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LST values which would otherwise have been missing due to cloud cover. To validate this approach, a series of experiments are
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Abstract18

Land surface temperature (LST) serves as an important climate variable which is19

relevant to a number of studies related to energy and water exchanges, vegetation growth20

and urban heat island effects. Although LST can be derived from satellite observations,21

these approaches rely on cloud-free acquisitions. This represents a significant obstacle22

in regions which are prone to cloud cover.23

In this paper, a graph-based propagation method, referred to as GraphProp, is in-24

troduced. This method can accurately obtain LST values which would otherwise have25

been missing due to cloud cover. To validate this approach, a series of experiments are26

presented using synthetically-obscured Landsat acquisitions. The validation takes place27

over scenarios ranging from between 10% and 90% cloud cover across three urban loca-28

tions. In presented experiments, GraphProp recovers missing LST values with a mean29

absolute error of less than 1.1◦C, 1.0◦C and 1.8◦C in 90% cloud cover scenarios across30

the studied locations respectively.31

1 Introduction32

Land Surface Temperature (LST) has been identified as an Essential Climate Vari-33

able (ECV) by the Global Climate Observing System (GCOS) (Zemp et al., 2022). As34

an ECV it is relevant to the study of a number of phenomena that characterize Earth’s35

climate including urban heat island effects (Nazarian et al., 2022; Zhou et al., 2018; Mora-36

bito et al., 2016), water exchanges (Knipper et al., 2019; Anderson et al., 2016) and veg-37

etation health (Bento et al., 2018; Masitoh & Rusydi, 2019). In regions of persistent cloud38

cover, however, LST rasters often contain missing data. LST retrieval algorithms rely39

on the ability to measure the thermal infrared (TIR) energy emitted from the land sur-40

face (Wan & Dozier, 1996), meaning cloud-occluded TIR observations cannot be used41

to measure LST. Given the importance of LST as an ECV, it is important to overcome42

such barriers to measurement in order to have access to regularly-sensed values so as to43

allow for the subsequent study of the processes to which it pertains.44

Existing methods for gap-filling LST data can be categorised into one of two group-45

ings: model-based methods or statistical methods (Mo et al., 2021). Within the former,46

temperature cycle models including Quan et al. (2016); Sobrino and Julien (2013); Fu47

and Weng (2015); Zhan et al. (2014) have been proposed which construct physical mod-48

els of the temperature fluctuations and fit parameters to available observations. Although49

these models have the strength that they can be used to estimate continuous LST time50

series, they struggle to capture the spatial variability and higher frequency dynamics of51

the data. In Zou et al. (2018), although the authors propose a model-based approach52

which aims to better capture short-term LST fluctuations, they acknowledge that the53

approach struggles in built-up regions.54

In the statistical category of methods, there are a number of approaches which could55

be applied to the problem of LST gap-filling (Mo et al., 2021). These range in their so-56

phistication from simple imputation methods such as mean filling or linear interpolation57

to more rigorous methods such as tensor completion methods. Although not directly stud-58

ied for the problem of tackling LST gaps caused by cloud-obfuscated observations, ten-59

sor completion methods including Ng et al. (2017); Srindhuna and Baburaj (2020); He60

et al. (2019); Chen et al. (2019) have been proposed to address cloud-covered acquisi-61

tions. These methods operate under the assumption that the data lies within a low-rank62

subspace and exploits the observations to complete the missing regions so as to satisfy63

this assumption. In studies which consider the limits of recoverability for these meth-64

ods, they generally assume that observations are randomly distributed (Ashraphijuo et65

al., 2017). This does not hold in the case of cloud-obfuscated data, where missing regions66
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generally form contiguous regions, which these methods struggle to recover (Rolland et67

al., 2023).68

In this manuscript, we propose a graph-based propagation approach which com-69

pletes missing values in LST rasters caused by cloud-obfuscated Landsat data more ac-70

curately than methods in existing literature. The proposed approach avoids LST gaps71

by completing the missing information in the inputs used to compute LST, specifically,72

the cloud-obfuscated Landsat data. The major advantage of tackling the problem up-73

stream in this way is that we integrate fully with the downstream LST calculations. The74

physics which are embedded within the downstream LST equations are utilised fully and75

therefore any results remain physically consistent with observations. Methods which tackle76

the gaps at the output stage do not have this same guarantee.77

The proposed graph completion approach, referred to as GraphProp, constructs78

a graph-based representation of the region, where graph nodes represent pixels and graph79

edges connect pixels that exhibited similar spectral signatures in an earlier cloud-free ac-80

quisition of the same region. The graph is then used to complete the partially-observed81

acquisition by allowing propagation between the observed and missing regions of the im-82

age to occur. By removing clouds from the acquisition, the algorithm is able to provide83

a full input to the downstream LST calculations and thus provide a complete LST raster.84

The results presented in this work validate the proposed approach by performing85

experiments using synthetically-introduced gaps within a Landsat dataset. This allows86

for the quality of the LST outputs to be assessed against the LST values computed us-87

ing the original data. The GraphProp approach is shown to more accurately reconstruct88

the missing LST information than benchmark completion methods and is shown to do89

so in even extreme cloud cover scenarios where 90% of the image is obscured.90

2 Materials and Methods91

2.1 GraphProp completion92

The proposed approach tackles the problem of filling the gaps in the LST raster93

by tackling the gaps in the Landsat inputs. If the gaps in the Landsat inputs can be filled,94

then the Statistical Mono-Window (SMW) algorithm can be applied to the filled inputs95

to obtain LST values for the entire region. To do so, the proposed graph-based propa-96

gation method, GraphProp, constructs a graph-based representation of the area of in-97

terest. A graph, G, consists of a set of nodes, V, and a set of edges, E , where each edge98

connects two nodes. In the context of this study, edges are used to connect pairs of pix-99

els which have been observed to exhibit similarity.100

In order to construct the graph-based representation of the region, the GraphProp101

method makes use of an earlier cloud-free acquisition of the region. Using H0 and H1
102

to denote the reference and partially-observed rasters with three dimensions respectively103

(having shape H × W × C where H, W and C are the height, width and number of104

image channels respectively), the graph is constructed as follows. By indexing the first105

two dimensions, i.e. both spatial dimensions, of the reference acquisition, H0[i, j, :], we106

reference a specific pixel and obtain a vector of length C which represents the spectral107

signature of the location captured by the Landsat 8 platform. Given that the reference108

acquisition is cloud-free, we can do so for all i and j so as to obtain a set of HW vec-109

tors in C-dimensional space. The graph-based representation of the region is constructed110

using a k-nearest neighbors graph, such that each pixel is connected to its k-nearest neigh-111

bors. By introducing an undirected and unweighted edge between a node and its k-nearest112

neighbors, a graph structure is obtained. This graph provides the structure upon which113

the observations from the partially-observed acquisition are propagated.114

–3–



manuscript submitted to Geophysical Research Letters

The values which are propagated are the spectral signatures of the pixels in the partially-115

observed acquisition rather than the reference acquisition and there is no requirement116

for the spectral signature to remain close across the two acquisitions. This allows tem-117

poral changes to take place between the acquisitions and therefore the dynamic nature118

of the measured spectral signals to be incorporated.119

The assumption made by adopting this approach is that pixels which were observed120

to exhibit spectral similarity in the reference image are likely to also exhibit spectral sim-121

ilarity in the partially-observed acquisition. The reference image will therefore ideally122

have been captured on a date close to the partially-observed acquisition to ensure the123

assumption holds. The presented results suggest that this assumption is also reasonable124

even over longer time frames, provided the region of interest has not underwent signif-125

icant changes in land cover between acquisitions.126

To mathematically describe this propagation approach it is necessary to introduce127

some notation. First, a function FlattenSpatialDimensions(·) is defined which takes a128

raster with three dimensions and returns a matrix with two dimensions by flattening the129

two spatial dimensions, giving F 0 = FlattenSpatialDimensions(H0) ∈ RHW×C and130

F 1 = FlattenSpatialDimensions(H1) ∈ RHW×C . The inverse operation is also defined,131

UnflattenSpatialDimensions(·), such that H1 = UnflattenSpatialDimensions(F 1). A132

mask, Ω, is defined which is a set used to index the pixels that were observed in the partially-133

observed acquisition, such that F 1
Ω gives the matrix when only the rows of F 1 relating134

to the observed pixels in the partially-observed acquisition are indexed. The complement135

set, Ωc, is used to define the missing pixels in the partially-observed acquisition, such136

that F 1
Ωc

contains the missing entries which are to be recovered.137

In this notation, the finite difference approximation to heat diffusion on a graph,
as described by Kondor, Risi and Lafferty, John (2002), can be written using the graph’s
Laplacian matrix, L, as

∂F 1

∂t
∝ −LF 1. (1)

The diffusion equation is modified to hold observed entries fixed, which is achieved138

by considering the temporal derivative as zero for these rows in F1. The Laplacian is in-139

dexed by its rows and columns such that LΩΩc denotes the submatrix consisting of the140

rows corresponding to observed pixels and the columns corresponding to the missing pix-141

els.142

This allows us to represent the propagation for the unobserved rows in F1 as

∂F 1
Ωc

∂t
∝ −LΩcΩF

1
Ω − LΩcΩc

F 1
Ωc
. (2)

The steady state can be found either by iteratively applying steps proportional to
the derivative in (2) or by setting the derivative to zero and obtaining F 1

Ωc
as the so-

lution to

LΩcΩc
F 1

Ωc
= −LΩcΩF

1
Ω. (3)

The implementation steps of GraphProp are summarised in Algorithm 1.143

2.2 LST Calculations144

The SMW algorithm, developed by Climate Monitoring Satellite Application Fa-145

cility (CM-SAF), allows LST values to be calculated from a satellite’s TIR band. The146

SMW models use coefficients obtained by fitting linear regression models that relate mea-147

sured 11 µm radiance values and the total column water vapor (TCWV) to LST. Once148

these coefficients are obtained for a given satellite platform, they can then be used to149
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Algorithm 1 GraphProp algorithm

Input: Ω,H0,H1
Ω ▷ Observation mask, reference input, partially-observed input

1: F 0 = FlattenSpatialDimensions(H0) ∈ RHW×C ▷ Flatten reference input
2: F 1

Ω = FlattenSpatialDimensions(H1
Ω) ∈ RHW×C ▷ Flatten partially-observed input

3: E ← kNN
(
F 0

)
▷ k-nearest neighbors graph (using reference input)

4: L = Laplacian(E) ▷ Laplacian matrix of graph
5: F 1

Ωc
← Solve

(
LΩcΩcF

1
Ωc

= −LΩcΩF
1
Ω

)
▷ Solve diffusion for missing entries

6: H1 = UnflattenSpatialDimensions(Merge(F 1
Ω,F

1
Ωc
))

Output: H1

map the satellite-derived inputs to a value representing the LST which would be mea-150

sured at that location. This approach is adopted by Ermida et al. (2020), where they151

integrate the process into the Google Earth Engine (GEE) platform to provide a tool152

for obtaining LST from Landsat observations. The algorithm provided in GEE by Ermida153

et al. (2020) is depicted schematically in Figure 1.154

In addition to the TIR measurements captured by Landsat 8’s Band 10, a num-155

ber of other inputs are used. Firstly, a dynamic estimation of the ground’s emissivity is156

obtained, where emissivity is defined as the ratio of energy emitted by a body to the amount157

of energy which a black body would emit in equivalent conditions. To estimate this quan-158

tity dynamically, the Landsat 8 acquisition is used to obtain an instantaneous measure159

of fractional vegetation cover (FVC), a quantity describing the fraction of total area cov-160

ered by vegetation. This value is used to update the static measure of FVC, obtained161

using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)162

Global Emissivity Dataset. Additionally, NCEP/NCAR Reanalysis Data is used to quan-163

tify the precipitable water in the atmosphere. Through quantification of TCWV and sub-164

sequently the total precipitable water (TPW), the effect that the atmosphere has on the165

measured brightness temperatures is accounted for (Ermida et al., 2020).166

The primary cause of missing LST values is the presence of clouds in the Landsat167

acquisition. Since the SMW algorithm depicted in Figure 1 is applied in a pixel-wise fash-168

ion, in scenes that are only partially obscured by clouds, the gaps in the LST output match169

the cloud mask pattern which is provided by the quality assessment band.170

2.3 Experimental Design171

In order to assess the accuracy of the LST values recovered, a set of experiments172

involving synthetically-obscured data have been performed. This involved the creation173

of a cloud-free dataset of observations from which the SMW algorithm can compute val-174

ues against which recovered LST values can be compared. As the graph-based propa-175

gation approach involves exploiting an earlier acquisition of the same region, the dataset176

therefore includes a cloud-free pair of acquisitions for each of the studied locations.177

In this study, three urban locations were selected: Jakarta, Indonesia; London, United178

Kingdom; and Paris, France. Urban locations were selected as the primary focus of the179

LST accuracy study as they exhibit smaller scale land cover heterogeneities that result180

in localized land surface temperature variations (Xiao et al., 2007) and therefore repre-181

sent a challenging gap-filling task. Jakarta falls within a tropical rainforest region while182

London and Paris sit within an oceanic climate according to Köppen climate definitions183

(Beck et al., 2018). With Jakarta and London representing cities near a coastline and184

Paris falling further inland, the three cities therefore might be expected to exhibit a range185

of differing temperate dynamics and were therefore chosen such that analysis covers wide186

ranging temperature dynamic characteristics.187
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Landsat 8

Surface Reflectance

Top of Atmosphere

NCEP/NCAR Reanalysis Data

Total column water vapor

ASTER
Fractional
Vegetation
Cover (FVC)

Landsat 8
Fractional
Vegetation
Cover (FVC)

Total precipitable
water (TPW)

Dynamic
Emissivity

Land Surface
Temperature (LST)

Is cloud free?
Yes

GraphProp

No

Proposed GraphProp Implementation
(Upstream cloud removal) Existing LST Computation

Figure 1: Schematic showing how the proposed approach integrates with existing algo-
rithm for computing LST (Ermida et al., 2020). The advantage of adopting an upstream
completion approach is that it does not alter the physics that relate measured thermal
infrared energy to LST.
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Figure 2: Schematic representing the GraphProp method. The reference acquisition cap-
tured on a different date (Day B) is used to construct a graph-based representation of
the region to complete the partially-observed acquisition captured on Day A. The graph
structure is used to propagate observed values (denoted by red nodes) to complete missing
values (denoted by gray nodes). The 20 km × 20 km region of interest for the respective
study regions is depicted by the shaded square.

For each of the three cities, a pair of cloud-free Landsat 8 acquisitions were obtained,188

as outlined in Table 1. In each location, the region of interest covers a square with side189

length 20 km and acquisitions were acquired at a resolution of 30 m per pixel (giving rasters190

made up of 670×670 pixels). In the studied application of the proposed approach the191
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GraphProp method makes use of an earlier cloud-free reference acquisition to assist the192

completion task. In order to obtain a cloud-free acquisition of the region it may be nec-193

essary to look back further in time, resulting in temporal separations such as seen in Ta-194

ble 1, with the time between acquisitions varying between the three locations, ranging195

from 9 to 32 weeks. These temporal gaps are representative of the temporal separation196

which might be expected in a real-world application of the proposed approach.197

In order to realistically synthetically obscure the latter acquisitions, genuine cloud198

masks from other cloud-obscured Landsat 8 acquisitions were collected. These masks were199

collected such that they represent cloud cover scenarios which range from 10%-90% cloud200

cover. At each of these 10% intervals, 10 different cloud masks were collected, giving a201

total of 90 cloud masks. A figure depicting the cloud masks is included within support-202

ing information provided.203

2.4 Evaluation204

To quantify the accuracy of each method’s recovered LST values, the root mean
square error (RMSE) and mean absolute error (MAE) were computed over the missing
regions of each scene. Using f(·) to summarize the function for deriving the LST from
the satellite data, the RMSE and MAE are defined as follows. The algorithm-recovered
LST values are contained within the matrix LST, where

LST = f(H1) ∈ RH×W .

By flattening the spatial dimensions of the LST matrix, a vector of LST values can be
obtained, LSTflat, where

LSTflat = FlattenSpatialDimensions(LST) ∈ RHW ,

and then subsequently indexed using Ωc to consider only the missing regions of the LST
matrix: (

LSTflat

)
Ωc
∈ R|Ωc|.

By then comparing against the ground truth, in the matrix LST, the RMSE and MAE205

were computed as follows:206

RMSE =

√√√√∣∣∣∣∣∣(LSTflat

)
Ωc
− (LSTflat)Ωc

∣∣∣∣∣∣2
2

|Ωc|
MAE =

∣∣∣∣∣∣(LSTflat

)
Ωc
− (LSTflat)Ωc

∣∣∣∣∣∣
1

|Ωc|
,

207

where ||·||2 and ||·||1 are the l2 and l1 norms respectively.208

2.5 Benchmarked methods209

2.5.1 Mean-filled LST210

In the absence of more sophisticated methods, the simplest imputation method is211

to take the partially-computed LST raster and to fill gaps with the mean of the observed212

values. This provides a baseline against which to compare more sophisticated approaches.213

2.5.2 Band-wise mean-filled Landsat 8 inputs214

Rather than imputation using the average LST value, a second baseline approach215

is provided by mean-filling the inputs. To do so, the mean value of the observed portions216

of each Landsat 8 band is computed and used to fill corresponding missing entries in the217

input. From the mean-filled inputs, a value of LST can be found for each pixel thus com-218

pleting the LST raster.219
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Table 1: Cloud-free Landsat 8 image acquisition pairs

First Acquisition Second Acquisition

Location Date
Ground Truth
LST Mean (◦C)

Date
Ground Truth
LST Mean (◦C)

Days Between
Acquisitions

Jakarta 2019-09-11 44.7 2020-04-22 40.5 224
London 2020-06-25 39.1 2020-09-13 27.1 80
Paris 2022-03-06 11.2 2022-05-09 29.6 64

2.5.3 Low-rank tensor completion220

A third baseline approach takes a more rigorous approach to the problem of miss-221

ing data. The low-rank tensor completion approach to data imputation is based on the222

assumption that the data can be represented by a low-rank tensor.223

There have been many studies which present tensor completion algorithms which224

make this assumption (Cai et al., 2010; Liu et al., 2013; He et al., 2019; Yuan et al., 2019)225

to recover missing entries. While the low-rank assumption is a powerful tool for tensor226

completion, it is not always appropriate. For example, it assumes that entries are miss-227

ing at random which is not the case for cloud-obfuscated satellite imagery.228

In this study, the high accuracy low rank tensor completion algorithm (HaLRTC)229

(Liu et al., 2013) provides a benchmark from this family of methods. It was applied by230

stacking the partially observed top of atmosphere B10 band with the two surface reflectance231

bands used to compute LST (SR B4 and SR B5). The result is a tensor of size H×W×232

3 which was provided as an input to HaLRTC alongside the observation mask, Ω.233

3 Results234

Applying a cloud mask to synthetically obscure the latter image of each city’s im-235

age pair, each method is applied to provide LST values in the missing regions. Doing so236

for 10 random cloud masks between 10%-90% cloud cover at 10% intervals, the MAE237

and RMSE was computed for each method. The results, shown in Figure 3, show the238

mean of each metric when averaged over the 10 random masks at a given cloud cover239

fraction. The errors are computed over the missing pixels in each experiment only and240

not over the whole scene, since the errors are zero or negligible for the observed pixels.241

Across the three cities studied, the low-rank tensor completion method (HaLRTC)242

provides improved accuracy versus the naive mean-filling approaches when cloud cover243

is minimal, i.e. in the region of 10%−30%. In cases which are more severely cloud-obscured,244

the mean-filling provides equally or more accurate results. This could perhaps be explained245

by the fact that as cloud cover increases, the large contiguous missing regions deviate246

further from the founding assumption of the low-rank completion approaches that con-247

sider entries to be missing uniform at random.248

The proposed method, however, improves the LST accuracy across all cloud cover249

fractions. GraphProp provides missing LST values with a MAE of less than 1.1◦C, 1.0◦C250

and 1.8◦C across all tested scenarios for the Jakarta, London and Paris studies respec-251

tively. Results do not show a significant deterioration in accuracy as cloud cover increases,252

unlike in results applying HaLRTC. It has been estimated (Santamouris et al., 2015) that253

each 1◦C increase in temperature within urban heat islands can increase energy demands254

by between 0.5-5%. The accuracy of LST estimates, therefore, will have direct implica-255

tions on energy resource planning and management.256
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Figure 3: Accuracy of completed LST values as a function of the percentage of the ac-
quisition removed. Each plotted value represents the mean value computed across the 10
random obfuscation masks at the given missing fraction percentage and the error bars
represent one standard deviation.

A selection of results are displayed in Figure 4 to illustrate the spatial accuracy char-257

acteristics of each method. These absolute error distributions demonstrate that Graph-258
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Figure 4: Qualitative comparison of the LST imputation methods for at varying amounts
of cloud cover.

Prop can recover fine-scale LST variations more accurately than other methods and there-259

fore gives results with fewer neighborhoods of high error magnitude.260

Across all the tested methods the errors are larger in the Paris study than for the261

other two locations. One theory for this behaviour is that the Paris study represents the262

largest temperature difference between the respective acquisitions (29.6◦C versus 11.2◦C)263

and therefore the graph-based representation derived from the colder reference acqui-264

sition which was used to complete the partially-observed acquisition may less perfectly265

characterize the region on the later date. This hypothesis would require further study266
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to prove or disprove conclusively. Nonetheless, the GraphProp results remain the most267

accurate for the Paris study despite the larger errors observed across methods.268

These errors are computed with reference to the values obtained using the SMW269

algorithm when taking the synthetically-obscured pixel values as inputs. The contribu-270

tion of Ermida et al. (2020) provides an analysis of the accuracy of this approach with271

reference to ground truth from in-situ measurements. In their study, performed across272

12 locations, they found the RMSE error of the SMW algorithm to be 1.9◦C when us-273

ing Landsat 8 inputs.274

4 Discussion and Conclusions275

The results presented in this study show that the proposed method, GraphProp,276

is able to provide accurate LST values in the presence of cloud cover. The method is able277

to provide more accurate results than the low-rank tensor completion method (HaLRTC)278

and other more naive mean-filling approaches. The presented results also show this ap-279

proach to be very robust against the extent of cloud cover present in the scene. The con-280

tribution, therefore, represents a useful and practical tool for the analysis of LST in the281

presence of cloud cover. This will assist applications involving the analysis of LST dy-282

namics, by reducing gaps in time series caused by cloud cover and therefore provide a283

more complete picture of temporal trends that might otherwise have been difficult to ob-284

serve.285

This study has focused on the analysis of LST in urban areas, however the authors286

expect similar results to be achievable if applied to other land cover types. The method287

can also be straightforwardly extended to time series involving more than two acquisi-288

tions, for example by combining graphs obtained from each. This would allow for the289

case where it is not required that any one of the reference acquisitions is fully cloud-free,290

provided that each location is observed without cloud in at least one of the acquisitions291

to identify its spectral similarities allowing it to be incorporated into the graph-based292

representation of the region.293

There is scope to extend this research to analyse how the accuracy of the proposed294

approach varies as other variables such as the temporal or seasonal distance between the295

respective acquisitions is changed.296
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Abstract18

Land surface temperature (LST) serves as an important climate variable which is19

relevant to a number of studies related to energy and water exchanges, vegetation growth20

and urban heat island effects. Although LST can be derived from satellite observations,21

these approaches rely on cloud-free acquisitions. This represents a significant obstacle22

in regions which are prone to cloud cover.23

In this paper, a graph-based propagation method, referred to as GraphProp, is in-24

troduced. This method can accurately obtain LST values which would otherwise have25

been missing due to cloud cover. To validate this approach, a series of experiments are26

presented using synthetically-obscured Landsat acquisitions. The validation takes place27

over scenarios ranging from between 10% and 90% cloud cover across three urban loca-28

tions. In presented experiments, GraphProp recovers missing LST values with a mean29

absolute error of less than 1.1◦C, 1.0◦C and 1.8◦C in 90% cloud cover scenarios across30

the studied locations respectively.31

1 Introduction32

Land Surface Temperature (LST) has been identified as an Essential Climate Vari-33

able (ECV) by the Global Climate Observing System (GCOS) (Zemp et al., 2022). As34

an ECV it is relevant to the study of a number of phenomena that characterize Earth’s35

climate including urban heat island effects (Nazarian et al., 2022; Zhou et al., 2018; Mora-36

bito et al., 2016), water exchanges (Knipper et al., 2019; Anderson et al., 2016) and veg-37

etation health (Bento et al., 2018; Masitoh & Rusydi, 2019). In regions of persistent cloud38

cover, however, LST rasters often contain missing data. LST retrieval algorithms rely39

on the ability to measure the thermal infrared (TIR) energy emitted from the land sur-40

face (Wan & Dozier, 1996), meaning cloud-occluded TIR observations cannot be used41

to measure LST. Given the importance of LST as an ECV, it is important to overcome42

such barriers to measurement in order to have access to regularly-sensed values so as to43

allow for the subsequent study of the processes to which it pertains.44

Existing methods for gap-filling LST data can be categorised into one of two group-45

ings: model-based methods or statistical methods (Mo et al., 2021). Within the former,46

temperature cycle models including Quan et al. (2016); Sobrino and Julien (2013); Fu47

and Weng (2015); Zhan et al. (2014) have been proposed which construct physical mod-48

els of the temperature fluctuations and fit parameters to available observations. Although49

these models have the strength that they can be used to estimate continuous LST time50

series, they struggle to capture the spatial variability and higher frequency dynamics of51

the data. In Zou et al. (2018), although the authors propose a model-based approach52

which aims to better capture short-term LST fluctuations, they acknowledge that the53

approach struggles in built-up regions.54

In the statistical category of methods, there are a number of approaches which could55

be applied to the problem of LST gap-filling (Mo et al., 2021). These range in their so-56

phistication from simple imputation methods such as mean filling or linear interpolation57

to more rigorous methods such as tensor completion methods. Although not directly stud-58

ied for the problem of tackling LST gaps caused by cloud-obfuscated observations, ten-59

sor completion methods including Ng et al. (2017); Srindhuna and Baburaj (2020); He60

et al. (2019); Chen et al. (2019) have been proposed to address cloud-covered acquisi-61

tions. These methods operate under the assumption that the data lies within a low-rank62

subspace and exploits the observations to complete the missing regions so as to satisfy63

this assumption. In studies which consider the limits of recoverability for these meth-64

ods, they generally assume that observations are randomly distributed (Ashraphijuo et65

al., 2017). This does not hold in the case of cloud-obfuscated data, where missing regions66
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generally form contiguous regions, which these methods struggle to recover (Rolland et67

al., 2023).68

In this manuscript, we propose a graph-based propagation approach which com-69

pletes missing values in LST rasters caused by cloud-obfuscated Landsat data more ac-70

curately than methods in existing literature. The proposed approach avoids LST gaps71

by completing the missing information in the inputs used to compute LST, specifically,72

the cloud-obfuscated Landsat data. The major advantage of tackling the problem up-73

stream in this way is that we integrate fully with the downstream LST calculations. The74

physics which are embedded within the downstream LST equations are utilised fully and75

therefore any results remain physically consistent with observations. Methods which tackle76

the gaps at the output stage do not have this same guarantee.77

The proposed graph completion approach, referred to as GraphProp, constructs78

a graph-based representation of the region, where graph nodes represent pixels and graph79

edges connect pixels that exhibited similar spectral signatures in an earlier cloud-free ac-80

quisition of the same region. The graph is then used to complete the partially-observed81

acquisition by allowing propagation between the observed and missing regions of the im-82

age to occur. By removing clouds from the acquisition, the algorithm is able to provide83

a full input to the downstream LST calculations and thus provide a complete LST raster.84

The results presented in this work validate the proposed approach by performing85

experiments using synthetically-introduced gaps within a Landsat dataset. This allows86

for the quality of the LST outputs to be assessed against the LST values computed us-87

ing the original data. The GraphProp approach is shown to more accurately reconstruct88

the missing LST information than benchmark completion methods and is shown to do89

so in even extreme cloud cover scenarios where 90% of the image is obscured.90

2 Materials and Methods91

2.1 GraphProp completion92

The proposed approach tackles the problem of filling the gaps in the LST raster93

by tackling the gaps in the Landsat inputs. If the gaps in the Landsat inputs can be filled,94

then the Statistical Mono-Window (SMW) algorithm can be applied to the filled inputs95

to obtain LST values for the entire region. To do so, the proposed graph-based propa-96

gation method, GraphProp, constructs a graph-based representation of the area of in-97

terest. A graph, G, consists of a set of nodes, V, and a set of edges, E , where each edge98

connects two nodes. In the context of this study, edges are used to connect pairs of pix-99

els which have been observed to exhibit similarity.100

In order to construct the graph-based representation of the region, the GraphProp101

method makes use of an earlier cloud-free acquisition of the region. Using H0 and H1
102

to denote the reference and partially-observed rasters with three dimensions respectively103

(having shape H × W × C where H, W and C are the height, width and number of104

image channels respectively), the graph is constructed as follows. By indexing the first105

two dimensions, i.e. both spatial dimensions, of the reference acquisition, H0[i, j, :], we106

reference a specific pixel and obtain a vector of length C which represents the spectral107

signature of the location captured by the Landsat 8 platform. Given that the reference108

acquisition is cloud-free, we can do so for all i and j so as to obtain a set of HW vec-109

tors in C-dimensional space. The graph-based representation of the region is constructed110

using a k-nearest neighbors graph, such that each pixel is connected to its k-nearest neigh-111

bors. By introducing an undirected and unweighted edge between a node and its k-nearest112

neighbors, a graph structure is obtained. This graph provides the structure upon which113

the observations from the partially-observed acquisition are propagated.114
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The values which are propagated are the spectral signatures of the pixels in the partially-115

observed acquisition rather than the reference acquisition and there is no requirement116

for the spectral signature to remain close across the two acquisitions. This allows tem-117

poral changes to take place between the acquisitions and therefore the dynamic nature118

of the measured spectral signals to be incorporated.119

The assumption made by adopting this approach is that pixels which were observed120

to exhibit spectral similarity in the reference image are likely to also exhibit spectral sim-121

ilarity in the partially-observed acquisition. The reference image will therefore ideally122

have been captured on a date close to the partially-observed acquisition to ensure the123

assumption holds. The presented results suggest that this assumption is also reasonable124

even over longer time frames, provided the region of interest has not underwent signif-125

icant changes in land cover between acquisitions.126

To mathematically describe this propagation approach it is necessary to introduce127

some notation. First, a function FlattenSpatialDimensions(·) is defined which takes a128

raster with three dimensions and returns a matrix with two dimensions by flattening the129

two spatial dimensions, giving F 0 = FlattenSpatialDimensions(H0) ∈ RHW×C and130

F 1 = FlattenSpatialDimensions(H1) ∈ RHW×C . The inverse operation is also defined,131

UnflattenSpatialDimensions(·), such that H1 = UnflattenSpatialDimensions(F 1). A132

mask, Ω, is defined which is a set used to index the pixels that were observed in the partially-133

observed acquisition, such that F 1
Ω gives the matrix when only the rows of F 1 relating134

to the observed pixels in the partially-observed acquisition are indexed. The complement135

set, Ωc, is used to define the missing pixels in the partially-observed acquisition, such136

that F 1
Ωc

contains the missing entries which are to be recovered.137

In this notation, the finite difference approximation to heat diffusion on a graph,
as described by Kondor, Risi and Lafferty, John (2002), can be written using the graph’s
Laplacian matrix, L, as

∂F 1

∂t
∝ −LF 1. (1)

The diffusion equation is modified to hold observed entries fixed, which is achieved138

by considering the temporal derivative as zero for these rows in F1. The Laplacian is in-139

dexed by its rows and columns such that LΩΩc denotes the submatrix consisting of the140

rows corresponding to observed pixels and the columns corresponding to the missing pix-141

els.142

This allows us to represent the propagation for the unobserved rows in F1 as

∂F 1
Ωc

∂t
∝ −LΩcΩF

1
Ω − LΩcΩc

F 1
Ωc
. (2)

The steady state can be found either by iteratively applying steps proportional to
the derivative in (2) or by setting the derivative to zero and obtaining F 1

Ωc
as the so-

lution to

LΩcΩc
F 1

Ωc
= −LΩcΩF

1
Ω. (3)

The implementation steps of GraphProp are summarised in Algorithm 1.143

2.2 LST Calculations144

The SMW algorithm, developed by Climate Monitoring Satellite Application Fa-145

cility (CM-SAF), allows LST values to be calculated from a satellite’s TIR band. The146

SMW models use coefficients obtained by fitting linear regression models that relate mea-147

sured 11 µm radiance values and the total column water vapor (TCWV) to LST. Once148

these coefficients are obtained for a given satellite platform, they can then be used to149
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Algorithm 1 GraphProp algorithm

Input: Ω,H0,H1
Ω ▷ Observation mask, reference input, partially-observed input

1: F 0 = FlattenSpatialDimensions(H0) ∈ RHW×C ▷ Flatten reference input
2: F 1

Ω = FlattenSpatialDimensions(H1
Ω) ∈ RHW×C ▷ Flatten partially-observed input

3: E ← kNN
(
F 0

)
▷ k-nearest neighbors graph (using reference input)

4: L = Laplacian(E) ▷ Laplacian matrix of graph
5: F 1

Ωc
← Solve

(
LΩcΩcF

1
Ωc

= −LΩcΩF
1
Ω

)
▷ Solve diffusion for missing entries

6: H1 = UnflattenSpatialDimensions(Merge(F 1
Ω,F

1
Ωc
))

Output: H1

map the satellite-derived inputs to a value representing the LST which would be mea-150

sured at that location. This approach is adopted by Ermida et al. (2020), where they151

integrate the process into the Google Earth Engine (GEE) platform to provide a tool152

for obtaining LST from Landsat observations. The algorithm provided in GEE by Ermida153

et al. (2020) is depicted schematically in Figure 1.154

In addition to the TIR measurements captured by Landsat 8’s Band 10, a num-155

ber of other inputs are used. Firstly, a dynamic estimation of the ground’s emissivity is156

obtained, where emissivity is defined as the ratio of energy emitted by a body to the amount157

of energy which a black body would emit in equivalent conditions. To estimate this quan-158

tity dynamically, the Landsat 8 acquisition is used to obtain an instantaneous measure159

of fractional vegetation cover (FVC), a quantity describing the fraction of total area cov-160

ered by vegetation. This value is used to update the static measure of FVC, obtained161

using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)162

Global Emissivity Dataset. Additionally, NCEP/NCAR Reanalysis Data is used to quan-163

tify the precipitable water in the atmosphere. Through quantification of TCWV and sub-164

sequently the total precipitable water (TPW), the effect that the atmosphere has on the165

measured brightness temperatures is accounted for (Ermida et al., 2020).166

The primary cause of missing LST values is the presence of clouds in the Landsat167

acquisition. Since the SMW algorithm depicted in Figure 1 is applied in a pixel-wise fash-168

ion, in scenes that are only partially obscured by clouds, the gaps in the LST output match169

the cloud mask pattern which is provided by the quality assessment band.170

2.3 Experimental Design171

In order to assess the accuracy of the LST values recovered, a set of experiments172

involving synthetically-obscured data have been performed. This involved the creation173

of a cloud-free dataset of observations from which the SMW algorithm can compute val-174

ues against which recovered LST values can be compared. As the graph-based propa-175

gation approach involves exploiting an earlier acquisition of the same region, the dataset176

therefore includes a cloud-free pair of acquisitions for each of the studied locations.177

In this study, three urban locations were selected: Jakarta, Indonesia; London, United178

Kingdom; and Paris, France. Urban locations were selected as the primary focus of the179

LST accuracy study as they exhibit smaller scale land cover heterogeneities that result180

in localized land surface temperature variations (Xiao et al., 2007) and therefore repre-181

sent a challenging gap-filling task. Jakarta falls within a tropical rainforest region while182

London and Paris sit within an oceanic climate according to Köppen climate definitions183

(Beck et al., 2018). With Jakarta and London representing cities near a coastline and184

Paris falling further inland, the three cities therefore might be expected to exhibit a range185

of differing temperate dynamics and were therefore chosen such that analysis covers wide186

ranging temperature dynamic characteristics.187
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Figure 1: Schematic showing how the proposed approach integrates with existing algo-
rithm for computing LST (Ermida et al., 2020). The advantage of adopting an upstream
completion approach is that it does not alter the physics that relate measured thermal
infrared energy to LST.
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Figure 2: Schematic representing the GraphProp method. The reference acquisition cap-
tured on a different date (Day B) is used to construct a graph-based representation of
the region to complete the partially-observed acquisition captured on Day A. The graph
structure is used to propagate observed values (denoted by red nodes) to complete missing
values (denoted by gray nodes). The 20 km × 20 km region of interest for the respective
study regions is depicted by the shaded square.

For each of the three cities, a pair of cloud-free Landsat 8 acquisitions were obtained,188

as outlined in Table 1. In each location, the region of interest covers a square with side189

length 20 km and acquisitions were acquired at a resolution of 30 m per pixel (giving rasters190

made up of 670×670 pixels). In the studied application of the proposed approach the191
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GraphProp method makes use of an earlier cloud-free reference acquisition to assist the192

completion task. In order to obtain a cloud-free acquisition of the region it may be nec-193

essary to look back further in time, resulting in temporal separations such as seen in Ta-194

ble 1, with the time between acquisitions varying between the three locations, ranging195

from 9 to 32 weeks. These temporal gaps are representative of the temporal separation196

which might be expected in a real-world application of the proposed approach.197

In order to realistically synthetically obscure the latter acquisitions, genuine cloud198

masks from other cloud-obscured Landsat 8 acquisitions were collected. These masks were199

collected such that they represent cloud cover scenarios which range from 10%-90% cloud200

cover. At each of these 10% intervals, 10 different cloud masks were collected, giving a201

total of 90 cloud masks. A figure depicting the cloud masks is included within support-202

ing information provided.203

2.4 Evaluation204

To quantify the accuracy of each method’s recovered LST values, the root mean
square error (RMSE) and mean absolute error (MAE) were computed over the missing
regions of each scene. Using f(·) to summarize the function for deriving the LST from
the satellite data, the RMSE and MAE are defined as follows. The algorithm-recovered
LST values are contained within the matrix LST, where

LST = f(H1) ∈ RH×W .

By flattening the spatial dimensions of the LST matrix, a vector of LST values can be
obtained, LSTflat, where

LSTflat = FlattenSpatialDimensions(LST) ∈ RHW ,

and then subsequently indexed using Ωc to consider only the missing regions of the LST
matrix: (

LSTflat

)
Ωc
∈ R|Ωc|.

By then comparing against the ground truth, in the matrix LST, the RMSE and MAE205

were computed as follows:206

RMSE =

√√√√∣∣∣∣∣∣(LSTflat

)
Ωc
− (LSTflat)Ωc

∣∣∣∣∣∣2
2

|Ωc|
MAE =

∣∣∣∣∣∣(LSTflat

)
Ωc
− (LSTflat)Ωc

∣∣∣∣∣∣
1

|Ωc|
,

207

where ||·||2 and ||·||1 are the l2 and l1 norms respectively.208

2.5 Benchmarked methods209

2.5.1 Mean-filled LST210

In the absence of more sophisticated methods, the simplest imputation method is211

to take the partially-computed LST raster and to fill gaps with the mean of the observed212

values. This provides a baseline against which to compare more sophisticated approaches.213

2.5.2 Band-wise mean-filled Landsat 8 inputs214

Rather than imputation using the average LST value, a second baseline approach215

is provided by mean-filling the inputs. To do so, the mean value of the observed portions216

of each Landsat 8 band is computed and used to fill corresponding missing entries in the217

input. From the mean-filled inputs, a value of LST can be found for each pixel thus com-218

pleting the LST raster.219
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Table 1: Cloud-free Landsat 8 image acquisition pairs

First Acquisition Second Acquisition

Location Date
Ground Truth
LST Mean (◦C)

Date
Ground Truth
LST Mean (◦C)

Days Between
Acquisitions

Jakarta 2019-09-11 44.7 2020-04-22 40.5 224
London 2020-06-25 39.1 2020-09-13 27.1 80
Paris 2022-03-06 11.2 2022-05-09 29.6 64

2.5.3 Low-rank tensor completion220

A third baseline approach takes a more rigorous approach to the problem of miss-221

ing data. The low-rank tensor completion approach to data imputation is based on the222

assumption that the data can be represented by a low-rank tensor.223

There have been many studies which present tensor completion algorithms which224

make this assumption (Cai et al., 2010; Liu et al., 2013; He et al., 2019; Yuan et al., 2019)225

to recover missing entries. While the low-rank assumption is a powerful tool for tensor226

completion, it is not always appropriate. For example, it assumes that entries are miss-227

ing at random which is not the case for cloud-obfuscated satellite imagery.228

In this study, the high accuracy low rank tensor completion algorithm (HaLRTC)229

(Liu et al., 2013) provides a benchmark from this family of methods. It was applied by230

stacking the partially observed top of atmosphere B10 band with the two surface reflectance231

bands used to compute LST (SR B4 and SR B5). The result is a tensor of size H×W×232

3 which was provided as an input to HaLRTC alongside the observation mask, Ω.233

3 Results234

Applying a cloud mask to synthetically obscure the latter image of each city’s im-235

age pair, each method is applied to provide LST values in the missing regions. Doing so236

for 10 random cloud masks between 10%-90% cloud cover at 10% intervals, the MAE237

and RMSE was computed for each method. The results, shown in Figure 3, show the238

mean of each metric when averaged over the 10 random masks at a given cloud cover239

fraction. The errors are computed over the missing pixels in each experiment only and240

not over the whole scene, since the errors are zero or negligible for the observed pixels.241

Across the three cities studied, the low-rank tensor completion method (HaLRTC)242

provides improved accuracy versus the naive mean-filling approaches when cloud cover243

is minimal, i.e. in the region of 10%−30%. In cases which are more severely cloud-obscured,244

the mean-filling provides equally or more accurate results. This could perhaps be explained245

by the fact that as cloud cover increases, the large contiguous missing regions deviate246

further from the founding assumption of the low-rank completion approaches that con-247

sider entries to be missing uniform at random.248

The proposed method, however, improves the LST accuracy across all cloud cover249

fractions. GraphProp provides missing LST values with a MAE of less than 1.1◦C, 1.0◦C250

and 1.8◦C across all tested scenarios for the Jakarta, London and Paris studies respec-251

tively. Results do not show a significant deterioration in accuracy as cloud cover increases,252

unlike in results applying HaLRTC. It has been estimated (Santamouris et al., 2015) that253

each 1◦C increase in temperature within urban heat islands can increase energy demands254

by between 0.5-5%. The accuracy of LST estimates, therefore, will have direct implica-255

tions on energy resource planning and management.256
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Figure 3: Accuracy of completed LST values as a function of the percentage of the ac-
quisition removed. Each plotted value represents the mean value computed across the 10
random obfuscation masks at the given missing fraction percentage and the error bars
represent one standard deviation.

A selection of results are displayed in Figure 4 to illustrate the spatial accuracy char-257

acteristics of each method. These absolute error distributions demonstrate that Graph-258
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Figure 4: Qualitative comparison of the LST imputation methods for at varying amounts
of cloud cover.

Prop can recover fine-scale LST variations more accurately than other methods and there-259

fore gives results with fewer neighborhoods of high error magnitude.260

Across all the tested methods the errors are larger in the Paris study than for the261

other two locations. One theory for this behaviour is that the Paris study represents the262

largest temperature difference between the respective acquisitions (29.6◦C versus 11.2◦C)263

and therefore the graph-based representation derived from the colder reference acqui-264

sition which was used to complete the partially-observed acquisition may less perfectly265

characterize the region on the later date. This hypothesis would require further study266
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to prove or disprove conclusively. Nonetheless, the GraphProp results remain the most267

accurate for the Paris study despite the larger errors observed across methods.268

These errors are computed with reference to the values obtained using the SMW269

algorithm when taking the synthetically-obscured pixel values as inputs. The contribu-270

tion of Ermida et al. (2020) provides an analysis of the accuracy of this approach with271

reference to ground truth from in-situ measurements. In their study, performed across272

12 locations, they found the RMSE error of the SMW algorithm to be 1.9◦C when us-273

ing Landsat 8 inputs.274

4 Discussion and Conclusions275

The results presented in this study show that the proposed method, GraphProp,276

is able to provide accurate LST values in the presence of cloud cover. The method is able277

to provide more accurate results than the low-rank tensor completion method (HaLRTC)278

and other more naive mean-filling approaches. The presented results also show this ap-279

proach to be very robust against the extent of cloud cover present in the scene. The con-280

tribution, therefore, represents a useful and practical tool for the analysis of LST in the281

presence of cloud cover. This will assist applications involving the analysis of LST dy-282

namics, by reducing gaps in time series caused by cloud cover and therefore provide a283

more complete picture of temporal trends that might otherwise have been difficult to ob-284

serve.285

This study has focused on the analysis of LST in urban areas, however the authors286

expect similar results to be achievable if applied to other land cover types. The method287

can also be straightforwardly extended to time series involving more than two acquisi-288

tions, for example by combining graphs obtained from each. This would allow for the289

case where it is not required that any one of the reference acquisitions is fully cloud-free,290

provided that each location is observed without cloud in at least one of the acquisitions291

to identify its spectral similarities allowing it to be incorporated into the graph-based292

representation of the region.293

There is scope to extend this research to analyse how the accuracy of the proposed294

approach varies as other variables such as the temporal or seasonal distance between the295

respective acquisitions is changed.296
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