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Abstract

**The manuscript has been submitted to Urban Climate for peer review.

Estimating street-level air temperature is a challenging task due to the highly heterogeneous urban surfaces, canyon-like street

morphology, and the diverse physical processes in the built environment. Though pioneering studies have embarked on in-

vestigations via data-driven approaches, many questions remain to be answered. In this study, we leveraged an innovative

framework and redefined the street-level temperature estimation problem using Graph Neural Networks (GNN) with spatial

embedding techniques. The results showed that GNN models are more capable and consistent of estimating street-level temper-

ature among tested locations, benefiting from its unique strength in handling extensive data over unstructured graph topology.

In addition, we conducted an in-depth analysis of feature importance to enhance the model interpretability. Among the ur-

ban features analyzed in this study, the time-variant canopy density and meter-level land use data emerge as crucial factors.

Our findings highlight GNN’s high potential in capturing the complex dynamics between urban elements and their impacts

on microclimate, thus offering valuable insights for comprehensive urban data collection and urban climate modeling in general.

Collectively, this study also contributes to urban planning and policy by providing avenues to enhance city resilience against

climate change, thereby advancing the agenda for environmental stewardship and urban sustainability.
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Abstract11

Estimating street-level air temperature is a challenging task due to the highly heterogeneous urban12

surfaces, canyon-like street morphology, and the diverse physical processes in the built environment.13

Though pioneering studies have embarked on investigations via data-driven approaches, many questions14

remain to be answered. In this study, we leveraged an innovative framework and redefined the street-15

level temperature estimation problem using Graph Neural Networks (GNN) with spatial embedding16

techniques. The results showed that GNN models are more capable and consistent of estimating street-17

level temperature among tested locations, benefiting from its unique strength in handling extensive data18

over unstructured graph topology. In addition, we conducted in-depth analysis of feature importance19

to enhance the model interpretability. Among the urban features analyzed in this study, the time-20

variant canopy density and meter-level land use data emerge as crucial factors. Our findings highlight21

GNN’s high potential in capturing the complex dynamics between urban elements and their impacts on22

microclimate, thus offering valuable insights for comprehensive urban data collection and urban climate23

modeling in general. Collectively, this study also contributes to urban planning and policy by providing24

avenues to enhance city resilience against climate change, thereby advancing the agenda for environmental25

stewardship and urban sustainability.26
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1 Introduction30

The increased population in global cities has led to fast and extensive urban expansion and densification31

in the recent decades (United Nations, 2019). Urban dwellers are believed to be more susceptible to en-32

vironmental hazards, especially extreme weather events with amplified frequency, intensity, and duration33

by global climate change (Myhre et al., 2019; Perkins-Kirkpatrick et al., 2020). These events affect urban34

areas disproportionally, depending on the geographical, morphological, and thermodynamic features (Oke,35

2008; Oke et al., 2017). Recent years have witnessed numerous studies working to improve the accuracy36

and spatial resolution of urban environmental modeling, aiming to address the challenges in quantifying the37

drastic inter-urban and intra-urban variabilities led by the highly heterogeneous built environment (Scott38

et al., 2017; Kousis et al., 2021; Cao et al., 2022).39

There are two major barriers for the current process-based urban climate models to achieve ideal per-40

formance: (1) the lack of accurate data from the real world for precise parameterization; and (2) the lack41

of physical representations on certain processes. Accordingly, the on-going effort in urban climate research42

community diverts into two mainstreams. One direction focused on a more representative and realistic43

description of urban fabric, exemplified by the local climate zone (LCZ) classification scheme (Demuzere44

et al., 2021; Stewart et al., 2012; Kim et al., 2021), WUDAPT (Ching et al., 2018), and other urban canopy45

parameter databases (Hammerberg et al., 2018; Pilant et al., 2020; B. Chen et al., 2021) with exceptional46

spatial resolutions ranging from 100m to 1m. The other attempts to improve model performance by including47

detailed parameterizations, such as the inclusion of building energy exchange (Kondo et al., 2005; Jin et al.,48

2021), tree shading (Krayenhoff et al., 2020; C. Wang et al., 2021), ecohydrological processes (Stavropulos-49

Laffaille et al., 2018; Meili et al., 2020), and physiological functions (P. Li and Z.-H. Wang, 2020) in urban50

canopy models. These models can resolve up to a few hundred meters, but are more commonly seen at 1km51

resolution. The integration of these two streams, as represented by Meyer et al. (2020) and Ribeiro et al.52

(2021), has demonstrated enhanced performance over the less sophisticated process-based models, offering53

valuable insights on the in-canyon microclimate dynamics. Nevertheless, the improvements sometimes can be54

disproportional to the increased burden on computational cost, leading to a “resolution-coverage dilemma”.55

Practically, it is nearly impossible for process-based urban climate models to achieve city-wide simulations56

with meter-level resolution in a near-real-time manner.57

To address this challenge, some pioneering studies have investigated the data-driven approach by lever-58

aging the state-of-the-art machine learning (ML) technology and the contemporary advancements in urban59

climate informatics (Middel et al., 2022; P. Li and A. Sharma, 2024b). Recent research, aided by the high-60

precision remote sensing (D. Yu et al., 2023), distributed sensor network (Catlett et al., 2017; Y.-C. Chen61
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et al., 2019), and mobile measurement (A. Wang et al., 2023), has yielded promising results in estimating62

land surface and air temperatures (Venter et al., 2020; S. Sharma et al., 2023), air quality (Gitahi et al.,63

2020; Guo et al., 2022; A. Wang et al., 2023), and flooding conditions (Silverman et al., 2022; Tien et64

al., 2023) with exceptional spatial granularity, down to 10 meters. These studies provide insights into the65

actual environmental conditions experienced by urban residents, thus holding profound implications for re-66

search on walkability, heat-related mortality, hazard exposure, and environmental/climate justice. Moreover,67

they can guide meaningful real-world mitigation and adaptation efforts while enhancing our understanding68

of general hydroclimate dynamics in complex urban environments. One major gap, nevertheless, is that69

observation-based approaches usually lack forecasting capabilities, as they require data as a priori condition70

for the subsequent estimations. The availability of remote sensing imagery can be constraint by cloud cover.71

Weather conditions also create operational barriers for mobile measurements.72

More recently, P. Li and A. Sharma (2024b) introduced a novel hybrid ML framework that integrates a73

meso-scale weather forecast model, detailed urban geographical datasets, and a set of street-level sensors to74

estimate in-canyon air temperature. This innovative endeavor not only grants predictive capabilities, but also75

provides point-scale temperature estimations that surpass conventional notions of spatial resolution, enabling76

the users to analyze thermal environment at specific locations using either historical hindcast data, near-real-77

time weather forecasts, or future climate projections. The inclusion of regional scale weather conditions in78

this hybrid approach also empowers the ML model with knowledge of synoptic weather dynamics, therefore79

producing more trustworthy estimations. Nevertheless, pivotal inquiries persist concerning the sensitivity80

and interpretability of such data-driven models. Specifically, there is a pressing need to investigate the81

significance of the urban features to street-level air temperature. Further studies on model sensitivity are82

also anticipated to test the robustness of the framework and enhance our comprehension of the hybrid83

approach.84

In this study, our goal is to further advance the method presented in P. Li and A. Sharma (2024b) by85

introducing a more sophisticated ML algorithm, Graph Neural Networks (GNN), to the hybrid modeling86

framework. GNN is a recent variant of deep learning algorithms and has a specialty in the modeling of87

unstructured data defined on graphs or networks (Scarselli et al., 2009). Its applications to climate science88

have covered a wide range of topics, including the predictions of global weather (Keisler, 2022; Lam et89

al., 2023), regional heatwaves (P. Li, Y. Yu, et al., 2023), air quality (S. Wang et al., 2020; Ejurothu90

et al., 2023; Ma et al., 2023), frost (Lira et al., 2022), and precipitation (Y. Chen et al., 2024), which91

demonstrates a high potential to tackle the complex urban environment with extensive geospatial datasets.92

Another merit of GNN specific to the street-level downscaling problem is its architectural advantage. Since93

street-level sensors can only provide ground truth at distributed locations, this characteristic makes this94
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street-level downscaling challenge differs fundamentally from the downscaling of climate simulations of two95

spatial continuous layers with different resolutions. The latter question has been widely addressed using96

Generative adversarial networks (GANs), Convolutional Neural Networks (CNNs), and other super-resolution97

algorithms, with examples highlighted in research by F. Wang et al., 2021; J. Wang, Liu, et al., 2021;98

Singh et al., 2023, respectively. These methods, primarily optimized for processing images characterized by99

inherent smoothness and continuity, thus do not directly apply to the discrete nature of the downscaling task100

discussed herein. In contrast, GNN can adeptly handles both discrete and continuous datasets by organizing101

data into a graph structure. In addition, when compared to conventional algorithms like Random Forest102

(RF), Gaussian Process Regression (GPR), XGBoost, and Support Vector Machine (SVM), which process103

temporal dynamics independently at each node, the structural advantage of GNN can facilitate the dynamic104

information exchange between nodes through their connecting edges. Therefore, GNN emerges as a tailored105

solution to address the distinct challenges highlighted in this research.106

In addition to model development, we adopt GNNExplainer (Ying et al., 2019), a post-hoc algorithm,107

to examine the reliance of the predicting mechanisms on certain model inputs, aiming to enhance the in-108

terpretability of the trained GNN models and improve the general understanding of urban microclimate109

dynamics from an ML persepctive. Collectively, our investigations will contribute from four aspects: (1)110

to frame a hyper-local downscaling problem into GNN architecture, thus facilitating the implementation of111

advanced ML algorithms in urban climate modeling to overcome the limitations inherited from conventional112

modeling methods; (2) to harness the existing data inventory and improve the hyper-local temperature113

estimation; (3) to quantify the importance of urban climate informatics, thereby precisely guiding future114

observation and data curation endeavors; and (4) to test and validate the feasibility of GNN in the hybrid115

modeling framework presented in (P. Li and A. Sharma, 2024b). The findings will shed light on the evolu-116

tion of urban climate informatics and have the potential to revolutionize urban land surface modeling, thus117

paving the way for more accurate and resilient urban planning and management strategies.118

The following manuscript is organized into 5 sections, with Section 2 providing detailed descriptions of119

the urban datasets used in this study, followed by Section 3, digesting how these datasets are integrated for120

the street-level temperature downscaling problem. Section 4 elucidates the modeling methods of GNN and121

GNNExplainer, including model architecture, configuration, and evaluating metrics. Modeling results and122

discussions can be found in Section 5, followed by concluding remarks in Section 6.123
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2 Data Preparation124

We identify three data components that are essential for addressing the urban downscaling challenge and for125

the efficacious deployment of the ML model (P. Li and A. Sharma, 2024b):126

1. Temporal dynamics layer: A low-resolution dataset to encapsulate the temporal dynamics of the127

system, providing the synoptic view of the meteorological conditions over time.128

2. High-resolution ground truth data: This dataset serves as the target for ML model training,129

comprising precise temperature recordings from an extensive observation network that anchors both130

the ground truth and the learning objective.131

3. Geographical feature set: A collection of urban attributes crucial for enabling the ML model to132

understand the spatiotemporal interplay between low- and high-resolution datasets, thereby capturing133

the nuanced microclimatic variations within urban landscapes.134

For the first component, we employ the weather hindcasts, offering a comprehensive perspective of me-135

teorological conditions and approximate surface weather across Chicago. The second component comprises136

precise temperature measurements from a comprehensive observation network, acting as both the ground137

truth and the learning objective. For the third component, we identified and extracted various urban fea-138

tures that have a significant impact on the microscale climate within urban settings. Further details on each139

component are elaborated upon in subsequent sections. For clarity, a comprehensive table summarizing all140

variables and features utilized in this study is provided in Table 1.141

2.1 Weather hindcasts142

In this study, we use the Weather Research and Forecast (WRF) model version 4.0 (F. Chen, Kusaka, et143

al., 2011; Skamarock et al., 2021) to reconstruct the near-surface meteorological conditions at 1km spatial144

resolution and hourly intervals, serving as the low-resolution layer of this downscaling problem. WRF is a145

fully compressible, Euler nonhydrostatic Continuous weather prediction and atmospheric simulation system146

designed for both atmospheric research and operational forecasting applications (Skamarock et al., 2021) that147

has been widely adopted in numerous regional and global atmospheric and meteorological studies. Specific148

to this study, we set up three two-way nested domains with the outermost boundary covering the east-north149

central region of the Midwest US and the innermost domain covering the City of Chicago and its surrounding150

metropolis. The spatial resolutions of the three domains are 9 km, 3 km, and 1 km, respectively. The lateral151

boundary conditions are from North American Regional Reanalysis (NARR) from the National Center for152

Environmental Prediction (NCEP, https://rda.ucar.edu/datasets/ds608.0/) with a 32-km horizontal spatial153
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resolution and a 3-hr temporal resolution. We adopt the single-layer urban canopy model for impervious154

urban surfaces (F. Chen, Kusaka, et al., 2011) and Noah-land surface model (F. Chen and Dudhia, 2001)155

for natural land and the previous portion of the urban grids. We also use WRF Single-Moment 6-class156

microphysics scheme, which is suitable for high-resolution simulations (Hong and J.-O.J., 2006). Longwave157

and shortwave radiation is parameterized using the Rapid Radiative Transfer Model (Iacono et al., 2008).158

Sub-grid scale cumulus convective parameterization is turned on only for the two outermost domains (9km159

and 3km) corresponding to the Kain-Fritsch scheme (Kain, 2004). The planetary boundary layer is simulated160

by Yonsei University scheme (Hong, Noh, et al., 2006), while the surface layer is parameterized by Monin-161

Obukhov similarity scheme. The configuration and physical schemes were well tested in multiple previous162

studies over Chicago (A. Sharma et al., 2017; P. Li, A. Sharma, et al., 2023).163

The hindcast covers two summers in 2018 and 2019 (May 1st to Aug 31st, 123 days). We select six164

variables from WRF, namely air temperature and humidity 2 meters above the ground, land surface tem-165

perature, soil temperature, downwelling shortwave radiation, and wind speed 10 meters above the ground,166

as the input of the subsequent ML model (WH variables in Table 1). These variables were validated against167

the observations from ground weather stations from National Center of Environmental Information (NCEI)168

to ensure WRF captured the synoptic weather dynamics. It is worth noting that despite we did not calibrate169

the parameters or physical schemes in WRF model, the simulation result is acceptable with an RMSE of 2.5170

oC for daily mean air temperature, which is widely accepted among existing urban climate modeling studies.171

2.2 Temperature observation network172

The Array of Things (AoT) project started in 2018 and was designed to monitor the urban environment173

of Chicago via a dense observational network (Catlett et al., 2017). The measurement sensors contain an174

array of environmental sensors that are mounted on existing urban infrastructures (such as traffic light175

poles, building walls, bus stations, etc.) at over 100 locations in Chicago city. The sensors measure the176

meteorological variables, air quality, noise level, and traffic at sub-minute intervals. These measurements are177

wirelessly transmitted to a data center in a real-time manner and are compiled into a complete dataset for178

public access. Most of the sensors are located 2 to 4 meters above the ground thus representing street-level179

conditions reasonably well.180

During the designed operation period (Jan 2018 to Sept 2021), the AoT network effectively collected181

air temperature readings from 106 sensors during 2018 and 2019. We carefully calibrated the temperature182

recording from AoT using the nearby research-grade weather stations (P. Li and A. Sharma, 2024b) to ensure183

the data quality of these low-cost sensors. But due to their low-cost nature, calibrated temperature readings184
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from AoT sensors may still associated with uncertainties, bias, and errors. Nevertheless, we treat the AoT185

observations as the best proxy for the “ground truth” of the urban environment given the current data186

scarcity in the urban environment. The screened dataset contains continuous timeseries measurement of air187

temperature over 53 locations, and 15 of them have both measurements over summers of 2018 and 2019. This188

leads to an equivalent of 200,736 measurement hours as the total data points used in GNN development. The189

complete set of AoT data can be downloaded with additional information at http://arrayofthings.github.io/.190

2.3 Detailed urban features191

The detailed urban morphological and geographical features are derived from a suite of high-resolution192

urban-orientated datasets over Chicago. These include two sets of land use classifications, impervious surface193

fractions, vegetated surface fractions, tree canopy coverage, building height, and tree height. We derive these194

geospatial information from independent data sources.195

The 2018 parcel-level land use inventory (LUI) for the City of Chicago can be found at the Chicago196

Metropolitan Agency for Planning (CMAP) in vector format (https://www.cmap.illinois.gov/data/land-197

use/inventory). The LUI classifies the land use into 10 major and 56 minor categories. We convert the198

vectorized shapefile into a raster layer with 1-meter resolution to align the spatial resolution of the other199

datasets. In addition, we also adopt the land cover types from the National Land Cover Database (NLCD)200

with 30-meter resolution. Compared to NLCD, the parcel-level LUI has a more detailed classification based201

on the primary use of the urban land, but NLCD provides the development intensity as additional information202

on the urban features.203

The tree canopy coverage, impervious and vegetated fractions are derived from The Meter-scale Urban204

Land Cover (MULC) from the US Environmental Protection Agency (EPA). This urban-oriented dataset has205

a good representation of the urban landscapes with exceptional resolution and accuracy (Pilant et al., 2020).206

It classifies urban land into 10 categories, including impervious surfaces, trees, shrubs, grass, water, crops, etc.207

These classifications are converted to binary maps indicating the spatial distribution of different land cover.208

It is noteworthy that impervious surfaces in MULC consist of roads and buildings. The distinction between209

them needs to rely on the additional height information. We adopt HeIght map of Tree And Buildings210

in Chicago (HiTAB-Chicago) for an accurate 3-dimensional description of the urban morphology. HiTAB-211

Chicago is a LiDAR-based digital elevation models with a 1-meter resolution containing tree and building212

heights as separate layers (P. Li and A. Sharma, 2024a). Unlike the categorical or binary classifications, the213

height information is in continuous values, thus enriching the data types in this regression task.214

To align the data format and resolution of these seven geospatial maps (CMAP, NLCD, three from215
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Figure 1: Embedded geofeatures at six exemplary sensor locations with a patch size of 400m by 400m. GE01
- Canopy height; GE02 - Building height; GE03 - Canopy patch; GE04 - Vegetated patch; GE05 - Impervious
surface area patch; GE06 - NLCD development intensity; GE07 - CMAP land use classification.
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MULC, two from HiTAB), we convert them into raster layers with 1-meter resolution. Subsequently, the216

landscape patch is extracted as a 400m by 400m grid centered by AoT sensors (Fig. 1). These patches will217

be aggregated and embedded as the inputs of GNN model (see Section 3.2).218

In addition to the variables used as spatial embedding, we also include the statistical moments (i.e.,219

averages and standard deviations) as model input. These include the fractions of impervious, vegetation,220

water, tree canopy, and different development intensities within the 400m by 400m grid, as well as the mean,221

maximum, and standard deviation of the tree and building heights. We also include the mean height of trees222

and buildings south of the observation sensors to better reflect the shading effect for cities in the Northern223

Hemisphere. Due to its special geographic location, the urban environment in Chicago is under the influence224

of the lake breeze effect (J. Wang, Qian, et al., 2023). Therefore, the distance to Lake Michigan is added as225

an attribute for each AoT sensor.226

It is noteworthy that the urban features mentioned above do not change over time. But plant leaf227

density will change gradually due to phenology during their growing period in the summer months. To228

inform the model with this variation, we extract the timeseries of canopy coverage, leaf area index (LAI),229

and normalized difference vegetation index (NDVI) from 10-day 300-meter Copernicus Global Land Service230

(CGLS) products. Nevertheless, their spatial resolutions are relatively low compared to the other datasets.231

We use these indices as independent information on the temporal scale.232

3 Problem Statement233

The urban downscaling problem aims to refine coarse-grained meteorological data into high-resolution, street-234

level temperature predictions across urban landscapes. The core objective is to accurately predict an array235

of street-level temperatures, denoted as Ta, at different sensor locations within an urban area, e.g. the AoT236

network. This process leverages a combination of geospatial characteristics and sensor data measurements.237

Here, we re-construct the AoT network as a graph and carefully craft geospatial attributes as feature vectors238

(hereinafter referred to as geofeatures) over each sensor. The subsequent section discusses the details of graph239

representation of the AoT network and is succeeded by a discussion on feature selection, which describes240

how a comprehensive dataset is compiled into informative inputs for the modeling process.241

3.1 Graph representation242

A graph or network represents data through a set of nodes, a set of edges that defines the pairwise relations243

of the corresponding nodes. We conceptualize the AoT network as a graph G = (V, E ,W), which contains244

the N measurement sensors as the nodes V, the edges E ⊆ V × V as the connections between each pair of245
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Table 1: List of all features that are used as model inputs.

Notation Variable Type Source

Weather hindcast (WH)

WH01 2-meter air temperature Continuous WRF
WH02 2-meter air humidity Continuous WRF
WH03 Soil temperature Continuous WRF
WH04 Surface temperature Continuous WRF
WH05 Solar irradiance Continuous WRF
WH06 Wind speed Continuous WRF

Auxilary (AX)

AX01 Hour of the day (UTC) Continuous
AX02 Month of the observation Continuous
AX03 Year of observation Continuous

Patch-embedded urban features (GE)

GE01 Height - Tree Continuous HiTAB - Chicago
GE02 Height - Building Continuous HiTAB - Chicago
GE03 Patch - Tree Binary EPA - MULC
GE04 Patch - Vegatation Binary EPA - MULC
GE05 Patch - Impervious Binary EPA - MULC
GE06 Classification - NLCD Category NLCD
GE07 Classification - CMAP Category CMAP

Averaged urban features (GA)

GA01 Mean height - Tree Continuous HiTAB - Chicago
GA02 Max height - Tree Continuous HiTAB - Chicago
GA03 Height std. - Tree Continuous HiTAB - Chicago
GA04 Mean height - Tree in south Continuous HiTAB - Chicago
GA05 Timeseries - Vegetation coverage Continuous CGLS
GA06 Timeseries - LAI Continuous CGLS
GA07 Timeseries - NDVI Continuous CGLS
GA08 Mean height - Building Continuous HiTAB - Chicago
GA09 Max height - Building Continuous HiTAB - Chicago
GA10 Height std. - Building Continuous HiTAB - Chicago
GA11 Mean height - Building in south Continuous HiTAB - Chicago
GA12 Fraction - High dev. intensity Continuous NLCD
GA13 Fraction - Medium dev. intensity Continuous NLCD
GA14 Fraction - Low dev. intensity Continuous NLCD
GA15 Fraction - Open development Continuous NLCD
GA16 Fraction - Impervious surface Continuous EPA - MULC
GA17 Fraction - Low vegetation Continuous EPA - MULC
GA18 Fraction - Water Continuous EPA - MULC
GA19 Fraction - Tree canopy Continuous EPA - MULC
GA20 Distance to lake Michigan Continuous NLCD

nodes, and the edge weights W quantify the correlation between the states of two connected sensors. Every246

measurement sensor that is connected to a node of interest (NoI) by an edge is known as a neighbor of the247

NoI. The graph for the AoT network is symmetric, meaning that if (i, j) ∈ E then (j, i) ∈ E . The strength248

of connection between two connected nodes i and j, or edge weight wij , is determined by a combination of249
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Figure 2: Matrices of normalized (a) node distance, dij ; (b) land use similarity, sij ; and (c) the resulted edge
weight, wij , derived from the AoT observation network after quality control.

the land use similarity (sij) and physical distance between them (dij), as expressed by250

wij = |sij exp(−dij)| (1)

where sij = is calculated as the correlation between the vectors of the land use fractions over the paired251

nodes, expressed as sij = Cor(Fi,LUI, Fj,LUI). This formulation ensures that sensors which are both highly252

similar in terms of land use patterns and proximate in physical distance exhibit a stronger linkage within253

the graph. Edges bearing weights below a threshold α are disregarded to maintain graph sparsity, enhances254

computational efficiency, model scalability, and focuses on the most significant relationships among the255

sensors. We further define the adjacency matrix A, which encapsulates the graph’s connectivity, as follows:256

Aij =

 wij if (i, j) ∈ E and wij ≥ α

0 otherwise
(2)

The graph formulation process is visualized in Fig. 2, and the resulting graph includes a total of 53 nodes257

and 3904 pairs of edges, with α = 0.1.258

3.2 Feature Selection259

From all the data collected in Section 2, we meticulously identify and integrate features integral to the graph260

formulation and the downscaling problem at hand, and form the augmented feature vector X , serving as261

the input to our model. Specifically, for the ith NoI, the feature vector Xi is composed of four groups of262

components,263

Xi =
[
xWH
i ,xAX

i ,xGE
i ,xGA

i

]
(3)
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Figure 3: Illustration of feature assembly process for (a) variables from weather hindcast at 1km resolution;
and (b) high-resolution geofeatures at 1m resolution.

Here, xWH
i is the weather hindcast data (Section 2.1). Spatially, this component integrates the six surface264

meteorological variables, each from a 3 × 3 1km-grid centered at the NoI, thereby providing a general265

weather pattern over the NoI as well as its immediate vicinity. Temporally, it incorporates a 5-hour window266

(i. e., current, ±2 time steps) across the 3 × 3 grid to inform the model with the temporal evolution of267

meteorological conditions. Figure 3a visualizes the assembly of WH variables, which are concatenated into268

a vector of xWH
i ∈ R6×3×3×5 (6 variables in 3× 3 grid with 5 time steps). Subsequently, the auxiliary group269

xAX
i ∈ R3 contains temporal metadata that is essential for the model prediction. Next, the xGE

i component270

contains spatial embeddings consolidated from the seven geospatial maps (Fig. 1), each with an original271

resolution of 400 × 400 pixels. To facilitate a balance between preserving spatial details and ensuring the272

feature vector’s manageability for the model, we apply a spatial averaging technique known as the average273

pooling. This is achieved by partitioning each map into smaller, non-overlapping subregions and calculating274

the average value within each subregion to represent its features. Consequently, this reduction technique275

transforms the original high-resolution data into a condensed format of 12× 12 pixels for each of the seven276

maps (as shown in Fig. 3b), resulting in a composite feature vector of dimensions xGE
i ∈ R12×12×7. This277

approach allows us to maintain essential spatial information while ensuring the feature length remains concise,278

facilitating efficient processing by the model. Finally, xGA
i ∈ R20 include the statistical moments of the urban279

features without spatial or temporal embedding. For each NoI, the augmented vector Xi incorporates a total280

of 1302 features, with majority of information provided from embedding groups (xWH
i and xGE

i ). This281

comprehensive assembly ensures a rich amount of information for the ML model that facilitates an in-depth282

exploration of the urban climate dynamics.283
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4 Graph Neural Network284

With the defined feature vector X (k) and the collected street-level air temperature (Ta) on all sensor at time285

step k, the downscaling question can be characterized as the following under GNN architecture:286

T(k)
a = F(X (k),G;Θ), (4)

where the GNN model F, parametrized by Θ, maps the extended state vector X (k) (Eqn.(3)) at the current287

time step k to the street temperature T
(k)
a , given the graph structure G of the AoT network. The GNN model288

used in this study is built upon the message passing (MP) mechanism, and utilizes an encoder-processor-289

decoder architecture. The key components of the proposed architecture are detailed as follows.290

4.1 Message passing with GraphSAGE291

The message passing (MP) mechanism serves as a foundational element across numerous Graph Neural Net-292

work (GNN) architectures, characterized by its execution of several consecutive MP steps. The GraphSAGE293

operator, introduced by Hamilton et al. exemplifies a spatial-based GNN designed to aggregate information294

from neighboring nodes (Hamilton et al., 2018). This operator is notable for its inductive framework that295

utilizes node attribute information to generate representations for previously unseen data efficiently.296

Specifically, consider the graph representation denoted in Sec. 3.1 where each node v ∈ V has a node297

feature vector hv ∈ RD and a set of neighbor nodes u ∈ N (v). At the jth MP step, the new feature of node298

v is computed using its previous feature and information from its neighbors as,299

mj
N (v) = AGGREGATE

(
{hj

u | u ∈ N (v)},W
)
, (5a)

hj+1
v = UPDATE

(
hj
v,m

j
N (v),W

)
, (5b)

where AGGREGATE denotes the aggregation scheme, e.g., mean aggregation, UPDATE are nonlinear map-300

pings, e.g., neural networks, mN (v) denotes the information aggregated from the neighbors of node v, and301

W the set of trainable network parameters. One MP step corresponds to the information exchange between302

1-hop neighbors, i.e., the nodes that directly connected. It is possible to stack multiple aggregators over k303

MP steps, and the feature vector of a node is influenced not only by its 1-hop neighbors, but also by the304

more distant k-hop neighbors.305
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4.2 Encoder-Processor-Decoder architecture306

The GNN model uses an encoder-processor-decoder architecture that is shown in Fig. 4 and detailed as307

following.308

1. Encoder: First, the encoder is applied to each individual node. It maps state vectors at a node xi,309

which consists of both continuous and discrete variables, to a latent vector h0
i ∈ RD. The latent vector310

is a set of high-dimensional nonlinear features that provide a continuous representation of the states311

on each bus, which is amenable for NN computations. For the ith node at time step k, the encoder fE312

is313

h0
i = fE(x

(k)
i ,x

(k−1)
i , · · · ,x(k−M+1)

i ;Θ0), (6)

where fE is implemented as a standard fully-connected NN (FCNN) of NM layers with a set of trainable314

parameters Θ0. After the encoding, the latent vectors of all the nodes are denoted H0 = {h0
i }Ni=1 ∈315

RN×D.316

2. Processor: Subsequently, a stack of N = NC graph MP layers serve as processors that successively317

aggregate the latent features from each node and its neighbors and update the latent vectors at each318

node. Formally, the jth processor step is written as319

Hj+1 = f jP (H
j ;Θj), (7)

where f jP is a GraphSAGE layer, with parameter Θj . In this case, NC GraphSAGE layers are deployed320

to generate a series of the latent vectors H1, · · · ,HNC using (5a). The last output HN is sent to the321

subsequent decoding step.322

3. Decoder: Finally, the decoder maps the latent vector of each node to the desired output, i.e. the street323

level temperature,324

T̃(k)
a = fD(HN ;ΘN+1), (8)

where fD is a FCNN of NM layers with trainable parameters ΘN+1.325

4.3 Model implementation326

Following the data preparation presented in Section 2 and Section 3.2, we compile a dataset comprising327

2,944 hourly-recorded snapshots. From this dataset, a random selection of 70% is allocated for model328

training purposes, while the remaining is designated for validation and testing phases.329

The GNN model is implemented using PyTorch Geometric (PyG) (Fey et al., 2019), an open-source330
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Figure 4: A structural diagram of the GNN model with encoder-processor-decoder architecture used in this
study. This figure is redrew from Figure S3 in P. Li, Y. Yu, et al. (2023)).
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machine learning framework with Graph Network architectures built upon PyTorch (Paszke et al., 2019).331

The size of latent vector (hidden dimension of the network) is chosen to be 128. The encoder and decoder332

modules each has two FCNN layers, and the processor is implemented with three GraphSAGE layers. Each333

layer of FCNN and GraphSAGE is followed with Parametric Rectified linear unit (PReLU) as the activation334

function (He et al., 2015). During training, the features and outputs of the model are normalized to a335

range of [0, 1]. To ensure the robustness of training, we use the Huber loss function with δ = 1.0, which is336

minimized during training using the standard Adam optimizer (Kingma et al., 2017) with an exponential337

decay of learning rate.338

4.4 Model Interpretation339

Model interpretability refers to the ability to understand and articulate the internal mechanisms and decisions340

of a machine learning model (Murdoch et al., 2019). This understanding is crucial, as it enhances trust in341

the model’s outputs by making the algorithm’s processes transparent to end-users, especially in scenarios342

lacking ground truth. Furthermore, it illuminates the significance of various model features, e.g. how343

each patch of geofeatures is affecting the street-level temperatures. Understanding which features—such344

as green spaces or urban infrastructure—influence predictions the most can guide effective urban planning345

and climate mitigation strategies. However, most deep learning methods, traditionally designed for high346

performance rather than transparency, often lack inherent interpretability. We must then rely on post-hoc347

algorithms, which retrospectively analyze a trained ML model to identify and elucidate the factors influencing348

its decisions. These tools have become instrumental in uncovering the system’s underlying knowledge, and349

in identifying critical features that significantly influence model outcomes, thereby offering valuable insights350

for informed decision-making and targeted urban planning initiatives.351

GNNExplainer, introduced by Ying et al. (2019), is a post-hoc explanation algorithm tailored for GNN352

models. It aims to identify a compact, influential subgraph Gs and corresponding node features Xs that353

maximally preserve the prediction of the model. This is achieved through the maximization of mutual354

information (MI) between the predictions made using the original graph and those using the identified355

subgraphs. The mutual information is defined as:356

max
Gs

MI(Y, (Gs,Xs)) = H(Y )−H(Y|G = Gs,X = Xs) (9a)

H(Y) = −
∫

p(y) log p(y)dy (9b)

For a trained GNN model, the entropy H(Y), where p(y) is the probability of the model producing output y,357
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is constant when the model makes prediction with the complete graph. The maximization of MI is therefore358

the minimization of the conditional entropy H(Y|G = Gs,X = Xs), which computes for the expectation over359

the distribution of Y conditioned on the subgraph Gs and the corresponding node features Xs.360

By maximizing the mutual information between the predictions made using the original graph and the361

subgraph, it ensures that the subgraph captures the most important aspects of the original graph for the362

model’s decision-making process. To identify Gs, GNNExplainer applies a trainable soft mask M over the363

adjacency matrix A, effectively adjusting edge weights to spotlight those pivotal for the model’s decisions,364

thereby crafting a subgraph that maintains the predictive essence of the original graph. Besides providing365

explanations based on graph structures, GNNExplainer also extends its capabilities to feature-level insights366

by leveraging a similar soft-mask mechanism on node features, thereby generating normalized influence367

scores for each feature and offering a comprehensive understanding of both structural and feature-based368

contributions to the model’s predictions.369

In practice, GNNExplainer generates explanations by initially considering the entire graph and all fea-370

tures, then iteratively pruning edges and features that have the least effect on the prediction accuracy. This371

pruning is guided by gradient-based optimization techniques, which adjust the weights of edges and features372

to highlight those that contribute most significantly to the model’s output. For an expansive explanation of373

the algorithm’s workings and its application, we direct readers to the original work of Ying et al. (2019). Im-374

portantly, by using the true street-level temperature in computing Eqn.(9b), the GNNExplainer essentially375

elucidates the actual phenomena the model aims to capture, thereby offering a quantitative insight of how376

true street-level temperature is influenced by the various geofeatures, which are elaborated in Section 5.4.377

4.5 Evaluation Metrics378

The model performance is evaluated in three ways: (1) Overall performance, to provide a general accuracy379

and bias evaluation among all sensors as a system; (2) spatiotemporal distribution of model errors, to380

demonstrate the performance variances among different locations; (3) performance at out-of-sample locations,381

to test if the model can be generalized and quantify the uncertainties in prediction. Note that the model382

performance is only evaluated over the data points reserved for model validation. These validation data383

points are not used in model training.384

The model performance is quantified using three metrics:385

1. Root mean squared error (RMSE), defined as386

RMSE =

√√√√ 1

tN

t∑
k=1

N∑
n=1

(
T̃

(k)
a,n − T

(k)
a,n

)2

, (10)
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where the error between the predicted street temperature T̃
(k)
a and true street temperature T

(k)
a is387

averaged over total of t predictive time steps and N sensors.388

2. Mean absolute error (MAE): This metric calculates the average magnitude of the errors in a set of389

predictions, without considering their direction. Compared to RMSE, which gives higher weight to390

large errors, MAE provides a more uniform measure of error magnitude.391

MAE =
1

tN

t∑
k=1

N∑
n=1

∣∣∣T̃ (k)
a,n − T (k)

a,n

∣∣∣ , (11)

3. Mean bias error (MBE): This metric quantifies the average bias in the predictions, providing insight392

into whether the model tends to overestimate or underestimate the true values. It is calculated as:393

MBE =
1

tN

t∑
k=1

N∑
n=1

(T̃ (k)
a,n − T (k)

a,n), (12)

A positive MBE indicates a tendency of the model to overestimate, while a negative value suggests an394

underestimation.395

5 Results and Discussion396

5.1 Model performance397

For process-based models, RMSE between 2.0 ◦C and 2.5 ◦C is commonly acceptable over month-long398

simulations on air temperature at hourly intervals. Data-driven models generally have better performance,399

with RMSE ranging from 1 to 1.5 ◦C in existing studies (H. Wang et al., 2023). To better benchmark400

our GNN model to its implementation in Chicago, we replicate the Gaussian Process Regression method401

described in P. Li and A. Sharma (2024b) and train on the same labeled dataset used in this study as a402

reference.403

As shown in Fig. 5a, the average RMSE of GNN model is 0.93 ◦C across the 53 sensors in the city of404

Chicago, which sits at the lower end of the spectrum of RMSE (i.e., 1 - 1.5 ◦C) for data-driven studies. The405

prediction accuracy is also better than the GPR model (1.21 ◦C, Fig. 3b). More importantly, GNN shows406

better consistency when predicting at different locations with a smaller standard deviation on sensor-wise407

RMSEs (0.06 ◦C GNN in Fig. 3c vs 0.25 ◦C GPR in Fig. 3d). Despite the overall improvements from408

GNN, it is intriguing that the RMSEs from these two algorithms exhibit a linear correlation with statistical409

significance (Fig. 3e). The convergence of their error patterns indicates their similar understanding and410

interpretation of the underlying data characteristics. The agreement in performance variances also implies411
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the existence of favorable and unfavorable locations in general, which can guide further refinement of the412

models and the dataset. For instance, further feature engineering or data collection efforts should focus on413

those unfavorable locations. We will elaborate more on this point in Section 5.2.414

Despite the performance of GNN is generally better, there are a few exceptions where GPR outperforms415

GNN (Fig. 5e). Certain sensors showing the highest RMSEs in GNN model are not necessarily the worst416

performer with GPR, vice versa. This variability is likely resulted from the inherent differences between the417

non-parametric nature of GPR and the parametric approach of GNN. The observed performance convergence418

and variability underscore the potential benefits of employing an ensemble of ML models by integrating419

multiple algorithms trained on the same dataset or slightly altered subset. Although the ensemble may not420

significantly enhance accuracy, it is anticipated to yield more reliable predictions and mitigate the risk of421

overfitting.422

It is important to note that the deployment of the GNN in this research is not solely on outperforming423

the other modeling techniques, as each algorithm possesses its own unique advantages. Rather, our objective424

is to explore how GNN achieves superior results and to derive a more generalized, effective strategy for425

model selection, data organization, and the architectural design of ML models, particularly for simulating426

street-level dynamics. Beyond its enhanced accuracy, the GNN model demonstrates potential in unraveling427

the intricate interactions between geospatial locations, evidenced by its consistency across the space. Conse-428

quently, we anticipate the GNN model to provide more reliable predictions at out-of-sample locations, which429

is a critical factor in assessing model performance. We will further elaborate this in the next subsection.430

5.2 Performance at out-of-sample locations431

Theoretically, data extrapolation is a major challenge for all ML algorithms, meaning that ML models432

generally have worse performance on out-of-sample datasets. To further investigate the predictive capability433

of GNN model, we employ a “leave-one-sensor-out” (LOSO) testing strategy. This approach involves training434

a series of models, each excluding data from one specific sensor (P. Li and A. Sharma, 2024b). Compared to435

the model trained on labeled data from all sensors (hereinafter referred to as the nominal model) discussed436

in the previous section, each LOSO model is deprived of any information from the left-out sensor, thus can437

rigorously reflecting GNN’s predictive accuracy on unfamiliar locations (i.e., out-of-sample locations). When438

evaluating their performances, RMSEs for nominal model and LOSO models will be calculated on the data439

points reserved for validation (i.e., out-of-sample data point). But since the nominal model has leveraged440

geofeatures from all sensors in training, it processes certain knowledge over all sensors. Conversely, when441

training LOSO models, the node and its associated edges corresponding to the left-out sensor are removed442
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Figure 5: GNN model performance compared to GPR model presented in P. Li and A. Sharma (2024b).
Scatter plot across simulation period (a) GNN; and (b) GPR. Spatial distribution of model RMSE (c) GNN;
and (d) GPR. (e) Correlation of model performance between GNN and GPR at 53 sensor locations in
Chicago. Red line in (e) is the linear regression between RMSEGPR and RMSEGNN. Shaded zone in (e)
indicates the 99% confidence interval of the linear regression.
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Figure 6: (a) Spatial distribution of the model performance with ”leave-one-sensor-out” (LOSO) configura-
tion. (b) Visualization of edge weight (wij) between paired nodes. (c) Correlation between averaged edge
weight and RMSEs of LOSO models over 53 sensor locations.

from the graph. In the subsequent prediction phase, the corresponding node and edges will be incorporated443

as new information to the model. LOSO test mimics the practical processes of implementing a trained GNN444

model over any designated location in the city. It leverages GNN’s intrinsic ability to adapt to graphs of445

varying topology, thereby ensuring the feasibility of predictions on new nodes.446

Figure 6a shows the map of RMSE for LOSO test. As expected, the average performance of LOSO447

models is worse than the nominal model (1.03 ◦C vs 0.93 ◦C) with a greater variation over all sensors. But448

the average performance is still better than GPR model trained over all sensors, indicating GNN is more449

robust when making predictions on out-of-sample locations.450

The discrepancies in performance might be originated from the difference in model architecture. GPR451

models predict the posterior distribution by incorporating prior knowledge and conditioning these predictions452
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on provided geofeatures. Once certain geofeature is missing in the training dataset, GPR models must453

interpolate, or at times extrapolate, their impact on the target variable. This task can be challenging when454

the left-out geofeatures are unique across the locations. P. Li and A. Sharma (2024b) observed that the455

performance of GPR model can be improved significantly by including even a small subset of the measurement456

from the left-out sensor in training, underscoring the geofeatures’ pivotal role in its modeling structure.457

In contrast, GNN models are not susceptible to this limitation. In addition to the geofeatures that are458

specific to each sensor, GNN model can learn the temporal evolution patterns from the training graph459

using its inductive framework. This capability is enhanced by the message passing mechanisms, which allow460

information exchange between the existing and new nodes depending on the assigned edge weights (Fig. 6b).461

Figure 6c shows the statistical relationship between LOSO model RMSEs (Fig. 6a) and averaged edge weight462

(Fig. 6b). We find that if the average edge weight of a sensor is higher (i.e., permitting more information463

exchange from the other sensors), its corresponding LOSO model will generally have a better performance.464

Since we use the distance and land use similarity between sensors to calculate edge weights (Section 3.1), a465

smaller edge weight value indicates the sensor is geographically isolated or unique in land use conditions, thus466

a likely worse predictive performance. This finding implies that the model performance can be improved by467

strategically selecting measurement locations that are close to each other or similar in land use. Practically,468

with limited number of sensors can be deployed, it would be helpful to distribute the sensors across the469

representative urban land covers with equal distancing. In fact, these information is encoded within the470

adjacency matrix as prior knowledge before training, therefore, the deployment locations can be derived by471

simply optimizing the adjacency matrix toward higher edge weight values across all planned sensors.472

It is also noteworthy that the distinctions of GPR and GNN models make them specialized for different473

tasks. For example, GPR models will be more suitable for gap-filling on the timeseries at specific locations474

once the historical measurement is available. While GNN models will be more reliable for predictions over475

unseen locations. In this case, GNN is believed to be a promising approach to transfer the learned knowledge476

from one to the other cities. This capability can be extremely valuable as street-level observation networks477

are rather rare and can be time-consuming and labor-intensive to deploy, while datasets of geofeatures can478

be generated at a much more affordable cost.479

5.3 Ablation test480

In the previous section, we primarily benchmarked the GNN model and discussed its performance variances481

across different geospatial locations. The subsequent ablation study examines how the model’s performance482

is affected by the absence of specific groups of input data, which will illustrates the impact of each variable483
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group, and identify key contributors to the model performance within the established model architecture.484

We first categorize the input features into four groups as shown in Eqn (3). The nominal model, dis-485

cussed in previous sections, utilizes data from all categories (WH+GE+GA+AX). To assess the impact of486

each feature group on model performance, we prescribe three ablation models, (1) WH+GE+AX, excluding487

geofeatures calculated as statistical moments; (2) WH+GA+AX, omitting embedded geofeatures; and (3)488

WH+AX, where all geofeatures are removed. Table 2 summarizes the model configurations and perfor-489

mance. The findings indicate minimal performance variation when averaged geofeatures (GA) are excluded490

(comparing models 1 and 2, or models 3 and 4). Conversely, the inclusion of embedded geofeatures (GE)491

can significantly improve model performance, as evidenced by the comparisons between models 1 and 3, or492

models 2 and 4 in Table 2.493

Table 2: Comparison of model performance in RMSE (◦C)

Model No. Configuration Mean Std Best Worst

1 Nominal model (WH + GE + GA + AX) 0.92 0.06 0.82 1.06
2 WH + GE + AX 1.06 0.08 0.90 1.26
3 WH + GA + AX 1.18 0.10 1.02 1.50
4 WH + AX 1.19 0.11 1.02 1.51
5 LOSO (WH + GE + GA + AX) 1.05 0.21 0.69 1.94

Ref GPR 1.24 0.25 0.73 2.00

Despite the geofeatures in GE and GA group include similar data elements, such as land cover conditions494

and the heights of surface objects in vertical dimension, GE group offers an added dimension by detailing495

the spatial distribution of the geofeatures around the sensors. This granular information allows the model to496

quantify the significance of geofeatures based on their orientation relative to the sensors. For example, tall497

buildings in the upwind direction may largely alter the mixing condition of the street, thus having a stronger498

influence on street-level temperature (Gao et al., 2022). A similar situation applies to the localized shading499

effect from trees and buildings, which plays a major role in energy re-distribution in the built environment500

(Park et al., 2021; Wang, M and Yang, J., 2021).501

The challenge in practice, though, is to assimilate the vast array of data (e.g., 1302 features use here)502

into a modeling framework, which proves to be daunting for certain ML algorithms such as the GPR. Due503

to its non-parametric nature, GPR model makes predictions based on every entry in the training dataset.504

Consequently, incorporating more data points or dimensions will lead to a cubic rise in computational505

complexity. This surge compromises efficiency in training and prediction, offsetting the advantages of using506

ML models for climate science. Conversely, the structure of GNN models can handle large datasets in a507

scalable and efficient manner, as its complexity depends on the predefined architecture, such as the number508
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of hidden neurons and layers. This characteristic helps it remain manageable model size for applications509

with high-dimensional inputs.510

5.4 Spatial pattern and feature significance511

To assess the impact of geofeatures on street-level temperature more closely, we utilize GNNExplainer (Sec-512

tion 4.4) to compute the influence score for each variable within the GA and GE groups. Our analysis513

revealed significant variations in the importance of GA group geofeatures. Specifically, the fraction of imper-514

vious surfaces (GA16), vegetation (GA17), and Leaf Area Index (GA06) were identified the most influential515

geofeatures on street-level temperature. Conversely, water fractions (GA18) and high-intensity development516

(GA15) were found to be less impactful (Fig. 7a). When categorizing these geofeatures by their infor-517

mational content, it becomes evident that planar land cover and land use attributes (e.g., fractions and518

development intensity) generally have higher influence scores than vertical measurements (e.g., building and519

canopy heights). This discrepancy likely stems from the relatively large averaging radius (200m) in com-520

parison to the average height of surface objects in Chicago (<30m). This observation is consistent with521

findings from the GE group, where variables in horizontal dimension are deemed more critical than those in522

the vertical dimensions.523

Another key discovery within the GA group is that canopy density variables hold a higher influence524

score than both canopy fraction (GA19) and canopy height (GA01-04) (Fig. 7a), despite being derived from525

datasets with coarser spatial resolution (300m for canopy density vs 1m for height information). Moreover,526

canopy density is the only geofeature group that has temporal variation over the summer months. Its higher527

influence score than the other static geofeatures indicates the critical impact of vegetation phenology on528

the hyper-local environment, even during a relatively short period. Yet, incorporating dynamic vegetation529

attributes in urban climate studies is uncommon, possibly due to the scarcity of accessible, city-specific530

vegetation data for modeling purposes. The absence of spatiotemporal vegetation data in high resolution531

also prevents us to include canopy density variables in GE group using the spatial embedding technique.532

This finding from our model and the present gap in data availability potentially imply a broader trend of533

underestimating the role of vegetation phenology in environmental modeling (Bernard et al., 2022; Zhou,534

2022), even though research on the impact of urban heat on plant phenology is quite prevalent (Zipper et al.,535

2016; D. Li et al., 2019; Meng et al., 2020).536

Analysis of the GE group supports observations from the GA group, revealing that geofeatures in horizon-537

tal dimension typically score higher than the vertical ones (Fig. 7b), meaning more influence on street-level538

temperature. In addition, we find that, compared to the NLCD classification, the CMAP data shows greater539
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Figure 7: (a) Importance scores of individual features in GA group.(b) The spatial distribution of importance
scores for embedded features in GE group. (c) The normalized average importance score of GE group.
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significance. NLCD mainly categorizes urban land cover by the extent of impervious surfaces, offering limited540

insight into land use and building functionality. In contrast, Chicago’s landscape, predominantly character-541

ized by residential areas with medium-density housing and commercial centers, is oversimplified in NLCD’s542

“medium development intensity” category. CMAP’s data, with its higher spatial resolution and more nu-543

anced urban classification, provides a more accurate depiction of land surface conditions. This enhanced544

characterization suggests model performance can benefit from a detailed description of urban land surfaces545

via a more representative classification scheme.546

The spatial distribution of influence scores, derived from individual embedded features as shown in547

Fig. 7b, does not present a clear pattern. The GNN model makes predictions using specific location of548

the site, time of day, and day of the year, making it practically impossible to comprehend its mechanism549

at each timestep. However, aggregating features across all sensor locations reveals a discernible hotspot550

in the northeast direction (Fig. 7c), which intriguingly corresponds with the dominant wind direction551

(southwest to northeast) in Chicago during the summer. The spatial proximity of this hotspot to sensor552

locations, approximately 100 to 150m, coincides with distances identified in research seeking the optimal553

averaging radius for model efficiency and performance (Allen-Dumas et al., 2021). Given that high-resolution554

geospatial variables in the GE group are transformed into 12x12 matrices for the GNN model, pinpointing555

specific urban features responsible for this observation is challenging. Consequently, it is premature to draw556

definitive conclusions about spatial patterns of feature significance. Nonetheless, this suggests that employing557

more sophisticated embedding techniques (e.g. through an autoencoder) could illuminate the relationship558

between the layout of geofeatures and their thermal effects. Collectively, we advocate the development of559

comprehensive high-resolution urban climate informatics to help the investigation the microclimate dynamics560

via data-driven approach.561

6 Concluding Remarks562

In this study, we investigated the efficacy of Graph Neural Networks (GNN) in addressing the street-level563

downscaling problem at discrete locations, leading to four main contributions: (1) enhanced the precision of564

hourly air temperature predictions at the street level; (2) evaluated the model’s ability on spatial extrapo-565

lation; and (3) examined how urban features influence street-level temperatures, thereby improving model566

interpretability and our understanding of microclimate dynamics; and (4) demonstrated the applicability of567

the hybrid modeling framework presented in (P. Li and A. Sharma, 2024b). Meanwhile, we compared the568

GNN model against the previous GPR model and digested their distinctions in architecture, data handling,569

and performance under various use cases. We concluded that the improve of prediction accuracy can be570
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attributed to the architectural advantages of GNN and its capability of handing extensive high-dimensional571

datasets. Findings from model ablation and feature significance analysis elucidated the critical aspects of572

urban features, such as the dynamic canopy density data and detailed representative urban land classifica-573

tion, which can help to establish a nuanced benchmark for collecting environmental data in urban settings.574

It is also possible to use such modeling and analyzing methods to identify the dominance of physical pro-575

cesses at street-level microclimate based on the relative importance of all urban features. This can, in turn,576

inform the physics-based urban climate models to effectively focus on the predominant processes without577

introducing extra burdens on computation, thus promoting a synergistic cycle that enhances the Modeling578

– Experimenting (ModEx) strategy (DOE, 2020).579

Along with its notable contributions, we reckon there are a few caveats of this study, which are not unique580

but rather common across contemporary data-driven urban climate research. These limitations highlight581

areas for future research efforts. One notable challenge is the lack of explicit dataset for anthropogenic582

heat sources in the model. The in-canyon thermal environment can be highly susceptible to anthropogenic583

heat sources from vehicles, buildings, and pedestrians. Though, to a certain degree, the spatial patterns584

of anthropogenic heat can be reflected from the land cover and land use and might be recognized by the585

ML model, the temporal variability is still underrepresented. As we concluded in Section 5.4, variables that586

change with time generally have higher importance than temporally static variables in the modeling process.587

This implies the criticalness to include the real-time traffic and building energy datasets to reflect the diurnal588

variations associated with rush hours and the difference between a weekday and weekend. Acquiring such589

hyper-local data across extensive areas presents significant challenges and, at times, may seem impractical590

without a direct application. Nevertheless, the validation of our framework and its novel application have591

implied the criticalness of these datasets, thereby justifying the effort to compile them for an in-depth592

investigation of anthropogenic heat’s impact on hyper-local climates.593

Besides the contributions and caveats from fundamental science perspective, insights from this study594

extend significantly into urban planning and policy. For example, by identifying key physical processes595

and urban features that influence microclimates, this study can inform targeted interventions to mitigate596

urban heat island effects, enhance urban resilience against climate change, and improve public health. The597

advocacy for enhanced urban data collection is contingent upon the establishment of comprehensive data598

policies and the support of robust cyberinfrastructures. Thus, we call upon the research community, urban599

planners, policymakers, and technology developers to engage in deeper collaboration. Collectively, we can600

push forward the agenda for sustainable urban development and environmental stewardship.601
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