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Abstract

Flooding leads to disastrous impacts on human society and activities worldwide, including damage to physical assets and

interruptions to daily activities. However, evaluation for such impacts remains challenging, particularly beyond inundation

zones, due to the difficulties in monitoring human activities on a global scale. Nighttime light (NTL) remote sensing data

provides a unique perspective for human activities on a large scale, reflecting variations in light intensity caused by flood impact.

Here we show the possibility of using a high-quality NTL dataset to assess flood impact on human society and activities. Indices

providing impact severity and duration were generated with NTL as proxies for flood impact on pixel scale. Results show the

consistency of NTL-derived and reported impact duration for five selected cases, which confirms the reliability of NTL flood

impact. A large portion (> 96%) of NTL-based affected areas did not overlap with the satellite-based inundation area for 99

cases in 2013, indicating the unique value of NTL in assessing flood impact beyond inundation. The NTL flood impact indices

were mapped at 15 arc-second spatial resolution for 876 events on a global scale from 2013 to 2021. Then, administrative-level

characteristics of NTL flood impact were compared at a global scale. It was found that lower developed regions exhibit higher

vulnerability and challenge in recovery, and are more likely to experience extremely serious and long-lasting impacts compared

to higher developed areasverall, using NTL data, in addition to conventional inundation-based methods, offers an innovative

perspective on flood impact evaluation.
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1. Satellite nighttime light (NTL) provides reliable proxies for flood impact severity and duration 20 

at a pixel scale, with daily resolution. 21 

2. NTL data can detect flood impacts beyond inundation areas, which has been largely missed by 22 

satellite-based inundation. 23 

3. The global-scale analysis revealed spatial variations in NTL flood impact, correlating with 24 

local development and flooding severity.  25 
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Abstract 26 

 27 

Flooding leads to disastrous impacts on human society and activities worldwide, including 28 

damage to physical assets and interruptions to daily activities. However, evaluation for such 29 

impacts remains challenging, particularly beyond inundation zones, due to the difficulties in 30 

monitoring human activities on a global scale. Nighttime light (NTL) remote sensing data 31 

provides a unique perspective for human activities on a large scale, reflecting variations in light 32 

intensity caused by flood impact. Here we show the possibility of using a high-quality NTL 33 

dataset to assess flood impact on human society and activities. Indices providing impact severity 34 

and duration were generated with NTL as proxies for flood impact on pixel scale. Results show 35 

the consistency of NTL-derived and reported impact duration for five selected cases, which 36 

confirms the reliability of NTL flood impact. A large portion (> 96%) of NTL-based affected 37 

areas did not overlap with the satellite-based inundation area for 99 cases in 2013, indicating the 38 

unique value of NTL in assessing flood impact beyond inundation. The NTL flood impact 39 

indices were mapped at 15 arc-second spatial resolution for 876 events on a global scale from 40 

2013 to 2021. Then, administrative-level characteristics of NTL flood impact were compared at a 41 

global scale. It was found that lower developed regions exhibit higher vulnerability and 42 

challenge in recovery, and are more likely to experience extremely serious and long-lasting 43 

impacts compared to higher developed areas. Overall, using NTL data, in addition to 44 

conventional inundation-based methods, offers an innovative perspective on flood impact 45 

evaluation.  46 



Plain Language Summary 47 

 48 

Flooding leads to disastrous impacts on human society and activities worldwide, including 49 

physical asset damages, displacement and fatalities, disturbance of industrial and service 50 

activities in society. Evaluation for such impacts remains challenging, particularly beyond 51 

inundation zones, especially on a global scale. We here explored a new approach using nighttime 52 

light (NTL) remote sensing data to assess flood impact globally. Flood impact severity and 53 

duration in pixel detail can be estimated with NTL data. Results show the consistency of NTL-54 

derived and the reported impact duration for five selected cases, which confirms the reliability of 55 

NTL flood impact. A large portion (> 96%) of NTL-based affected areas did not overlap with the 56 

satellite-based inundation area for 99 cases in 2013, indicating the unique value of NTL in 57 

detecting flood impact beyond inundation. Flood impact severity and duration were mapped for 58 

876 events that happened from 2013 to 2021 globally and further compared at the administrative 59 

level. We discovered that flood impacts vary across regions, with areas of lower development 60 

experiencing more severe and longer-lasting impacts. Overall, this research offers a new 61 

perspective on evaluating flood impacts globally, which could improve our understanding and 62 

management of flooding events.  63 



1. Introduction 64 

Flooding, a significant and recurring natural hazard, exerts a substantial and far-reaching 65 

impact on human society and activities. Such impact includes the physical assets damages, 66 

displacement and fatalities, disturbance of industrial, service (trade, restaurants, companies etc.), 67 

and public (schools, hospitals, churches etc..) sectors in the society (Jonkman et al., 2008; Merz 68 

et al., 2010; Smith & Ward, 1998). Flood impact can happen within or beyond inundation areas 69 

(Johnmen et al., 2012; Jonkman et al., 2008; Merz et al., 2010; Smith & Ward, 1998). The 70 

impact within the inundated area is due to the physical contact with flood water, while the one 71 

out of the inundation area is due to a cut of supply (e.g., electricity, production material).  72 

Assessment for flood impact within and beyond inundation areas are equally important for 73 

guiding disaster relief and adaptation policies (IPCC, 2012; Jongman et al., 2015; Merz et al., 74 

2010; Taguchi et al., 2022; Tanoue et al., 2020; Tellman et al., 2021; Winsemius et al., 2013). 75 

Models and methods have been well developed and employed to estimate flood impact within 76 

inundation areas on a global scale. Many global studies considered the hazard, exposure, and 77 

vulnerability to estimate the affected GDP, affected population, as well as the physical asset 78 

damage by flooding (IPCC, 2012; Jongman et al., 2015; Tellman et al., 2021; Winsemius et al., 79 

2013). Direct economic loss due to industrial and service interruption is estimated by considering 80 

the inundation duration and daily production value (Taguchi et al., 2022; Tanoue et al., 2020). 81 

These studies give comprehensive evaluations of potential flood impact within the inundation 82 

area.  83 

Compared to the flood impact within the inundation area, the one beyond inundation is more 84 

difficult to estimate (Merz et al., 2010), and limited studies exist. A computable general 85 

equilibrium (CGE) model has been developed and used to estimate the high-order economic loss 86 

for all affected areas on a global scale (Ciscar et al., 2011; Dottori et al., 2018; Tanue et al., 87 

2020). However, the model mainly focuses on long term GDP losses on a large-scale (national 88 

scale) and needs much auxiliary data input. Hence, the short-term and local-scale impact on 89 

human society is still not well explored and evaluated in an efficient and simple way beyond the 90 

inundation area. Moreover, studies about flood impact seldom delve into the intricate 91 

implications of floods on human daily life, encompassing displacement and disruptions in the 92 

public sector (e.g., household power outage, close of school or hospital), particularly on a global 93 

scale (Koks et al., 2019). This may lead to an underestimation of flood impact both within and 94 



out of the inundation. The gaps might be attributed to the limited availability of data that reflects 95 

human activities and the reactions toward flooding at a large scale.  96 

The nighttime light (NTL) remote sensing data records nocturnal light and provides a unique 97 

perspective into human activities and societal dynamics on the global scale (Elvidge et al., 2001, 98 

1997). For instance, NTL data have been widely used in many aspects including revealing the 99 

impacts of natural disasters (Elvidge et al., 1997; Li et al., 2022; Wang et al., 2018; Zheng et al., 100 

2022; Zhou et al., 2014). When a flood happens, impacts including damages to residential 101 

buildings, displacement and fatalities, interruptions in the industry, manufacturing, service, and 102 

public sectors will happen within and beyond the inundation areas. Due to the mentioned reasons, 103 

the light intensity of affected human settlements, industrial, commercial, and public areas should 104 

be reduced compared to normal status (Enkel et al., 2012). In 2020, the National Aeronautics and 105 

Space Administration (NASA) released the global daily Lunar-BRDF corrected NTL dataset of 106 

NASA’s NPP/VIIRS Black Marble product suite (VNP46A2) with 15 arc-second spatial 107 

resolution (Román et al., 2022, 2018). This pioneering product effectively mitigates most 108 

uncertainties associated with VIIRS DNB's top-of-atmosphere (TOA) radiance (Román et al., 109 

2018; Wang et al., 2021). Further corrections are needed to exclude remaining errors due to daily 110 

observational coverage mismatch and angular effect (Hu et al., 2024). The high-quality, 111 

consistent daily NTL product becomes a powerful tool for scrutinizing human activities and 112 

responses to short-term events, even within spans of just a few days. Thus, this NTL product can 113 

be employed to provide proxies for flood impact both within and beyond inundation areas on 114 

human society and activities globally by simply checking the light intensity variation due to 115 

flooding.  116 

Some studies have already leveraged NTL data to detect flood-related disaster impacts for 117 

specific flood event cases. Enenkel et al. (2020) introduced an innovative strategic framework 118 

utilizing NTL information for displacement monitoring. They applied this approach to a real-119 

world case study involving Tropical Cyclone "Idai," which struck Mozambique and led to 120 

flooding in March 2019. Wang et al. (2018) focused on monitoring the spatial extent of power 121 

outages and recovery status at the community level following Hurricane Sandy, a historic storm 122 

that made landfall on the northeastern coast of the United States and triggered flooding in late 123 

October 2012. Zhao et al. (2018) evaluated intensity changes before and after a disaster in 124 

selected cases, substantiating the utility of daily NTL data in detecting damages, power outages, 125 



and other adverse outcomes stemming from flooding and other disasters. However, these studies 126 

predominantly concentrate on individual cases. An analysis of flood impact for historical cases 127 

on a global scale is still lacking. Meanwhile, they did not employ preprocess for the daily NTL 128 

VNP46A2 product, which might affect the detection of light intensity variation (Hu et al., 2024).  129 

This study aims to employ high quality daily consistent NTL dataset to assess flood impact on 130 

human society and activities globally. Our approach involves evaluating the NTL's effectiveness 131 

in detecting flood impact through case studies, exploring the potential for event-based 132 

monitoring of impacts, and assessing the uniqueness of flood impact information derived from 133 

NTL data. The research also encompasses an analysis of flood impact on a global scale over the 134 

past decade (2013 – 2021). With the NTL-derived flood impact, we seek to contribute to a 135 

deeper understanding of the flood impact on human society and activities on a global scale. 136 

 137 

2. Data  138 

The daily Lunar-BRDF corrected NTL of NASA’s Black Marble product (VNP46A2) (Roman 139 

et al., 2018) with a 15 arc-second (about 500 m) spatial resolution was used in this study. The 140 

VNP46A2 dataset has excluded most uncertainties of the at-sensor TOA radiance (VNP46A1). 141 

The main process includes lunar irradiance modeling, atmospheric corrections, and BRDF 142 

corrections that consider moonlight, aerosols, surface albedo, and seasonal vegetation patterns 143 

with globally consistent equations reflecting the physical mechanisms in relevant factors (Román 144 

et al., 2018). The dataset contains seven layers, including the daily light intensity and quality 145 

control information (Román et al., 2022). We specifically employed the Lunar-BRDF-corrected 146 

layer of the VNP46A2 product from 2013 to 2021. The satellite zenith angle layers from the 147 

VNP46A1 product were utilized during the data correction process. The cloud mask, quality flag 148 

and snow flag layers from VNP46A1 and VNP46A2 products were used to make quality control 149 

and obtain definitely clear observations. The Black Marble products are available at the 150 

https://blackmarble.gsfc.nasa.gov/#product. 151 

We collected global flooding cases from the Dartmouth Flood Observational (DFO) database 152 

(http://floodobservatory.colorado.edu/), a comprehensive repository of major floods documented 153 

through news reports, government records, instrumental measurements, and remote sensing 154 

sources spanning from 1985 to the present (Brakenridge, 2016). The dataset recorded times, 155 

locations, causes, and amount of affected people for each flood event. The delineation of affected 156 

https://blackmarble.gsfc.nasa.gov/#product


regions is illustrated through hand-drawn GIS polygons. A total of 1210 flooding events were 157 

recorded within the DFO database from 2013 to 2021 ( Figure 1). 158 

 159 

 160 

Figure 1. Hand-drawn GIS polygons of 1210 cases recorded in DFO database from 2013 to 2021; 161 

and the location for sample cases used in this research: Sample cases I for validation of NTL 162 

detectability of flood impact (Section3.3, Section4.1); Sample cases II for comparison between 163 

inundation mapping and NTL derived impact information (Section 4.2); Sample cases III for 164 

discussing reasons for NTL’s non-detection of flood impact (Section5.1). The normal status light 165 

intensities of Sample cases I are shown as well. 166 

 167 

To evaluate the uniqueness of NTL derived impact information, we conducted a comparative 168 

analysis with MODIS inundation mapping products. Ji et al (2018) generated a 500-m Resolution 169 

Daily Global Surface Water Change Database from MODIS. Compared with the other MODIS 170 

inundation datasets such as NASA MCDWD product (https://go.nasa.gov/3OiKtYB) and Global 171 

Flood Database (Tellmen et al., 2021) which only consider Red, NIR and SWIR bands and face 172 

the problem of shadows and missing data, Ji et al (2018)’s product employed an improved 173 

algorithm by 1) incorporating the Land Surface Temperature data for snow/ice exclusion, 2) 174 

utilizing all MODIS bands and setting water detection function for different types of water, 3) 175 

involving object-based post-classification to exclude shadows and 4) filling in the gaps of 176 

missing data by a temporal-spatial filtering. The product’s performance was evaluated by 177 

comparison with Landsat-8 images, demonstrating that both the user’s accuracy and the 178 



producer’s accuracy exceeded 93%. In this case, we employed this MODIS 500-m Resolution 179 

Daily Global Surface Water Change Database for extracting the inundation areas. This dataset is 180 

accessible through http://data.ess.tsinghua.edu.cn/modis_500_2001_2016_waterbody.html.  181 

Country scale income groups classification from World Bank is used as development level in 182 

Section 4.4. Four groups are included in this dataset as high, middle-high, middle-low, and low 183 

income. The data can be accessed from https://data.worldbank.org. Built-up grid (GHS-Built) in 184 

2014 from the Global human settlement layer (GHSL) data set (Pesaresi, 2023) was used for 185 

discussing the reasons for non-detection of flood impact from NTL in Section 5.1. The data 186 

provides the area ratio of built-up surface based on Landsat 8 satellite images with 30m spatial 187 

resolution.  188 

 189 

3. Methodology 190 

3.1.Preprocessing for Black Marble VNP46A2 NTL dataset 191 

While substantial efforts have been dedicated to minimizing uncertainties, the VNP46A2 192 

product still exhibits considerable unexpected daily variations due to coverage mismatch and 193 

angular effects (Román et al., 2018; Li et al., 2020; Tan et al., 2022; Wang et al., 2021). The 194 

inconsistency among daily data hinders its application, particularly for the detection of short-195 

term events (Enenkel et al., 2020; Li et al., 2022; Román et al., 2018; Tan et al., 2022; Wang et 196 

al., 2021; Hu et al., 2024). To enhance the quality of VNP46A2 images, we employed a 197 

preprocess to exclude the two remaining errors. 198 

Firstly, a spatial scale adjusted-average (A-average) filtering was implemented to mitigate 199 

mismatch errors, which are randomly distributed among neighboring pixels. For each pixel, we 200 

identified the annual 5% minimum light intensity after excluding outliers as the stable 201 

component (lights from the center area of the pixel), while the remaining radiance constituted the 202 

mismatch component (lights from the edge of the pixel). Subsequently, we applied a spatial 203 

average filter with a 3×3-pixel window size to the mismatch component to effectively exclude 204 

mismatch errors while minimizing blooming effects. Secondly, to address angular effects, we 205 

performed relative calibration by leveraging the periodic characteristics of the VNP46A2 206 

product’s view angle. The SNPP satellite with the VIIRS onboard is in a sun-synchronous polar 207 

orbit that repeats every 16 days. In this case, for each pixel, we separated the daily data into 16 208 

groups according to their view angles and calculated the average light intensity. This process 209 

http://data.ess.tsinghua.edu.cn/modis_500_2001_2016_waterbody.html
https://data.worldbank.org/


yielded an angle coefficient as the ratio of the group's intensity to the annual average intensity. 210 

Dividing the daily intensity by its corresponding angle coefficient rendered light intensities 211 

coherent across varying view angles, thus excluding angular effects. The correction was 212 

systematically applied to all VNP46A2 tiles utilized in this study. Our flood impact estimation 213 

hinged upon high-quality corrected NTL images. Detailed and further information about the data 214 

correction method can be found in our published paper (Hu et al., 2024). 215 

 216 

3.2.Estimating flood impact from NTL 217 

Numerous indices have been devised to quantify the flood impact from the NTL data. The 218 

“Decrease Percentage” (Dp) and the “Detection Ability” (DA) are delineated by Eq.1 and Eq.2 219 

for each pixel:  220 

𝐷𝑝𝑖 =
𝑁𝑇𝐿𝑝𝑟𝑒 − 𝑁𝑇𝐿𝑖

𝑁𝑇𝐿𝑝𝑟𝑒
× 100%#(1)  

𝐷𝐴𝑖 =
𝑁𝑇𝐿𝑝𝑟𝑒 − 𝑁𝑇𝐿𝑖

𝑠𝑡𝑑𝑝𝑟𝑒
#(2)  

where the 𝑁𝑇𝐿𝑝𝑟𝑒 and 𝑠𝑡𝑑𝑝𝑟𝑒 represent the average and standard derivation of light intensity of 221 

100 days ahead of the flooding start date from DFO. i represents the date of year (hereafter doy) 222 

and 𝑁𝑇𝐿𝑖 is the light intensity of the target date with doy = i. We calculated the average light 223 

intensity over the period of 100 days (about three months) as normal status (𝑁𝑇𝐿𝑝𝑟𝑒) to avoid the 224 

seasonal impact to light intensity. Light intensities within three months can be assumed as of the 225 

same season. Outlier days with intensity out of the 3×std range with the mean were excluded 226 

before calculating the indices (Pukelsheim, 1994). 227 

The Dp index represents the magnitude of light intensity reduction compared to the normal 228 

status, indicating the serious level of flooding impact. To elucidate the severity of each case, we 229 

defined the maximum Dp observed during the flooding period as the “Severity” index. The 230 

flooding period is defined by the temporal interval spanning from the DFO-provided start time to 231 

the end time of each event. The DA index characterizes the light intensity decrease compared to 232 

the standard deviation, to facilitate comparability among different light intensity magnitudes and 233 

mitigate random noise effects. This index is instrumental in delineating the spatial extent of flood 234 

impact. We identified human settlement pixels (with light intensity > 1 nW/cm²sr) (Li et al., 235 

2022) possessing a DA value exceeding 3 (Hu et al., 2024) as “Affected” ones, signifying that 236 



the reduction is conspicuous enough to attribute to flooding impact rather than daily fluctuations. 237 

For the “Affected” pixels, the impact starts when DA begins to surpass 3 within the DFO-238 

provided period of the flooding event and finishes until the DA is less than threshold 3, which 239 

indicates the light intensity is back to normal status. The temporal span of the impact for 240 

“Affected” pixels is referred to as the “Duration” index. Furthermore, we examined "unaffected" 241 

pixels when over half of their neighboring 5 x 5 pixel areas were “affected”. If these "unaffected" 242 

pixels experienced data missing due to cloud cover within the “Duration” of neighboring 243 

affected pixels, they would be categorized as "probably affected" pixels. Figure 2 shows a visual 244 

representation of these indices. 245 

 246 

 247 

Figure 2. Schematic of light intensity variation before, during and after flooding for an affected 248 

pixel, as well as the representation of indices used to quantify flood impact through NTL images. 249 

DOY represents the day of the year. 250 

 251 

These indices are utilized as proxies of the impact on human society and activities for flooding 252 

events. Given the potential influence of clouds on NTL images, the availability of data during the 253 

flooding period for each pixel offers a reference to gauge the reliability of impact information on 254 

a pixel scale: 255 

𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =  
𝑑𝑎𝑦𝑠𝑐𝑙𝑒𝑎𝑟

𝑑𝑜𝑦𝑒𝑛𝑑 − 𝑑𝑜𝑦𝑠𝑡𝑎𝑟𝑡
× 100%#(3)  

 256 

where 𝑑𝑎𝑦𝑠𝑐𝑙𝑒𝑎𝑟 represents the number of clear days during DFO-provided flooding period 257 

(𝑑𝑜𝑦𝑠𝑡𝑎𝑟𝑡 to 𝑑𝑜𝑦𝑒𝑛𝑑) for the target pixel. Low availability implies reduced reliability due to data 258 



gaps stemming from cloud cover. For each event, we established the Region of Interest (hereafter 259 

ROI) as delineated by the affected polygons provided by the DFO database (Figure 1). We 260 

calculated the flood impact indices for all human settlement pixels within the ROI. 261 

 262 

3.3.Validation 263 

In order to ascertain the reliability of employing NTL data for flood impact reflection, we 264 

conducted a comprehensive validation process. We selected five distinct flooding events for case 265 

studies, each of which was recorded for experiencing power outages as a direct consequence of 266 

the flooding. These specific events were chosen from the Wikipedia power outage list 267 

(https://en.wikipedia.org/wiki/List_of_major_power_outages), accessed on 20
th

 March 2024. 268 

Impact details of the five events, including the duration and location of impact, were cross-269 

referenced with pertinent news reports. Power outage is chosen since it leads to or is alongside 270 

with most flood impacts on human activities and society. Meanwhile, compared to other impacts, 271 

such as reductions in the industry, manufacturing, service, and public sectors, power outage 272 

events have a clearer record in the news and reports for the duration, which is useful information 273 

for validation. The location and normal status light intensity of the five cases are shown in Figure 274 

1 (red dots). Comprehensive information is tabulated in Table 1. The Puerto Rico case (Case 3) 275 

is the most severe, extending over an exceptionally lengthy period of approximately one year. 276 

While the other events’ impact lasted for 5-10 days. Three of these events were documented in 277 

the DFO database, whereas the remaining two were not. We calculated NTL flood impact indices 278 

for all five events and rigorously compared them with the recorded impact information. 279 

Moreover, we explored daily flood impact assessment with NTL data, using a single event from 280 

the DFO database as an illustrative example.  281 

Meanwhile, prior research and applications have often relied on daytime optical remote sensing 282 

data, especially from MODIS thanks to its daily temporal resolution and long time span of 283 

historical data, to achieve near real-time inundation monitoring and exposure analysis (Tellman 284 

et al., 2021; Ji et al., 2018). To ascertain the uniqueness of NTL derived impact information, we 285 

performed a comparative analysis between the impact information derived from MODIS and 286 

NTL datasets, with a focus on 99 DFO events in 2013.  287 

We undertook a series of preprocessing steps for Ji et al (2018)’s MODIS water surface images 288 

to facilitate their integration into our validation framework. Initially, we reprojected and 289 



resampled (nearest neighbor resampling) the MODIS images to match the same geographic 290 

reference system (GCS) and pixel size (15 arc-second) as the NTL images, ensuring consistency 291 

across datasets. Then, we composited the MODIS images within the ROI and during the DFO 292 

provided flooding period to identify the maximum water surface area observed during the 293 

flooding event. Notably, pixels with inundation durations exceeding half a year were considered 294 

as permanent water and were subsequently excluded from our analysis. Consequently, for each 295 

flooding event, we obtained the spatial extent of the inundation and compared it with the 296 

corresponding NTL flood impact layers. 297 

 298 

Table 1. Detailed information from news and reports for flooding cases with power outages. 299 

 300 

 301 

4. Results 302 

4.1. Reliability of NTL’s flood impact detection 303 

In Figure 3, we presented the NTL impact indices for the selected flooding cases. Across all 304 

five cases, discernible reductions in light intensity are evident in the NTL images, aligning 305 

coherently with the documented information in news reports. Among the selected cases, Case 3 306 

 
Location Time Description from news 

Case 1 
(DFO id: 4046) 

Buenos, 

Argentina 
2013.4.1 

Extremely heavy rainfall caused flash floods Power shortages 

lasted as 15 hours for some areas, while some still have power 

problems until 4.6. 

Case 2 
(DFO id: 4393) 

Tallahassee, 

Florida, US 
2016.9.1 

Hurricane Hermine swept across the Florida Panhandle, 

directly affecting the capital of Tallahassee. Hermine 

disrupted power, and 57% of homes lost power in 

Tallahassee, some of which were without power for a week. 

Case 3 
(DFO id: 4523) 

Puerto Rico 2017.9.19 

Hurricane with flash flooding (stemming from flood gate 

release at La Plata Lake Dam) destroyed the island’s power 

grid. Some areas remained without power for 4-6 months. 

Power was not restored to all customers until Aug, 2018. 

Case 4 
Panama City, 

Florida, US 
2018.10.10 

Hurricane Michael caused flooding. Thousands of customers 

lost power for up to 10 days. 

Case 5 Wisconsin, US 2019.7.18 
Severe thunderstorms, tornadoes and floods caused damage 

and power outages throughout Wisconsin. Some customers 

were still without power a week later. 



emerges as the most severe in terms of its impact, as corroborated by the news records. 307 

Remarkably, the NTL-derived results distinctly reflect the highest level of Severity observed for 308 

this event. 309 

  310 

 311 

Figure 3. NTL impact indices for five selected flooding cases: (a) Severity (maximum Dp), (b) 312 

affected location and (c) duration. 313 

 314 

In Table 2, we provided a comprehensive comparison of the durations obtained from news 315 

reports, the DFO dataset, and NTL data. To ensure comparability with reports, the highest and 316 

lowest 5% outliers were excluded from the NTL-affected Duration, representing the majority of 317 

pixels' outcomes within the flooded regions. Basically, the duration results of NTL show 318 

consistency with the reported ones for all five cases. Although the NTL duration happens to be 319 

several days shorter (Case 1) or longer (Case 4 and Case 5) compared with reports, the overall 320 

order of duration length has been well captured (Case 3 >> Case 5 > Case 4 > Case 2 > Case1). 321 

The durations documented in the DFO dataset appear to be either several days longer (Case 1 322 

and Case 2) or considerably shorter (Case 3) than the actual power outage durations reported in 323 

news, especially evident in the severely affected Case 3. Furthermore, the DFO dataset lacks 324 

records for Case 4 and Case 5. This suggests DFO dataset might primarily record inundation 325 

rather than the impact on human society and activities. The reason might be that DFO’s 326 

information heavily relies on the news and inundation mapping, focusing mainly on the 327 



inundated period without sustained tracking of the impact on human society and activities, 328 

particularly noticeable in long term cases such as Case 3. These findings also underscore the 329 

difference between the duration of impact on human activities and the period of inundation. In 330 

Case 3, even after the inundation subsides, the residual impact on human society and activities 331 

persists for an extended period. Conversely, in Case 1 and Case 2, the impact ceases before the 332 

inundation ends, likely due to shallow inundation depths insufficient to significantly disrupt daily 333 

activities. 334 

 335 

Table 2. Duration comparison for 5 selected cases.  336 

 
News DFO NTL 

Case 1 15 hours to 5 days 7 days 1~3 days 

Case 2 less than 1 week 8 days 1~5 days 

Case 3 Weeks to 6 months 20 days 1 day ~ more than 5 months 

Case 4 1 to 10 days no record 1~ 17 days 

Case 5 1 day to more than 1 week no record 1 ~ 14 days 

 337 

Figure 4 shows the normalized daily light intensity of all pixels within the cases’ ROI, as well 338 

as the median intensity for each date. The original light intensity was normalized by the annual 339 

mean value of each pixel for better visualization of pixels with different intensity magnitudes. 340 

For all five cases, the light intensity can be observed as reducing after flooding occurs and 341 

gradually increasing to its normal status. Moreover, for Case 4 and Case 5, which have recorded 342 

relatively longer periods of power outage compared to Case 1 and Case 2, the durations detected 343 

by NTL are longer than the reported power outage. These results confirm that NTL can detect 344 

slowdown and recovery in human and economic activity beyond power outage. 345 

 346 



 347 

Figure 4. Normalized daily light intensity variation for pixels within five selected cases’ ROI 348 

(dots), and the median value of the pixels in each day (black line). Light intensity has been 349 

normalized by the annual mean value of each pixel for better visualization of pixels with 350 

different intensity magnitudes. Dotted lines represent the flooding start and end date recorded in 351 

DFO database or news. For Case 4 and Case 5, which have not been recorded in the DFO 352 

database, only start dates are available. 353 

 354 

The above results confirm NTL's capacity and reliability to discern flood impact. NTL could be 355 

used as a proxy for flood impact on human society and activities. Moreover, NTL data fills gaps 356 

within existing databases by addressing the impact of missing records.  357 

 358 

4.2. Event-based daily assessment of flood impact 359 

In Figure 5, we illustrated the daily images within the ROI for an example case recorded in the 360 

DFO database (ID: 4046, Case 1 in Section 3.3). The figure presents the daily light intensity 361 

(Figure 5 (a)) and corresponding Dp (Figure 5 (b)) during the flooding period, alongside the 362 



baseline normal status light intensity and the Severity (maximum Dp). The normal status light 363 

intensity was derived by calculating the mean intensity over 100 days preceding the onset of 364 

flooding, with outliers — those exceeding three times the standard deviation from the mean—365 

excluded from the calculation. The first two days of flooding were not included due to the large 366 

area of missing data caused by the cloud. The initial days (e.g., Day 3 - 5) of the event exhibit a 367 

significant decrease in light intensity, gradually recovering to the baseline magnitude over time 368 

(Day 6 -7). The daily Dp of all pixels within the event’s ROI, as well as the median values, are 369 

also presented in Figure 5 (c). The median Dp is around zero before flooding. The increasing 370 

trend of Dp after flooding happened, as well as its recovery to around zero, can be well observed. 371 

These results highlight NTL's capability to reflect flood impact and effectively capture the 372 

recovery process. With 10 days’ latency and daily temporal resolution of NTL product, in time 373 

daily flood impact evaluation becomes feasible, providing valuable information for post-flood 374 

impact assessment and analysis. 375 

 376 

 377 

Figure 5. (a) Normal status and flooding period daily light intensity, (b) maximum and daily 378 

decrease percentage of light intensity during flooding period for an example event (DFO 379 

ID:4046), and (c) Dp variation of all pixels within the example event’s ROI (box chart), and the 380 



median Dp of the pixels in each day (black line). Dotted lines represent the flooding start and end 381 

date recorded in the DFO database. 382 

 383 

 384 

Figure 6. NTL impact layers for the example event (DFO ID: 4046) including (a) normal status 385 

light intensity, (b) minimum light intensity during flooding period, (c) affected location, (d) 386 

affected duration, (e) serious level and (f) available days’ ratio during flooding period. 387 

 388 

In Figure 6, we present the impact layers generated from NTL images for the target event. 389 

These six layers encompass normal status light intensity, minimum light intensity during the 390 

flooding period, affected locations, impact duration, Severity, and percentage of available days 391 

during the flooding period (Availability). The Severity layers provide insight into the magnitude 392 

of impact at the pixel scale, effectively reflecting local vulnerability. The affected location could 393 

provide guidance information for protection and rescue policy making. The impact duration layer 394 

discerns the local recovery capacity. The availability layer offers a reference for assessing the 395 

pixel scale reliability of the impact layers. Across all these impact layers, spatial variability is 396 

evident for the example case. Urban areas with higher light intensities typically display fewer 397 

affected pixels, and less severe intensity decreases. Conversely, sub-urban regions emerge as the 398 

primary affected areas for this event. Observing this pattern is more straightforward when using 399 

the Severity and affected location layers generated with the proposed indices, compared to 400 

relying solely on the original light intensity. In summation, NTL data and the generated indices 401 



efficiently deliver flood impact information on a pixel scale for each event with daily temporal 402 

resolution. This pixel-scale information is important for delineating local variability in 403 

vulnerability and recovery capacity. The simplicity of the NTL flood impact indices allows for 404 

the efficient generation of such impact layers for historical events and immediately after flooding 405 

happens. This capability facilitates long-term large-scale flood impact analysis and timely 406 

evaluation of the latest flooding events. 407 

 408 

4.3.Comparison between NTL impact information and inundation mapping 409 

We examined 99 events in 2013, of which 94 were detected as having inundation from MODIS 410 

data. For 75 of these events, available pixels within the DFO ROI during the flooding period 411 

were identified, and 70 exhibited a decrease in light intensity detected from NTL. In 21 cases, 412 

inundation and NTL detected affected areas overlapped with each other. 413 

For some cases, little inundation area was detected in MODIS data despite DFO records 414 

indicating people were affected. In Figure 7, Case S1 and S2 have 0% and 0.2% inundated 415 

within the ROI, while DFO records 1602 and 3003 people affected. This highlights instances 416 

where MODIS failed to detect inundation, suggesting that there was no corresponding affected 417 

area from inundation mapping. Conversely, NTL successfully captured 38.5% and 89.1% 418 

affected areas within human settlement regions for Case S1 and S2, which shows consistency 419 

with DFO records. Furthermore, even for cases in which both inundation mapping and NTL data 420 

detected affected areas, differences in impact between the two datasets were observed. In Figure 421 

7, Case S3 and S4, substantial disparities in the affected locations between the two datasets were 422 

evident. MODIS inundation areas typically aligned with river proximity, while NTL affected 423 

areas were concentrated within human settlements. 424 

 425 

 426 



 427 

  428 

 429 

Figure 7. Comparison of MODIS inundation and NTL detected affected area for 4 sample events 430 

recorded in DFO. (DFO ID and located country for case S1: 4019, Palestine; case S2: 4021, 431 

Malawi; Case S3: 4047, Albania; Case S4: 4098, India). (a) Light intensity and permanent water 432 

within DFO ROI; (b) flooding affected area detected by MODIS inundation, NTL data and both.   433 

 434 

In Figure 8, we present the statistical results depicting the overlapping ratio of NTL affected 435 

areas and MODIS inundation for the 99 events in 2013. Remarkably, less than 3.5% of the NTL 436 

affected area coincided with observed inundation (Figure 8 (a)), further validating that a 437 

significant portion of impact occurs outside of inundation areas. Meanwhile, the ratio of NTL 438 

detected affected human settlement areas within inundated one ranges from 1% to 60% (Figure 8 439 

(b)), suggesting that not all inundated areas necessarily experience a significant impact on human 440 

society. For some areas, shallow inundation depth may be insufficient to cause noticeable 441 

disruption in human daily life.  442 

These results indicate NTL's capacity to fill in the gap left by inundation mapping and provide 443 

new insights into flood impacts beyond inundation areas, affecting human society and activities. 444 

NTL-derived impact can enhance understanding of the diverse impacts both within and outside 445 

inundation areas. There exist five events that has not been detected as having impact by NTL in 446 

2013. The reasons for non-detection have been further explored in Section 5.1. 447 

 448 



 449 

 450 

Figure 8. Statistical analysis result for the overlapping of NTL detected affected area and 451 

MODIS inundation area. Events amount distribution for (a) the ratio of inundated area within the 452 

NTL detected affected area and (b) the ratio of inundated affected area within the inundated 453 

human settlement area. 454 

 455 

We conducted a further comparison between the Dp of flood impacts detected by NTL within 456 

and out of the inundated area (Figure 9). 13 events (ID 4019, 4023, 4046, 4047, 4050, 4063, 457 

4064, 4071, 4089, 4091, 4092, 4101, 4109) exhibited higher Dp within inundated areas. The rest 458 

eight events showed slightly higher Dp outside of inundation. However, the difference is not 459 

large between Dp within and outside inundation areas for all 21 events. This suggests that 460 

impacts are of comparable magnitude and importance within and outside of the inundation area. 461 

NTL data, therefore, plays a crucial role in supplementing flood impact information beyond 462 

inundation, which is equally vital alongside impacts within inundated regions. 463 

 464 



 465 

Figure 9. Comparison of Dp of pixels within and beyond inundation for 21 events in 2013, which 466 

has an overlap between the NTL-detected affected area and the MODIS inundation area. 467 

 468 

4.4.Flood impact analysis on the global scale for the recent decade (2013 – 2021) 469 

With NTL imagery, we generated NTL flood impact layers for historical global flooding events 470 

occurring in the recent decade (2013-2021) as recorded in the DFO database. Out of the total 471 

1,120 recorded cases, 90 have no human settlement area within the DFO ROI, while 154 were 472 

hindered by cloud cover, rendering them unsuitable for analysis. From the remaining 876 events, 473 

72 exhibited no discernible flood impact from NTL. NTL impact indices images for 804 events 474 

have been generated with a spatial resolution of 15 arc-second. 475 



 476 

 477 

Figure 10. Global map showing the flood impact from NTL in terms of (a) Severity, (b) the ratio 478 

of affected area within human settlement (Affected Area Ratio), and (c) affected Duration for 479 

876 events recorded in the DFO database from 2013 to 2021. Event numbers are shown in (d) for 480 

each administrative unit.  481 

 482 

Figure 10 offers a spatial visualization of the flood impact derived from NTL data, including 483 

Severity, Affected Area Ratio, Duration, and flood occurrence time on the administrative level. 484 

In general, the Duration, which signifies the recovery process, appears to correlate with both the 485 

Severity and Affected Area Ratio. For example, in northeast Brazil, Paraguay, Canada, and 486 

China, there is a relatively higher Severity or Affected Area Ratio; the Duration for these areas is 487 

correspondingly longer as well compared to the other areas. While for North Africa (e.g., Sudan, 488 

Niger) and some parts of Europe (e.g., Spain, France), the Severity and Affected Area Ratio, as 489 

well as the Duration, are all lower. Such a tendency is reasonable since a more substantial 490 

reduction in light intensity and a broader affected area tend to result in a longer time for recovery. 491 

However, intriguing outliers exist. Regions such as the United States and East South America 492 

(including Argentina and southwest Brazil) exhibit lower Duration, indicating faster recovery 493 

rates, despite possessing similar Severity and affected area values compared to other areas. For 494 

Australia, the east part has a higher Affected Area Ratio but lower Severity and Duration 495 

compared to the west part. This phenomenon can be attributed to concentrated urban 496 



development in the east part. The higher population density, hence, leads to a larger affected area 497 

ratio. However, greater economic development ensures a better defense ability and quicker 498 

recovery. Conversely, regions like Khanty and Khabarovsk in Russia and Middle Africa have 499 

similar Severity and affected area ratio magnitudes but exhibit higher Duration values compared 500 

to other regions, implying a slower recovery rate. The spatial pattern seems closely tied to local 501 

economic development, with the United States, Brazil, and East Australia boasting high incomes 502 

while Khanty, Khabarovsk, and Middle Africa register relatively lower income levels. 503 

Aside from the influence of local development, the severity of flooding may also influence the 504 

magnitude of flood impact. Thus, we conducted a comprehensive statistical analysis of impact 505 

across different development and flood severity levels, as illustrated in Figure 11. The DFO's 506 

provided serious index was incorporated to gauge flood severity. Event numbers for different 507 

development and flood severity groups are shown in Table S1. Our findings indicate a general 508 

trend for impact Severity and Duration: as development levels rise, these factors tend to decrease. 509 

This suggests that highly developed regions have lower vulnerability and better recovery 510 

capabilities compared to less developed areas. The decrease in group upper values is significant 511 

as development levels increase, especially for the Duration in the low development group when 512 

DFO_serious equals 3. This implies that extremely severe and long-lasting impacts are more 513 

likely to occur in regions with lower levels of development, while they can be avoided in higher 514 

development areas. Some exceptions were observed within the low development group when 515 

DFO_serious equals 1 and 1.5. In these cases, the Duration and Affected Area Ratio were even 516 

lower compared to that in the middle-low group. This discrepancy may be attributed to the 517 

NTL's reduced ability to detect impact in areas with low illumination (see more in Section 5.1). 518 

 519 



 520 

Figure 11. Comparison of NTL flood impact indices (Severity, Duration, and Affected Area 521 

Ratio) for events with different serious levels from DFO located in countries with different GDP 522 

levels.  523 

 524 

Impact levels for events located in high-income regions tend to be concentrated with similar 525 

magnitudes. In contrast, for low-income regions, the impact magnitude for different events varies 526 

significantly, indicating substantial differences in local defense and recovery capabilities. The 527 

reason might be that in some regions, despite lower development levels, frequent disasters 528 

improve the local resilience and adaptability to flooding. Additionally, the magnitudes of impact 529 

among different flooding severity levels vary more with development decreases. For well-530 

developed regions, the impact always remains at a low level with different flooding severities. 531 

While for the low developed regions, when the flooding becomes more serious, the impact 532 

increases as well, especially for Duration. This indicates that in low-income areas, recovery after 533 

severe flooding is notably challenging.  534 

 535 

5. Discussion 536 

5.1.Reasons for non-detection of flood impact from NTL 537 

Out of the 876 global-scale events from 2013 to 2021 analyzed in this study, 72 were not 538 

detected as having a flood impact using NTL data. We investigated the characteristics of these 539 

undetected events and found some compelling reasons for their non-detection. 540 



 541 

Figure 12. Number of events for different amount of available urban pixels within the DFO given 542 

polygon during flooding period. 543 

 544 

Firstly, 67% (48 events) of the undetected cases had fewer than 30 available urban pixels 545 

within the DFO defined ROI (Figure 12). The limited number of urban pixels likely contributed 546 

to the misdetection of flood impacts. Furthermore, upon closer examination of the remaining 24 547 

undetected events, we observed that they were primarily located in low-light areas in 548 

underdeveloped countries or suburban regions. Figure 13 illustrates the human settlement area 549 

ratio from the GHSL dataset, light intensity, and DA layers for three events that were not 550 

detected as having impacts but had a sufficient number of available human settlement pixels. In 551 

these cases, human settlement exhibits a dispersed pattern within less well-developed urban areas 552 

(Figure 13 (a) (b)). Although there was an obvious decrease in light intensity during the flood 553 

period (Figure 13 (c) (d)), no pixels were detected as impacted. This suggests that the DAs for all 554 

pixels during the flooding period are smaller than 3 (Figure 13 (e)), possibly due to a large 555 

standard deviation (std) caused by unstable power supply systems in underdeveloped countries, 556 

such as Somalia. Another reason for non-detection could be that the pixels were not part of the 557 

human settlement, but rather other sources of light, such as wildfires, which are not stable and 558 

thus have higher std. Moreover, cloud-induced data gaps also contributed to the unavailability of 559 

large areas of human settlement data, which affected detection. This was also compounded by 560 

the low accuracy of the DFO-provided ROI, which did not always encompass the main 561 

potentially affected human settlement regions but focused more on inundation-related areas 562 



(Figure 13 (a)). Another reason might be that flooding did not significantly impact human 563 

society and activities. In cases like these, such as events 4304, 4391, 4582, and 4895, the number 564 

of affected individuals recorded in the DFO database was minimal, suggesting that the actual 565 

impact was weak (Table S2). 566 

 567 

 568 

 569 

Figure 13. (a) Built-up area ratio, (b) normal status light intensity within ROI, (c) normal status 570 

light intensity, (d) minimum light intensity during flooding period, and (e) DA layers within the 571 

enlarged area within the red rectangle for three example cases (DFO ID and located country for 572 

case D1: 4955, Kenya; case D2: 4981, Somalia; case D3: 5043, Peru) that have not been detected 573 

having an impact from NTL.  574 

 575 

5.2.Relationship among the NTL impact information, inundation mapping and DFO database 576 

Investigative databases like DFO serve as primary sources for obtaining information on the 577 

impact of historical global flooding events. Inundation data also plays a crucial role in flood risk 578 

estimation globally and serves as a reference for assessing near real-time flood impacts. This 579 

study employed NTL data to estimate the impact of flooding on human society and activities. 580 

We’d like to explore the relationships among NTL derived impact information, inundation 581 

mapping as well as the DFO database. We analyzed 99 cases from 2013 to examine the impact 582 

from the three datasets and classify the cases accordingly. We generated confusion matrices and 583 



calculated the overall accuracy of classification to assess the consistency between the different 584 

datasets regarding flood impact (Figure 14, Figure 15). 585 

Our findings revealed a strong consistency (80% as overall accuracy) between the DFO-586 

recorded duration and MODIS-observed duration, indicating that the DFO database primarily 587 

records inundation duration rather than the impact duration on human activities. For the DFO-588 

recorded severity level and affected population, the NTL-observed affected area and severity 589 

level have the highest correlation separately (48%). The results suggest that, in comparison to 590 

inundation data, NTL data is more closely related to the human-related impact, such as the 591 

affected population. Furthermore, NTL's severity level also exhibited a relatively high 592 

consistency with inundation duration (50.67% as overall accuracy), implying that the duration of 593 

inundation directly affects the impact on human society and activities. However, DFO-recorded 594 

severity level and NTL-observed affected area, DFO affected population and NTL severity level 595 

are still not strongly correlated with the overall accuracy of 48%. The reason may be that for 596 

some cases, the DFO records’ numbers are rough estimations from news, which largely reduces 597 

the accuracy. 598 

In summary, these three datasets capture flood impact from various perspectives. DFO 599 

primarily records information such as location, timing, estimated affected populations, and 600 

severity based on news descriptions. Its advantage lies in its long-time period records spanning 601 

from 1985 to the present, along with its provision of tentative affected regions for each event. 602 

However, the impact information from DFO, including affected populations and severity, relies 603 

on descriptions from news sources and is, therefore, subject to lower accuracy. MODIS 604 

inundation data provides information on the daily area and duration of inundation, contributing 605 

to monitoring water variations during flooding events. NTL provides daily information on the 606 

affected location, severity and duration of each event within and beyond the inundation areas. 607 

The NTL impact layers focus on human settlement areas, which can be as proxies for impacts on 608 

human society and activities. With the NTL derived flood impact information, it is possible to 609 

further estimate flooding cost (e.g., economic loss or affected fatalities). Combining these 610 

datasets offers a more comprehensive understanding of flood impacts worldwide. 611 

 612 



 613 

 614 

Figure 14. Confusion matrix and overall accuracy of DFO and NTL, MODIS classification. 615 

 616 

 617 

Figure 15. Confusion matrix and overall accuracy of MODIS and NTL classification 618 

 619 



5.3.Advantages and limitations 620 

In this study, we harnessed NTL data to estimate the impact of flooding on human society and 621 

activities.  The global impact was analyzed for 876 historical events occurring from 2013 to 2021. 622 

The impact information derived from NTL serves as a valuable tool for discussing how flooding 623 

leads to residential buildings’ damage, displacement and fatalities, interruptions on the industry, 624 

service, and public sectors, which cause variations in light intensity. When floods destroy 625 

buildings and devastate power supply chains, many human settlements are left without power, 626 

significantly affecting normal daily activities. Additionally, fatalities and displacement due to 627 

flooding result in previously inhabited areas lacking inhabitants. Floods can also hinder factory 628 

operations, leading to reduced production efforts. Commercial zones, such as markets, as well as 629 

public regions, such as schools and hospitals, might be closed due to flooding caused by power 630 

outages or shortages of essential materials. Such impacts reduce the light intensity of 631 

corresponding regions and can be effectively observed through NTL data, even on a large scale. 632 

All these impacts are closely tied to human society and are of interest to policymakers, operators, 633 

and insurers to evaluate and mitigate asset and life losses, maintain socioeconomic stability, and 634 

to reduce risk exposure and liabilities (Koks et al., 2019). The information on these impacts has 635 

not been fully explored using existing methods or datasets on a global scale, especially for those 636 

out of the inundation area. Our estimations bridged this gap and provided a complete 637 

understanding of flood impact both within and beyond inundation areas on human society.  638 

Meanwhile, compared to previous studies focusing on potential impact, which assumes all 639 

people and assets within the inundation area are affected with various serious levels considering 640 

inundation depth (Winsemius et al., 2013), NTL reflects flood impact from actual light intensity 641 

variation. This approach can provide more realistic affected location and severity information, 642 

especially on a global scale. Furthermore, in contrast to studies that assume recovery duration 643 

has a linear relationship with inundation duration (Tanoue et al., 2020; Taguchi et al., 2022), 644 

NTL reveals a recovery process from light intensity, which is more rational. Meanwhile, the 645 

simplicity of the NTL flood impact indices allows for the efficient generation of impact layers 646 

for historical events and immediately after flooding happens. Large-scale flood impact analysis 647 

can be achieved with less complexity. In time, daily impact assessment can be achieved with the 648 

high-quality uncertainties corrected VNP46A2 NTL product, which facilitates post-flooding 649 

impact analysis and tracking of daily variations in impacts. Pixel-scale vulnerability and 650 



resilience, loss estimation after flooding, as well as the locations and destinations of 651 

displacement, can be further investigated to furnish valuable insights into the flood impact on 652 

human society on a global scale. Additionally, despite the VNP46 suite used in this study, a near 653 

real-time product (Black Marble NRT) without uncertainties correction is also provided, which 654 

has a shorter (three to five hours) latency compared to VNP46A2 (10 days). Near real-time 655 

impact assessment is possible with the NRT NTL product with three to five hours' latency 656 

(Roman et al., 2018; Zheng et al., 2023). Even though the NRT NTL product carries 657 

uncertainties due to moonlight, BRDF, seasonal change etc., it holds the potential to provide 658 

rough but crucial information for emergency guidance.  659 

There are some limitations in this study. NTL, as a proxy of flood impact, might miss or 660 

overestimate flood impact. The impact that does not cause light intensity variation cannot be well 661 

detected, e.g., damage to facilities with no light at night. However, since NTL has been proven to 662 

well reflect human activities (Elvidge et al., 2001; Li et al., 2022; Zheng et al., 2022), it still can 663 

cover a large portion of the impact, especially the one related to human society and activities. 664 

Other events that reduce the light intensity other than flooding might exist, which leads to 665 

overestimation from NTL. Since we have employed the DFO-provided flooding period for 666 

impact detection with NTL, the possibility of overestimation can be largely reduced. We 667 

established a threshold of 3 for the DA index to identify affected pixels. The extent of the 668 

affected area can vary with different thresholds. However, since we also provide the DA layer, 669 

users have the flexibility to adjust the threshold to align with their research objectives. A major 670 

challenge in flood impact estimation using NTL data is the presence of cloud cover, particularly 671 

during flooding events caused by heavy rain or storms. As demonstrated by our results, from 672 

2013 to 2021, cloud cover rendered 26% of the recorded events (292 out of a total of 1120 events) 673 

undetectable through NTL due to cloud obstructions. For such events, estimating impact through 674 

NTL may be difficult, but the subsequent recovery situation can still be assessed. We anticipate 675 

the development of models that can address gaps caused by cloud cover or combine data from 676 

different satellites to mitigate this cloud-related issue. Moreover, the performance of using NTL 677 

to detect flood impact may be suboptimal in low-light areas, posing a particular challenge for 678 

underdeveloped countries. However, for most countries, NTL performance is likely to improve 679 

over time as development progresses. 680 

 681 



6. Conclusion 682 

This study proposed an innovative approach to flood impact evaluation with high-quality NTL 683 

remote sensing data. Results have confirmed the reliability of NTL flood impact through case 684 

studies. The affected durations derived from NTL show higher consistency with the reported 685 

flood impact duration for the five selected cases compared with the DFO database, which is more 686 

related to inundation duration. The recovery process can be well captured from NTL data. The 687 

generated impact indices provide the affected Severity, location and Duration on pixel scale both 688 

within and beyond the inundation areas. Daily assessment of flood impact for flooding events 689 

can be realized efficiently with these indices on a large scale.  690 

Compared to traditional inundation mapping, NTL data offers a unique perspective, focusing 691 

on human settlements. Only 21 of the 99 events in 2013 show overlap of NTL detected affected 692 

area with satellite-based inundation, with a ratio less than 3.5% to the NTL affected area 693 

coincided with MODIS observed inundation. Meanwhile, NTL-observed affected area and 694 

Severity level have a higher correlation with DFO recorded severity level and affected 695 

population compared to MODIS inundation area and duration. These results indicate that a 696 

significant portion of impact occurs outside of satellite-based inundation areas, emphasizing the 697 

significance of NTL's detection for impact both within and beyond inundation areas on human 698 

society and activities. 699 

Over the study period from 2013 to 2021, we generated NTL impact layers for 876 events 700 

sourced from the DFO with a spatial resolution of 15 arc-second (about 500 m). Based on the 701 

detected events, we analyzed the global spatial patterns of flood impact in terms of Severity, 702 

Duration, and Affected Area Ratio. The magnitude of these indices varies significantly by 703 

location, reflecting diverse levels of vulnerability and recovery capabilities. The spatial 704 

distribution is influenced by local economic development and flood severity. 705 

In summary, our study has demonstrated that NTL data can effectively assess flood impact on 706 

human society within and beyond inundation areas. It provides a foundation for impact 707 

monitoring and the exploration of local vulnerability and resilience in the face of flooding. NTL 708 

flood impact information can be an important supplement to give a more comprehensive 709 

understanding of flood impact on a global scale. This information is expected to serve as a 710 

critical tool for emergency response, policy formulation, and decision-making for government 711 

and insurance companies. 712 
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