through-273

out boreal winter on tropically forced teleconnection propagation and its potential for274

improved subseasonal predictability (Newman & Sardeshmukh, 1998; Chapman et al.,275

2021, e.g.). Therefore, to account for any within season evolution of ENSO or MJO tele-276

connections to North Pacific predictability, DOY is included as an input into the net-277

work. We find that when the network is correct (grey histograms in Figure 2), the fre-278

quency of predictions are generally consistent across DOY with a slight increase towards279

the latter end of the season across leads 7 through 28 days. However, when the network280

is also confident (purple histograms in Figure 2), the frequency of predictions increases281

at the latter end of boreal winter. We note that the purple histograms become flatter282

with lead time (i.e. more early winter predictions) since longer lead time predictions made283

near the beginning of boreal winter are forecasting for the latter part of the season. These284

results indicate that the network has identified the latter half of boreal winter as a prefer-285

able period for enhanced subseasonal predictability, consistent with previous research286

(Newman & Sardeshmukh, 1998; Chapman et al., 2021). In other words, the network287

is able to identify a ”sub-seasonal” evolution of subseasonal predictability sourced from288

the MJO and ENSO.289

To ensure the network does not solely rely on DOY to classify confident predictions,290

we also train neural networks without DOY information, and find similar MJO and ENSO291

contribution results (not shown). To maximize samples, the following analysis examines292

predictions throughout the season, rather than only during the latter half of boreal win-293

ter.294

3.2 MJO- & ENSO-Network Contributions295

Due to the construction of the neural network, the relative contributions from each296

network to the final predictions can be quantified. Specifically, we calculate the frequency297

that either the ENSO- (teal) or MJO- (purple) network solely contributes to a correct,298

final prediction (Figure 3a). The frequency that both networks contribute to a correct299

prediction is also included in grey, so that the sum of the teal, purple and grey lines at300

a specific lead and Z500 averaging window is 100%. Lighter (darker) colors denote shorter301

(longer) temporal Z500 averaging windows.302

Overall, we find that the ENSO-network alone (teal) contributes more frequently303

to correct predictions than the MJO-network alone (purple) for almost all leads and Z500304

averaging windows. At shorter Z500 averaging windows (2 and 7 days), the MJO-network305

contributes more frequently until about a lead of 14-18 days, after which the ENSO-network306

becomes more frequently correct regardless of Z500 averaging windows. The most fre-307
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Figure 2. Frequency of a correct (grey) and confident (purple) network predictions by day of

year (DOY) for a lead of 7, 14, 21, and 28 days across all Z500 averaging windows.

quently correct network combination is when both networks agree on the correct predic-308

tion (grey lines). However, the information provided by the ENSO state begins to con-309

tribute as frequently at leads greater than 21 days and longer averaging windows (darker310

teal lines). In general, as either the Z500 averaging window or lead time increases, the311

ENSO-network alone contributes more frequently to a correct prediction than the MJO-312

network. These results show that while the MJO-state is important for making predic-313

tions, ENSO plays a greater role in making correct subseasonal predictions for the ma-314

jority of lead times and Z500 averaging windows.315

If we further subset the predictions into correct and confident predictions (i.e. network-316

identified forecasts of opportunity), a similar though more exaggerated, story emerges.317

After a lead of 7 days, the ENSO-network contributes more frequently to correct and con-318

fident predictions than the MJO-network, regardless of Z500 averaging window (Figure319

3b). At shorter leads the most frequent correct, confident predictions still occur when320

both the ENSO- and MJO-network correctly contribute to the predictions. However, the321

ENSO-network alone rivals these frequencies after a lead of 21 days. These results again322

demonstrate that the ENSO-network alone is generally more useful for correct (and con-323

fident) subseasonal predictions than the MJO-network.324

When confident and correct predictions are further separated into positive and neg-325

ative Z500 anomaly predictions, the contributions become more nuanced (Fig. 3b.1- b.2).326

For negative predictions, the ENSO-network more frequently contributes to correct, con-327

fident predictions than the MJO-network, regardless of lead time or averaging window.328

However, when examining positive predictions [note change to y-axis limits], the MJO-329

network alone contributes to correct, confident predictions more frequently than the ENSO-330

network at 5-7 day leads and Z500 averaging windows of 2 and 7 days (Fig. 3b.2). This331
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Figure 3. The frequency of a correct prediction provided by either the MJO- (purple) or

ENSO-network (teal) or by both MJO- and ENSO-networks (grey) for each prediction lead.

Lighter (darker) lines indicate shorter (longer) Z500 averaging windows. (b) As in (a) but for

correct and confident predictions, which is further divided into (b.1) positive and (b.2) negative

Z500 predictions [note different y-axis limits]. Lines are smoothed with a 3 day triangle filter for

ease of interpretation. (c,d) Change in accuracy across confidence thresholds after permuting (c)

RMM and (d) ENSO index input. The light/dark blue lines represent the mean of a 2 day/28

day Z500 averaging window across all lead times and the associated range of change in accuracy

is represented by the shading.
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suggests the MJO state is especially important for subseasonal prediction of anomalously332

high Z500 at shorter leads and averaging windows, particularly when the ENSO state333

is not useful (e.g. ENSO neutral conditions).334

The utility of the MJO-network to the total network can be further elucidated when335

the prediction problem is, for example, constructed with a lead of 10 days and a Z500336

averaging window of 5 days. We find that 42% of correct, confident positive Z500 anomaly337

predictions are periods with ENSO neutral conditions, when the tropical ocean should338

have the least control on the extratropical eastern Pacific. This is in stark contrast to339

confident, correct negative predictions which only occur in ENSO neutral states in 12%340

of cases. With that said, we note that negative predictions, of which the ENSO-network341

dominates, are overall more frequently confident and correct than positive predictions342

(Fig. 3b.1).343

The results of the relative network contributions generally suggests the ENSO-network344

is the main contributor to correct (and confident) predictions. However, the MJO-network345

shows its utility for positive predictions when the network is correct and confident. We346

can further explore the impact of the MJO-network and ENSO-network on prediction347

skill through permutation importance (Figure 3c,d). In particular, we can quantify the348

contribution of the ENSO-network to the accuracy of the total network (Figure 3d) by349

randomly shuffling the input into the ENSO-network. In doing so, we separate the con-350

nection between the predictor and predictand, and thus, the predictors importance for351

making correct predictions. We find that across lead (shading) and Z500 averaging win-352

dow (lines), the ENSO-network contributes between 5-12% for all predictions and close353

to 40% when the network is very confident. When permutation importance is instead354

applied to the MJO-network (Figure 3c), this contribution is about 1-5% across confi-355

dent thresholds. We again only include the two extreme Z500 averaging windows for vi-356

sualization, however, the other averaging window results lie within these curves. This357

further demonstrates that information provided by the ENSO-network is more impor-358

tant for higher skill, particularly at high confidence values (i.e. during forecasts of op-359

portunity), compared to the MJO-network.360

3.2.1 MJO-Network Importance361

In general, our network indicates that ENSO is a more consistent provider of fore-362

cast skill of Z500 anomalies over the North Pacific. Nevertheless, there are specific time363

frames when the MJO-network provides important information for predicting Z500. To364

delve deeper into the MJO’s optimal state for subseasonal predictability of Z500 in the365

North Pacific, K-means clustering is employed on the input features of the MJO network366

(RMM1 and RMM2). For brevity, we focus on a single lead time and averaging window367

(10 days and 5 days, respectively). This was found as a lead time and averaging window368

of relative peak importance for MJO driven predictability (Fig. 3b). This analysis fo-369

cuses on instances when the network is confident and accurate, only during neutral ENSO370

conditions. We employ elbow and silhouette analysis to ascertain the optimal number371

of clusters for both positive and negative confident and correct predictions (Fig. S2, Rousseeuw,372

1987). These methods offer a quantitative measure of how well-defined and separated373

the clusters are, providing insights into the cohesion within each cluster and the distinc-374

tiveness between clusters. This ensures a more nuanced evaluation of the clustering struc-375

ture and reinforces our confidence in the appropriateness of the chosen number of clus-376

ters (3; Figure S2). The silhouette analysis shows clearly separated clusters which en-377

hances the reliability of our clustering results, contributing to the overall robustness of378

our analysis. We then take a mean across the temporal dimension of each cluster to form379

a cluster composite of the input MJO RMM1/RMM2 predictor variables. Composites380

of the three clusters, for positive (top row) and negative (bottom row) Z500 anomaly pre-381

dictions, are shown in figure 4.382
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Figure 4. Composite clusters of MJO events when predictions are confident, correct, and

ENSO is in a neutral state for anomalously high (top row) and anomalously low (bottom row)

Aleutian Low states. Forecast lead is 10 days and a Z500 averaging window of 5 days. The RMM

indices progress in time from light- [t−15] to dark- [t0] colors.

Firstly, we observe the frequency of events in which ENSO is neutral and the net-383

work exhibits both confident and correct predictions, represented as an N value in each384

row. Positive predictions are approximately 2.5 times more likely than negative events385

to exhibit this forecast condition (N=230 vs. N=91). This implies that the network demon-386

strates greater confidence and accuracy when forecasting positive Z500 anomalies dur-387

ing ENSO neutral states. Consequently, the MJO proves to be a more effective predic-388

tor (in CESM2-PI) in phases 3/4, where downstream Rossby wave dispersion leads to389

positive Z500 North Pacific anomalies. It is important to note that this does not nec-390

essarily imply that positive anomalies are universally more predictable at the subseasonal391

range, as the total number of confident, correct negative predictions is higher than those392

predicting a positive state (refer to the discussion of Fig. 3 for further details), and this393

is largely driven by ENSO positive events.394

Positive predictions (row 1; high Z500 anomalies) show three distinct developing395

MJO states. Each developing MJO state is consistent with the phases that lead to a down-396

stream positive Z500 anomaly (peaking in phases 3/4/5), demonstrating that the neu-397

ral network has identified a physically justifiable link between the MJO and North Pa-398

cific circulation. Every cluster is above the threshold for active MJO events (1 sigma,399

inner dashed circle), and cluster 3 has periods which are above the 2 standard deviation400

threshold (97.5 percentile; outer dashed circle). Meaning, extremely anomalous events401

more consistently produce downstream extra-tropical Z500 anomalies. Cluster 1 shows402

a persistent anomaly in which the MJO stalls in between phases 3 and 4. These persis-403

tent cases have been previously identified as exciting a greater teleconnection response404

than fast moving MJO events (Yadav & Straus, 2017; Yadav et al., 2024). Finally, clus-405

ters 2 and 3 show events that are anomalously strong which then decay into MJO neu-406

tral states as they move towards initialization time. This is logical as MJO phase 6/7/8407
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is associated with a negative Z500 anomaly and thus would negate the current Z500 pos-408

itive prediction at subseasonal forecast leads. To the author’s knowledge, this is a unique409

aspect of this analysis showing that selective extremely anomalous MJO phases which410

then decay to a neutral MJO state can lead to enhanced subseasonal forecast skill, by411

not sparking MJO induced Rossby wave destructive interference. For the sake of brevity,412

we will simply note that the negative Z500 predictions (row2; low Z500 anomalies), largely413

mirror the findings found in the positive Z500 predictions.414

The authors acknowledge that the MJO and ENSO indices along with the day of415

year are the sole information available to the network for making predictions. Keeping416

this limitation in mind, in summary, the subseasonal predictability of the Eastern North417

Pacific Z500 anomaly is predominantly influenced by highly active or persistent MJO418

events during neutral ENSO conditions. Larger anomalies result in increased predictabil-419

ity, and MJO events with substantial anomalies that subsequently transition into neu-420

tral states significantly contribute to subseasonal forecast skill.421

4 Conclusion422

This study aims to use an interpretable neural network to enhance the scientific423

understanding of the contribution of two tropical modes of variability to subseasonal pre-424

dictability over the North Pacific: the MJO and ENSO. We find the network performs425

well on both the CESM2-PI testing data and ERA5 reanalysis across the range of lead426

time and averaging windows evaluated, suggesting the network is able to identify phys-427

ically relevant sources of predictability. Further, the network is able to identify a late428

boreal winter preference for enhanced subseasonal predictability (Fig. 2), consistent with429

previous research which explores the importance of the subseasonal evolution of the back-430

ground state for teleconnection propagation (e.g., Kumar & Hoerling, 1998; Chapman431

et al., 2021). This area of predictability research remains relatively unexplored, calling432

for more focused investigation.433

Through an analysis of the relative roles of the MJO- and ENSO-networks, we find434

that forecast lead time and predictand averaging windows have a limited effect on the435

relative importance of MJO-driven North Pacific variability. ENSO dominates as the pri-436

mary driver of subseasonal predictability for the majority of lead times and averaging437

windows, particularly at forecast ranges exceeding 7 days and averaging windows greater438

than 2 days (Fig. 3b,d). However, the MJO does provide some utility for prediction of439

positive Z500 anomalies during ENSO neutral states. In particular, persistent and par-440

ticularly anomalous MJO events that decay before creating destructive interference of-441

fer the greatest utility for subseasonal predictability from the MJO in this region (Fig.442

4).443

The authors acknowledge that we predict the sign of the Aleutian Low anomaly444

and the relative importance of each predictor variable could change if the predictive tar-445

get is changed to forecasting the magnitude or other, downstream affects of the MJO or446

ENSO (i.e., two-meter temperature or precipitation). Further, these results are for the447

CESM2-PI simulation, and therefore, does not account for possible affects from anthro-448

pogenic climate change. Recent research has shown that the MJO has become and will449

likely continue to become more predictable in a future climate (Du et al., 2023), which450

could subsequently improve midlatitude subseasonal skill provided by the MJO. On the451

other hand, previous research suggests ENSO may be the main tropical driver of future452

midlatitude subseasonal predictability changes (Mayer & Barnes, 2022). Therefore, fu-453

ture research should explore how our results may change in a future, warmer climate.454

Given the chaotic nature of the weather system, a priori identification of partic-455

ularly predictive windows offers a useful way forward for long range forecast skill (Al-456

bers & Newman, 2019; Mariotti et al., 2020). Ultimately, this paper demonstrates that457
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interpretable neural networks can be used to gain physical insight into predictability, par-458

ticularly through dissecting the relative importance of modes of variability thought im-459

portant for subseasonal predictability.460

5 Open Research461

To promote transparency and reproducibility, all model training scripts and fig-462

ures are readily accessible and can be downloaded using the provided code available on463

GitHub (https://github.com/kjmayer/ENSOvsMJO ; Mayer & Chapman, 2024). Com-464

prehensive instructions for each step of this study are documented in the repository’s README465

file. The authors leveraged the TensorFlow Python toolbox for machine learning and model466

training, a python machine learning environment can be found in this projects’ repos-467

itory. All data was produced as a part of the Community Earth System Model’s con-468

tribution to the CMIP6 suite and is archived at the U.S. National Science Foundation’s469

National Center for Atmospheric Research (NSF NCAR) computational and informa-470

tion systems lab (https://www2.cisl.ucar.edu/computing-data/data/cmip6-data-sets-glade).471

Raw ERA5 Reanalysis data can be obtained on the NSF NCAR Research Data Archive472

at: https://rda.ucar.edu/datasets/ds633.0/. Intermediate data files that can be lever-473

aged to run every neural network and produce every plot specified in the github repo are474

stored at NCAR’s Geoscience Data Exchange (Chapman & Mayer, 2024).475
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Introduction

In this supplemental material, we present two figures of which support the main anal-

ysis: CESM2-PI representation of MJO teleconnections and optimal clustering selection.

Text S1. Figure S1 shows the frequency of a positive Z500 anomaly 5-9 days following

an active MJO event in phase 6/7 (Column I) or phase 3/4 (Column II) in the ERA5
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(row I) and the CESM2-PI (row II) during extended boreal winter (November-March).

Blue/red shading indicates that a negative/positive anomaly is more frequent 5-9 days

following the MJO event. We see that CESM2-PI has a relatively good representation of

the MJO teleconnection, motivating the utility of CESM2-PI for our analysis.

Text S2. Figure S2 shows the silhouette analysis (top) and elbow method (bottom) to

identify the optimal number (‘K’) clusters for K-means clustering, particularly for sam-

ples when the network is confident and accurate during neutral ENSO conditions. Three

clusters are selected for our analysis as the is where the silhouette score is maximized and

the elbow method is minimized.
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Figure S1. Frequency of a positive Z500 anomaly 5-9 days after an active MJO event in phase

6/7 (Column I) or phase 3/4 (Column II) in the ERA5 (row I) and the CESM2-PI (row II) in

NDJFM. Composites span model years 100-400 for the CESM2-PI and 1979-2020 for the ERA5
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Figure S2. Silhouette analysis and elbow method for optimal selection of K clusters
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